29.12.2012 Views

The Role of Wafer Bonding in 3D Integration and ... - SUSS MicroTec

The Role of Wafer Bonding in 3D Integration and ... - SUSS MicroTec

The Role of Wafer Bonding in 3D Integration and ... - SUSS MicroTec

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Role</strong> <strong>of</strong> <strong>Wafer</strong> <strong>Bond<strong>in</strong>g</strong> <strong>in</strong><br />

<strong>3D</strong> <strong>Integration</strong> <strong>and</strong> Packag<strong>in</strong>g<br />

James Hermanowski <strong>and</strong> Greg George<br />

<strong>SUSS</strong> <strong>MicroTec</strong>, Inc.<br />

228 Suss Drive Waterbury Center, VT 05677<br />

1<br />

More <strong>in</strong>formation: www.suss.com/tec_library E-Mail: <strong>in</strong>fo@suss.com


2<br />

<strong>The</strong> <strong>Role</strong> <strong>of</strong> <strong>Wafer</strong> <strong>Bond<strong>in</strong>g</strong> <strong>in</strong> <strong>3D</strong> <strong>Integration</strong><br />

<strong>and</strong> Packag<strong>in</strong>g<br />

James Hermanowski <strong>and</strong> Greg George<br />

<strong>SUSS</strong> <strong>MicroTec</strong>, Inc.<br />

228 Suss Drive<br />

Waterbury Center, VT 05677<br />

Abstract<br />

<strong>The</strong>re are numerous process <strong>in</strong>tegration schemes currently <strong>in</strong> place for the implementation <strong>of</strong> <strong>3D</strong>-IC. Via first, via middle, via<br />

last along with back end <strong>of</strong> l<strong>in</strong>e (BEOL), front end <strong>of</strong> l<strong>in</strong>e (FEOL) <strong>and</strong> other variations <strong>of</strong> these approaches. This work will<br />

explore the role <strong>of</strong> wafer bond<strong>in</strong>g, both permanent <strong>and</strong> temporary, <strong>in</strong> the fabrication <strong>of</strong> <strong>3D</strong>-IC. Additionally, the materials <strong>and</strong><br />

process flows used for these processes will be exam<strong>in</strong>ed <strong>in</strong> detail.<br />

I. Introduction<br />

<strong>3D</strong> <strong>Integration</strong> <strong>and</strong> Packag<strong>in</strong>g are currently<br />

described as “paradigm shifts”, “revolutionary<br />

technologies”, <strong>and</strong> other equally prophetic catch<br />

phrases. <strong>The</strong> realization <strong>of</strong> <strong>3D</strong> to meet <strong>and</strong> exceed<br />

these expectations requires significant advances <strong>in</strong><br />

surface preparation methods (CMP – chemical<br />

mechanical polish<strong>in</strong>g), development <strong>of</strong> metal fill<br />

technologies (TSV – through silicon via etch, plat<strong>in</strong>g,<br />

<strong>and</strong> vapor deposition), redistribution layers,<br />

<strong>in</strong>terposer technology, <strong>and</strong> micro bump<strong>in</strong>g methods,<br />

advanced permanent bond<strong>in</strong>g methods, th<strong>in</strong> wafer<br />

h<strong>and</strong>l<strong>in</strong>g (materials, carriers, bond<strong>in</strong>g <strong>and</strong> debond<strong>in</strong>g),<br />

as well as simulators (architectural design to cost <strong>of</strong><br />

ownership model<strong>in</strong>g). <strong>The</strong> complexity <strong>of</strong> <strong>3D</strong><br />

<strong>in</strong>tegration <strong>and</strong> packag<strong>in</strong>g blurs the l<strong>in</strong>e between<br />

process node del<strong>in</strong>eation <strong>and</strong> requires an overall<br />

evaluation <strong>and</strong> underst<strong>and</strong><strong>in</strong>g <strong>of</strong> the entire process<br />

flows. All downstream processes are affected by the<br />

methods used prior to actual <strong>in</strong>tegration process<strong>in</strong>g.<br />

