04.01.2013 Views

MRes in Biomedical Sciences and Translational Medicine ...

MRes in Biomedical Sciences and Translational Medicine ...

MRes in Biomedical Sciences and Translational Medicine ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong><br />

<strong>Translational</strong> Medic<strong>in</strong>e<br />

STUDENT HANDBOOK<br />

2011 - 2012<br />

Master of Research <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> Str<strong>and</strong>s:<br />

Biology of Cancer<br />

Cellular & Molecular Physiology<br />

Drug Safety<br />

Integrative Mammalian Biology (IMB)<br />

Molecular <strong>and</strong> Cl<strong>in</strong>ical Gastroenterology<br />

Molecular <strong>and</strong> Cl<strong>in</strong>ical Pharmacology<br />

Stem Cells, Tissues <strong>and</strong> Disease<br />

1


Section 1 Introduction<br />

Student H<strong>and</strong>book<br />

2011/12<br />

Contents<br />

Section 2 Programme Organisation <strong>and</strong> Student Support<br />

Section 3 Programme Overview & Timetable<br />

Section 4 Assessment<br />

Section 5 Research Projects<br />

Section 6 Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

Section 7 Transferable Skills<br />

Section 8 Attendance Monitor<strong>in</strong>g & Absence Report<strong>in</strong>g<br />

Section 9 Student Feedback <strong>and</strong> Representation<br />

Section 10 Appendix<br />

Page 3<br />

Page 8<br />

Page 16<br />

Page 26<br />

Page 31<br />

Page 57<br />

Page 80<br />

Page 103<br />

Page 105<br />

Page 106<br />

2


Section 1<br />

Introduction<br />

1.1 A welcome to new students<br />

I am pleased to welcome you as a new student <strong>in</strong>to the Institute of <strong>Translational</strong> Medic<strong>in</strong>e <strong>and</strong> hope<br />

that you will f<strong>in</strong>d your time study<strong>in</strong>g on the <strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e<br />

programme an enrich<strong>in</strong>g experience. The course comb<strong>in</strong>es h<strong>and</strong>s-on laboratory research work with<br />

lectures <strong>and</strong> tutorials to give you direct knowledge <strong>and</strong> experience of cutt<strong>in</strong>g-edge biomedical <strong>and</strong><br />

cl<strong>in</strong>ical research. You will also receive tra<strong>in</strong><strong>in</strong>g <strong>in</strong> transferable skills, which will broaden your exist<strong>in</strong>g<br />

skill set <strong>and</strong> help prepare you for your subsequent careers. Feedback from previous <strong>MRes</strong> students<br />

<strong>in</strong>dicates that you will need to work hard, but that the course is both enjoyable <strong>and</strong> reward<strong>in</strong>g.<br />

This h<strong>and</strong>book conta<strong>in</strong>s essential <strong>in</strong>formation about all aspects of the <strong>MRes</strong> programme, so it is<br />

important that you read <strong>and</strong> underst<strong>and</strong> it. Additional <strong>in</strong>formation <strong>and</strong> announcements about the<br />

programme will also be issued dur<strong>in</strong>g the course, either electronically by email or through VITAL (the<br />

University‟s onl<strong>in</strong>e teach<strong>in</strong>g resource), or via posters on the <strong>MRes</strong> notice boards. It is therefore very<br />

important that you check your e-mail, relevant VITAL pages <strong>and</strong> the notice board every day, as there<br />

may be important messages relat<strong>in</strong>g to the course or changes <strong>in</strong> schedule, etc.<br />

One of the first th<strong>in</strong>gs you will want to know is who to contact for help, <strong>in</strong>formation <strong>and</strong> advice. The<br />

<strong>MRes</strong> programme is run by a team consist<strong>in</strong>g of the Programme Director, the Programme Adm<strong>in</strong>istrator<br />

<strong>and</strong> the Str<strong>and</strong> Convenors. They are happy to help you if you are hav<strong>in</strong>g any difficulties, whether<br />

academic, adm<strong>in</strong>istrative or personal <strong>in</strong> nature, <strong>in</strong>clud<strong>in</strong>g disability-related issues. Any problems should<br />

<strong>in</strong>itially be discussed with your Str<strong>and</strong> Convenor, who will either deal with the issue directly or will refer the<br />

matter to the Programme Director or Adm<strong>in</strong>istrator as appropriate. Prof Andrea Varro is the Director of<br />

Postgraduate Studies of the Institute of <strong>Translational</strong> Medic<strong>in</strong>e <strong>and</strong> she will be happy to discuss any<br />

unresolved problems with you provided that the appropriate l<strong>in</strong>e of communication with<strong>in</strong> the <strong>MRes</strong><br />

team has been followed <strong>and</strong> exhausted. Contact details for each member of the team can be found <strong>in</strong><br />

Section 2.1 of this h<strong>and</strong>book, along with a brief description of their area of responsibility, to guide you<br />

to the most suitable person to deal with your question.<br />

I hope that you f<strong>in</strong>d the <strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e both useful <strong>and</strong><br />

enjoyable. Good luck with your studies.<br />

Programme Director: Professor Alan Morgan<br />

Email: amorgan@liv.ac.uk<br />

Telephone: 0151 794 5333<br />

3


1.2 Induction Timetable for <strong>MRes</strong> Students<br />

The first two weeks of the programme will provide you with essential <strong>in</strong>troductory <strong>in</strong>formation <strong>and</strong><br />

practical tra<strong>in</strong><strong>in</strong>g that will be of benefit to you throughout the programme. You should make every<br />

effort to attend these activities on time <strong>and</strong> check you know how to f<strong>in</strong>d the activities that will take place<br />

outside of the Sherr<strong>in</strong>gton Build<strong>in</strong>gs.<br />

MORNING<br />

AFTERNOON<br />

MONDAY<br />

19 th Sept<br />

10:00 – 10:30<br />

Student arrival &<br />

register<br />

LOCATION: Common<br />

Room, Physiology<br />

Dept<br />

10:30 – 11:00<br />

Welcome by the<br />

Programme Director,<br />

Professor Alan<br />

Morgan<br />

11:00 – 12:00<br />

Paperwork<br />

completion <strong>and</strong><br />

f<strong>in</strong>alis<strong>in</strong>g registration<br />

us<strong>in</strong>g Spider Student<br />

Web<br />

12:00 – 13:00<br />

Campus Tour<br />

13:00 – 14:00<br />

Lunch break<br />

14:00 – 15:00<br />

International students<br />

to attend ONLY (br<strong>in</strong>g<br />

your passport <strong>and</strong> visa<br />

for photocopy<strong>in</strong>g).<br />

LOCATION: Common<br />

Room, Physiology<br />

15:00 – 16:00<br />

Overview of the <strong>MRes</strong><br />

<strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

talk by Professor<br />

Morgan<br />

16:00 – 17:00<br />

Str<strong>and</strong> Inductions<br />

17:00 – onwards<br />

Welcome reception<br />

LOCATION: Common<br />

Room, Physiology<br />

TUESDAY<br />

20 th Sept<br />

INTERNATIONAL<br />

STUDENT<br />

INDUCTION<br />

EVENT ALL DAY<br />

No scheduled<br />

activities for<br />

Home/EU<br />

students<br />

INTERNATIONAL<br />

STUDENT<br />

INDUCTION<br />

EVENT ALL DAY<br />

No scheduled<br />

activities for<br />

Home/EU<br />

students<br />

WEDNESDAY<br />

21 st Sept<br />

09:00 – 10:00<br />

Introduction to<br />

Research Ethics by<br />

Professor Andrea<br />

Varro<br />

LOCATION:<br />

Physiology Sem<strong>in</strong>ar<br />

Room<br />

10:30 – 11:30<br />

School Safety Talk<br />

by Mr Adrian Walsh<br />

LOCATION:<br />

Physiology Sem<strong>in</strong>ar<br />

Room<br />

11:30 – 12:30<br />

Q&A session with<br />

Professor Morgan<br />

(a chance to seek<br />

guidance with any<br />

issues that may<br />

have arisen)<br />

LOCATION:<br />

Physiology Sem<strong>in</strong>ar<br />

Room<br />

14:00 – 17:30<br />

Institute<br />

Postgraduate Event<br />

Postgrad Society<br />

LOCATION: Cedar<br />

House Rm 521,<br />

opposite<br />

Sherr<strong>in</strong>gton<br />

Build<strong>in</strong>g ma<strong>in</strong><br />

entrance<br />

17.30<br />

Dr<strong>in</strong>ks reception<br />

(Physiology<br />

Common Room)<br />

THURSDAY<br />

22 nd Sept<br />

09:00 – 12:30<br />

Preparation for<br />

research project<br />

14:00 – 15:00<br />

Underst<strong>and</strong><strong>in</strong>g<br />

Plagiarism Talk by<br />

Mr Stuart<br />

McGugan<br />

LOCATION:<br />

Physiology<br />

Sem<strong>in</strong>ar Room,<br />

Physiology Dept<br />

15:30 – 16:30<br />

Introduction to<br />

the Harold Cohen<br />

Library<br />

LOCATION: Mr<br />

Ken L<strong>in</strong>kman will<br />

meet the group <strong>in</strong><br />

the foyer of the<br />

Harold Cohen<br />

Library<br />

FRIDAY<br />

23 rd Sept<br />

09:00 – 12:30<br />

Preparation for<br />

research project<br />

14:00 – 17:30<br />

Preparation for<br />

research project<br />

4


MORNING<br />

AFTERNOON<br />

MONDAY<br />

26 th Sept<br />

09:00 – 12:30<br />

Preparation for<br />

research project<br />

14:00 – 17:30<br />

Preparation for<br />

research project<br />

TUESDAY<br />

27 th Sept<br />

09:00 – 17:00<br />

Prospective<br />

Licensee Tra<strong>in</strong><strong>in</strong>g<br />

Course<br />

(All Str<strong>and</strong>s to<br />

attend day 1 & 2)<br />

LOCATION: 126<br />

Mount Pleasant<br />

An exam follows<br />

on Wednesday 5 th<br />

October<br />

WEDNESDAY<br />

28 th Sept<br />

09:00 – 17:00<br />

Prospective<br />

Licensee Tra<strong>in</strong><strong>in</strong>g<br />

Course<br />

(All Str<strong>and</strong>s to<br />

attend day 1 & 2)<br />

LOCATION: 126<br />

Mount Pleasant<br />

An exam follows<br />

on Wednesday 5 th<br />

October<br />

THURSDAY<br />

29 th Sept<br />

09:00 – 17:00<br />

Prospective<br />

Licensee Tra<strong>in</strong><strong>in</strong>g<br />

Course<br />

(Only IMB & Drug<br />

Safety str<strong>and</strong>s to<br />

attend day 3)<br />

LOCATION: 126<br />

Mount Pleasant<br />

An exam follows<br />

on Wednesday 5 th<br />

October<br />

FRIDAY<br />

30 th Sept<br />

09:00 – 10:00<br />

Feedback <strong>and</strong><br />

Q&A session with<br />

Professor Alan<br />

Morgan (a chance<br />

to give your views<br />

on the <strong>in</strong>duction<br />

period <strong>and</strong> to<br />

seek guidance<br />

with any<br />

rema<strong>in</strong><strong>in</strong>g issues)<br />

LOCATION:<br />

Physiology<br />

Sem<strong>in</strong>ar Room,<br />

Physiology Dept<br />

14:00 – 15:00<br />

Preparation for<br />

Research<br />

Project<br />

5


LATER EVENTS:<br />

Some <strong>in</strong>duction activities are scheduled to take place after the first 2 weeks. Details of these are given below:<br />

Event: University Safety Sem<strong>in</strong>ar<br />

Date: 4 th October<br />

Time: 2pm – 4pm<br />

Location: Lecture Theatre 1 Sherr<strong>in</strong>gton Build<strong>in</strong>g<br />

Event: Prospective Licensee Tra<strong>in</strong><strong>in</strong>g Course Exam<strong>in</strong>ation<br />

Date: 5 th October<br />

Time: 11.00am<br />

Location: 126 Mount Pleasant<br />

Event: University Radiation Protection (BASIC)<br />

Date: 12 th October (Not Yet Confirmed)<br />

Time: 14:00 – 16:00<br />

Location:<br />

Event: English Language Classes for International Students<br />

Date: Classes will run throughout the academic year on a Friday start<strong>in</strong>g 14 th October<br />

Time: 09:00 – 10:00<br />

Location: Physiology Sem<strong>in</strong>ar Room<br />

Event: Demonstrator Tra<strong>in</strong><strong>in</strong>g Workshop<br />

Date: 21 st October<br />

Time: 9.30am – 12.30pm<br />

Location: 126 Mount Pleasant<br />

Event: University Radiation Protection (LASER)<br />

Date: 26 th October (Not Yet Confirmed)<br />

Time: 14:00 – 16:30<br />

Location:<br />

Event: Biostatistics Workshop<br />

Date: 3 rd November (Not Yet Confirmed)<br />

Time: To Be Confirmed<br />

Location: Physiology Sem<strong>in</strong>ar Room<br />

6


1.3 Us<strong>in</strong>g the H<strong>and</strong>book<br />

This h<strong>and</strong>book is to be used <strong>in</strong> conjunction with other <strong>in</strong>formation you may be given about different<br />

aspects of the <strong>MRes</strong> Programme, <strong>and</strong> compulsory courses organized by the University of Liverpool. It<br />

provides essential <strong>in</strong>formation required for the Degree Program; you should read it carefully <strong>and</strong> keep it<br />

<strong>in</strong> a safe place. It also presents <strong>in</strong>formation on how the student charter is implemented <strong>in</strong> this course.<br />

It <strong>in</strong>cludes details of:<br />

� the broader aims <strong>and</strong> objectives of the <strong>MRes</strong>,<br />

� the modules available<br />

� the means by which the course will be assessed overall<br />

� the assessment criteria that will be used.<br />

� the aims <strong>and</strong> objectives of each <strong>in</strong>dividual module or similar unit of study <strong>and</strong> what you should be<br />

able to achieve by the end of it.<br />

� the teach<strong>in</strong>g <strong>and</strong> learn<strong>in</strong>g methods that will be used <strong>and</strong> the means by which more general skills<br />

(such as work<strong>in</strong>g <strong>in</strong> teams <strong>and</strong> mak<strong>in</strong>g oral presentations) will be developed <strong>and</strong> assessed.<br />

� the facilities <strong>and</strong> support services provided by the University that may be useful to you.<br />

� the staff responsible for organis<strong>in</strong>g the programme <strong>and</strong> its str<strong>and</strong>s or who undertake other duties<br />

of relevance <strong>and</strong> their contact details<br />

� the means by which your views on <strong>in</strong>dividual modules or units on courses of study overall <strong>and</strong> on<br />

other aspects of your experience will be sought – both <strong>in</strong>dividually <strong>and</strong> collectively– <strong>and</strong> how<br />

<strong>in</strong>formation on the responses to those views will be fed back to you.<br />

� how you will be provided with systematic <strong>in</strong>formation on your <strong>in</strong>dividual progress, on your areas<br />

of strength <strong>and</strong> weakness, <strong>and</strong> on the means by which you can improve your performance.<br />

7


Section 2<br />

Programme Organisation <strong>and</strong> Student Support<br />

The <strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e programme is run by a team consist<strong>in</strong>g of<br />

Str<strong>and</strong> Convenors, Programme Director <strong>and</strong> Programme Adm<strong>in</strong>istrator.. They are happy to help you if you<br />

are hav<strong>in</strong>g any difficulties, whether academic, adm<strong>in</strong>istrative or personal <strong>in</strong> nature, <strong>in</strong>clud<strong>in</strong>g disabilityrelated<br />

issues. In addition, the University provides many useful services to help you adjust to life on<br />

campus <strong>and</strong> to help with various difficulties you may face. Any problems should <strong>in</strong>itially be discussed with<br />

your Str<strong>and</strong> Convenor, who will either deal with the issue directly or will refer the matter to the Programme<br />

Director or Adm<strong>in</strong>istrator, as appropriate. Prof Andrea Varro is the Director of Postgraduate Studies of<br />

the Institute of <strong>Translational</strong> Medic<strong>in</strong>e <strong>and</strong> she will be happy to discuss any unresolved problems with<br />

you provided that the appropriate l<strong>in</strong>e of communication with<strong>in</strong> the <strong>MRes</strong> team has been followed <strong>and</strong><br />

exhausted. Contact details for each member of the team can be found below, along with a brief<br />

description of their area of responsibility, to guide you to the most suitable person to deal with your<br />

question.<br />

2.1 The <strong>MRes</strong> Team<br />

Str<strong>and</strong> Convenors<br />

Responsible for the organisation of the various <strong>MRes</strong> str<strong>and</strong>s, convenors will help with any academic <strong>and</strong><br />

adm<strong>in</strong>istrative problems relat<strong>in</strong>g to their specific <strong>MRes</strong> str<strong>and</strong>. Str<strong>and</strong> convenors will be able to help with<br />

most issues <strong>and</strong> should normally be the first person you contact when problems arise. If they are unable<br />

to help, they will refer you to the Programme Director/Adm<strong>in</strong>istrator or other staff as appropriate. Contact<br />

details for the various str<strong>and</strong> convenors are given below:<br />

Biology of Cancer:<br />

Dr. Eithne Costello-Goldr<strong>in</strong>g Tel: 0151 706 4178 email: Ecostell@liverpool.ac.uk<br />

Dr. Carlos Rubbi Tel: 0151 706 4099 email: C.Rubbi@liverpool.ac.uk<br />

Cellular & Molecular Physiology:<br />

Dr. Jeff Barclay Tel: 0151 794 5307 email: Barclayj@liverpool.ac.uk<br />

Prof. Alan Morgan Tel: 0151 794 5333 email: Amorgan@liverpool.ac.uk<br />

Drug safety:<br />

Dr. Dom<strong>in</strong>ic Williams Tel: 0151 794 5791 email: Dom@liverpool.ac.uk<br />

Molecular <strong>and</strong> Cl<strong>in</strong>ical Gastroenterology:<br />

Dr. John Jenk<strong>in</strong>s Tel: 0151 794 6828 email: jrj1@liverpool.ac.uk<br />

Integrative Mammalian Biology (IMB):<br />

Dr. Laiche Djouhri Tel: 0151 795 4011 email: L.Djouhri@liverpool.ac.uk<br />

Molecular <strong>and</strong> Cl<strong>in</strong>ical Pharmacology:<br />

Dr. Andrew Owen Tel: 0151 794 8211 email: Aowen@liverpool.ac.uk<br />

Stem Cells, Tissues <strong>and</strong> Disease:<br />

Dr. Patricia Murray Tel: 0151-794 5450 email: embryo@liverpool.ac.uk<br />

Dr. Jeff Barclay Tel: 0151 794 5307 email: Barclayj@liverpool.ac.uk<br />

8


Programme Director – Prof Alan Morgan<br />

Responsible for the overall organisation of the <strong>MRes</strong> programme, he will help with general academic <strong>and</strong><br />

adm<strong>in</strong>istrative problems relat<strong>in</strong>g to the <strong>MRes</strong> course. He will also help with any specific issues that are not<br />

able to be resolved by str<strong>and</strong> convenors. Alan‟s office, room G.37, is situated <strong>in</strong> Red Block on the ground<br />

floor of the ma<strong>in</strong> Physiology Build<strong>in</strong>g on Crown Street (Build<strong>in</strong>g 313 on the campus map <strong>in</strong>cluded at the<br />

back of this h<strong>and</strong>book). He can be contacted by email, amorgan@liv.ac.uk, or by telephone on (0151) 794<br />

5333.<br />

Issues that cannot be resolved by the Programme Director will be referred to the Institute Director of<br />

Postgraduate Studies (Prof Andrea Varro).<br />

Programme Adm<strong>in</strong>istrator – Helen Barclay<br />

Responsible for the general adm<strong>in</strong>istration of the <strong>MRes</strong> programme, she will help with non-academic<br />

problems related to the course, <strong>in</strong>clud<strong>in</strong>g attendance issues, deadl<strong>in</strong>es, schedule alterations, etc. Helen‟s<br />

office is situated <strong>in</strong> Red Block on the ground floor of the ma<strong>in</strong> Physiology Build<strong>in</strong>g on Crown Street<br />

(Build<strong>in</strong>g 313 on the campus map <strong>in</strong>cluded at the back of this h<strong>and</strong>book). Helen can be contacted by email<br />

on helen@liv.ac.uk or by telephone on (0151) 794 5313.<br />

Institute Senior Postgraduate Adm<strong>in</strong>istrator – Lisa Crimm<strong>in</strong>s<br />

Responsible for recruitment <strong>and</strong> registration onto the <strong>MRes</strong> programme, <strong>in</strong>clud<strong>in</strong>g supervisor registration,<br />

she will help with problems related to these areas. She will also assist with wider University level<br />

postgraduate issues, such as f<strong>in</strong>ancial arrangements, visa problems, etc. Lisa‟s office, room 1.09, is<br />

situated on the 2 nd floor of the Nuffield W<strong>in</strong>g on Ashton Street (Build<strong>in</strong>g 312 on the campus map). Her<br />

email address is crimm<strong>in</strong>s@liverpool.ac.uk, her phone number is (0151) 794 5455.<br />