<strong>Wafer</strong> level bond<strong>in</strong>g is a key step, if not the<br />

fundamental step, <strong>in</strong> the success <strong>of</strong> <strong>3D</strong>. If the<br />

stack<strong>in</strong>g <strong>of</strong> the devices is not successful all the<br />

previous <strong>and</strong> subsequent steps are moot.<br />

<strong>The</strong> ultimate goal <strong>of</strong> <strong>3D</strong> is the flow <strong>of</strong> electrical<br />

signals between layers. This can be at the transistor<br />

level between memory layers as <strong>in</strong> <strong>3D</strong> ICs, or it can<br />

be at the packag<strong>in</strong>g level between the various<br />

heterogeneous devices e.g., logic controller to MEMS<br />

device. Permanent wafer bond<strong>in</strong>g methods used <strong>in</strong><br />

<strong>3D</strong> <strong>in</strong>volve metal bond<strong>in</strong>g or hybrid approaches with<br />

metal <strong>and</strong> dielectric layers. <strong>The</strong> most <strong>of</strong>ten used<br />

materials are Cu <strong>and</strong> CuSn for <strong>3D</strong> ICs <strong>and</strong> Au, Al, or<br />

Cu based eutectics for hermetic packag<strong>in</strong>g <strong>and</strong> micro<br />

bump<strong>in</strong>g. <strong>The</strong> process flows, requirements <strong>and</strong><br />

specification requirements for each bond<strong>in</strong>g<br />

technology are based on st<strong>and</strong>ard metrology metrics<br />

but the requirements for high yields are specific for<br />

each technology <strong>and</strong> will be discussed.<br />

Equally essential to the success <strong>of</strong> <strong>3D</strong> <strong>in</strong>tegration<br />

<strong>and</strong> packag<strong>in</strong>g is the ability to reta<strong>in</strong> f<strong>in</strong>al stack<br />

dimensions that meet the application form factor. For<br />

example, it would be unwise to promote vertically<br />

stacked devices that resulted <strong>in</strong> a “chip” that was<br />

several millimeters thick when the applications<br />

require the devices to fit <strong>in</strong>to smaller <strong>and</strong> smaller<br />

spaces. To facilitate stack<strong>in</strong>g, m<strong>in</strong>imize the vertical<br />

<strong>in</strong>terconnect length, <strong>and</strong> achieve form factor<br />

requirements it is common to th<strong>in</strong> each layer <strong>in</strong> the<br />

stack to 50μm or less. <strong>The</strong> development <strong>and</strong> f<strong>in</strong>e<br />

tun<strong>in</strong>g <strong>of</strong> temporary adhesives, the support substrate<br />

options, <strong>and</strong> the quality <strong>of</strong> the debond <strong>and</strong> th<strong>in</strong> wafer<br />

transfer robustness are all advanc<strong>in</strong>g toward high<br />

volume manufactur<strong>in</strong>g options. <strong>The</strong> lead<strong>in</strong>g<br />

technology choices for TWH with compatibility<br />

tables will be provided to assist <strong>in</strong> the selection<br />

process for various types <strong>of</strong> device applications.<br />

II. <strong>Bond<strong>in</strong>g</strong> Sequences for <strong>3D</strong>-IC<br />

<strong>The</strong> n<strong>in</strong>e major <strong>3D</strong>-IC process flows are shown <strong>in</strong><br />

Table 1. In every case, a permanent bond<strong>in</strong>g step is<br />

required to form the <strong>3D</strong>-IC. Almost all <strong>of</strong> the bonds<br />

are metal to metal <strong>and</strong> five out <strong>of</strong> n<strong>in</strong>e <strong>of</strong> the<br />

processes call for temporary bond<strong>in</strong>g to a h<strong>and</strong>le<br />

wafer followed by wafer th<strong>in</strong>n<strong>in</strong>g.<br />

More <strong>in</strong>formation: www.suss.com/tec_library E-Mail: <strong>in</strong>fo@suss.com


TABLE 1. Major <strong>3D</strong>-IC Process Flows<br />

IC<br />

Process <strong>Wafer</strong> Step #1 Step #2 Step #3<br />

A<br />

B<br />

C<br />

D<br />

FEOL<br />

TSV (vias<br />

first)<br />

FEOL<br />

TSV (vias<br />

first)<br />

BEOL<br />

TSV (vias<br />

first)<br />

BEOL<br />

TSV (vias<br />

first)<br />

E No TSV<br />

F No TSV<br />

G No TSV<br />

H No TSV<br />

I No TSV<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g<br />

(temp.<br />

h<strong>and</strong>le)<br />

"facedown"<br />

Bond<br />

(metal<br />

bond<strong>in</strong>g)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g<br />

(temp.<br />

h<strong>and</strong>le)<br />

"facedown"<br />

Bond<br />

(metal<br />

bond<strong>in</strong>g)<br />

TSV from<br />

front (vias<br />

first)<br />

TSV from<br />

front (vias<br />

first)<br />

"facedown"<br />

Bond<br />

(all methods)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g<br />

(temp.<br />

h<strong>and</strong>le)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g<br />

(temp.<br />

h<strong>and</strong>le)<br />

"face-up"<br />

Bond (metal<br />

bond<strong>in</strong>g)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g (on<br />

<strong>3D</strong> stack)<br />

"face-up"<br />

Bond (metal<br />

bond<strong>in</strong>g)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g (on<br />

<strong>3D</strong> stack)<br />

"facedown"<br />

Bond<br />

(metal<br />

bond<strong>in</strong>g)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g<br />

(temp.<br />

h<strong>and</strong>le)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g (on<br />

<strong>3D</strong> stack)<br />

"face-up"<br />

Bond (all<br />

methods)<br />

TSV from<br />

back (vias<br />

first)<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>n<strong>in</strong>g (on<br />

<strong>3D</strong> stack)<br />

"face-up"<br />

Bond (metal<br />

bond<strong>in</strong>g)<br />

TSV from<br />

back (vias<br />

last)<br />

TSV from<br />

front (vias<br />

last)<br />

"face-up"<br />

Bond (metal<br />

bond<strong>in</strong>g)<br />

Figure 1 shows <strong>in</strong> graphical form the n<strong>in</strong>e major<br />

<strong>3D</strong>-IC process flows. [1]<br />

A&C<br />

B&D<br />

E<br />

Figure 1. <strong>The</strong> n<strong>in</strong>e major process sequences for<br />

<strong>3D</strong>-IC.<br />

III. Primary Metal Schemes Used for <strong>Bond<strong>in</strong>g</strong><br />

<strong>The</strong> selection <strong>of</strong> metal <strong>in</strong>terconnect between two<br />

wafers is <strong>of</strong>ten a byproduct <strong>of</strong> the metals used <strong>in</strong> the<br />

metal wir<strong>in</strong>g <strong>of</strong> the <strong>in</strong>dividual chips. Copper <strong>and</strong><br />

F<br />

G<br />

Temporary <strong>Bond<strong>in</strong>g</strong><br />

Align<strong>in</strong>g <strong>and</strong> <strong>Bond<strong>in</strong>g</strong> (Permanent)<br />

Source: Phil Garrou, MCNC 2008<br />

H<br />

I<br />

3<br />

copper-t<strong>in</strong> are lead<strong>in</strong>g choices due to the wide<br />

availability <strong>of</strong> copper processes <strong>in</strong> wafer fabs. Copper<br />

to copper (Cu-Cu) bond<strong>in</strong>g is a diffusion based<br />

process while copper-t<strong>in</strong> (CuSn-Cu) bond<strong>in</strong>g is a<br />

eutectic type. Table 2 shows various metal bond<strong>in</strong>g<br />

schemes.<br />

TABLE 2. Comparison <strong>of</strong> Metal <strong>Bond<strong>in</strong>g</strong> Schemes<br />