9


2.2 Academic Staff <strong>in</strong>volved <strong>in</strong> the <strong>MRes</strong> programme<br />

In addition to those listed above <strong>in</strong>volved <strong>in</strong> organiz<strong>in</strong>g the <strong>MRes</strong>, a large number of staff contribute to<br />

the delivery of the course <strong>and</strong> supervision of research projects. Most staff are based <strong>in</strong> the Institute of<br />

<strong>Translational</strong> Medic<strong>in</strong>e, although staff from other Institutes <strong>and</strong> Research & Bus<strong>in</strong>ess Services also<br />

contribute to the programme. Students will be registered <strong>in</strong> the Faculty of Health <strong>and</strong> Life <strong>Sciences</strong>.<br />

The contact details for all academic staff contribut<strong>in</strong>g to the <strong>MRes</strong> are listed below:<br />

Staff Name Telephone E-mail<br />

Dr. Ana Alfirevic 0151 794 5551 Ana.Alfirevic@liverpool.ac.uk<br />

Prof. David Back 0151 794 5547 D.J.Back@liverpool.ac.uk<br />

Dr. Jeff Barclay (Jo<strong>in</strong>t Str<strong>and</strong><br />

Convenor, Stem Cells, Tissues &<br />

Disease <strong>and</strong> Cellular <strong>and</strong> Molecular<br />

Physiology)<br />

0151 794 5307 Barclayj@liverpool.ac.uk<br />

Dr. Richard Barrett-Jolley 0151 794 4225 Rbj@liverpool.ac.uk<br />

Dr. Chen B<strong>in</strong>g 0151 706 4075 b<strong>in</strong>g@liverpool.ac.uk<br />

Dr. Mark Boyd 0151 706 4185 Mboyd@liverpool.ac.uk<br />

Dr. Vivian Bubb 0151 794 5509 Jillbubb@liverpool.ac.uk<br />

Dr. Ted Burdyga 0151 794 4971 Burdyga@liverpool.ac.uk<br />

Prof. Bob Burgoyne 0151 794 5305 Burgoyne@liverpool.ac.uk<br />

Dr. Barry Campbell 0151 794 6829 B.J.Campbell@liverpool.ac.uk<br />

Prof. Mike Clague<br />

Dr. Eithne Costello- Goldr<strong>in</strong>g (Jo<strong>in</strong>t<br />

0151 794 5310 Clague@liverpool.ac.uk<br />

Str<strong>and</strong> Convenor, Biology of Cancer) 0151 706 4178 Ecostell@liverpool.ac.uk<br />

Dr. Sarah Coupl<strong>and</strong> 0151 706 5885 S.E.Coupl<strong>and</strong>@liverpool.ac.uk<br />

Dr. David Criddle 0151 794 5355 Criddle@liverpool.ac.uk<br />

Dr. Michael Cross 0151 794 5556 M.J.Cross@liverpool.ac.uk<br />

Dr. Judy Coulson 0151 794 5850 J.Coulson@liverpool.ac.uk<br />

Prof. Rod Dimal<strong>in</strong>e<br />

Dr. Laiche Djouhri (Str<strong>and</strong> Convenor,<br />

0151 794 5334 R.Dimal<strong>in</strong>e@liverpool.ac.uk<br />

IMB) 0151 795 4011 L.Djouhri@liverpool.ac.uk<br />

Prof. Graham Dockray 0151 794 5324 G.J.Dockray@liverpool.ac.uk<br />

Prof. David Edgar 0151 794 5508 Dhedgar@liverpool.ac.uk<br />

Dr. Geoff Edwards 0151 794 5552 Ge1000@liverpool.ac.uk<br />

Prof. John Field 0151 794 8901 J.K.Field@liverpool.ac.uk<br />

Prof. Chris Foster 0151 706 4480 Christopher.Foster@liverpool.ac.uk<br />

Dr. Chris Goldr<strong>in</strong>g 0151 794 5979 C.E.P.Goldr<strong>in</strong>g@liverpool.ac.uk<br />

Dr. Melita Gordon 0151 794 6863 magordon@liverpool.ac.uk<br />

Dr. Tim Green 0151 794 5564 Tpgreen@liverpool.ac.uk<br />

Dr. William Greenhalf<br />

Dr Dharani Hapangama (Jo<strong>in</strong>t Str<strong>and</strong><br />

0151 706 4184 Greenhaf@liverpool.ac.uk<br />

Convenor, Womens, Children <strong>and</strong><br />

Per<strong>in</strong>atal Health) 0151 702 4114 Dharani@liverpool.ac.uk<br />

Dr. Lee Haynes 0151 794 6861 Leeh@liverpool.ac.uk<br />

Dr. Tim Helliwell<br />

Dr. John Jenk<strong>in</strong>s (Str<strong>and</strong> Convenor,<br />

0151 706 4492 Trh@liverpool.ac.uk<br />

Gastroenterology) 0151 794 6828 John.Jenk<strong>in</strong>s@liverpool.ac.uk<br />

10


Dr. Nagesh Kalakonda<br />

0151 706 4593 Nagesh.Kalakonda@liverpool.ac.uk<br />

Dr. Graham Kemp 0151 706 4124 G.J.Kemp@liverpool.ac.uk<br />

Prof. Youqiang Ke 0151 706 4515 Yqk@liverpool.ac.uk<br />

Dr. Neil Kitter<strong>in</strong>gham 0151 794 5548 Neilk@liverpool.ac.uk<br />

Dr. Saye Khoo 0151 794 5560 S.H.Khoo@liverpool.ac.uk<br />

Dr. Stuart Marshall-Clark 0151 794 5457 stumc@liverpool.ac.uk<br />

Dr. Silvia Mora 0151 794 5405 S.Mora@liverpool.ac.uk<br />

Prof. Alan Morgan (Programme<br />

Director; Jo<strong>in</strong>t Str<strong>and</strong> Convenor,<br />

Cellular & Molecular Physiology) 0151 794 5333 Amorgan@liverpool.ac.uk<br />

Dr. Diana Moss 0151 794 5521 D.Moss@liverpool.ac.uk<br />

Dr Patricia Murray (Jo<strong>in</strong>t Str<strong>and</strong><br />

Convenor, Stem Cells, Tissues <strong>and</strong><br />

Disease) 0151 794 5450 embryo@liverpool.ac.uk<br />

Dr. Dean Naisbitt 0151 794 5346 D.J.Naisbitt@liverpool.ac.uk<br />

Dr. John Nash<br />

Dr. Andrew Owen (Str<strong>and</strong> Convenor,<br />

0151 706 4487 J.R.G.Nash@liverpool.ac.uk<br />

Pharmacology)<br />

0151 794 8211 Aowen@liverpool.ac.uk<br />

Dr Lum<strong>in</strong>ita Paraoan<br />

0151 706 4101 Lum<strong>in</strong>ita.Paraoan@liverpool.ac.uk<br />

Prof. Kev<strong>in</strong> Park (Head of Institute) 0151 794 5559 B.K.Park@liverpool.ac.uk<br />

Dr. Lucy Pickavance 0151 794 4234 Lucyp@liverpool.ac.uk<br />

Prof. Munir Pirmohamed 0151 794 5549 Munirp@liverpool.ac.uk<br />

Dr. Tony Plagge 0151 795 4991 A.Plagge@liverpool.ac.uk<br />

Dr. Ian Prior 0151 794 5332 Iprior@liverpool.ac.uk<br />

Dr. Mark Pritchard 0151 794 5772 Mark.Pritchard@liverpool.ac.uk<br />

Dr. John Quayle 0151 794 5446 Jquayle@liverpool.ac.uk<br />

Prof. John Qu<strong>in</strong>n 0151 794 4770 Jqu<strong>in</strong>n@liverpool.ac.uk<br />

Prof. Jonathan Rhodes 0151 706 4073 J.M.Rhodes@liverpool.ac.uk<br />

Dr. Carlos Rubbi (Jo<strong>in</strong>t Str<strong>and</strong><br />

Convenor, Biology of Cancer) 0151 706 4099 C.Rubbi@liverpool.ac.uk<br />

Dr. Steve Royle 0151 795 4984 S.J.Royle@liverpool.ac.uk<br />

Prof. Chris S<strong>and</strong>erson 0151 794 4180 C.S<strong>and</strong>erson@liverpool.ac.uk<br />

Dr. Jean Sathish 0151 794 5477 Jean.Sathish@liverpool.ac.uk<br />

Prof. Soraya Shirazi-Beechey 0151 794 4276 Spsb@liverpool.ac.uk<br />

Prof. Ross Sibson 0151 343 4307 D.R.Sibson@liverpool.ac.uk<br />

Dr. Graeme Sills 0151 529 5469 drw<strong>in</strong>dy@liverpool.ac.uk<br />

Dr. Alec Simpson 0151 794 5510 Awms@liverpool.ac.uk<br />

Dr. Joe Slupsky 0151 706 4318 J.R.Slupsky@liverpool.ac.uk<br />

Dr Kev<strong>in</strong> Southern (Jo<strong>in</strong>t Str<strong>and</strong><br />

Convenor, Womens, Children <strong>and</strong><br />

Per<strong>in</strong>atal Health) 0151 228 4811 kwsouth@liverpool.ac.uk<br />

Prof. Robert Sutton 0151 706 4187 R.Sutton@liverpool.ac.uk<br />

Prof. Alexei Tepik<strong>in</strong> 0151 794 5351 A.Tepik<strong>in</strong>@liverpool.ac.uk<br />

Dr. Swamy Thippeswamy 0151 794 4242 T.Thippeswamy@liverpool.ac.uk<br />

Dr. Cheng-Hock Toh 0151 706 4324 C.H.Toh@liverpool.ac.uk<br />

Dr. Sylvie Urbe 0151 794 5432 Urbe@liverpool.ac.uk<br />

11


Dr Marta van der Hoek (Str<strong>and</strong><br />

Convenor, Biostatistics) 0151 794 4750 martaf@liverpool.ac.uk<br />

Prof. Andrea Varro (Institute Director of<br />

Postgraduate Studies) 0151 794 5331 A.Varro@liverpool.ac.uk<br />

Dr. Nikol<strong>in</strong>a Vlatkovic 0151 706 4172 Vlatko@liverpool.ac.uk<br />

Dr. Helen Wallace 0151 795 4008 Hwallace@liverpool.ac.uk<br />

Dr. Dom<strong>in</strong>ic Williams (Str<strong>and</strong> Convenor,<br />

Drug Safety) 0151 794 5791 Dom@liverpool.ac.uk<br />

Dr. Bett<strong>in</strong>a Wilm 0151 795 4988 B.Wilm@liverpool.ac.uk<br />

Dr Michael We<strong>in</strong>dl<strong>in</strong>g (Jo<strong>in</strong>t Str<strong>and</strong><br />

Convenor, Womens, Children <strong>and</strong><br />

Per<strong>in</strong>atal Health) 0151 702 4119 a.m.we<strong>in</strong>dl<strong>in</strong>g@liverpool.ac.uk<br />

Prof. Sue Wray 0151 794 5306 S.Wray@liverpool.ac.uk<br />

Dr. Lugang Yu 0151 794 6820 L.Yu@liverpool.ac.uk<br />

2.3 Safety<br />

Mr. Adrian Walsh is the Safety Officer for the Institute of <strong>Translational</strong> Medic<strong>in</strong>e. He can be contacted<br />

by telephone on 0151 794 5468 or by email at A.A.Walsh@liverpool.ac.uk. All students must attend a<br />

safety talk given by Mr Walsh <strong>in</strong> the first week <strong>and</strong> will receive written guidel<strong>in</strong>es from him on safety<br />

with<strong>in</strong> the Institute. You are also required to attend University tra<strong>in</strong><strong>in</strong>g sessions deal<strong>in</strong>g with general<br />

safety <strong>and</strong> radiation protection, as detailed <strong>in</strong> the <strong>in</strong>duction timetable <strong>in</strong> Section 1.2. Additional safety<br />

<strong>in</strong>formation will be given by Departmental safety officers with<strong>in</strong> the Departments <strong>in</strong> which you conduct<br />

your Research Projects. Risk assessment forms must be completed for your Research Projects <strong>and</strong><br />

copies of these provided to the appropriate safety officers <strong>in</strong> your department.<br />

Work<strong>in</strong>g with human subjects <strong>and</strong>/or human material<br />

Supervisors have a responsibility to ensure that all work <strong>in</strong>volv<strong>in</strong>g human subjects is covered by<br />

appropriate Ethics Comittee Permission. They should also ensure that students conduct<strong>in</strong>g research<br />

projects <strong>in</strong>volv<strong>in</strong>g human subjects <strong>and</strong>/or material underst<strong>and</strong> the permission given for their work, <strong>and</strong><br />

<strong>in</strong> writ<strong>in</strong>g their dissertation, they make a clear statement of the Ethics Comittee Approval for the work.<br />

Work<strong>in</strong>g with animals<br />

Supervisors have a responsibility to ensure that the appropriate Home Office Authority (both personal<br />

<strong>and</strong> project licence) are <strong>in</strong> place before work<strong>in</strong>g with experimental animal is started. They should also<br />

ensure that students conduct<strong>in</strong>g research projects <strong>in</strong>volv<strong>in</strong>g experimental animals underst<strong>and</strong> the<br />

permission given for their work, <strong>and</strong> <strong>in</strong> writ<strong>in</strong>g their dissertation, they make a clear statement of the<br />

Home Office Approval for the work.<br />

You need to read carefully <strong>and</strong> obey all the <strong>in</strong>structions regard<strong>in</strong>g safety that have been given to you<br />

before commenc<strong>in</strong>g experimental work <strong>in</strong> the laboratory. Normal work<strong>in</strong>g hours are 9.00-5.30 Monday<br />

– Friday. Work outside these hours, <strong>in</strong>clud<strong>in</strong>g weekends, is only permitted if either your<br />

supervisor or a suitably qualified person approved by your supervisor is present.<br />

2.4 Mail <strong>and</strong> Messages<br />

Mail com<strong>in</strong>g <strong>in</strong>to the Institute addressed to students will be left <strong>in</strong> the <strong>MRes</strong> Students pigeon holes <strong>in</strong><br />

the Institute Office, on the first floor foyer of the Nuffield Build<strong>in</strong>g. Urgent messages received for<br />

12


students, wherever possible, are relayed either by telephone or email. There are also <strong>MRes</strong> notice<br />

boards <strong>in</strong> two locations: outside the Sem<strong>in</strong>ar Room <strong>in</strong> Physiology, near to the ma<strong>in</strong> entrance; <strong>and</strong> on<br />

the second floor of the Nuffield Build<strong>in</strong>g, close to the Program Adm<strong>in</strong>istrator‟s office. Information <strong>and</strong><br />

announcements about the programme will also be issued dur<strong>in</strong>g the course, either electronically by<br />

email or through VITAL (the University‟s onl<strong>in</strong>e teach<strong>in</strong>g resource), or via posters on the <strong>MRes</strong> notice<br />

boards. It is therefore very important that you check your e-mail, relevant VITAL pages <strong>and</strong> the notice<br />

board every day for important <strong>in</strong>formation <strong>and</strong> schedule changes etc.<br />

2.5 Common Rooms<br />

Tea <strong>and</strong> coffee facilities <strong>and</strong> chilled water are available <strong>in</strong> the common room (room 3.02) on the 3 rd<br />

floor of the Nuffield Build<strong>in</strong>g <strong>and</strong> <strong>in</strong> the Physiology Common Room, where you will also f<strong>in</strong>d a<br />

microwave <strong>and</strong> vend<strong>in</strong>g mach<strong>in</strong>es. There are also two Meet<strong>in</strong>g Rooms (3.04 or 3.09) available for<br />

group <strong>in</strong>teractions <strong>and</strong> group work<strong>in</strong>g <strong>in</strong> the 3 rd floor Nuffield Build<strong>in</strong>g, which can be booked via the<br />

Course Adm<strong>in</strong>istrator.<br />

2.6 Computer, Library <strong>and</strong> Other Academic Services<br />

There are three computers <strong>in</strong> the Physiology common room connected to University Network (Physiology<br />

Cybercafé) for all students to use. In addition, room 3.06, HACB, 3 rd floor, Nuffield W<strong>in</strong>g has been<br />

designed as a workspace for the <strong>MRes</strong> students. It is equipped with computer po<strong>in</strong>ts <strong>and</strong> is also <strong>in</strong><br />

range of the wireless router. There is also a computer lab downstairs <strong>in</strong> the Sherr<strong>in</strong>gton Build<strong>in</strong>g (beh<strong>in</strong>d<br />

the porters lodge) <strong>in</strong> the Medical School Teach<strong>in</strong>g Centre (MSTC), which has 50 computers available for<br />

general use (the room is occasionally booked; book<strong>in</strong>gs are shown on a diary on the door). All students<br />

registered for the <strong>MRes</strong> will also have access to all the University services. These are detailed <strong>in</strong> the<br />

postgraduate h<strong>and</strong>book <strong>and</strong> on the University website. Students are expected to make full use of these<br />

services.<br />

2.7 Support for International Students<br />

The International Support Team (IST) provides specialist advice to <strong>in</strong>ternational students on a variety<br />

of issues such as visas, accommodation <strong>and</strong> f<strong>in</strong>ancial matters.<br />

Services offered by the IST <strong>in</strong>clude:<br />

� events for <strong>in</strong>ternational students<br />

� <strong>in</strong>formation about UK life<br />

� support for <strong>in</strong>ternational students with children<br />

� workshops <strong>and</strong> presentations<br />

� guidance notes <strong>and</strong> publications, <strong>in</strong>clud<strong>in</strong>g a monthly newsletter cover<strong>in</strong>g the latest issues<br />

affect<strong>in</strong>g <strong>in</strong>ternational students.<br />

Welcome event<br />

The IST hosts a Welcome event <strong>in</strong> September, which all new <strong>in</strong>ternational <strong>MRes</strong> students should<br />

attend.<br />

The event is designed to <strong>in</strong>troduce you to the city <strong>and</strong> the University <strong>and</strong> to also give you the<br />

opportunity to meet all the other new <strong>in</strong>ternational students.<br />

13


Contacts<br />

For more <strong>in</strong>formation contact:<br />

Tel: +44 (0)151 794 4716<br />

Email: ist@liv.ac.uk<br />

Web: www.liv.ac.uk/studentsupport/ist/<br />

2.8 Students with disabilities<br />

The University Disability Support Team co-ord<strong>in</strong>ates <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>s the support required to help you<br />

succeed on your course.<br />

Practical support<br />

The team can help you to:<br />

� <strong>in</strong>form academic departments about your support requirements<br />

� arrange appropriate support <strong>in</strong> us<strong>in</strong>g the libraries <strong>and</strong> other academic support services<br />

� organise study assistants<br />

� f<strong>in</strong>d f<strong>in</strong>ancial support for services.<br />

With consent, <strong>and</strong> when appropriate, the team can liaise on a cont<strong>in</strong>ual basis with your academic<br />

department <strong>and</strong> prepare documentation to confirm your support arrangements.<br />

Advice<br />

The Disability Support Team also provides advice on:<br />

� support requirements<br />

� how to apply for Disabled Students Allowance <strong>and</strong> other sources of fund<strong>in</strong>g<br />

� who to contact for support <strong>and</strong> advice.<br />

You can f<strong>in</strong>d further <strong>in</strong>formation <strong>and</strong> details of who to contact regard<strong>in</strong>g disability issues from the<br />

follow<strong>in</strong>g website:<br />

http://www.liv.ac.uk/studentsupport/disability/<strong>in</strong>dex.htm<br />

2.9 Students with f<strong>in</strong>ancial hardship<br />

If you need help with manag<strong>in</strong>g your f<strong>in</strong>ances whilst at university, you can talk to the F<strong>in</strong>ancial Support<br />

Team.The FST provides personalised, <strong>in</strong>dependent <strong>and</strong> confidential support on a wide range of<br />

f<strong>in</strong>ancial issues.<br />

These <strong>in</strong>clude:<br />

� government student loans <strong>and</strong> grants<br />

� previous study <strong>and</strong> how it will affect your fund<strong>in</strong>g entitlement<br />

� welfare benefits<br />

� tax credits<br />

14


� debt counsell<strong>in</strong>g <strong>and</strong> advice.<br />

Contacts<br />

Tel: 0151 794 6673<br />

Email: fst@liv.ac.uk<br />

Web: http://www.liv.ac.uk/adm<strong>in</strong>/studentsupport/f<strong>in</strong>ance/<br />

2.10 University Counsell<strong>in</strong>g Service<br />

The counsell<strong>in</strong>g service can help you with any personal <strong>and</strong> emotional problems you might have while<br />

at Liverpool. If you need to discuss anyth<strong>in</strong>g <strong>in</strong> confidence you can talk to a counsellor, or use the daily<br />

drop-<strong>in</strong> service. The contact details are below:<br />

14 Oxford Street<br />

Liverpool<br />

L69 7WX<br />

0151 794 3304<br />

Email: counserv@liverpool.ac.uk<br />

Web site: http://www.liv.ac.uk/counserv/<br />

2.11 Student Charter<br />

The University of Liverpool Student Charter is issued jo<strong>in</strong>tly by the Senate <strong>and</strong> Council of the<br />