ReactionType Metal Bond<br />

Temp<br />

Diffusion<br />

Eutectic<br />

Cu-Cu >350°C Yes<br />

Au-Au >300°C No<br />

Al-Ge >419°C Yes<br />

AuSi >363°C No<br />

AuGe >361°C No<br />

AuSn >278°C No<br />

CuSn >231°C Yes<br />

CMOS<br />

Compatible<br />

Diffusion bond<strong>in</strong>g has str<strong>in</strong>gent surface<br />

roughness <strong>and</strong> flatness requirements. It is known that<br />

for diffusion bond<strong>in</strong>g, the contact area <strong>and</strong> bond<strong>in</strong>g<br />

energy must be as large as possible. It is therefore<br />

important for the two mat<strong>in</strong>g metal surfaces to be<br />

very smooth <strong>and</strong> flat to allow for solid state diffusion.<br />

<strong>The</strong> surface roughness <strong>of</strong> the substrate <strong>in</strong> addition to<br />

its activation state def<strong>in</strong>es the temperature <strong>and</strong> the<br />

force required for good bond<strong>in</strong>g. It has been<br />

demonstrated that the surface roughness affects the<br />

bond<strong>in</strong>g quality when the bond<strong>in</strong>g temperature is low.<br />

<strong>The</strong> typical reported micro-roughness values <strong>of</strong><br />

sputtered Cu on (300nm) on Ta (100nm) range from<br />

1.5 to 2nm. Low temperature bond<strong>in</strong>g processes<br />

(


diffusion at temperatures as low as 200°C us<strong>in</strong>g a<br />

self-assembled monolayer approach or at room<br />

temperature after ion sputter clean<strong>in</strong>g.<br />

For Cu eutectic wafer bond<strong>in</strong>g, the surface<br />

micro-roughness is not as important. <strong>The</strong>re is<br />

significant <strong>in</strong>dustry experience from solder jo<strong>in</strong>t<br />

studies relat<strong>in</strong>g to chip packag<strong>in</strong>g that <strong>in</strong>dicates this<br />

bond approach is also less sensitive to surface<br />

contam<strong>in</strong>ation[4]. <strong>The</strong> lower process<strong>in</strong>g temperature<br />

also makes it friendlier for wafer process<strong>in</strong>g thermal<br />

budgets.<br />

Si<br />

Interface Cu<br />

Interface<br />

Cu<br />

Si<br />

1μm<br />

Fig. 2. Cu-Cu bond <strong>in</strong>terface show<strong>in</strong>g gra<strong>in</strong><br />

boundary.<br />

2-4µm Gra<strong>in</strong>s<br />

with subgra<strong>in</strong><br />

high angle<br />

gra<strong>in</strong><br />

boundaries.<br />


complete delam<strong>in</strong>ation <strong>of</strong> the th<strong>in</strong>ned wafer from the<br />

carrier; areas where pockets <strong>of</strong> the th<strong>in</strong>ned wafer<br />

delam<strong>in</strong>ate <strong>in</strong> the form <strong>of</strong> centimeter sized bubbles,<br />

see figure 4; <strong>and</strong> “flowers” where the th<strong>in</strong>ned wafer<br />

exhibits millimeter sized flower shaped defects [7].<br />

<strong>The</strong>rmal performance measurements should predict<br />

the formation <strong>of</strong> these defects.<br />

Differential pressure <strong>and</strong><br />

adhesive decomposition<br />

caus<strong>in</strong>g gas pocket.<br />

<strong>The</strong>rmo-gravimetric analysis (TGA) is a simple<br />

tool useful for compar<strong>in</strong>g different adhesives. TGA<br />

can be used to narrow the selection <strong>of</strong> an adhesive<br />

but it does not reveal the materials that evolve dur<strong>in</strong>g<br />

thermal process<strong>in</strong>g. <strong>The</strong>rmal desorption spectroscopy<br />

(TDS) or thermal extraction with mass spectrometer<br />

(TEDGCMass) can provide detailed <strong>in</strong>formation<br />

relat<strong>in</strong>g to the relative quantity <strong>and</strong> types <strong>of</strong><br />

compounds evolved dur<strong>in</strong>g thermal process<strong>in</strong>g. This<br />