University <strong>and</strong> by the Liverpool Guild of Students. It makes explicit some of the reciprocal<br />

responsibilities which members of the University, both staff <strong>and</strong> students, have to each other <strong>and</strong> which<br />

policies <strong>and</strong> procedures <strong>in</strong> <strong>in</strong>dividual areas of the University should reflect. All new students will receive<br />

a copy of the Charter as part of the publication 'Your University' upon arrival at the University. 'Your<br />

University' is also available from the Student Adm<strong>in</strong>istration <strong>and</strong> Support Division <strong>in</strong> the Foundation<br />

Build<strong>in</strong>g.<br />

Access to the Student Charter for all staff <strong>and</strong> cont<strong>in</strong>u<strong>in</strong>g students is web based only.<br />

The Student Charter can be downloaded from the follow<strong>in</strong>g web pages:<br />

Charter:<br />

http://www.liv.ac.uk/tqsd/pol_strat_cop/uol_charter.pdf<br />

Annexe:<br />

http://www.liv.ac.uk/tqsd/pol_strat_cop/studchart_ann_2007-08.doc<br />

15


Section 3<br />

Programme Overview & Timetable<br />

3.1 Aims & Objectives<br />

Aims<br />

The degree program aims to provide students with a first class tra<strong>in</strong><strong>in</strong>g <strong>in</strong> research at Masters level, <strong>in</strong><br />

<strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e.<br />

Objectives<br />

� To conduct <strong>in</strong>dependent pieces of research <strong>and</strong> provide Masters level research tra<strong>in</strong><strong>in</strong>g via three<br />

10 week research projects <strong>in</strong> an <strong>in</strong>terdiscipl<strong>in</strong>ary research environment.<br />

� To demonstrate a critical awareness of a range of modern techniques <strong>and</strong> to enable students to<br />

<strong>in</strong>crease their knowledge of current research <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> to Masters level.<br />

� To provide the acquisition <strong>and</strong> tra<strong>in</strong><strong>in</strong>g of transferable skills <strong>and</strong> knowledge, appropriate to<br />

postgraduate research students.<br />

Learn<strong>in</strong>g outcomes<br />

The three objectives above directly map on to the three separately assessed components of the<br />

programme: A) Research Projects; B) Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> sciences; C)<br />

Transferable Skills. The learn<strong>in</strong>g outcomes of each of these components are detailed below:<br />

A) Research Projects<br />

Students will be enabled to develop the skills required for:<br />

� Data gather<strong>in</strong>g <strong>and</strong> <strong>in</strong>terpretation <strong>in</strong> an area of biomedical research.<br />

� Plann<strong>in</strong>g <strong>and</strong> manag<strong>in</strong>g research <strong>and</strong> achiev<strong>in</strong>g goals.<br />

� The presentation <strong>and</strong> discussion of scientific data, both verbally <strong>and</strong> <strong>in</strong> writ<strong>in</strong>g.<br />

� The acquisition of a detailed knowledge of the experimental foundation of a specific area of<br />

biomedical research.<br />

� Work<strong>in</strong>g <strong>in</strong> a group to achieve a common objective.<br />

� Communication <strong>in</strong> science.<br />

� Access<strong>in</strong>g <strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g the use of electronic systems, <strong>and</strong> PC technology.<br />

B) Techniques <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

Students will be enabled to:<br />

� Develop a critical underst<strong>and</strong><strong>in</strong>g of the experimental methods that underp<strong>in</strong> modern ideas <strong>in</strong><br />

biomedical sciences.<br />

16


� Appreciate current experimental limitations <strong>and</strong> likely technical developments<br />

� Develop the ability to access, collate <strong>and</strong> discuss <strong>in</strong> writ<strong>in</strong>g the subject literature.<br />

Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

Students will be enabled to:<br />

� Develop an underst<strong>and</strong><strong>in</strong>g of the concepts fundamental to modern ideas <strong>in</strong> biomedical<br />

sciences.<br />

� Relate emerg<strong>in</strong>g <strong>and</strong> future developments to exist<strong>in</strong>g knowledge.<br />

� Develop the ability to access, collate <strong>and</strong> discuss <strong>in</strong> writ<strong>in</strong>g the subject literature.<br />

C) Transferable skills<br />

Students will be enabled to:<br />

� Develop the skills required to access <strong>in</strong>formation, <strong>in</strong>clud<strong>in</strong>g the use of electronic systems,<br />

<strong>and</strong> PC technology.<br />

� Develop the skills required for communication <strong>in</strong> science, to both specialists <strong>and</strong> nonspecialists<br />

� Be appraised of the skills required, <strong>and</strong> mechanisms for, transferr<strong>in</strong>g basic science <strong>in</strong>to a<br />

bus<strong>in</strong>ess sett<strong>in</strong>g<br />

� Develop the ability to access, collate <strong>and</strong> discuss <strong>in</strong> writ<strong>in</strong>g technical <strong>in</strong>formation e.g. for<br />

reports, publications.<br />

� Develop the skills of group work<strong>in</strong>g <strong>and</strong> leadership to achieve objectives<br />

� Improve their management skills, <strong>in</strong> terms of personal time management <strong>and</strong> research<br />

management.<br />

17


3.2 Programme Content<br />

The programme has a modular framework <strong>and</strong> is based around 3 semesters (i.e. one year, full time). It<br />

is delivered through lectures, tutorials, sem<strong>in</strong>ars, short courses <strong>and</strong> research projects with <strong>in</strong>dividual<br />

tuition. Each of these activities contributes to one of the 3 components of the programme: A) Research<br />

Projects; B) Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> sciences; C) Transferable Skills. These 3 modules<br />

are assessed separately, <strong>and</strong> contribute 60%, 20% <strong>and</strong> 20%, respectively, of the total marks available<br />

for the <strong>MRes</strong> degree. An overview of each module is given below, but further detailed <strong>in</strong>formation can<br />

be found later <strong>in</strong> this h<strong>and</strong>book.<br />

A) Research Projects<br />

Students will undertake three research projects, compris<strong>in</strong>g 10 weeks of lab work followed by 2 weeks<br />

<strong>in</strong> which to write a project report <strong>and</strong> prepare a presentation. In most str<strong>and</strong>s the research project is<br />

chosen by the student depend<strong>in</strong>g on the str<strong>and</strong> of <strong>in</strong>terest after discussion with staff <strong>in</strong>volved <strong>in</strong> the<br />

program. In the Cellular & Molecular Physiology str<strong>and</strong>, the first two research projects are allocated to<br />

students <strong>and</strong> are chosen to augment their exist<strong>in</strong>g technique <strong>and</strong> knowledge base. For example those<br />

who have previously followed courses <strong>in</strong> molecular biology might do a project <strong>in</strong>volv<strong>in</strong>g<br />

electrophysiology <strong>and</strong> vice versa. The third project is chosen by Cellular & Molecular Physiology<br />

str<strong>and</strong> students after discussion with staff <strong>in</strong>volved <strong>in</strong> the program. Dur<strong>in</strong>g the course of the project, all<br />

students will be encouraged to suggest experiments, design experimental protocols, as well as be<strong>in</strong>g<br />

taught subject specific techniques <strong>and</strong> advanced knowledge <strong>in</strong> transferable skills. The research project<br />

will <strong>in</strong>clude at least three different research techniques to enhance experimental tra<strong>in</strong><strong>in</strong>g skills that<br />

need to be clearly stated at the end of each 10 week project. Students will have regular (usually daily)<br />

contact with the supervisors or other laboratory members for advice <strong>and</strong> guidance. Time will be<br />

allowed to undertake the necessary literature searches dur<strong>in</strong>g the 10-week experimental period, <strong>and</strong> a<br />

further 2 weeks is to be spent out of the lab <strong>in</strong> order to write a project report <strong>and</strong> make an oral or a<br />

poster presentation to the Institute at the end of each project. Students will be assessed on their<br />

project report, their presentation <strong>and</strong> their general performance <strong>in</strong> the lab.<br />

B) Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> sciences<br />

Techniques <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

This part of the module consists of a series of lectures on a wide range of modern research<br />

techniques, <strong>in</strong>clud<strong>in</strong>g stem cell <strong>and</strong> tissue eng<strong>in</strong>eer<strong>in</strong>g, use of biolum<strong>in</strong>escent <strong>in</strong>tracellular probes,<br />

electrophysiology, gene expression analysis, proteomic approaches, etc. These lectures are<br />

complemented by tutorials designed to develop the fundamental skills required for laboratory research,<br />

<strong>in</strong>clud<strong>in</strong>g data h<strong>and</strong>l<strong>in</strong>g, generation of Figures, scientific writ<strong>in</strong>g <strong>and</strong> preparation of poster <strong>and</strong> oral<br />

presentations.<br />

Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

In this part of the module, the emphasis is on how state-of-the-art research techniques are used to<br />

advance knowledge <strong>in</strong> specific biomedical research areas <strong>and</strong> on modern methods/approaches<br />

employed <strong>in</strong> the diagnosis of disease <strong>and</strong> the treatment of patients. Lectures on these topics are<br />

complemented by tutorials <strong>and</strong> journal clubs designed to develop analytical <strong>and</strong> critical th<strong>in</strong>k<strong>in</strong>g skills.<br />

Both the Techniques <strong>and</strong> Frontiers modules are enhanced by Sem<strong>in</strong>ars <strong>and</strong> <strong>Biomedical</strong> Review<br />

Lectures with<strong>in</strong> the Institute of <strong>Translational</strong> Medic<strong>in</strong>e. Em<strong>in</strong>ent scientists from throughout the UK<br />

contribute to this by present<strong>in</strong>g their research on a variety of topics. Sem<strong>in</strong>ars take place weekly dur<strong>in</strong>g<br />

term time; <strong>Biomedical</strong> Review Lectures take place periodically on Thursdays from 5-6pm. It is<br />

important that <strong>MRes</strong> students attend both Sem<strong>in</strong>ars <strong>and</strong> <strong>Biomedical</strong> Review Lectures to broaden their<br />

knowledge <strong>and</strong> range of learn<strong>in</strong>g experiences. Sem<strong>in</strong>ars are organized by the <strong>in</strong>dividual Departments<br />

18


with<strong>in</strong> the Institute <strong>and</strong> are advertised regularly via email. Attendance at certa<strong>in</strong> Departmental Sem<strong>in</strong>ars<br />

may be recommended by str<strong>and</strong> convenors to enhance awareness of research that is particularly relevant<br />

to <strong>in</strong>dividual <strong>MRes</strong> str<strong>and</strong>s.<br />

F<strong>in</strong>ally, str<strong>and</strong>-specific activities are an important part of the Techniques <strong>and</strong> Frontiers modules, as<br />

they facilitate awareness of the science associated with particular research str<strong>and</strong>s.<br />

Students will be assessed on one short review based on the Techniques module, one short<br />

review based on the Frontiers module, <strong>and</strong> a referees report based on a journal club.<br />

C) Transferable Skills<br />

Tra<strong>in</strong><strong>in</strong>g <strong>in</strong> this module is on-go<strong>in</strong>g throughout the year <strong>and</strong> is delivered by staff <strong>in</strong>volved with the<br />

program <strong>and</strong> the University via central provisions. It <strong>in</strong>cludes tra<strong>in</strong><strong>in</strong>g <strong>in</strong> research techniques <strong>and</strong> the<br />

development of personal <strong>and</strong> professional transferable skills. Topics <strong>in</strong>clude research philosophy,<br />

pr<strong>in</strong>ciples <strong>and</strong> ethics, manag<strong>in</strong>g research progress, data analysis <strong>and</strong> presentation, health <strong>and</strong> safety,<br />

scientific <strong>and</strong> technical writ<strong>in</strong>g, patent law, exploitation of research, team work skills, time <strong>and</strong> resource<br />

management, communication skills, self-assessment skills <strong>and</strong> leadership skills. In addition, there is a<br />

weekly “English conversation” session run by The English Language Unit to improve communication<br />

skills for students with English as a second language. Important <strong>and</strong> <strong>in</strong>novative parts of the<br />

transferable skills module <strong>in</strong>clude the “IP <strong>and</strong> Commercialization” <strong>and</strong> “Writ<strong>in</strong>g a PhD Studentship”<br />

workshops <strong>and</strong> debates for public underst<strong>and</strong><strong>in</strong>g of science (science & society). At the end of the<br />

module you will need to prepare a Portfolio of Assessment commentary as part of the transferable<br />

skills tra<strong>in</strong><strong>in</strong>g. F<strong>in</strong>ally, you will attend a Demonstrator Tra<strong>in</strong><strong>in</strong>g session as part of the transferable skills<br />

tra<strong>in</strong><strong>in</strong>g. Further <strong>in</strong>formation on the 3 assessed components of the module is given below (detailed<br />

<strong>in</strong>formation can be found later <strong>in</strong> this h<strong>and</strong>book):<br />

The IP <strong>and</strong> Commercialization Workshop will raise awareness of the issues associated with, <strong>and</strong><br />

necessary for, successful commercialisation of academic research. Intellectual property is a key<br />

component for bus<strong>in</strong>ess success. You will learn about the types <strong>and</strong> importance of <strong>in</strong>tellectual property<br />

<strong>and</strong> how to search for patent <strong>in</strong>formation on the Web. The routes available for creat<strong>in</strong>g value from<br />

basic research will be described. There will be a comparison of the licens<strong>in</strong>g <strong>and</strong> sp<strong>in</strong>-out routes,<br />

together with detail of the bus<strong>in</strong>ess plann<strong>in</strong>g process <strong>and</strong> the role of the technology transfer office. You<br />

will be work<strong>in</strong>g as a group to prepare a written bus<strong>in</strong>ess plan for potential commercialisation of<br />

research. In addition, you will be required to present your idea as a „pitch‟ to a panel of judges <strong>in</strong> a<br />

similar way to the popular television programme “Dragon‟s Den”.<br />

The “Writ<strong>in</strong>g a PhD Studentship” workshop will enable students to create a coherent <strong>and</strong> feasible<br />

research proposal for a scientific project to cont<strong>in</strong>ue study<strong>in</strong>g for a PhD, <strong>and</strong> to present this <strong>in</strong> a form<br />

suitable for external scrut<strong>in</strong>y.<br />

The Portfolio of Assessment Commentary will enable students to evaluate <strong>and</strong> reflect on the aims<br />

<strong>and</strong> objectives of the <strong>in</strong>dividual programme components, as well as their own achievements. Students<br />

will be required to assemble a professional-look<strong>in</strong>g portfolio that documents their progression through<br />

the programme <strong>in</strong> a form suitable for external scrut<strong>in</strong>y.<br />

Students will be assessed on the bus<strong>in</strong>ess plan <strong>and</strong> presentation given <strong>in</strong> the IP <strong>and</strong><br />

Commercialisation component, on the PhD Studentship application, <strong>and</strong> on the Portfolio of<br />

Assessment Commentary.<br />

19


3.3 Timetable <strong>and</strong> Deadl<strong>in</strong>es<br />

Research<br />

Projects<br />

October - July<br />

(10am - 5.30 pm<br />

Monday-Friday)<br />

Research Project 1<br />

(3 October – 9 December)<br />

Oral/poster presentations:<br />

6 January 2012<br />

Project report deadl<strong>in</strong>e:<br />

9 January 2012<br />

Research Project 2<br />

(9 January – 16 March)<br />

Oral/poster presentations:<br />

30 March 2012<br />

Project report deadl<strong>in</strong>e:<br />

10 April 2012<br />

Research Project 3<br />

(10 th April – 15 th June)<br />

Oral/poster presentations:<br />

29 June 2012<br />

Project report deadl<strong>in</strong>e:<br />

2 July 2012<br />

Techniques <strong>and</strong> Frontiers<br />

Modules<br />

October - June<br />

(9 am - 10 am<br />

Monday-Thursday)<br />

Techniques In <strong>Biomedical</strong> <strong>Sciences</strong><br />

Short review deadl<strong>in</strong>e:<br />

30 January 2012<br />

Frontiers In <strong>Biomedical</strong><br />

<strong>Sciences</strong><br />

Short review deadl<strong>in</strong>e:<br />

15 May 2012<br />

Journal Clubs<br />

Referee‟s report deadl<strong>in</strong>e:<br />

11 June 2012<br />

Biostatistics workshop<br />

October 2011<br />

(date to be confirmed)<br />

Sem<strong>in</strong>ars <strong>and</strong> <strong>Biomedical</strong> Review<br />

Lectures<br />

(dates to be announced)<br />

Transferable Skills,<br />

University &<br />

Graduate School Courses<br />

October - August<br />

Prospective Licensee Tra<strong>in</strong><strong>in</strong>g<br />

Course<br />

26-28 September 2011<br />

University Demonstrator Tra<strong>in</strong><strong>in</strong>g<br />

Workshop<br />

6 th October 2011<br />

IP <strong>and</strong> Commercialization Workshop<br />

July 2012<br />

(dates to be confirmed)<br />

Writ<strong>in</strong>g a PhD Studentship<br />

Workshop<br />

2 July 12.00-2.00pm<br />

Application deadl<strong>in</strong>e<br />

10 Aug 2012<br />

Submission of portfolio<br />

by 17 August 2012<br />

English Conversation Classes<br />

Fridays 9-10am<br />

Please note: Students need to be resident <strong>in</strong> Liverpool until 18 August 2012 except timetabled<br />

holidays.<br />

Timetabled holidays: 17 December 2011 – 2 January 2012<br />

31 March 2012 – 9 April 2012<br />

18 August 2012 – 9 September 2012 (Inclusive)<br />

Students MUST attend a viva with the <strong>MRes</strong> external exam<strong>in</strong>er <strong>in</strong> order to be awarded an <strong>MRes</strong><br />

degree. The specific date for your viva will be set nearer the time but you must be available <strong>in</strong><br />

Liverpool from 10 - 14 September 2012, when vivas will be held.<br />

English Conversation Classes are compulsory for students with English as a second<br />

language.<br />

20


3.4 Quick Overview of Daily Activities<br />

Days English<br />

Classes<br />

Monday<br />

Tuesday<br />

Wednesday<br />

Thursday<br />

Friday<br />

Techniques, Sem<strong>in</strong>ar Research<br />

Frontiers<br />

Project<br />

9-10am All day<br />

9-10am All day<br />

9-10am All day<br />

9-10am 5-6pm<br />

(Biomed Review)<br />

All day<br />

9-10am All day<br />

Event Location<br />

Techniques/Frontiers lectures Physiology Sem<strong>in</strong>ar Room<br />

Techniques/Frontiers str<strong>and</strong> specific activities Venues to be confirmed later<br />

English Conversation Classes Venue to be confirmed later<br />

<strong>Biomedical</strong> Review Sem<strong>in</strong>ars Sherr<strong>in</strong>gton Lecture Theatre<br />

21


3.5 Schedule of Techniques, Frontiers <strong>and</strong> Transferable Skills sessions<br />

Semester 1 (Techniques <strong>and</strong> Transferable Skills)<br />

Time: 9 a.m. Monday-Thursday<br />

Venue: Physiology Sem<strong>in</strong>ar Room (except for str<strong>and</strong> specific activities <strong>and</strong> sem<strong>in</strong>ars)<br />

Date Presenter Session<br />

03.10.11 Prof. Alan Morgan Introduction to module<br />

04.10.11 Prof. Alan Morgan Science skills (basic lab skills)<br />

05.10.11 Dr. Jeff Barclay Science skills (literature <strong>and</strong> database search<strong>in</strong>g)<br />

06.10.11 Prof. Rod Dimal<strong>in</strong>e Quantitative Analysis of Gene Expression<br />

10.10.11 Str<strong>and</strong> convenor Str<strong>and</strong>-specific activity<br />

11.10.11 Dr. Andrew Owen Real time polymerase cha<strong>in</strong> reaction (PCR).<br />

12.10.11 Dr. Steve Royle Science skills (organisation/record keep<strong>in</strong>g)<br />

13.10.11 Dr. Ted Burdyga Confocal imag<strong>in</strong>g of smooth muscles <strong>in</strong> situ<br />

17.10.11 TBA Str<strong>and</strong>-specific activity<br />

18.10.11 Dr. Bett<strong>in</strong>a Wilm Transgenic Techniques<br />

19.10.11 Dr. Ian Prior Science skills (Mak<strong>in</strong>g Publication Quality Figures)<br />

20.10.11 Dr. Lee Haynes Applications of GFP <strong>and</strong> its variants <strong>in</strong> cell biology<br />

24.10.11 TBA Str<strong>and</strong>-specific activity<br />

25.10.11 Dr. Jean Sathish Flow cytometry – pr<strong>in</strong>ciples <strong>and</strong> applications<br />

26.10.11 Prof. Alan Morgan Workshop: prepar<strong>in</strong>g for debates<br />

27.10.11 Prof. Alexei Tepik<strong>in</strong> Optical Techniques<br />

31.10.11 TBA Str<strong>and</strong>-specific activity<br />

01.11.11 Dr. Diana Moss Production <strong>and</strong> use of recomb<strong>in</strong>ant prote<strong>in</strong>s <strong>in</strong> cell <strong>and</strong><br />

developmental biology<br />

02.11.11 Dr. Jeff Barclay Genetics <strong>and</strong> <strong>in</strong>vertebrate model organisms <strong>in</strong><br />

biomedical sciences<br />

03.11.11 Dr. Ian Prior Electron Microscopy for Bioscience<br />

07.11.11 TBA Str<strong>and</strong>-specific activity<br />

08.11.11 Dr. Geoff Edwards Lecture<br />

09.11.11 Students Debate 1 (animal research)<br />

10.11.11 Dr. Eithne Costello-Goldr<strong>in</strong>g Science Skills (writ<strong>in</strong>g project reports)<br />

14.11.11 TBA Str<strong>and</strong>-specific activity<br />

15.11.11 Dr. John Quayle In vitro techniques used to study arterial function<br />

16.11.11 Prof. Alan Morgan Science skills (publish<strong>in</strong>g <strong>in</strong> journals)<br />

17.11.11 Dr Marta van der Hoek Lecture (h<strong>and</strong>l<strong>in</strong>g cl<strong>in</strong>ical trial data)<br />