<strong>in</strong>formation can be useful for even more detailed<br />

comparison <strong>of</strong> adhesives as well as predict<strong>in</strong>g the<br />

potential impact on the process equipment exposed to<br />

these compounds, for example, clean<strong>in</strong>g frequency.<br />

However, these measurements should be <strong>in</strong>terpreted<br />

carefully as they do not represent the actual use <strong>of</strong> the<br />

polymer where it is s<strong>and</strong>wiched between two wafers.<br />

VI. Adhesive Systems<br />

Th<strong>in</strong>ned wafer<br />

Adhesive<br />

Carrier wafer<br />

Figure 4. Adhesive decomposition <strong>and</strong> adhesive<br />

vapor pressure dur<strong>in</strong>g high temperature, high<br />

vacuum process<strong>in</strong>g lead<strong>in</strong>g to gas pocket.<br />

<strong>The</strong>re are three ma<strong>in</strong> th<strong>in</strong> wafer h<strong>and</strong>l<strong>in</strong>g<br />

adhesive systems which allow debond<strong>in</strong>g after tape<br />

frame mount<strong>in</strong>g: 3M <strong>Wafer</strong> Support System<br />

adhesive system [8], Th<strong>in</strong> Materials AG adhesive<br />

system (T-MAT) [9], <strong>and</strong> Brewer Science Inc.ʼs<br />

ZoneBOND system [10]. As a po<strong>in</strong>t <strong>of</strong> reference, one<br />

thermal-slide process will be shown [11].<br />

A. Brewer Science, Inc. <strong>Wafer</strong>BOND HT10.10<br />

Brewerʼs material uses an adhesive cast <strong>in</strong><br />

solvent which is sp<strong>in</strong> coated <strong>and</strong> baked much like<br />

photoresist. <strong>Bond<strong>in</strong>g</strong> is done <strong>in</strong> a vacuum chamber at<br />

moderate force (


<strong>The</strong> key characteristics <strong>of</strong> the 3M process <strong>in</strong>clude<br />

room temperature debond<strong>in</strong>g <strong>and</strong> debond<strong>in</strong>g after<br />

frame mount<strong>in</strong>g.<br />

3M: Materials/Process<br />

Temporary Bond<br />

Device <strong>Wafer</strong><br />

Glass Carrier<br />

<strong>Wafer</strong><br />

Debond<br />

Th<strong>in</strong>ned Device<br />

<strong>Wafer</strong><br />

Carrier <strong>Wafer</strong><br />

C. Th<strong>in</strong> Materials AG (T-MAT)<br />

T-MATʼs process uses a precursor spun on to the<br />

CMOS wafer. This is then converted via a simple PE-<br />

CVD process to form a release layer ~100 – 150nm<br />

thick. <strong>The</strong> elastomer used is a high temperature<br />

material cured at ~180°C which jo<strong>in</strong>s the wafer to the<br />

carrier. Debond<strong>in</strong>g can occur after the wafer stack is<br />

attached to a tape frame with the th<strong>in</strong>ned wafer<br />

attached to the tape. One vacuum chuck is used to<br />

hold the th<strong>in</strong>ned wafer via the taped side while<br />

another holds the carrier. Upon slight separation <strong>of</strong><br />

the stack at one side, a debond wave moves across<br />

the stack separat<strong>in</strong>g the wafers <strong>and</strong> leav<strong>in</strong>g beh<strong>in</strong>d<br />

the th<strong>in</strong>ned wafer supported by the tape/frame. <strong>The</strong><br />