21.11.11 TBA Str<strong>and</strong>-specific activity<br />

22.11.11 Prof. John Qu<strong>in</strong>n Nurtur<strong>in</strong>g Nature: How Polymorphic Variation Helps<br />

Shape The Individual<br />

23.11.11 Students Debate 2 (human stem cell research)<br />

24.11.11 Dr. Chris Goldr<strong>in</strong>g F<strong>in</strong>e-tun<strong>in</strong>g the expression of prote<strong>in</strong>s <strong>in</strong> cell <strong>and</strong><br />

animal models<br />

28.11.11 TBA Str<strong>and</strong>-specific activity<br />

29.11.11 Dr. Neil Kitter<strong>in</strong>gham Proteomics <strong>in</strong> biomedical research<br />

30.11.11 Dr. Jeff Barclay Science skills (poster presentations)<br />

01.12.11 Prof. Chris S<strong>and</strong>erson An <strong>in</strong>troduction to molecular cartography<br />

05.12.11 Str<strong>and</strong> convenor Str<strong>and</strong>-specific activity<br />

06.12.11 Prof. Alan Morgan Science skills (oral presentations)<br />

07.12.11 Prof. Alan Morgan Q&A/feedback/<strong>in</strong>formation session<br />

22


Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> (semester 2)<br />

Time: 9 a.m. Monday-Thursday<br />

Date Presenter Session<br />

09.01.12 Str<strong>and</strong> convenor Str<strong>and</strong>-specific activity<br />

(All str<strong>and</strong>s submit project 1)<br />

10.01.12 Prof. Alan Morgan Introduction to module <strong>and</strong> journal clubs<br />

11.01.12 Prof. Alan Morgan Molecular mechanisms of age<strong>in</strong>g<br />

12.01.12 Prof. Bob Burgoyne Calcium sensor prote<strong>in</strong>s <strong>in</strong> the regulation of neuronal<br />

function<br />

16.01.12 Prof. Alan Morgan Journal club demonstration (all str<strong>and</strong>s)<br />

17.01.12 Prof. Bob Burgoyne Journal club demonstration (all str<strong>and</strong>s)<br />

18.01.12 Dr Graeme Sills Lecture<br />

19.01.12 Prof. Mike Clague Lecture<br />

23.01.12 Students Debate 3 (medically assisted suicide)<br />

24.01.12 Prof. Mike Clague Journal club demonstration (all str<strong>and</strong>s)<br />

25.01.12 Dr. Dom<strong>in</strong>ic Williams Lecture<br />

26.01.12 Prof. David Edgar Stem cells <strong>and</strong> <strong>in</strong>duced pluripotent cells<br />

30.01.12 Dr. Dom<strong>in</strong>ic Williams Journal club (Drug Safety)/SSA<br />

(All str<strong>and</strong>s submit short review 1)<br />

31.01.12 Prof. David Edgar Journal club (Stem cell)/SSA<br />

01.02.12 Dr. Steve Royle Clathr<strong>in</strong>-mediated endocytosis: a complex web of<br />

<strong>in</strong>teractions.<br />

02.02.12 Prof. Andrea Varro Biomarkers, cancer microenvironment <strong>and</strong> upper GI<br />

carc<strong>in</strong>ogenesis<br />

06.02.12 Dr. Steve Royle Journal club (Cell Mol Physiol)/SSA<br />

07.02.12 Prof. Andrea Varro Journal club (Gastro)/SSA<br />

08.02.12 Prof Saye Khoo Lecture<br />

09.02.12 Prof. Susan Wray Lecture<br />

13.02.12 Prof Saye Khoo Journal club (Pharmacology)/SSA<br />

14.02.12 Prof. Susan Wray Journal club (Cell Mol Physiol)/SSA<br />

15.02.12 Dr. Barry Campbell Lecture<br />

16.02.12 Dr. Toni Plagge Lecture<br />

20.02.12 Students Debate 4 (topic chosen by students)<br />

21.02.12 Dr. Toni Plagge Journal club (IMB)/SSA<br />

22.02.12 Dr. Ana Alfirevic Pharmacogenetics<br />

23.02.12 Dr. Dean Naisbitt Lecture<br />

27.02.12 Dr. Ana Alfirevic Journal club (Pharmacology)/SSA<br />

28.02.12 Dr. Dean Naisbitt Journal club (Drug Safety)/SSA<br />

29.02.12 Dr Patricia Murray Lecture<br />

01.03.12 Prof. Ross Sibson „Normal‟ Alternative Splic<strong>in</strong>g <strong>and</strong> Disease<br />

05.03.12 Dr Patricia Murray Journal club (Stem cell)/SSA<br />

06.03.12 Prof. Ross Sibson Journal club (Cancer)/SSA<br />

07.03.12 Dr. Dharani Hapangama Lecture<br />

08.03.12 Prof. Mark Pritchard Why do some people develop cancers of the<br />

gastro<strong>in</strong>test<strong>in</strong>al tract?<br />

12.03.12 Dr. Dharani Hapangama Journal club (Stem cell)/SSA<br />

13.03.12 Prof. Mark Pritchard Journal club (Gastro)/SSA<br />

14.03.12 Dr Joe Slupsky Pathogenetic role of PKCbetaII <strong>in</strong> chronic<br />

lymphocytic leukaemia<br />

15.03.12 Dr. Sylvie Urbe Lecture<br />

23


Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> (semester 3)<br />

Time: 9 a.m. Monday-Thursday<br />

Date Presenter Session<br />

10.04.12 Dr. Sylvie Urbe Journal club (Cell Mol Physiol)/SSA<br />

(All str<strong>and</strong>s submit project 2)<br />

11.04.12 Dr. Judy Coulson Transcription <strong>in</strong> cancer: regulat<strong>in</strong>g the regulators<br />

12.04.12 Dr. Laiche Djouhri Role of Primary Afferent Dorsal Root Ganglion<br />

(DRG) Neurons <strong>in</strong> Chronic Pa<strong>in</strong><br />

16.04.12 Dr. Judy Coulson Journal club (Cell Mol Physiol)/SSA<br />

17.04.12 Dr. Laiche Djouhri Journal club (IMB)/SSA<br />

18.04.12 Dr. Lugang Yu Circulat<strong>in</strong>g galect<strong>in</strong>-3 <strong>and</strong> cancer metastasis<br />

19.04.12 Dr. Silvia Mora Lecture<br />

23.04.12 Dr. Lugang Yu Journal club (Gastro)/SSA<br />

24.04.12 Dr. Silvia Mora Journal club (Stem cell)/SSA<br />

25.04.12 Dr. Michael Cross Lecture<br />

26.04.12 Dr. Tim Green Obta<strong>in</strong><strong>in</strong>g <strong>and</strong> us<strong>in</strong>g structural <strong>in</strong>formation:<br />

30.04.12 Dr. Michael Cross Journal club (Drug Safety)/SSA<br />

01.05.12 Dr. Tim Green Journal club (Pharmacology)/SSA<br />

02.05.12 Dr. Carlos Rubbi Lecture<br />

03.05.12 Prof Soraya Shirazi-Beechey Glucose sens<strong>in</strong>g <strong>and</strong> signall<strong>in</strong>g; regulation of <strong>in</strong>test<strong>in</strong>al<br />

glucose transport<br />

07.05.12 NONE BANK HOLIDAY<br />

08.05.12 Dr. Carlos Rubbi Journal club (Cancer)/SSA<br />

09.05.12 Dr. Andrew Owen Lecture<br />

10.05.12 Dr. Helen Wallace Airway Disease <strong>in</strong> Cystic Fibrosis: Diagnosis <strong>and</strong> the<br />

Search for Improved Therapies‟<br />

14.05.12 Dr. Andrew Owen Journal club (Pharmacology)/SSA<br />

(All str<strong>and</strong>s submit short review 2)<br />

15.05.12 Dr. Helen Wallace Journal club (Stem cell)/SSA<br />

16.05.12 Dr. Swamy Thippeswamy Lecture<br />

17.05.12 Students Debate 5 (topic chosen by students)<br />

21.05.12 Dr. Swamy Thippeswamy Journal club (IMB)/SSA<br />

22.05.12 Dr. John Jenk<strong>in</strong>s Proteomic Approaches: Colon Cancer Biomarkers<br />

23.05.12 Dr. David Criddle Mitochondrial dysfunction <strong>in</strong> acute pancreatitis<br />

24.05.12 Dr. Eithne Costello-Goldr<strong>in</strong>g Lecture<br />

28.05.12 Dr. John Jenk<strong>in</strong>s Journal club (Gastro)/SSA<br />

29.05.12 Dr. Eithne Costello-Goldr<strong>in</strong>g Journal club (Cancer)/SSA<br />

30.05.12 Dr. David Criddle Journal club (Cell Mol Physiology)/SSA<br />

04.06.12 NONE BANK HOLIDAY<br />

05.06.12 NONE BANK HOLIDAY<br />

06.06.12 Students Debate 6 (topic chosen by students)<br />

07.06.12 Prof. Alan Morgan Module review/<strong>in</strong>formation session<br />

11.06.12 Str<strong>and</strong> convenor Str<strong>and</strong>-specific activity<br />

(All str<strong>and</strong>s submit referees report)<br />

02.07.12 Str<strong>and</strong> convenor Str<strong>and</strong>-specific activity<br />

(All str<strong>and</strong>s submit project 3)<br />

24


Section 4<br />

Assessment<br />

4.1 Overview of Assessment<br />

The accreditation for a Research Masters Degree is regulated by The University of Liverpool<br />

Ord<strong>in</strong>ances <strong>and</strong> Regulations.<br />

The award of <strong>MRes</strong> requires that a m<strong>in</strong>imum of 180 credits be obta<strong>in</strong>ed. In order to be eligible for the<br />

award of an <strong>MRes</strong>, c<strong>and</strong>idates must achieve a m<strong>in</strong>imum mark of 50% <strong>in</strong> each of the 3 modules<br />

(Research projects, Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong>, Transferable Skills). However,<br />

where the average of the total marks <strong>in</strong> all modules is 50% or above, a mark <strong>in</strong> the range 40-49% may<br />

be deemed compensatable.<br />

C<strong>and</strong>idates who fail to satisfy the exam<strong>in</strong>ers <strong>in</strong> a module assessment shall be permitted to re-present<br />

the failed work on one further occasion only, at a time specified by the exam<strong>in</strong>ers.<br />

4.1.1 Late submission of work<br />

Please note that the st<strong>and</strong>ard University penalty for late submission of written work applies; 5%<br />

of the total marks available for the assessment will be deducted from the f<strong>in</strong>al mark for each<br />

day after the submission date up to maximum of seven days. Work received after seven days<br />

will receive a mark of zero.<br />

4.1.2 Mark<strong>in</strong>g of submitted work<br />

We aim to assess all written work with<strong>in</strong> three work<strong>in</strong>g weeks after submission.<br />

4.1.3 Mitigat<strong>in</strong>g Circumstances<br />

When award<strong>in</strong>g degrees, the Board of Exam<strong>in</strong>ers will take <strong>in</strong>to consideration any mitigat<strong>in</strong>g<br />

circumstances that may have adversely affected a c<strong>and</strong>idate‟s performance provid<strong>in</strong>g these<br />

have been notified <strong>in</strong> writ<strong>in</strong>g to the Programme Director. Where illness is <strong>in</strong>volved a medical<br />

certificate should be supplied. Rules <strong>and</strong> regulations can be downloaded from the University<br />

website.<br />

Please note that the appropriate application form needs to be filled out to be eligible for<br />

consideration. A copy of the mitigat<strong>in</strong>g circumstances form can be found at the back of this<br />

h<strong>and</strong>book.<br />

4.1.4. External Exam<strong>in</strong>er<br />

The External Exam<strong>in</strong>er(s) will oversee course assessment procedures <strong>and</strong> assess annually the<br />

quality <strong>and</strong> relevance of the subjects taught. The External Exam<strong>in</strong>er(s) will conduct a viva voce<br />

exam<strong>in</strong>ation on the research elements of all c<strong>and</strong>idates. Attendance at the viva is a prerequisite<br />

for obta<strong>in</strong><strong>in</strong>g the <strong>MRes</strong> degree.<br />

25


4.1.5 Award of Dist<strong>in</strong>ction<br />

A dist<strong>in</strong>ction will be awarded to <strong>MRes</strong> c<strong>and</strong>idates who obta<strong>in</strong> an overall mark of 70% or over<br />

AND achieve marks of 70% or over <strong>in</strong> at least 2 out of the 3 assignments <strong>in</strong> each of the three<br />

assessed components of the course. In other words, a dist<strong>in</strong>ction will be awarded if the<br />

follow<strong>in</strong>g conditions are met:<br />

� Average mark of 70% or over for the 3 Research Project reports AND 70% or over <strong>in</strong> at<br />

least 2 out of these 3 assignments<br />

� Average mark of 70% or over for the 3 Techniques & Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

assignments AND 70% or over <strong>in</strong> at least 2 out of these 3 assignments<br />

� Average mark of 70% or over for the 3 Transferable Skills assignments AND 70% or over<br />

<strong>in</strong> at least 2 out of these 3 assignments<br />

For example, a student who obta<strong>in</strong>ed the follow<strong>in</strong>g marks would not be awarded for a dist<strong>in</strong>ction<br />

despite obta<strong>in</strong><strong>in</strong>g 70% overall, because they had two marks of less than 70% <strong>in</strong> the<br />

Techniques/Frontiers component:<br />

Research Projects Techniques/Frontiers Transferable Skills<br />

1 2 3 Review 1 Review 2 Referee Portfolio Studentship Bus<strong>in</strong>ess<br />

100% 100% 100% 100% 100% 100% 100% 100% 100% Total Mark %<br />

70 71 71 65 66 80 80 72 70 70<br />

4.1.6 Progression to PhD<br />

Progression to PhD of <strong>MRes</strong> graduates is subject to obta<strong>in</strong><strong>in</strong>g 65% or above <strong>in</strong> the Research<br />

Projects <strong>and</strong> is also subject to the discretion of the supervisor.<br />

4.2 Role of the External Exam<strong>in</strong>er<br />

The external exam<strong>in</strong>er has the important task of check<strong>in</strong>g <strong>and</strong> validat<strong>in</strong>g the marks <strong>and</strong> degree<br />

recommendations of the Board of Exam<strong>in</strong>ers for the <strong>MRes</strong>. This process is carried out at several<br />

levels.<br />

� The external exam<strong>in</strong>er views all marks from taught modules, <strong>and</strong> examples of <strong>in</strong>-course<br />

assessment work, <strong>in</strong>clud<strong>in</strong>g communication skills exercises.<br />

� The external exam<strong>in</strong>er is also sent copies of student‟s portfolio to assess.<br />

� The external exam<strong>in</strong>er is sent a list of all marks for each module.<br />

� The external exam<strong>in</strong>er shall viva all students for around 20-30 m<strong>in</strong>utes. The focus of the viva will<br />

be the student‟s research projects <strong>and</strong> its assessment <strong>in</strong> the portfolio. The Str<strong>and</strong> Convenor is<br />

also present throughout the viva process.<br />

� The external exam<strong>in</strong>er performs a significant role at the f<strong>in</strong>al Exam<strong>in</strong>ers Board meet<strong>in</strong>g. The<br />

external exam<strong>in</strong>er might comment at this meet<strong>in</strong>g on each student‟s performance <strong>and</strong> on the<br />

course <strong>in</strong> general.<br />

26


� The external exam<strong>in</strong>er writes an annual report on the course <strong>and</strong> on the assessment process.<br />

There will be several external exam<strong>in</strong>ers represent<strong>in</strong>g research expertises <strong>in</strong> the ma<strong>in</strong> str<strong>and</strong>s of the<br />

Degree Program.<br />

The vivas will take place <strong>in</strong> September (10-14 September 2012) <strong>and</strong> attendance at the viva is<br />

prerequisite for obta<strong>in</strong><strong>in</strong>g the degree.<br />

27


4.3 Plagiarism or Collusion<br />

Cases of suspected plagiarism or collusion will be considered by the Board of Exam<strong>in</strong>ers. If the Board<br />

of Exam<strong>in</strong>ers decides that collusion or plagiarism have taken place, the Board shall have the discretion<br />

to award the marks [if any] which it th<strong>in</strong>ks appropriate <strong>in</strong> the light of the gravity <strong>and</strong> extent of the<br />

offence. A talk on plagiarism <strong>and</strong> how to avoid it will be given as part of the compulsory <strong>in</strong>duction<br />

activities. Below are highlighted examples of def<strong>in</strong>itions of plagiarism <strong>and</strong> collusion for your attention.<br />

An extract from The University Code of Practice on Assessment on these issues is copied for your<br />

<strong>in</strong>formation <strong>in</strong> full below. All students must read this section <strong>and</strong> be aware <strong>and</strong> observe these rules <strong>in</strong><br />

regard of all written work submitted for assessment. The plagiarism form should be signed for all<br />

written work (a copy of this form can be found at the back of this h<strong>and</strong>book).<br />

Plagiarism <strong>in</strong>cludes:<br />

The representation of the work, written or otherwise, of any other person, <strong>in</strong>clud<strong>in</strong>g another student, or any<br />

<strong>in</strong>stitution, as the c<strong>and</strong>idate’s own. Examples of plagiarism may be any of the follow<strong>in</strong>g forms:<br />

i the verbatim copy<strong>in</strong>g of another‟s work without acknowledgement;<br />

ii the close paraphras<strong>in</strong>g of another‟s work by simply chang<strong>in</strong>g a few words or alter<strong>in</strong>g the order<br />

of presentation, without acknowledgement.<br />

Iii unacknowledged quotation of phrases from another‟s work;<br />

iv the deliberate <strong>and</strong> detailed presentation of another‟s concept as one‟s own.<br />

It is also very important to avoid self-plagiarism, i.e. re-us<strong>in</strong>g text, data or images that have been<br />

previously submitted for assessment. In other words, you are expressly forbidden from copy<strong>in</strong>g any<br />

such material from one of your written assignments to another. Any cases of suspected self-plagiarism<br />

will be <strong>in</strong>vestigated <strong>and</strong> dealt with as for other forms of plagiarism, as detailed below.<br />

Collusion <strong>in</strong>cludes:<br />

The conscious collaboration, without official approval, between two or more students <strong>in</strong> the preparation<br />

<strong>and</strong> production of work which is ultimately submitted by each <strong>in</strong> an identical, or substantially similar<br />

form <strong>and</strong>/or is represented by each to be the product of his or her <strong>in</strong>dividual efforts. Collusion also<br />

occurs where there is unauthorized co-operation between a student <strong>and</strong> another person <strong>in</strong> the<br />

preparation <strong>and</strong> reproduction of work which is presented as the student‟s own.<br />

Extract on Plagiarism <strong>and</strong> collusion taken from the University Code of Practice on Assessment.<br />

Submission of other work for formal assessment<br />

1. A dissertation, thesis, essay, project or any other work which is not undertaken <strong>in</strong> an exam<strong>in</strong>ation<br />

room under supervision, but which is submitted by a student for formal assessment dur<strong>in</strong>g his<br />

course of study must be written by the c<strong>and</strong>idate himself <strong>and</strong> <strong>in</strong> his own words except for<br />

quotations from published <strong>and</strong> unpublished sources which shall be clearly <strong>in</strong>dicated <strong>and</strong><br />

acknowledged as such. The <strong>in</strong>corporation of material without acknowledgement will be treated as<br />

plagiarism, subject to the custom <strong>and</strong> usage of the subject. The source of any photograph, map or<br />

other illustration shall also be <strong>in</strong>dicated as shall the source, published or unpublished, of any<br />

material not result<strong>in</strong>g from the c<strong>and</strong>idates own experimentation, observation or specimencollect<strong>in</strong>g.<br />

28


2. A c<strong>and</strong>idate shall not be permitted to <strong>in</strong>corporate material which has been submitted <strong>in</strong> support of a<br />

successful application for a degree of this or any other university or any other approved degreeaward<strong>in</strong>g<br />

body except for the purpose of draw<strong>in</strong>g attention, for reference purposes only, to such<br />

material, <strong>in</strong>clud<strong>in</strong>g calculations or the results of experimental work. Where such material is<br />

<strong>in</strong>corporated, the fact shall be recorded together with the title of the thesis or other work, the date of<br />

the award of the degree <strong>and</strong> the name of the university of other degree-award<strong>in</strong>g body mak<strong>in</strong>g the<br />

award.<br />

3. The conscious collaboration, without official approval, between two or more students <strong>in</strong> the<br />

preparation <strong>and</strong> production of work which is ultimately submitted for assessment by each <strong>in</strong> an<br />

identical, or substantially similar form, <strong>and</strong>/or, is represented by each to be the product of his or her<br />

<strong>in</strong>dividual efforts, is not permitted. No student is permitted to enter <strong>in</strong>to unauthorized cooperation<br />

with another person <strong>in</strong> the preparation <strong>and</strong> production of work which is presented for assessment of<br />

the student‟s own.<br />

4. Except when special provisions are made, a dissertation, thesis, essay, project or any other work<br />

which is not undertaken <strong>in</strong> an exam<strong>in</strong>ation room, shall rema<strong>in</strong> <strong>in</strong> the ownership of the university<br />

irrespective of whether or not such work has been returned to the c<strong>and</strong>idate. Marks awarded at<br />

any stage of the academic year shall be provisional, pend<strong>in</strong>g confirmation at the f<strong>in</strong>al meet<strong>in</strong>g of<br />

the Board of Exam<strong>in</strong>ers.<br />

C<strong>and</strong>idate shall be required to re-submit any provisionally-marked work for further <strong>in</strong>spection when<br />

required to do so by any member of the Board of Exam<strong>in</strong>ers.<br />

5. Except when prevented by illness or by other sufficient cause, the marks of any student who fails to<br />

submit work by the prescribed date shall be subject to penalty deduction <strong>in</strong> accordance with a scale<br />

determ<strong>in</strong>ed by the Head of Department. It shall be the duty of Heads of Departments to ensure<br />

that students are notified of due submission dates <strong>and</strong> the penalty scale to be applied <strong>in</strong> the case of<br />

late submission.<br />

6a. Work submitted for assessment (Instructional Courses)<br />

Where an Exam<strong>in</strong>er suspects a c<strong>and</strong>idate of reproduc<strong>in</strong>g, <strong>in</strong> a University test, work of another<br />

person or persons without acknowledgement, he shall report the matter to the Chairman of the<br />

Board of Exam<strong>in</strong>ers, who shall as soon as possible <strong>in</strong>vestigate (or arrange an <strong>in</strong>vestigation of) the<br />

circumstances, with a view to ascerta<strong>in</strong><strong>in</strong>g whether there is a case to be considered by the Board of<br />

Exam<strong>in</strong>ers. For this purpose, the Chairman of the Board of Exam<strong>in</strong>ers (or his nom<strong>in</strong>ated<br />

representative) shall <strong>in</strong>form the c<strong>and</strong>idate of the matter under <strong>in</strong>vestigation <strong>and</strong> <strong>in</strong>vite the c<strong>and</strong>idate<br />

to provide an explanation of the circumstances. The c<strong>and</strong>idate shall be afforded an opportunity to<br />

make any representations he may with to make to the Chairman of the Board of Exam<strong>in</strong>ers (or his<br />

nom<strong>in</strong>ated representative). The Chairman of the Board of Exam<strong>in</strong>ers (or his nom<strong>in</strong>ated<br />

representative) shall consider any representations made by the c<strong>and</strong>idate <strong>and</strong> report his f<strong>in</strong>d<strong>in</strong>gs to<br />

the Board of Exam<strong>in</strong>ers. If the Board of Exam<strong>in</strong>ers, decides that plagiarism has taken place, the<br />

Board shall have the discretion to award the marks (if any) which it th<strong>in</strong>ks appropriate <strong>in</strong> the light of<br />

the gravity <strong>and</strong> extent of the plagiarism <strong>in</strong>volved. The marks (if any) thus awarded shall be treated<br />

<strong>in</strong> the same way <strong>and</strong> have the same consequences are regards the assessment of the c<strong>and</strong>idate‟s<br />

overall performance as a similar mark awarded to other c<strong>and</strong>idates.<br />

If, <strong>in</strong> the op<strong>in</strong>ion of the Board of Exam<strong>in</strong>ers, the gravity of proven plagiarism or collusion calls <strong>in</strong>to<br />

question of the propriety of (i) deem<strong>in</strong>g the C<strong>and</strong>idate to have been successful <strong>in</strong> the exam<strong>in</strong>ation,<br />

or if (ii) recommend<strong>in</strong>g an award <strong>in</strong> accordance with the total accumulated marks, the Chairman of<br />

the<br />

Board of Exam<strong>in</strong>ers, <strong>in</strong> consultation with the appropriate Dean of Faculty, shall submit a report <strong>and</strong><br />

recommendation, the consideration of the Senate Committee for the Award of Decrees, Diplomas<br />

29


<strong>and</strong> Certificates. Follow<strong>in</strong>g consideration of such report <strong>and</strong> recommendation, the Senate<br />

Committee for the award of Degrees, Diplomas <strong>and</strong> Certificates shall have the power to determ<strong>in</strong>e<br />

that accordance with the circumstances, either (i) the degree classification be modified, (ii) the<br />

degree be awarded without honours, (iii) the c<strong>and</strong>idate be failed <strong>and</strong> no award be made, or (iv) the<br />

matter be referred for further review by the Board of Exam<strong>in</strong>ers.<br />

6b Work submitted for assessment (Higher Degrees by Research)<br />

Where the panel of Exam<strong>in</strong>ers suspect a c<strong>and</strong>idate of reproduc<strong>in</strong>g, <strong>in</strong> a dissertation or thesis, work<br />

of another person or persons without acknowledgement, they shall afford the c<strong>and</strong>idate an<br />

opportunity to make any representation he may wish to make. Follow<strong>in</strong>g consideration of such<br />

representation, the panel of Exam<strong>in</strong>ers shall have the discretion to recommend the award of the<br />

degree or otherwise, <strong>in</strong> the light of the gravity <strong>and</strong> extent of the plagiarism <strong>in</strong>volved.<br />

7. Where an Exam<strong>in</strong>er suspects (i) unauthorized collaboration between two or more students or (ii)<br />

unauthorized co-operation with another person, the procedure for suspected plagiarism as<br />

determ<strong>in</strong>ed <strong>in</strong> clause 6(a) of these regulations shall be followed.<br />

4.4 Plagiarism form<br />

A plagiarism form must be submitted with every piece of work you submit. A copy of this form can be<br />

found at the back of this h<strong>and</strong>book, <strong>and</strong> you can use copies of the form for this purpose.<br />

4.5 Procedure for request<strong>in</strong>g a deadl<strong>in</strong>e extension<br />

In cases where you are unable to meet assessment deadl<strong>in</strong>es, for example due to illness, you must<br />

request an extension to the deadl<strong>in</strong>e from your Str<strong>and</strong> Convenor, who will decide whether or not to<br />

grant your request.<br />

30


Section 5<br />

Research Projects<br />

Students will undertake three research projects, compris<strong>in</strong>g 10 weeks of lab work followed by 2 weeks<br />

<strong>in</strong> which to write a project report <strong>and</strong> prepare an oral or poster presentation. Dur<strong>in</strong>g the course of the<br />

project, all students will be encouraged to suggest experiments, design experimental protocols, as well<br />

as be<strong>in</strong>g taught subject specific techniques <strong>and</strong> advanced knowledge transferable skills. The research<br />

projects will <strong>in</strong>clude at least three different research techniques to enhance experimental tra<strong>in</strong><strong>in</strong>g skills.<br />

Students will have regular (usually daily) contact with supervisors <strong>and</strong> other laboratory members for<br />

advice <strong>and</strong> guidance dur<strong>in</strong>g the 10 weeks <strong>in</strong> the lab. Time will be allowed to undertake the necessary<br />

literature searches dur<strong>in</strong>g the 10-week experimental period, <strong>and</strong> a further 2 weeks is to be spent out of<br />

the lab <strong>in</strong> order to write a project report <strong>and</strong> make an oral or a poster presentation to the Institute at the<br />

end of each project. Supervisors will provide advice on which results should be <strong>in</strong>cluded <strong>in</strong> the project<br />

report, the presentation of Figures, the <strong>in</strong>terpretation of results <strong>and</strong> the overall structur<strong>in</strong>g of the project<br />

report. However, supervisors are not permitted to comment on written draft reports. Supervisors are<br />

also expected to provide advice on the preparation of the oral <strong>and</strong> poster presentations. Students will<br />

be assessed on their project report, their presentation <strong>and</strong> their general performance <strong>in</strong> the lab.<br />

Further <strong>in</strong>formation on these assessments is provided later <strong>in</strong> this Section.<br />

5.1 Laboratory safety <strong>and</strong> work<strong>in</strong>g hours<br />

You need to read carefully <strong>and</strong> obey all the <strong>in</strong>structions regard<strong>in</strong>g safety that have been given to you<br />

before commenc<strong>in</strong>g experimental work <strong>in</strong> the laboratory. You are normally be expected to work <strong>in</strong> the<br />

lab between 10.00am-5.30pm, Monday to Fridays, although flexibility is required depend<strong>in</strong>g on the type<br />

of experiments undertaken after discussion with supervisor. A supervisor who is frequently away from<br />

the laboratory is expected to allocate a post doc or a experienced PhD student to help with your day to<br />

day supervision. Work outside these hours, <strong>in</strong>clud<strong>in</strong>g at weekends, is only permitted if either<br />

your supervisor or a suitably qualified person approved by your supervisor is present. The out<br />

of hours work book must be signed on enter<strong>in</strong>g <strong>and</strong> leav<strong>in</strong>g the build<strong>in</strong>g stat<strong>in</strong>g the name of the person<br />

who is supervis<strong>in</strong>g you.You are not expected or advised to work <strong>in</strong> the lab longer than the 10<br />

weeks allocated for your project, <strong>in</strong> order to allow you enough time to complete your writ<strong>in</strong>g <strong>and</strong><br />

prepare your talk or poster by the end of your project placement.<br />

If for any reason you need to be absent (e.g. other meet<strong>in</strong>gs, courses, illness, etc) you should <strong>in</strong>form<br />

your supervisor as soon as possible, at the latest by 9.30am on the day that you will be away from the<br />

lab, by call<strong>in</strong>g or email<strong>in</strong>g them. You must provide <strong>in</strong>formation on when <strong>and</strong> why you will be absent,<br />

<strong>and</strong> ask him/her to make arrangements for any ongo<strong>in</strong>g experiments that you cannot complete that<br />

day. You should also call or email your str<strong>and</strong> convenor to formally report your absence.<br />

Work<strong>in</strong>g with human subjects <strong>and</strong>/or human material<br />

Supervisors have a responsibility to ensure that all work <strong>in</strong>volv<strong>in</strong>g human subjects is covered by<br />

appropriate Ethics Comittee Permission. They should also ensure that students conduct<strong>in</strong>g research<br />

projects <strong>in</strong>volv<strong>in</strong>g human subjects <strong>and</strong>/or material underst<strong>and</strong> the permission given for their work, <strong>and</strong><br />

<strong>in</strong> writ<strong>in</strong>g their dissertation, they make a clear statement of the Ethics Comittee Approval for the work.<br />

Work<strong>in</strong>g with animals<br />

Supervisors have a responsibility to ensure that the appropriate Home Office Authority (both personal<br />

<strong>and</strong> project licence) are <strong>in</strong> place before work<strong>in</strong>g with experimental animal is started. They should also<br />

ensure that students conduct<strong>in</strong>g research projects <strong>in</strong>volv<strong>in</strong>g experimental animals underst<strong>and</strong> the<br />

permission given for their work, <strong>and</strong> <strong>in</strong> writ<strong>in</strong>g their dissertation, they make a clear statement of the<br />

Home Office Approval for the work.<br />

31


Laboratory books are the property of Liverpool University <strong>and</strong> are to be h<strong>and</strong>ed to the supervisor at the<br />

end of the project placement.<br />

5.2 Preparation of Research Project Reports<br />

These notes are <strong>in</strong>tended to help you <strong>in</strong> the preparation of the report describ<strong>in</strong>g your project. You will<br />

also be given a lecture on how to prepare a good project report as part of the Techniques <strong>in</strong><br />

<strong>Biomedical</strong> <strong>Sciences</strong> lecture series. Your project should be prepared <strong>in</strong> the format of a research paper<br />

recently published <strong>in</strong> the Journal of Biological Chemistry. Please consult a recent issue of this<br />

journal to check on the appropriate style to adopt. It is expected that your report will be produced to<br />

“publication quality”, which means that you should pay close attention to spell<strong>in</strong>g, punctuation <strong>and</strong><br />

grammar, as well as scientific content. You should also take care with the quality of figures, clarity of<br />

legends, <strong>and</strong> citation of references. An example of a project report is given at the end of this Section<br />

for you to refer to. Your paper should be s<strong>in</strong>gle spaced, <strong>in</strong> font size 12 <strong>and</strong> must be no more than 4000<br />

words <strong>in</strong> length (exclud<strong>in</strong>g references). Marks will be deducted proportionally for exceed<strong>in</strong>g this limit<br />

(for example, 4400 words = 10% over the limit = 10% deducted), down to a m<strong>in</strong>imum cap set at 50%<br />

for the assignment. Figures <strong>and</strong> tables should be embedded <strong>in</strong> the text, <strong>in</strong> a similar style to papers<br />

published <strong>in</strong> the Journal of Biological Chemistry. The report should be produced on a computer us<strong>in</strong>g<br />

appropriate word process<strong>in</strong>g <strong>and</strong> graphic packages. Please attach a front cover sheet to your report<br />

stat<strong>in</strong>g your name, your student number, the title of the report, the name of your supervisor, the name<br />

of your <strong>in</strong>ternal assessor (2nd marker) if known, <strong>and</strong> the word count of your report. A template cover<br />

sheet is supplied at the end of this Section for this purpose. You should submit three copies of<br />

your f<strong>in</strong>al project report; one to your supervisor, one to your <strong>in</strong>ternal assessor, <strong>and</strong> one to your str<strong>and</strong><br />

convenor. You also need to submit an electronic copy of the f<strong>in</strong>al version via Turnit<strong>in</strong>. These files need<br />

to be able to be uploaded onto Turnit<strong>in</strong> with all Figures <strong>in</strong>cluded so where necessary your files will<br />

need to be compressed. Deadl<strong>in</strong>es for submission of the project reports <strong>and</strong> dates of the oral/poster<br />

presentations are given <strong>in</strong> Section 3.3.<br />

The report must conform to the follow<strong>in</strong>g style:<br />

1. Abstract. This is a concise summary of the work. It should deal with the reasons why the work<br />

was performed, the methods used, the results obta<strong>in</strong>ed, <strong>and</strong> the major conclusions reached.<br />

This section must not exceed 250 words.<br />

2. Introduction. This should describe the background to the relevant scientific literature <strong>and</strong> the<br />

work performed. The hypothesis to be tested should be expla<strong>in</strong>ed, <strong>and</strong> the major aims should<br />

be specified. The length of this section should not exceed 2 pages.<br />

3. Methods. The description of methods should be adequate for a competent worker <strong>in</strong> the area<br />

to follow <strong>and</strong> repeat your experiments. You should however be concise; aga<strong>in</strong> recent papers <strong>in</strong><br />

your field of study should provide a guide for you.<br />

4. Results. This section should consist of text which describes the experimental data obta<strong>in</strong>ed<br />

<strong>and</strong> where appropriate describes the rationale that l<strong>in</strong>ks one experiment to the next. The text<br />

should be cross-referenced to the relevant figure or table. Is it not necessary to reproduce the<br />

same material <strong>in</strong> tables <strong>and</strong> figures. This section must not take the form of a diary of your<br />

experimental observations <strong>in</strong> the laboratory, nor need every s<strong>in</strong>gle experimental observation be<br />

recorded. Instead, you must take responsibility for collat<strong>in</strong>g the data, <strong>and</strong> whatever statistical<br />

analysis are appropriate, <strong>and</strong> present<strong>in</strong>g your f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a way that makes it possible for the reader<br />

to underst<strong>and</strong> your major conclusions. Each figure should have an explanatory legend that<br />

enables the reader to underst<strong>and</strong> how the experiment was performed. Figures <strong>and</strong> tables should<br />

be <strong>in</strong>serted <strong>in</strong>to the ma<strong>in</strong> body of the text as close as possible to the relevant section.<br />

32


5. Discussion. This section should focus on the <strong>in</strong>terpretation of your results, <strong>and</strong> set them <strong>in</strong> the<br />

context of current knowledge <strong>in</strong> the field. It should not be necessary to repeat your description<br />

of the experimental data, but you will want to summarise your ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>and</strong> expla<strong>in</strong> how<br />

they are mean<strong>in</strong>gful.<br />

6. References. Aga<strong>in</strong>, this should follow the Journal of Biological Chemistry style. It is strongly<br />

recommended that you use reference organis<strong>in</strong>g software (such as EndNote) to construct<br />

your references, which will ensure that you use the correct Journal of Biological<br />

Chemistry style. References <strong>in</strong> the text should be cited as a number <strong>in</strong> the order <strong>in</strong> which they<br />

appear. The reference list should be correspond<strong>in</strong>gly numbered, <strong>and</strong> references listed <strong>in</strong> order<br />

of their citation <strong>in</strong> the text.<br />

7. Footnotes. Abbreviations <strong>and</strong> acronyms used <strong>in</strong> the text must be def<strong>in</strong>ed immediately after the<br />

first use of the abbreviation. In addition, a complete list of all abbreviations used should<br />

also be cited <strong>in</strong> a s<strong>in</strong>gle Footnote section (see a recent Journal of Biological Chemistry<br />

paper for how Abbreviations Footnotes are presented). The abbreviations of some important<br />

biochemical compounds, e.g. ATP, NADH, DNA, <strong>and</strong> am<strong>in</strong>o acids <strong>in</strong> prote<strong>in</strong>s, need not be<br />

def<strong>in</strong>ed.<br />

5.3 Preparation of Oral <strong>and</strong> Poster Presentations<br />

You will be required to make a presentation for each of your Research projects. This will comprise 2<br />

poster presentations <strong>and</strong> 1 oral presentation. The dates of these presentation sessions are given <strong>in</strong><br />

Section 3.3, but the schedul<strong>in</strong>g of oral/poster presentations for <strong>in</strong>dividual str<strong>and</strong>s will be announced<br />

nearer the time. You will be given <strong>in</strong>structions on how to prepare good oral <strong>and</strong> poster presentations as<br />

part of the Science Skills series <strong>in</strong> the Techniques <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> module. You will also be<br />

given advice <strong>and</strong> assistance from your supervisor <strong>in</strong> prepar<strong>in</strong>g your presentations. The cost of<br />

pr<strong>in</strong>t<strong>in</strong>g your poster will be provided by your supervisor.<br />

33


5.4 Assessment of Research Projects<br />

For each research project, students will be assessed on their project report, their presentation <strong>and</strong> on<br />

their general performance <strong>in</strong> the lab. Assessment of the project report will be conducted by the<br />

supervisor (1 st marker) <strong>and</strong> an <strong>in</strong>ternal assessor (2 nd marker). Cont<strong>in</strong>ual assessment of performance <strong>in</strong><br />

the lab is provided by the supervisor alone. Assessment of the presentation is by 2 <strong>in</strong>dependent<br />

markers. The 3 research projects comb<strong>in</strong>ed contribute 60% of the total marks available for the <strong>MRes</strong>.<br />

An explanation of how marks are awarded for these <strong>in</strong>dividual assessments <strong>and</strong> how they are<br />

comb<strong>in</strong>ed to give the f<strong>in</strong>al mark is given below:<br />

Supervisor <strong>and</strong> Internal Assessor<br />

Mark 1: Awarded for the project report; this will reflect scientific quality of the dissertation, its orig<strong>in</strong>ality,<br />

clarity <strong>and</strong> thoroughness; the <strong>in</strong>ternal assessor will also base his/her mark on a short <strong>in</strong>formal m<strong>in</strong>i-viva<br />

(project discussion).<br />

Supervisor<br />

Mark 2: This will be a cont<strong>in</strong>ual assessment mark awarded for assessment of the student‟s conduct dur<strong>in</strong>g<br />

the project tak<strong>in</strong>g <strong>in</strong>to account organization, <strong>in</strong>itiative, effort <strong>and</strong> performance <strong>in</strong> the lab.<br />

Two Internal Assessors<br />

Mark 3: Awarded for oral/ poster presentation.<br />

Supervisor <strong>and</strong> Internal Assessor<br />

Supervisor<br />

Mark 1 - Project report, 40%<br />

Mark 2 - Cont<strong>in</strong>ual Assessment, 10%<br />

Internal Assessors Mark 3 - Oral/poster Presentation, 10%<br />

Total = 60%<br />

The average of the marks for the three Research Projects will contribute 60% of the total<br />

<strong>MRes</strong> mark (marks for Project 1 + 2 + 3 divided by 3).<br />

Details of the assessment criteria used <strong>and</strong> the assessment forms that will be used by markers<br />

are given on the on the pages that follow.<br />

34


5.4.1 Assessment Form for research <strong>MRes</strong> <strong>in</strong> project <strong>Biomedical</strong> reports <strong>Sciences</strong><br />

Project Write Up Assessment Form<br />

Student:<br />

Rotation:<br />

Project Title:<br />

Supervisor:<br />

Second marker:<br />

Moderator:<br />

Please complete this form WITH A TICK AS APPROPRIATE when mark<strong>in</strong>g the M.Res write ups, <strong>and</strong> return it, with<br />

the dissertation to your str<strong>and</strong> convenor. INDICATION OF POTENTIAL DEGREE CLASS BY MARK ATTAINED<br />