process is shown <strong>in</strong> figure 7.<br />

Th<strong>in</strong> Materials AG: Materials/Process<br />

Temporary Bond<br />

Device <strong>Wafer</strong><br />

Carrier <strong>Wafer</strong><br />

Debond<br />

Th<strong>in</strong>ned Device<br />

<strong>Wafer</strong><br />

Attached to<br />

Dic<strong>in</strong>g Frame<br />

Sp<strong>in</strong> Coat<br />

Adhesive<br />

Sp<strong>in</strong> Coat LTHC<br />

Sp<strong>in</strong> Coat<br />

Precursor<br />

Sp<strong>in</strong> Coat<br />

Elastomer<br />

Precision Align <strong>and</strong><br />

Permanent Bond<br />

Carrier <strong>Wafer</strong> Attached to<br />

Dic<strong>in</strong>g Frame<br />

Device <strong>Wafer</strong><br />

with Adhesive<br />

Carrier <strong>Wafer</strong> with<br />

LTHC Coat<strong>in</strong>g<br />

Plasma Form<br />

Release Layer<br />

<strong>3D</strong> Stacked<br />

<strong>Wafer</strong>s<br />

Remove Carrier<br />

B. Brewer Science Inc., ZoneBOND<br />

Flip <strong>Wafer</strong><br />

Flip <strong>Wafer</strong><br />

UV Light<br />

Bond <strong>and</strong> UV<br />

Cure Adhesive<br />

Laser Release Remove Carrier Peel Adhesive<br />

Figure 6. 3M WSS process flow.<br />

R<strong>in</strong>se<br />

Temporary Bond<br />

Processed <strong>Wafer</strong><br />

on Frame<br />

Temporary Bond<br />

Figure 7. Typical T-MAT process flow.<br />

Processed<br />

<strong>Wafer</strong> on Frame<br />

6<br />

ZoneBOND uses a specially prepared carrier<br />

with two dist<strong>in</strong>ct zones as shown <strong>in</strong> Figure 8. <strong>The</strong><br />

edge zone consists <strong>of</strong> a normal silicon wafer while<br />

the center zone exhibits low adhesion properties. <strong>The</strong><br />

carrier is then bonded to the device wafers us<strong>in</strong>g heat<br />

<strong>and</strong> force.<br />

Debond<strong>in</strong>g is a multiple step process whereby<br />

the first step removes the adhesive jo<strong>in</strong><strong>in</strong>g the wafer<br />

<strong>and</strong> carrier at the edge. <strong>The</strong> second step is a<br />

mechanical wedge separation <strong>of</strong> the carrier from the<br />

wafer by a means very similar to TMAT. <strong>The</strong> f<strong>in</strong>al<br />

step is the removal <strong>of</strong> the adhesive from the face <strong>of</strong><br />

the device wafer.<br />

<strong>The</strong> key characteristics <strong>of</strong> BSIʼs ZoneBOND<br />

process <strong>in</strong>clude room temperature debond<strong>in</strong>g <strong>and</strong><br />

debond<strong>in</strong>g after frame mount<strong>in</strong>g.<br />

Brewer Science Inc., ZoneBOND<br />

Figure 8. Typical process for BSI ZoneBOND<br />

VII. Mechanical Properties<br />

Aga<strong>in</strong>, five <strong>of</strong> the n<strong>in</strong>e <strong>3D</strong>-IC process flows call<br />

for the transfer <strong>of</strong> the th<strong>in</strong>ned wafer supported by the<br />

carrier to another wafer us<strong>in</strong>g permanent bond<strong>in</strong>g.<br />

Mechanical hardness <strong>of</strong> the temporary adhesive must<br />

hold the th<strong>in</strong>ned wafer flat to the carrier dur<strong>in</strong>g high<br />

temperature process<strong>in</strong>g. If the adhesive gives dur<strong>in</strong>g<br />

the bond process, the th<strong>in</strong> wafer will flex under<br />

pressure from the bond<strong>in</strong>g po<strong>in</strong>ts as shown <strong>in</strong> Figures<br />