(Dist<strong>in</strong>ction 70-100); (Merit 60-69); (Pass 50-59); (Fail


5.4.2 Specific Criteria for assessment of research project reports<br />

Dist<strong>in</strong>ction Level 100% - 90%<br />

90% - 80%<br />

80% - 70%<br />

Pass Level 69% - 65%<br />

64% - 60%<br />

59% - 55%<br />

54% - 50%<br />

Fail Level 49% - 45%<br />

44% - 40%<br />

39% - 35%<br />

34% - 10%<br />

0%<br />

Outst<strong>and</strong><strong>in</strong>g. No (or virtually no – use scal<strong>in</strong>g) better result<br />

conceivable at Masters level. Factually correct <strong>and</strong><br />

complete, with extensive evidence of critical th<strong>in</strong>k<strong>in</strong>g.<br />

Evidence of extensive research of relevant literature. Very<br />

logical structure, very well written <strong>and</strong> presented. Clear<br />

evidence of orig<strong>in</strong>al thought <strong>and</strong> cogent scientific argument.<br />

Excellent. Clear evidence of achievement on a scale<br />

reserved for exceptionally high quality work at Masters level.<br />

Essentially correct <strong>and</strong> complete, with evidence of critical<br />

th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> excellent use of relevant literature. Logical<br />

structure, well written <strong>and</strong> presented, display<strong>in</strong>g vary<strong>in</strong>g<br />

degrees (use scal<strong>in</strong>g) of orig<strong>in</strong>al thought <strong>and</strong> cogent<br />

scientific argument.<br />

Very Good. Content essentially without any major flaws,<br />

very well expla<strong>in</strong>ed with clear evidence of a high level of<br />

scientific competence, <strong>and</strong> mature, critical scientific<br />

judgement <strong>in</strong> discuss<strong>in</strong>g the extent to which the objectives of<br />

the research have been achieved.<br />

Good. Well expla<strong>in</strong>ed, show<strong>in</strong>g good evidence of critical<br />

scientific judgement.<br />

Quite Good. Well expla<strong>in</strong>ed, with good underst<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

some evidence of critical scientific judgement<br />

Fairly Good. A generally sound project with a good or quite<br />

good level of underst<strong>and</strong><strong>in</strong>g, evidence of sound scientific<br />

competence <strong>and</strong> judgement.<br />

Adequate. Show<strong>in</strong>g some progress but with some<br />

deficiencies <strong>in</strong> one or more aspects of theoretical <strong>and</strong>/or<br />

experimental approach, knowledge of the literature, scientific<br />

competence <strong>and</strong> judgement.<br />

A poor dissertation with an overall superficial approach.<br />

Essentially an <strong>in</strong>complete report with major omissions <strong>in</strong><br />

several areas <strong>and</strong> evidence of a poor underst<strong>and</strong><strong>in</strong>g of the<br />

project‟s aims, methods <strong>and</strong> outcomes.<br />

A poor project with superficial approach <strong>and</strong> more errors<br />

<strong>and</strong>/or omissions <strong>and</strong>/or evidence of a deficiency of effort<br />

<strong>and</strong>/or poor underst<strong>and</strong><strong>in</strong>g.<br />

A marked deficiency <strong>in</strong> content of underst<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

application.<br />

Even more marked deficiencies <strong>in</strong> content (on a variable<br />

scale) of underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application <strong>and</strong> presentation.<br />

A complete absence of relevant content.<br />

36


5.4.3 Specific Criteria for cont<strong>in</strong>ual assessment<br />

Dist<strong>in</strong>ction<br />

Level<br />

100% - 90%<br />

90% - 80%<br />

80% - 70%<br />

Pass Level 69% - 65%<br />

64% - 60%<br />

59% - 55%<br />

54% - 50%<br />

Fail Level 49% - 45%<br />

44% - 40%<br />

39% - 35%<br />

34% - 10%<br />

0%<br />

Outst<strong>and</strong><strong>in</strong>g. Student highly motivated <strong>and</strong> capable of<br />

work<strong>in</strong>g <strong>in</strong>dependently on all aspects of project. As good<br />

as can be expected at Masters level. No room for<br />

improvement <strong>in</strong> project (design), execution <strong>and</strong><br />

motivation.<br />

Excellent. Student able to (design) <strong>and</strong> execute project<br />

work <strong>in</strong>dependently with the m<strong>in</strong>imum of assistance.<br />

Vary<strong>in</strong>g degrees of competence depend<strong>in</strong>g on task (use<br />

scal<strong>in</strong>g).<br />

Very Good. Student able to generate high quality data<br />

<strong>and</strong>/or identify <strong>and</strong> answer important questions, mostly<br />

at the first attempt.<br />

Good. Student able to (design) <strong>and</strong> execute project<br />

work with <strong>in</strong>itial help, show<strong>in</strong>g good evidence of scientific<br />

judgement. Occasionally requir<strong>in</strong>g additional assistance.<br />

Quite Good. Student able to (design) <strong>and</strong> execute<br />

project work with <strong>in</strong>itial help, show<strong>in</strong>g some evidence<br />

<strong>in</strong>dependent of critical scientific judgement. Student<br />

requir<strong>in</strong>g additional assistance more frequently, but still<br />

able to work <strong>in</strong>dependently.<br />

Fairly Good. Well motivated student able to (design)<br />

<strong>and</strong> execute project work only with significant help.<br />

Adequate. Student need<strong>in</strong>g considerable <strong>in</strong>itial help<br />

<strong>and</strong> has encountered a few deficiencies <strong>in</strong><br />

motivation/application <strong>and</strong> <strong>in</strong> report<strong>in</strong>g <strong>and</strong> analys<strong>in</strong>g<br />

data.<br />

Quite Poor. Student requir<strong>in</strong>g constant help to (design)<br />

<strong>and</strong> execute project work <strong>and</strong> analyze data. Student<br />

less <strong>in</strong>cl<strong>in</strong>ed to seek necessary help.<br />

Poor. Student requir<strong>in</strong>g constant help to (design) <strong>and</strong><br />

execute project work <strong>and</strong> analyze data <strong>and</strong> produces<br />

results/questions of variable quality.<br />

Student requires considerable help to design <strong>and</strong><br />

execute project work. Produces data/work of poor<br />

quality <strong>and</strong> is unable to analyze data. Poor motivation<br />

Student displays <strong>in</strong>ability to carry out project work <strong>and</strong><br />

low or no motivation (use scal<strong>in</strong>g)<br />

Complete <strong>in</strong>ability or will<strong>in</strong>gness to do project work <strong>and</strong><br />

no motivation.<br />

37


5.4.4 Assessment Form for oral presentations<br />

Presentation, grammar & readability Guide Mark %<br />

Very good structure. Slides clear, <strong>and</strong> well matched to<br />

talk itself.<br />

Excellent communication with audience. Very confident<br />

delivery.<br />

Perfect tim<strong>in</strong>g <strong>and</strong> pace.<br />

Good talk structure, with <strong>in</strong>formative slides show<strong>in</strong>g wellselected<br />

content.<br />

Good communication with audience. Confident delivery.<br />

Tim<strong>in</strong>g <strong>and</strong> pace acceptable.<br />

Room for improvement <strong>in</strong> the talk structure <strong>and</strong> content<br />

of the slides.<br />

Limited contact with audience. Lack of confidence <strong>in</strong><br />

delivery.<br />

Problems with tim<strong>in</strong>g <strong>and</strong>/or pace.<br />

> 70%<br />

60 – 69%<br />

50 – 59%<br />

Structure <strong>and</strong>/or content of slides poor. 40 – 49%<br />

Little or no communication with audience. Delivery hard<br />

to follow.<br />

Talk badly timed (i.e. very brief, or had to be stopped<br />

mid-way).<br />

Unsatisfactory < 40%<br />

Scientific content Guide Mark %<br />

Excellent underst<strong>and</strong><strong>in</strong>g of the topic <strong>and</strong> <strong>in</strong>terpretation of<br />

the science.<br />

Answers to questions were rational <strong>and</strong> confident.<br />

Good underst<strong>and</strong><strong>in</strong>g of the topic <strong>and</strong> <strong>in</strong>terpretation of the<br />

science.<br />

Answered most questions well.<br />

Covered the basic concepts fairly well. Provided some<br />

<strong>in</strong>terpretation of the science.<br />

Problems with answer<strong>in</strong>g some (more complex)<br />

questions.<br />

Very limited underst<strong>and</strong><strong>in</strong>g of the topic. Little or no<br />

<strong>in</strong>terpretation of the science<br />

Had difficultly answer<strong>in</strong>g even basic questions.<br />

> 70%<br />

60 – 69%<br />

50 – 59%<br />

40 – 49%<br />

Unsatisfactory < 40%<br />

General comments (if applicable)<br />

5.4.5 Assessment Form for poster presentations<br />

Overall Mark %<br />

38


Presentation, grammar & readability Guide Mark<br />

%<br />

Presented <strong>in</strong> a logical <strong>and</strong> very easy to follow format. Excellent use of<br />

language with no or very few grammatical/spell<strong>in</strong>g errors.<br />

Excellent quality figures <strong>and</strong> tables, with clear <strong>and</strong> <strong>in</strong>formative legends.<br />

Presented <strong>in</strong> a clear, easy to follow style with good use of English. Few<br />

grammatical or spell<strong>in</strong>g errors.<br />

Figures, tables <strong>and</strong> associated legends well presented.<br />

Some issues with style <strong>and</strong> format that make it somewhat difficult to<br />

follow <strong>in</strong> parts. Several grammatical <strong>and</strong>/or spell<strong>in</strong>g errors.<br />

Figures, tables <strong>and</strong> legends reasonable, but clarity <strong>and</strong>/or content could<br />

be improved.<br />

Significant issues with style <strong>and</strong> format. Difficult to read <strong>and</strong> follow.<br />

Numerous problems with grammar <strong>and</strong> spell<strong>in</strong>g.<br />

Figures, tables <strong>and</strong>/or legends are not well presented, or are absent.<br />

>70%<br />

60 – 69%<br />

50 – 59%<br />

40 – 49%<br />

Unsatisfactory < 40%<br />

Scientific content Guide Mark<br />

%<br />

Background: Excellent <strong>in</strong>troduction to topic. Very clear project aims. > 70%<br />

Results: Data presented extremely clearly <strong>and</strong> logically. Interpretation<br />

faultless.<br />

Verbal Presentation: Expla<strong>in</strong>ed the project impecably. Answers to<br />

questions were rational <strong>and</strong> confident.<br />

Background: Good <strong>in</strong>troduction of the topic <strong>and</strong> project aims. 60 – 69%<br />

Data: Very clear presentation of data. Few problems of <strong>in</strong>terpretation.<br />

Verbal Presentation: Expla<strong>in</strong>ed the project competantly. Answered<br />

most questions well.<br />

Background: Introduced basic concepts <strong>and</strong> aims. 50 – 59%<br />

Data: Data reasonably well presentated, but gaps <strong>and</strong>/or errors <strong>in</strong><br />

<strong>in</strong>terpretation.<br />

Verbal Presentation: Expla<strong>in</strong>ed the project fairly well. Problems with<br />

answer<strong>in</strong>g more complex questions.<br />

Background: Poor description of background <strong>and</strong> aims. 40 – 49%<br />

Data: Significant issues with both presentation <strong>and</strong> analysis of the data.<br />

Verbal Presentation: Explanation of project poor; had difficultly<br />

answer<strong>in</strong>g even basic questions.<br />

Unsatisfactory < 40%<br />

General comments (if applicable)<br />

Overall Mark %<br />

39


5.5 Submitt<strong>in</strong>g your Research Project Report<br />

You must adhere to the follow<strong>in</strong>g <strong>in</strong>structions:<br />

1. Use the example <strong>in</strong> section 5.6 to create a front sheet for each of your project reports;<br />

2. Submit one hard copy to your supervisor;<br />

3. Submit one hard copy to your <strong>in</strong>ternal assessor (allocated to you by your Str<strong>and</strong><br />

Convenor);<br />

4. Submit one hard copy to your Str<strong>and</strong> Convenor;<br />

5. You must also submit an electronic copy via Turnit<strong>in</strong> which <strong>in</strong>cludes all figures.<br />

40


5.6 Front sheet for all Research Project Report submissions (example)<br />

Research Project Report [Insert number]<br />

TITLE OF YOUR RESEARCH<br />

PROJECT REPORT<br />

Joe Bloggs<br />

Student I.D. 200700000<br />

Supervisor: [Insert name]<br />

Internal Assessor: [Insert name]<br />

Str<strong>and</strong>: [Insert name of your str<strong>and</strong>]<br />

Word Count: [Insert word count]<br />

41


5.7 Example of a Research Project Report (see follow<strong>in</strong>g pages)<br />

42


Design of a Hypothesis-Driven Screen for Regulators of Neurodegenerative Diseases<br />

Author name<br />

Physiological Laboratory, School of <strong>Translational</strong> Medic<strong>in</strong>e, University of Liverpool, Crown St,<br />

Liverpool, L69 3BX, U.K.<br />

The discovery of the fundamental role of a<br />

synaptic chaperone unit, cyste<strong>in</strong>e str<strong>in</strong>g<br />

prote<strong>in</strong> (CSP), <strong>in</strong> neurotransmission <strong>and</strong><br />

neuroprotection, <strong>and</strong> the grow<strong>in</strong>g evidence<br />

that it may be subverted <strong>in</strong> multiple human<br />

neurodegenerative diseases (NDs) have<br />

<strong>in</strong>creased the urgency for further study of this<br />

prote<strong>in</strong>. Genetic suppressor <strong>and</strong> enhancer<br />

screen<strong>in</strong>gs us<strong>in</strong>g model organisms have<br />

facilitated the dissection of essential genetic<br />

contributors to NDs. In this study, we have<br />

implemented a targeted gene approach<br />

utilis<strong>in</strong>g the previous published literature of<br />

C. elegans, S. cerevisiae <strong>and</strong> <strong>in</strong> D.<br />

melanogaster to manually curate a set of 618<br />

unique worm genetic modifiers. Subsequent<br />

bio<strong>in</strong>formatic selection of c<strong>and</strong>idate genes<br />

with established adult neuronal expression<br />

<strong>and</strong> non-RNAi lethal phenotypes revealed a<br />

f<strong>in</strong>al set of 47 modifier genes that can be<br />

harnessed for <strong>in</strong>-depth analyses of gene<br />

networks regulat<strong>in</strong>g CSP. Comparative<br />

analysis of modifiers from diverse screens<br />

provided <strong>in</strong>sights <strong>in</strong>to the dist<strong>in</strong>ct molecular<br />

pathways mediat<strong>in</strong>g multiple NDs, while<br />

scrut<strong>in</strong>y of the modifier gene set we compiled<br />

further revealed 25 modifiers that are<br />

consistently shared between multiple screens,<br />

<strong>and</strong> of those, genetic regulators of prote<strong>in</strong><br />

homeostasis, stress responsiveness <strong>and</strong> age<strong>in</strong>g<br />

are common to most disease prote<strong>in</strong>s.<br />

Furthermore, fluorescence confocal imag<strong>in</strong>g<br />

of transgenic C. elegans l<strong>in</strong>es confirmed the<br />

GFP localisations of six neuronal promoters<br />

which are applicable as means of prob<strong>in</strong>g <strong>and</strong><br />

validat<strong>in</strong>g positive genetic modifiers of CSP<br />

KO-<strong>in</strong>duced neurodegeneration <strong>in</strong> future<br />

assays. Accord<strong>in</strong>gly, our study provides a<br />

basis for further characterisation of the<br />

pathways by which evolutionarily conserved<br />

CSP exerts its effects <strong>and</strong> identification of the<br />

regulators of this pathway that could become<br />

potential targets for future therapeutic<br />

<strong>in</strong>tervention.<br />

INTRODUCTION<br />

Despite major advances, debilitat<strong>in</strong>g<br />

neurodegenerative disorders (NDs) <strong>in</strong>clud<strong>in</strong>g<br />

Alzheimer‟s disease (AD), Park<strong>in</strong>son‟s disease<br />

(PD), <strong>and</strong> polyglutam<strong>in</strong>e (polyQ) diseases as<br />

exemplified by Hunt<strong>in</strong>gton‟s disease (HD) <strong>and</strong><br />

related ataxias afflict millions worldwide <strong>and</strong><br />

rema<strong>in</strong>s a significant <strong>and</strong> unresolved global<br />

health burden fac<strong>in</strong>g the age<strong>in</strong>g populations.<br />

Essentially, most of these disorders are<br />

associated with the unify<strong>in</strong>g theme of<br />

accumulation of toxic, misfolded prote<strong>in</strong><br />

aggregates, <strong>in</strong>clusion bodies, necrotic or<br />

apoptotic neurodegenerative changes,<br />

progressive neuronal loss <strong>and</strong> eventual neuronal<br />

dysfunction <strong>and</strong> death (1-3).<br />

There is grow<strong>in</strong>g evidence that the cellular<br />

prote<strong>in</strong> quality control system is an underly<strong>in</strong>g<br />

common denom<strong>in</strong>ator of these diseases. One<br />

such component which has recently received<br />

considerable attention is cyste<strong>in</strong>e-str<strong>in</strong>g prote<strong>in</strong><br />

(CSP). CSP is a neuroprotective synaptic<br />

chaperone prote<strong>in</strong> with an essential<br />

physiological role <strong>in</strong> the ma<strong>in</strong>tenance of<br />

exocytotic release of neurotransmitter, hormones<br />

<strong>and</strong> enzyme precursors <strong>and</strong> <strong>in</strong> prevent<strong>in</strong>g a<br />

ge<strong>in</strong>g-<strong>in</strong>duced presynaptic neurodegeneration<br />

(4). The similar neurodegenerative phenotypes<br />

of CSP mutants i.e. severely dim<strong>in</strong>ished<br />

locomotion, reduced chol<strong>in</strong>ergic<br />

neurotransmission <strong>and</strong> <strong>in</strong>creased mortality<br />

observed <strong>in</strong> Drosophila <strong>and</strong> mammals, <strong>and</strong> more<br />

recently <strong>in</strong> Caenorhabditis elegans with deleted<br />

dnj-14 that encodes the sole CSP orthologue<br />

(DNJ-14) suggests that perturbations <strong>in</strong> CSP<br />

activity <strong>in</strong> different models have similar<br />

significant consequences for the nervous system.<br />

In support of this premise is the emerg<strong>in</strong>g<br />

picture that CSP may be implicated <strong>in</strong> some<br />

human NDs such as HD, PD <strong>and</strong> AD <strong>and</strong> may<br />

play a central role <strong>in</strong> protect<strong>in</strong>g aga<strong>in</strong>st prote<strong>in</strong><br />

misfold<strong>in</strong>g <strong>and</strong> expression of toxicity <strong>in</strong> neurons<br />

(5). CSP was found to functionally overlap <strong>in</strong><br />

vivo with the PD prote<strong>in</strong>, α-synucle<strong>in</strong>, for<br />

prevent<strong>in</strong>g neurodegeneration (6). The profound<br />

43


neurodegeneration <strong>and</strong> lethality <strong>in</strong> CSP mutant<br />

flies <strong>and</strong> mice can be ameliorated by transgenic<br />

overexpression of normal α-synucle<strong>in</strong> (6-8) <strong>and</strong><br />

exacerbated <strong>in</strong> α-synucle<strong>in</strong> knock-out mice.<br />

Similarly, it was also suggested that CSP b<strong>in</strong>ds<br />

to mutant hunt<strong>in</strong>gt<strong>in</strong> (Htt), but not to normal Htt.<br />

The sequestration <strong>and</strong> subsequent depletion of<br />

CSP by exp<strong>and</strong>ed polyQ stretches elim<strong>in</strong>ates the<br />

robust <strong>in</strong>hibition of N-type Ca 2+ channels<br />

promoted by CSP (9). This would be a<br />

prom<strong>in</strong>ent mechanism contribut<strong>in</strong>g to<br />

accelerated neurodegeneration due to lack of<br />

CSP availability for neuroprotection. However,<br />

the mechanistic <strong>in</strong>sight <strong>in</strong>to why CSP absence<br />

results <strong>in</strong> neurodegeneration <strong>and</strong> how this may<br />

be alleviated by α-synucle<strong>in</strong> rema<strong>in</strong> largely<br />

obscure.<br />

In theory, one way to characterise the<br />

evolutionarily conserved pathway through which<br />

CSP functions <strong>and</strong> ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to how CSP<br />

may be of physiological or pathological<br />

importance for prevent<strong>in</strong>g neurodegeneration is<br />

to identify genetic modifiers, which are genes<br />

that modulate the manifestations of<br />

neurodegenerative disease-<strong>in</strong>duced primary<br />

mutations (3). Genetic modifiers are classified as<br />

suppressors or enhancers by conferr<strong>in</strong>g either<br />

neuroprotection or enhancement of<br />

neurodegeneration. Their isolations <strong>and</strong> analysis<br />

of the underly<strong>in</strong>g pathophysiology could lead to<br />

the identification of prote<strong>in</strong>s whose expression<br />

has the potential to modulate CSP activity <strong>and</strong> <strong>in</strong><br />

particular protect from neurodegeneration <strong>in</strong><br />

CSP‟s absence, <strong>and</strong> elucidate the molecular<br />

mechanisms <strong>and</strong> genetic susceptibility of<br />

multiple NDs.<br />

The employment of a plethora of powerful<br />

model organisms with shorter generation times<br />

such as C. elegans, S. cerevisiae <strong>and</strong> D.<br />

melanogaster, has not only expedited screen<strong>in</strong>g<br />

of potential genetic modifiers of the late-onset<br />

cellular <strong>and</strong> behaviour phenotypes, but also<br />

facilitated high-throughput test<strong>in</strong>g of hypotheses<br />

to illum<strong>in</strong>ate a prospective cellular cause of<br />

prote<strong>in</strong>-misfold<strong>in</strong>g diseases like HD, PD,<br />

Amyotrophic Lateral Sclerosis (ALS) <strong>and</strong> AD or<br />

neuroprotective mechanisms aga<strong>in</strong>st underly<strong>in</strong>g<br />

functional aspects of neurodegeneration (1,10).<br />

Screen<strong>in</strong>g can be performed by molecular,<br />

genetic <strong>and</strong> chemical manipulations of gene<br />

function, i.e. us<strong>in</strong>g mutagenesis (deletion<br />

libraries, transposon based <strong>in</strong>sertion), transgenic<br />

overexpression of exogenous human misfold<strong>in</strong>g<br />

disease-related prote<strong>in</strong>s, or RNA <strong>in</strong>terference<br />