9a <strong>and</strong> 9b. If these process flows are expected to be<br />

utilized then thermo-mechanical analysis test<strong>in</strong>g<br />

should be conducted to ensure suitable hardness<br />

dur<strong>in</strong>g the process conditions.<br />

Delam<strong>in</strong>ation <strong>of</strong> the wafer from the carrier is not<br />

normally an issue for these processes. In fact, it is<br />

desired for the th<strong>in</strong> device wafer to delam<strong>in</strong>ate or<br />

debond from the carrier while it is bonded to another<br />

wafer. In this case, the process might be considered a<br />

layer transfer. In the case <strong>of</strong> TMATʼs adhesive<br />

system, this has been demonstrated <strong>and</strong> will likely<br />

More <strong>in</strong>formation: www.suss.com/tec_library E-Mail: <strong>in</strong>fo@suss.com


work as well with other silicone based adhesive<br />

systems. More <strong>of</strong>ten the adhesive will change under<br />

the heat <strong>and</strong> pressure <strong>of</strong> the permanent bond process<br />

<strong>and</strong> not allow debond<strong>in</strong>g later or the adhesive will<br />

become too difficult to remove by normal means.<br />

<strong>Wafer</strong> to be<br />

bonded<br />

Th<strong>in</strong>ned wafer<br />

Adhesive<br />

Carrier wafer<br />

<strong>Wafer</strong><br />

Th<strong>in</strong>ned wafer<br />

Adhesive<br />

Carrier wafer<br />

Figure 9a. <strong>Wafer</strong>s before bond<strong>in</strong>g.<br />

Compressed<br />

VIII. Summary <strong>and</strong> Conclusions<br />

3000A<br />

Cu posts<br />

3000A<br />

Cu posts<br />

Unbonded<br />

posts<br />

Figure 9b. Th<strong>in</strong> wafer after bond<strong>in</strong>g show<strong>in</strong>g<br />

deformation due to lack <strong>of</strong> support from adhesive<br />

at high temperatures.<br />

<strong>Wafer</strong> bond<strong>in</strong>g has an important role <strong>in</strong> <strong>3D</strong>-IC<br />

applications. <strong>Wafer</strong> bond<strong>in</strong>g, permanent or<br />

temporary, is an essential requirement <strong>and</strong> the only<br />

viable means to achieve cost effective chips.<br />

Permanent bond<strong>in</strong>g is used <strong>in</strong> all process flows while<br />

temporary bond<strong>in</strong>g is also used <strong>in</strong> over half <strong>of</strong> the<br />

process flows.<br />

Copper based processes dom<strong>in</strong>ate for permanent<br />

bond<strong>in</strong>g as copper is readily available <strong>in</strong> wafer fabs<br />

globally. However, copper bond<strong>in</strong>g is susceptible to<br />

defects <strong>and</strong> degradation caused by surface<br />

contam<strong>in</strong>ation from oxides <strong>and</strong> organics. Elim<strong>in</strong>at<strong>in</strong>g<br />

<strong>and</strong> controll<strong>in</strong>g these impurities is imperative for <strong>3D</strong>-<br />

IC Cu bond<strong>in</strong>g processes.<br />

<strong>The</strong> lead<strong>in</strong>g temporary bond<strong>in</strong>g adhesives use a<br />

process flow that allows debond<strong>in</strong>g after mount<strong>in</strong>g to<br />

a tape frame. <strong>The</strong> taught tape on the frame provides a<br />

necessary <strong>and</strong> sound surface for support<strong>in</strong>g the<br />

7<br />

th<strong>in</strong>ned wafer. Traditional thermal-slide <strong>and</strong> solvent<br />

debond processes do not allow debond<strong>in</strong>g after<br />

mount<strong>in</strong>g to a tape frame limit<strong>in</strong>g debond yield <strong>and</strong><br />

m<strong>in</strong>imum wafer thickness.<br />

<strong>The</strong> desired properties for temporary adhesives<br />

are extremely challeng<strong>in</strong>g. An approach to quantify<br />

thermal performance <strong>of</strong> temporary adhesives at high<br />

temperatures us<strong>in</strong>g TGA <strong>and</strong> TDS data has been<br />

presented. <strong>The</strong> approach provides a good predictor <strong>of</strong><br />

the complex processes that occur at high<br />

temperatures.<br />

REFERENCES<br />

[1] Phil Garrou, MCNC 2008<br />

[2]Chuan Seng Tan,Dau Fatt Lim, Shiv Gov<strong>in</strong>d S<strong>in</strong>gh, Sarah<br />

Goulet, <strong>and</strong> Magnus Bergkvist. (2009). Cu-Cu diffusion<br />

bond<strong>in</strong>g enhancement at low temperature by surface<br />

passivation us<strong>in</strong>g self-assembled monolayer <strong>of</strong> alkane-thiol.<br />

Applied Physics Letters, 95(19).<br />

[3] T. H. Kim, M. M. R. Howlader, T. Itoh, <strong>and</strong> T. Suga,<br />

“Room temperature Cu/Cu direct wafer bond<strong>in</strong>g us<strong>in</strong>g surface<br />

activated bond<strong>in</strong>g method", Journal <strong>of</strong> Vacuum Science <strong>and</strong><br />

Technology A21(2) (2003) 449-453.<br />

[4] Raiyo Asp<strong>and</strong>iar, Voids <strong>in</strong> Solder Jo<strong>in</strong>ts, SMTA Northwest<br />

Chapter Meet<strong>in</strong>g, September 21, 2005.<br />

[5] James Hermanowski, “Th<strong>in</strong> <strong>Wafer</strong> H<strong>and</strong>l<strong>in</strong>g – Study <strong>of</strong><br />

Temporary <strong>Wafer</strong> <strong>Bond<strong>in</strong>g</strong> Materials <strong>and</strong> Processes”<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>3D</strong> System <strong>Integration</strong>, 2009. <strong>3D</strong> System<br />

<strong>Integration</strong>, 2009. <strong>3D</strong>-IC 2009 IEEE International Conference<br />

on <strong>3D</strong> <strong>Integration</strong>.<br />

[6] J. Charbonnier, S. Cheramy, D. Henry, A. Astier, J. Brun,<br />

N. Sillon, et al., “<strong>Integration</strong> <strong>of</strong> a Temporary Carrier <strong>in</strong> a TSV<br />

Process Flow,” Electronics Components <strong>and</strong> Technology<br />

Conference, 2009<br />

[7] Tony Flaim, “Ultrath<strong>in</strong> <strong>Wafer</strong> H<strong>and</strong>l<strong>in</strong>g,” <strong>3D</strong> Architectures<br />

Conference, November 2008<br />

[8] 3M WSS product documentation<br />

[9] Th<strong>in</strong> Materials AG product documentation<br />

[10] Jeremy McCutchen, ZoneBOND Th<strong>in</strong> <strong>Wafer</strong> Support<br />

Process for Temporary <strong>Wafer</strong> <strong>Bond<strong>in</strong>g</strong> Applications,<br />

Proceed<strong>in</strong>gs <strong>of</strong> IMAPS 6 th International Conference on Device<br />

Packag<strong>in</strong>g, March 2010.<br />

[11] Brewer Science Inc. product documentation<br />

[12] US patent application 20050233547<br />

[13] S. Pillalamarri, R. Puligadda, C. Brubaker, M.<br />

Wimpl<strong>in</strong>ger, S. Pargfrieder, “High Temperature Sp<strong>in</strong>-On<br />

Adhesives for Temporary <strong>Wafer</strong> <strong>Bond<strong>in</strong>g</strong>,” Journal <strong>of</strong><br />

Microelectronics <strong>and</strong> Electronic Packag<strong>in</strong>g, 2007 vol. 4<br />

[14] S. Farrens, P. L<strong>in</strong>dner, S. Dwyer, M. Wimpl<strong>in</strong>ger,<br />

“Beg<strong>in</strong>n<strong>in</strong>g-to-end wafer bond<strong>in</strong>g for advanced optical<br />

systems,” SPIE, vol. 5177, 2003<br />

More <strong>in</strong>formation: www.suss.com/tec_library E-Mail: <strong>in</strong>fo@suss.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!