(RNAi)-mediated knockdown to determ<strong>in</strong>e the<br />

loss- or ga<strong>in</strong>-of-function phenotypes (11).<br />

Previous genome-wide screens have used C.<br />

elegans to develop multiple tissue-specific<br />

transgenic models manifest<strong>in</strong>g pathological<br />

phenotypes that faithfully recapitulate many<br />

salient cellular <strong>and</strong> molecular pathologies of<br />

complex neurodegenerative disease processes<br />

based on muscular or neuronal expression of<br />

aggregation-prone prote<strong>in</strong>s such as mutant tau,<br />

superoxide dismutase (SOD1) <strong>and</strong> α-synucle<strong>in</strong><br />

prote<strong>in</strong>s, polyQ constructs, Htt fragment <strong>and</strong><br />

toxic amyloid beta 1-42 (Aβ1-42), <strong>and</strong> identified<br />

modifiers <strong>and</strong> cellular processes of α-synucle<strong>in</strong><br />

<strong>in</strong>clusion formation (12), α-synucle<strong>in</strong> <strong>and</strong> Htt<br />

misfold<strong>in</strong>g-<strong>in</strong>duced toxicity (13), tau-<strong>in</strong>duced<br />

pathology (14), presenil<strong>in</strong> function (15), polyQ<br />

(16) <strong>and</strong> mutant SOD1 aggregation (17).<br />

However, whole genome RNAi screen<strong>in</strong>g of<br />

genetic modifiers of neurodegeneration or<br />

prote<strong>in</strong> aggregation <strong>in</strong> worms lacks efficiency <strong>in</strong><br />

identify<strong>in</strong>g positive hits (12,14,16). An<br />

alternative way to identify potential modifier<br />

genes <strong>in</strong> a specific pathway is to perform a<br />

targeted screen (a c<strong>and</strong>idate approach/reverse<br />

genetic, hypothesis-driven approach) based on<br />

hypothesis generated by screens <strong>in</strong> lower model<br />

organisms or exist<strong>in</strong>g knowledge of disease<br />

mechanisms <strong>and</strong> pathways (10,18).<br />

In view of this, we adopted a targeted gene<br />

approach to m<strong>in</strong>e <strong>and</strong> <strong>in</strong>tegrate multiple<br />

heterogeneous data accumulated <strong>in</strong> previous<br />

RNAi knockdown <strong>and</strong> mutagenesis studies <strong>in</strong><br />

model organisms, <strong>and</strong> selected a small number<br />

of worm genetic disease modifiers which fit both<br />

adult neuronal expression <strong>and</strong> non-RNAi<br />

lethality criteria. Comparative analysis of<br />

diverse genetic modifier screens <strong>in</strong>dicates that<br />

the pathological processes underly<strong>in</strong>g multiple<br />

neurodegenetive diseases are largely dist<strong>in</strong>ct.<br />

Upon closer look, common classes of modifier<br />

genes from our c<strong>and</strong>idate list that act on<br />

pathology of most disease prote<strong>in</strong>s are those<br />

<strong>in</strong>volved <strong>in</strong> genetic regulation of prote<strong>in</strong><br />

homeostasis, stress responsiveness <strong>and</strong> cellular<br />

age<strong>in</strong>g. Furthermore, we subjected six transgenic<br />

44


l<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g either pan-neuronal or discrete<br />

neuronal promoters to confocal microscopy <strong>and</strong><br />

three-dimensional (3D) reconstructions <strong>and</strong><br />

verified the accuracy of the reported GFP<br />

localisations <strong>in</strong> targeted neuronal types, as<br />

revealed by the location of the fluorescent GFP<br />

reporter.<br />

EXPERIMENTAL PROCEDURES<br />

Data M<strong>in</strong><strong>in</strong>g — Published literature was<br />

manually curated to compile a collection of<br />

experimentally del<strong>in</strong>eated genetic modifiers of<br />

prote<strong>in</strong> aggregation, misfold<strong>in</strong>g <strong>and</strong><br />

neurodegeneration <strong>in</strong> C. elegans, S. cerevisiae<br />

<strong>and</strong> D. melanogaster (Table 1). PDF files<br />

conta<strong>in</strong><strong>in</strong>g full lists of modifiers <strong>in</strong> the onl<strong>in</strong>e<br />

supplemental materials were converted <strong>and</strong><br />

imported <strong>in</strong>to Microsoft Excel (version 2007;<br />

Microsoft, Redmond, WA) by PDF2XL<br />

Software (Cogniview). Individual worm<br />

orthologues of yeast <strong>and</strong> fly modifier genes were<br />

identified by consult<strong>in</strong>g the Pr<strong>in</strong>ceton Prote<strong>in</strong><br />

Orthology Database (P-POD)<br />

[http://ortholog.pr<strong>in</strong>ceton.edu/f<strong>in</strong>dorthofamily.ht<br />

ml], Saccharomyces Genome Database (SGD)<br />

[http://www.yeastgenome.org] <strong>and</strong> FlyBase<br />

[http://flybase.org/]. To extract genetic modifiers<br />

with known expression <strong>in</strong> adult neurons that also<br />

non-RNAi lethal, the list of modifiers was<br />

further ref<strong>in</strong>ed by conduct<strong>in</strong>g search queries <strong>in</strong><br />

bio<strong>in</strong>formatic <strong>in</strong>terfaces such as WormBase<br />

[WormBase Web site, available at<br />

www.wormbase.org, release version WS224,<br />

April, 2011], Biomart [http://www.biomart.org/],<br />

<strong>and</strong> most predom<strong>in</strong>antly GExplore 1.1<br />

[http://genome.sfu.ca/gexplore/]. First, a list of<br />

all adult neuronal genes with<strong>in</strong> the genome of C.<br />

elegans was obta<strong>in</strong>ed by search<strong>in</strong>g with<strong>in</strong><br />

GExplore for genes belong<strong>in</strong>g to the expression<br />

pattern “neuron, nerve, nervous system” <strong>and</strong> life<br />

stage “adult”. The c<strong>and</strong>idate list was then<br />

checked us<strong>in</strong>g available RNAi phenotypic data<br />

provided by GExplore <strong>and</strong> Wormbase to<br />

specifically exclude modifiers for which exist<strong>in</strong>g<br />

RNAi experimental data <strong>in</strong>dicate to have elicited<br />

severe deleterious phenotypes due to the<br />

potential for non-specific effects from knock<strong>in</strong>g<br />

down well known important housekeep<strong>in</strong>g<br />

genes. All C. elegans genes were filtered for the<br />

RNAi phenotype “lethal” under GExplore<br />

Phenotype search field. For data analyses, all<br />

annotations returned were imported <strong>in</strong>to<br />

Microsoft Excel <strong>and</strong> were processed manually<br />

for subsequent categorisations. Each genetic<br />

modifier was then cross-compared with these<br />

GExplore data us<strong>in</strong>g the Microsoft Excel<br />

VLOOKUP function to identify those which fit<br />

our exact criteria. As an additional test of the<br />

validity of the data, all the non-RNAi lethal<br />

genetic modifiers with adult neuronal expression<br />

were searched with<strong>in</strong> GExplore Comb<strong>in</strong>ed<br />

Search Interface. Note: Preselected modifier<br />

gene sets, data downloaded from GExplore 1.1<br />

<strong>and</strong> all data analyses performed are not<br />

appended. Please contact the author for any<br />

additional support<strong>in</strong>g data.<br />

Nematode culture — C. elegans provided by<br />

the Caenorhabditis Genetics Center (CGC) were<br />

grown <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong>ed on seeded nematode<br />

growth medium (NGM) agar plates at 20°C. Six<br />

transgenic l<strong>in</strong>es used for confocal microscopy<br />

were k<strong>in</strong>dly provided by Dr. James R. Johnson:<br />

N2;Ex[Prab-3::EGFP], N2;Ex[Pdat-1::GFP] <strong>and</strong><br />

RM2754;Ex[Pgcy-8::GFP] carry the GFP reporter<br />

alone without an experimental modify transgene;<br />

PS3551;Ex[Punc-17::hsf-1 + Punc-17::GFP],<br />

PS3551;Ex[Pglr-1::hsf-1 + Pglr-1::GFP] <strong>and</strong><br />

PS3551;Ex[Posm-6::hsf-1 + Posm-6::GFP] carry<br />

both the GFP reporter as well as the full length<br />

hsf-1 rescu<strong>in</strong>g construct.<br />

Fluorescence Confocal Microscopy <strong>and</strong> 3D<br />

Image <strong>and</strong> Animation Process<strong>in</strong>g — Before the<br />

procedure, young adult worms, four days posthatch<br />

from <strong>in</strong>dividual GFP express<strong>in</strong>g l<strong>in</strong>es were<br />

cleansed of adher<strong>in</strong>g bacteria by transferr<strong>in</strong>g to<br />

an unseeded NGM plate, <strong>and</strong> were allowed to<br />

crawl for 5 m<strong>in</strong>utes. Microscopy of liv<strong>in</strong>g<br />

animals was performed by mount<strong>in</strong>g the worms<br />

on cover glass (22X40 mm, VWR International,<br />

PA) <strong>in</strong> a 5μl drop of PEG/glycerol. PEG/glycerol<br />

mount<strong>in</strong>g medium is a blend of equal percentage<br />

(20:20) of PEG 20000 <strong>and</strong> glycerol <strong>in</strong> PBS<br />

which immobilises the nematode (personal<br />

communication). Slides were rapidly sealed with<br />

a clean glass coverslip (13 mm, VWR<br />

International, PA). All fluorescence images were<br />

acquired on a Leica TCS-SP-MP AOBS laser<br />

45


Reference<br />

Model<br />

Organism<br />

Number of<br />

Genetic Modifiers<br />

Uncovered<br />

scann<strong>in</strong>g confocal microscope (Leica<br />

Microsystems, Heidelberg, Germany) us<strong>in</strong>g a<br />

20X Plan Apo dry objective for imag<strong>in</strong>g the<br />

entire worm, <strong>and</strong> a LEICA DM IRB E laserscann<strong>in</strong>g<br />

confocal microscope (Leica<br />

Microsystems AG, Wetzlar, Germany) with a<br />

1.3 numerical aperture 63X Plan Apo oilimmersion<br />

objective for high resolution imag<strong>in</strong>g<br />

of the head region of worms. Fluorochromes<br />

were excited us<strong>in</strong>g an argon laser source at 488<br />

nm. For high quality 3D reconstruction,<br />

optimised sections of Z stacks were scanned<br />

with a l<strong>in</strong>e average of 4-8. 3D data stacks of<br />

confocal images <strong>and</strong> animations are shown as<br />

maximum-<strong>in</strong>tensity projections generated by<br />

Leica Confocal Software, <strong>and</strong> were exported as<br />

TIFF <strong>and</strong> AVI files respectively.<br />

Number <strong>in</strong><br />

C. elegans<br />

Nollen (16) C .elegans 186 186<br />

Wang (17) C .elegans 81 81<br />

van Ham (12) C .elegans 80 82*<br />

Kraemer (14) C .elegans 75 75<br />

Hamamichi (20) C .elegans 20 20<br />

Kuwahara (21) C .elegans 11 11<br />

Bates (22) C .elegans 6 6<br />

Parker (13) C .elegans 4 4<br />

Cohen (23) C .elegans 2 2<br />

Kraemer (24) C .elegans 2 2<br />

Guthrie (25) C .elegans 2 2<br />

Yamanaka (26) C .elegans 2 2<br />

Faber (27) C .elegans 1 1<br />

Will<strong>in</strong>gham (28) S. cerevisiae 138 41 (61)**<br />

Yeger-Lotem (29) S. cerevisiae 77 20 (25)**<br />

Giorg<strong>in</strong>i (30) S. cerevisiae 28 5<br />

Cooper (31) S. cerevisiae 22 7<br />

Gitler (32) S. cerevisiae 6 1<br />

Blard (33) D. melanogaster 30 14 (15)**<br />

Kaltenbach (34) D. melanogaster 27 34 (50)**<br />

Branco (35) D. melanogaster 24 20 (21)**<br />

Shulman (36) D. melanogaster 24 10<br />

Bilen (37) D. melanogaster 18 17 (24)**<br />

Fern<strong>and</strong>ez-Funez (38) D. melanogaster 18 11 (12)**<br />

Kazemi-Esfarjani (39) D. melanogaster 2 1<br />

Auluck (40) D. melanogaster 1 1<br />

Total 887 656<br />

RESULTS<br />

(12,13,16,17,19-40)<br />

TABLE 1: C<strong>and</strong>idate modifier<br />

genes gleaned from literature.<br />

For each published study, the<br />

model organism used, the<br />

number of experimentally<br />

verified genetic modifiers <strong>and</strong> the<br />

number of genetic modifiers<br />

found <strong>in</strong> C. elegans are <strong>in</strong>dicated.<br />

We identified 887 genetic<br />

modifiers <strong>in</strong> total, of which 656<br />

C. elegans modifiers were<br />

collected. Note these numbers<br />

also encompass genes that have<br />

appeared multiple times <strong>in</strong><br />

various screens. Additional<br />

orthologues of a modifier gene<br />

(*). Number of modifiers if<br />

tak<strong>in</strong>g <strong>in</strong>to account of the<br />

multiple C. elegans orthologues<br />

found for that particular gene<br />

(**).<br />

A smaller than expected bio<strong>in</strong>formatically<br />

prioritised target gene set was obta<strong>in</strong>ed — We<br />

first compiled a c<strong>and</strong>idate list of hitherto<br />

experimentally verified genetic disease<br />

modifiers <strong>in</strong> C. elegans by assess<strong>in</strong>g available<br />

literature. To identify additional conserved<br />

modifier genes <strong>and</strong> to further extend our target<br />

gene set, worm orthologues of modifiers that<br />

were uncovered via genome-wide screens for<br />

effectors of neurodegeneration <strong>in</strong> S. cerevisiae<br />

<strong>and</strong> <strong>in</strong> D. melanogaster were also <strong>in</strong>corporated<br />

(Table 1). As a further stricture <strong>in</strong> the analysis,<br />

we selected for modifier genes based on their<br />

respective expression pattern <strong>and</strong> RNAi<br />

phenotypes [obta<strong>in</strong>ed from (41,42)] to retrieve<br />

only those with known expression <strong>in</strong> adult<br />

neurons that are also non-RNAi lethal. We<br />

specifically excluded modifiers that have been<br />

46


Total<br />

Expression <strong>in</strong><br />

Adult<br />

Neurons<br />

experimentally proven as essential for worm<br />

survival <strong>and</strong> development due to the potential for<br />

non-specific, off-target effects <strong>and</strong> false positive<br />

results (20). As shown <strong>in</strong> both Table 2 <strong>and</strong><br />

Figure.1, a total number of 618 unique worm<br />

genetic modifiers were collected. With<strong>in</strong> this<br />

dataset, 21% (132/618) are adult neuronal; 46%<br />

(287/618) are non-RNAi lethal. Apply<strong>in</strong>g both<br />

criteria together, only 8% (47/618) of all unique<br />

modifier genes we extracted correspond to genes<br />

that are currently known to be both adult<br />

neuronal <strong>and</strong> non-RNAi lethal, which are listed<br />

<strong>in</strong> Table 3. 91% of the modifiers with<strong>in</strong> this<br />

specific set have clear human orthologues <strong>and</strong><br />

function <strong>in</strong> a variety of basal cellular processes.<br />

94% of all modifier genes collected are also<br />

represented <strong>in</strong> the two available RNAi feed<strong>in</strong>g<br />

libraries.<br />

Given that CSP has presynaptic localisation<br />

<strong>and</strong> defective presynaptic transmission has<br />

recently been implicated as an early mechanism<br />

preced<strong>in</strong>g neurodegeneration (43), we<br />

subsequently compared our c<strong>and</strong>idate modifier<br />

set with a set of 2072 c<strong>and</strong>idate genes previously<br />

screened for genes <strong>in</strong>volved <strong>in</strong> the C. elegans<br />

neuromuscular junction (44), with the aim of<br />

provid<strong>in</strong>g confidence <strong>in</strong> the shortlist of testable<br />

targets generated <strong>and</strong> enrich<strong>in</strong>g for modifier<br />

RNAi Lethal Non-RNAi Lethal<br />

Expression <strong>in</strong> Adult Neurons<br />

& Non-RNAi Lethal<br />

Genetic<br />

Modifiers 618 132 331 287 47<br />

Availability <strong>in</strong><br />

RNAi library<br />

580 130 314 266 44<br />

Overlap with<br />

Sieburth<br />

Screen 108 33 51 57 9<br />

TABLE 2: Ref<strong>in</strong>ement of c<strong>and</strong>idate modifier genes. The table summarises the f<strong>in</strong>d<strong>in</strong>gs follow<strong>in</strong>g selection<br />

of the target modifier gene set based on their respective expression pattern <strong>and</strong> RNAi phenotypes which are<br />

available from GExplore <strong>and</strong> WormBase (WS224). Our str<strong>in</strong>gent selection criteria preferentially <strong>in</strong>clude<br />

modifier genes with known expression <strong>in</strong> adult neurons <strong>and</strong> non-lethal phenotypes aris<strong>in</strong>g from exist<strong>in</strong>g RNAi<br />

experiments. The majority of the RNAi clones for our modifiers are available <strong>in</strong> both Vidal <strong>and</strong> Ahr<strong>in</strong>ger<br />

RNAi feed<strong>in</strong>g libraries. To ga<strong>in</strong> <strong>in</strong>creased confidence <strong>in</strong> our c<strong>and</strong>idate gene set, we also compared our<br />

modifier set to a published list of 2072 C. elegans genes reported by Sieburth et al. which <strong>in</strong>cludes genes that<br />

<strong>in</strong>fluence synaptic function. 108 overlapp<strong>in</strong>g genes were identified to be present <strong>in</strong> both gene lists. Note that<br />

the total number of modifier genes <strong>in</strong> Table 2 is less than the number represented <strong>in</strong> Table 1, because the<br />

complete list of c<strong>and</strong>idate genes collected <strong>in</strong> Table 1 also <strong>in</strong>clude ones that have appeared <strong>in</strong> multiple screens<br />

<strong>and</strong> were subsequently discounted so that the data displayed <strong>in</strong> Table 2 conta<strong>in</strong>s only the unique worm genetic<br />

modifiers.<br />

FIGURE 1: Venn Diagram analysis of genetic<br />

modifier set. Analysed data <strong>in</strong> adjacent Table 2 were<br />

used to generate the Venn diagram <strong>and</strong> are<br />

represented as colour-coded circles. A total of 618<br />

unique worm modifiers were collected. Of these, 132<br />

(21%) are adult neuronal genes (green). After<br />

remov<strong>in</strong>g modifiers which exist<strong>in</strong>g RNAi<br />

experimental data <strong>in</strong>dicate as RNAi lethal positives<br />

(red), 287 (46%) non-RNAi lethal modifiers (light<br />

blue) were subjected to further analysis <strong>and</strong> we have<br />

an end list of 47 genes (8%) that are both adult<br />

neuronal <strong>and</strong> non-RNAi lethal (yellow <strong>in</strong>tersect<strong>in</strong>g<br />

region). Comparison with C. elegans genes reported<br />

by Sieburth et al. (44) are also shown.<br />

genes known to <strong>in</strong>fluence presynaptic function<br />

when target<strong>in</strong>g the respective genetic modifier <strong>in</strong><br />

the future by genetic <strong>and</strong>/or chemical means. Of<br />

the 2072 c<strong>and</strong>idate genes that were subjected to<br />

47


Functional Category Genetic screen Gene name<br />

Chaperone/quality<br />

control<br />

Prote<strong>in</strong><br />

turnover/degradation/<br />

UPS<br />

Neurotransmission <strong>and</strong><br />

signall<strong>in</strong>g<br />

CGC<br />

Name<br />

Description<br />

Animal<br />

Model<br />

Human<br />

orthologues<br />

Wang (17) F08H9.4 - heat shock prote<strong>in</strong> (HSP) of the HSP16 class worm HSPB6 Vidal<br />

Kraemer (14),<br />

Branco (35)<br />

Wang (17), Yeger-<br />

Lotem (29)<br />

T09B4.10 chn-1<br />

F55B12.3 sel-10<br />

mammalian carboxyl-term<strong>in</strong>us of Hsc70 <strong>in</strong>teract<strong>in</strong>g<br />

prote<strong>in</strong><br />

F-box <strong>and</strong> WD-repeat-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> of CDC4/CUL-<br />

1 family of E2-E3 ubiquit<strong>in</strong> ligases<br />

RNAi<br />

library<br />

worm, fly STUB1 CHIP Ahr<strong>in</strong>ger<br />

worm,<br />

yeast<br />

FBXW7 Vidal<br />

Guthrie (25) Y61A9LA.8 sut-2 nuclear polyadenylated RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> yeast ZC3H14<br />

Not<br />

available<br />

Bilen (37) T05H10.1 - putative ubiquit<strong>in</strong>-specific protease fly USP47 Ahr<strong>in</strong>ger<br />

Bilen (37) T26A5.5 - F-box prote<strong>in</strong> JEMMA fly FBXL19 Vidal<br />

Kaltenbach (34) K09A9.6 - aspartyl beta-hydroxylase fly ASPHD2 Ahr<strong>in</strong>ger<br />

Kraemer (14) F47G6.1 dyb-1 ZZ type z<strong>in</strong>c f<strong>in</strong>ger worm DTNA Vidal<br />

Parker (13) T04D1.3 unc-57 endophil<strong>in</strong> A, required for synaptic vesicle endocytosis worm SH3GL2 Vidal<br />

Kaltenbach (34) Y22F5A.3 ric-4 <strong>in</strong>tracellular prote<strong>in</strong> transport, neurotransmitter secretion fly SNAP-25 Vidal<br />

Signal transduction Hamamichi (20) EEED8.9 p<strong>in</strong>k-1 BRPK/PTEN-<strong>in</strong>duced prote<strong>in</strong> k<strong>in</strong>ase worm PINK1 Ahr<strong>in</strong>ger<br />

Wang (17) T25F10.2 dbl-1<br />

a member of the transform<strong>in</strong>g growth factor beta<br />

(TGFbeta) superfamily<br />

worm BMP4 Vidal<br />

Yeger-Lotem (29) M04C9.5 dyf-5 a putative MAP k<strong>in</strong>ase yeast MAK/ICK Ahr<strong>in</strong>ger<br />

Will<strong>in</strong>gham (28) K11E8.1 unc-43 type II calcium/calmodul<strong>in</strong>-dependent prote<strong>in</strong> k<strong>in</strong>ase yeast CaMKII Vidal<br />

Will<strong>in</strong>gham (28) K07A9.2 cmk-1 Ca 2+ /calmodul<strong>in</strong>-dependent prote<strong>in</strong> k<strong>in</strong>ase I yeast CaMK1 Vidal<br />

Branco (35) B0334.8 age-1 functions <strong>in</strong> an <strong>in</strong>sul<strong>in</strong>-like signall<strong>in</strong>g (ILS) pathway fly PI3K Ahr<strong>in</strong>ger<br />

Shulman (36) W08G11.4 pptr-1 Ser<strong>in</strong>e/threon<strong>in</strong>e prote<strong>in</strong> phosphatase 2A fly PP2A<br />

Not<br />

available<br />

Transcription cofactor<br />

van Ham (12),<br />

Branco (35)<br />

R11A8.4 sir-2.1 NAD-dependent deacetylase sirtu<strong>in</strong>-1 worm, fly SIRT1 Ahr<strong>in</strong>ger<br />

Cohen (23) R13H8.1 daf-16 sole C. elegans forkhead box O (FOXO) homologue worm FOXO4 Vidal<br />

Giorg<strong>in</strong>i (30) H21P03.1 mbf-1 transcription factor MBF1 yeast EDF1 Vidal<br />

Bilen (37) C04G6.3 pld-1 phospholipase D1 fly PLD1 Vidal<br />

Branco (35) F02E9.4 s<strong>in</strong>-3 SIN3 family of histone deacetylase subunits fly SIN3 Vidal<br />

ECM/Cytoskeletal<br />

organisation<br />

Kaltenbach (34) F39C12.2 add-1 cytoskeletal prote<strong>in</strong> alpha-adduc<strong>in</strong> fly ADD1 Vidal<br />

Kaltenbach (34) K05B2.3 ifa-4 a nonessential <strong>in</strong>termediate filament prote<strong>in</strong> fly IFB-1 Vidal<br />

Kaltenbach (34) R05D3.7 unc-116 k<strong>in</strong>es<strong>in</strong>-1 heavy cha<strong>in</strong> ortholog fly KIF5 Ahr<strong>in</strong>ger<br />

Enzymes Kraemer (14) F47G4.7 smd-1 S-adenosylmethion<strong>in</strong>e decarboxylase worm AMD1 Vidal<br />

Will<strong>in</strong>gham (28) C06E7.1 sams-3 S-adenosylmethion<strong>in</strong>e synthetase yeast MAT1A Vidal<br />

Will<strong>in</strong>gham (28) F44E7.2 - p-nitrophenyl phosphatase yeast PDXP Vidal<br />

Will<strong>in</strong>gham (28) Y56A3A.13 nft-1 carbon-nitrogen hydrolase yeast FHIT Vidal<br />

Redox/oxidative stress Wang (17) C30H7.2 -<br />

human thioredox<strong>in</strong> doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> 4<br />

precursor<br />

worm ERP44 Vidal<br />

Branco (35) K08F4.7 gst-4 a putative glutathione-requir<strong>in</strong>g prostagl<strong>and</strong><strong>in</strong> D synthase fly GSTA3 Vidal<br />

Branco (35) F35E8.8 gst-38 unclassified fly GSTA4 Vidal<br />

Voltage-gated ion<br />

channels<br />

Kaltenbach (34) C50C3.9 unc-36 alpha2/delta subunit of a voltage-gated calcium channel fly CACNA2D3 Vidal<br />

Kaltenbach (34) R05G6.7 - por<strong>in</strong>/voltage-dependent anion-selective channel prote<strong>in</strong> fly VDAC2 Vidal<br />

Transport ATPase Yeger-Lotem (29) ZK256.1 pmr-1 a Golgi P-type ATPase Ca 2+ /Mn 2+ -pump yeast ATP2C1<br />

Not<br />

available<br />

Dopam<strong>in</strong>e metabolism Wang (17) T23G5.5 dat-1 a plasma membrane dopam<strong>in</strong>e transporter worm SLC6A2/A3 Vidal<br />

Lipid metabolism van Ham (12) C28C12.7 spp-10 sph<strong>in</strong>golipid metabolism/lysosomal worm PSAP Vidal<br />

RNA metabolism Bilen (37) M88.5 - IGF-II mRNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> IMP fly IGF2BP2 Vidal<br />

Carbohydrate<br />

metabolism<br />

Kaltenbach (34) K11H3.1 gpdh-2 glycerol 3-phosphate dehydrogenases fly GPD1L Vidal<br />

Trehalose<br />

biosynthesis<br />

Yeger-Lotem (29) T05A12.2 tre-2 putative trehalases of unknown function yeast TREH Vidal<br />

Yeger-Lotem (29) W05E10.4 tre-3 putative trehalases of unknown function yeast TREH Vidal<br />

Unclassified Kraemer (14) C04B4.2 - unclassified worm None Vidal<br />

Kraemer (14) R74.3 xbp-1 unclassified worm None Vidal<br />

Kraemer (14) R13A1.8 glb-23 unclassified worm None Vidal<br />

Faber (27) F52C9.8 pqe-1 unclassified worm REXO1 Vidal<br />

Will<strong>in</strong>gham (28) F08C6.3 tag-197 unclassified yeast VPS52 Vidal<br />

Kaltenbach (34) Y55F3AM.14 - unclassified fly None Vidal<br />

TABLE 3: Set of 47 modifier genes with known adult neuronal expression <strong>and</strong> non-RNAi lethality. Manual<br />

analysis of modifier genes compiled identified a list of 47 genes out of the 618 unique genetic modifiers for further<br />

dissection. For each genetic screen, assigned functional category, C. elegans gene name, CGC approved name,<br />

available description, model organism used <strong>and</strong> human orthologue are shown. RNAi feed<strong>in</strong>g library coverage of our<br />

modifier genes is also <strong>in</strong>dicated. Three modifiers that are common to multile screens are highlighted <strong>in</strong> red, while the<br />

n<strong>in</strong>e modifiers that overlapped with genes reported by Sieburth et al. are highlighted <strong>in</strong> orange. Four modifier genes<br />

are nematode specific <strong>and</strong> six genes rema<strong>in</strong> uncharacterised. UPS: Ubiquit<strong>in</strong>-proteasome system, ECM: Extracellular<br />

matrix.<br />

48


Biological process Ce Sc Dm Ce Sc Dm Ce Sc Dm Ce<br />

RNA b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> process<strong>in</strong>g<br />

Synaptic transmission<br />

Vesicle transport/ER Golgi<br />

Prote<strong>in</strong> fold<strong>in</strong>g<br />

Prote<strong>in</strong> degradation /UPS/Autophagy<br />

Transcriptional regulation<br />

Apoptosis<br />

Translation<br />

Lipid metabolism<br />

Mitochondrial energy metabolism<br />

General signall<strong>in</strong>g<br />

Oxidative stress<br />

Signal transduction<br />

Extracellular matrix<br />

Cytoskeletal organisation<br />

DNA replication/repair<br />

Polyglutam<strong>in</strong>e α-synucle<strong>in</strong> Tau SOD<br />

classes of genes<br />

that are specifically<br />

= mentioned <strong>in</strong><br />

orig<strong>in</strong>al literature<br />

TABLE 5: Classes of modifier genes common to multiple disease prote<strong>in</strong>s <strong>in</strong> small model organisms. This table is<br />

a complete list<strong>in</strong>g, restricted to our 618 unique modifier genes that have been identified <strong>in</strong> multiple screens of the<br />

associated animal models. The common genes shared among different screens function <strong>in</strong> a variety of cellular<br />

processes, <strong>in</strong>clud<strong>in</strong>g prote<strong>in</strong> fold<strong>in</strong>g (hsf-1, hsp-1, dnj-13), UPS (chn-1, ubc-8) <strong>and</strong> transcriptional cofactor (sir-2.1)<br />

Overlapp<strong>in</strong>g genes are categorised accord<strong>in</strong>g to their roles; the degree of overlap between specific models of<br />

neurodegeneration <strong>and</strong> prote<strong>in</strong> misfold<strong>in</strong>g, the overall times the modifiers appeared <strong>in</strong> screens of a particular model, 49<br />

<strong>and</strong> the pathology of disease prote<strong>in</strong>s they act on are also illustrated.<br />

=<br />

=<br />

classes of genes<br />

mentioned, but found<br />

only 1 or 2 genes <strong>in</strong><br />

that respective class<br />

either no genes <strong>in</strong> that<br />

specific class were<br />

found or mentioned <strong>in</strong><br />

the orig<strong>in</strong>al publication<br />

Ce = Caenorhabditis elegans<br />

Sc<br />

=<br />

Worm screens that<br />

utilised neuronal<br />

expression system to<br />

drive exogenous<br />

neurodegenerative<br />

prote<strong>in</strong>s<br />

= Saccharomyces cerevisiae<br />

Screen 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24<br />

Dm = Drosophila melanogaster<br />

TABLE 4: Functional profil<strong>in</strong>g of genetic modifiers identified <strong>in</strong> diverse screens. Comparative analysis of worm<br />

modifiers of polyQ, tau, SOD <strong>and</strong> α-synucle<strong>in</strong> aggregation, yeast modifiers of misfolded α-synucle<strong>in</strong> <strong>and</strong> Htt toxicity<br />

<strong>and</strong> fly modifiers of misfolded tau <strong>and</strong> polyQ toxicity from diverse screens reveals that the modifier genes identified <strong>in</strong><br />

most screens function <strong>in</strong> a wide variety of biological processes. The molecular mechanisms mediat<strong>in</strong>g neuronal toxicity<br />

<strong>in</strong> tauopathies, synucleopathy <strong>and</strong> polyQ diseases appear to be largely dist<strong>in</strong>ct due to the lack of overlap exists between<br />

the underly<strong>in</strong>g causative pathways. A larger proportion of the neurodegeneration studies us<strong>in</strong>g C. elegans have focused<br />

more on overexpression of either wild-type or mutant forms of α-synucle<strong>in</strong> <strong>and</strong> polyQ constructs <strong>in</strong> comparison with<br />

other aggregation prone disease prote<strong>in</strong>s. The functional class of vesicle traffick<strong>in</strong>g appears specifically enriched <strong>in</strong> αsynucle<strong>in</strong><br />

screens, whereas prote<strong>in</strong> degradation <strong>and</strong> transcriptional regulation are more enriched <strong>in</strong> polyQ screens.<br />

Screen numbers correspond to the follow<strong>in</strong>g publications: 1 Nollen et al., 2004 (16); 2 Faber et al., 2002 (27); 3 Bates et<br />

al., 2006 (22); 4 Will<strong>in</strong>gham et al., 2003 (28); 5 Giorg<strong>in</strong>i et al., 2005 (30); 6 Branco et al., 2008 (35); 7 Bilen et al., 2007<br />

(37); 8 Kaltenbach et al., 2007 (34); 9 Fern<strong>and</strong>ez-Funez et al., 2000 (38); 10 Kazemi-Esfarjani et al., 2000 (39); 11 van Ham<br />

et al., 2008 (12); 12 Kuwahara et al., 2008 (21); 13 Hamamichi et al., 2007 (20); 14 Will<strong>in</strong>gham et al., 2003 (28); 15 Cooper<br />

et al., 2006 (31); 16 Yeger-Lotem et al., 2009 (29); 17 Gitler et al., 2009 (32); 18 Auluck et al., 2002 (40); 19 Kraemer et al.,<br />

2006 (14); 20 Kraemer et al., 2007 (24); 21 Guthrie et al., 2009 (25); 22 Blard et al., 2007 (33); 23 Shulman et al., 2003 (36);<br />

<strong>and</strong> 24 Wang et al., 2009 (17).<br />

Overlapp<strong>in</strong>g classes of genes<br />

Degree of overlap<br />

<strong>and</strong> models used<br />

Disease prote<strong>in</strong>s<br />

Heat shock transcription factor 3 X worm tau, SOD <strong>and</strong> Aβ1-42 Molecular chaperones 4 X worm, 11 X fly α-synucle<strong>in</strong>, polyQ <strong>and</strong> tau<br />

Ubiquit<strong>in</strong>-proteasome system (UPS)<br />

1 X worm, 1 X yeast,<br />

5 X fly<br />

α-synucle<strong>in</strong>, polyQ <strong>and</strong> tau<br />

Transcriptional cofactor 3 X worm,11 X fly α-synucle<strong>in</strong>, polyQ <strong>and</strong> tau<br />

K<strong>in</strong>ases <strong>and</strong> phospatases 2 X worm, 2 X fly tau <strong>and</strong> SOD<br />

Nucleopor<strong>in</strong> 2 X fly polyQ ans tau<br />

Transport ATPase<br />

2 X worm, 3 X yeast,<br />

1 X fly<br />

α-synucle<strong>in</strong> <strong>and</strong> polyQ<br />

SNARE prote<strong>in</strong> 2 X yeast α-synucle<strong>in</strong><br />

GTPase activator prote<strong>in</strong> 2 X yeast α-synucle<strong>in</strong><br />

Putative cargo transport prote<strong>in</strong> ERV29 1 X worm, 2 X yeast α-synucle<strong>in</strong><br />

Acyl-CoA oxidase 1 X yeast, 1 X fly α-synucle<strong>in</strong> <strong>and</strong> polyQ


RNAi-mediated knockdown <strong>in</strong> Sieburth et al.<br />

(44), 185 positive genes were identified <strong>in</strong> their<br />

subsequent multi-tiered drug screens for<br />

assess<strong>in</strong>g C. elegans exocytosis. In compar<strong>in</strong>g<br />

these genes to our list of 618 modifiers, we<br />

observed limited overlap, s<strong>in</strong>ce only 108 genes<br />

were common to both c<strong>and</strong>idate gene sets (Table<br />

2, Fig. 1). Among these overlapp<strong>in</strong>g modifier<br />

genes, only 21 modifiers overlapped with<br />

Sieburth et al. positive hits.<br />

Molecular mechanisms mediat<strong>in</strong>g<br />

neurodegenerative processes <strong>in</strong> tauopathies,<br />

synucleopathies <strong>and</strong> polyQ diseases are largely<br />

dist<strong>in</strong>ct — The majority of the experimentally<br />

del<strong>in</strong>eated modifiers identified fall <strong>in</strong>to dist<strong>in</strong>ct<br />

functional categories. In order to discern whether<br />

their cellular mechanisms underly<strong>in</strong>g the<br />

pathology are common to several or all disease<br />

prote<strong>in</strong>s, or whether some specialise <strong>in</strong><br />

mediat<strong>in</strong>g pathology of particular disease<br />

prote<strong>in</strong>s, models from diverse modifier screens<br />

express<strong>in</strong>g different aggregation-prone prote<strong>in</strong>s<br />

us<strong>in</strong>g either RNAi or biochemical approaches<br />

were compared (Table 4). Ideally, we are<br />

look<strong>in</strong>g for modifier genes that may have a<br />

widespread rather than disease-specific role <strong>in</strong><br />

neurodegeneration. However, there appears to be<br />

little overlap between the modifier genes pulled<br />

out from most worm, yeast <strong>and</strong> fly screens,<br />

thereby highlight<strong>in</strong>g that the molecular steps<br />

preced<strong>in</strong>g the pathology of various disease<br />

prote<strong>in</strong> are superficially very different.<br />

Functional classes of modifier genes such as<br />

vesicle traffick<strong>in</strong>g are found exclusively for αsynucle<strong>in</strong><br />

pathologies <strong>in</strong> all of yeast as well as C.<br />

elegans α-synucle<strong>in</strong> screens, whereas those<br />

associated with RNA metabolism, prote<strong>in</strong><br />

fold<strong>in</strong>g <strong>and</strong> degradation, <strong>and</strong> transcriptional<br />

regulation appear to <strong>in</strong>fluence the pathology of<br />

various disease prote<strong>in</strong>s, but are more<br />

specifically enriched <strong>in</strong> polyQ aggregation <strong>and</strong><br />

toxicity screens (Table 4), hence accentuat<strong>in</strong>g<br />

the importance of these evolutionarily conserved<br />

molecular processes as <strong>in</strong>tegral pathways<br />

affected by respective disease prote<strong>in</strong>s.<br />

Positive genes that are consistently shared<br />

between various datasets are <strong>in</strong>volved <strong>in</strong> cellular<br />

prote<strong>in</strong> quality control <strong>and</strong> age<strong>in</strong>g — To further<br />

ascerta<strong>in</strong> if specific modifiers with<strong>in</strong> a common<br />

class of genes act on the pathology of different<br />

or same disease prote<strong>in</strong>s, we focused on the<br />

overlapp<strong>in</strong>g genes with<strong>in</strong> our c<strong>and</strong>idate modifier<br />

gene set <strong>and</strong> identified 25 modifiers that are<br />

consistently shared between multiple screens<br />

(Table 5). In support of the above functional<br />

class comparison, modifier genes <strong>in</strong>volved <strong>in</strong><br />

prote<strong>in</strong> fold<strong>in</strong>g, degradation <strong>and</strong> cellular age<strong>in</strong>g<br />

appear to be potent regulators of multiple<br />

neurodegenerative disorders. Heat shock<br />

transcription factor (hsf-1), a critical<br />

evolutionarily conserved pr<strong>in</strong>cipal regulator of<br />

chaperone gene expression was found <strong>in</strong> three C<br />

.elegans screens for modifiers of tau, SOD <strong>and</strong><br />

Aβ1-42, <strong>in</strong>dicat<strong>in</strong>g that this may be a modifier<br />

common to these misfold<strong>in</strong>g disease prote<strong>in</strong>s.<br />

Stress responsive <strong>and</strong> neuroprotective molecular<br />

chaperones, such as hsp-1 <strong>and</strong> dnj-13 <strong>and</strong> UPS<br />

components i.e. chn-1 <strong>and</strong> ubc-8, appear to<br />

specialise <strong>in</strong> mediat<strong>in</strong>g degradation of αsynucle<strong>in</strong>,<br />

tau <strong>and</strong> polyQ disease prote<strong>in</strong>s; while<br />

activation <strong>and</strong> depletion of genetic regulator of<br />

lifespan sir-2.1 have been shown to either<br />

pharmacologically or genetically ameliorate the<br />

polyQ-<strong>in</strong>duced toxicity, <strong>and</strong> accelerate agedependent<br />

aggregation of α-synucle<strong>in</strong><br />

respectively.<br />

Selected C. elegans neuronal promoters<br />

correctly represent their endogenous gene<br />

expression — Modifier genes we selected could<br />

be exam<strong>in</strong>ed <strong>in</strong> a subsequent RNAi screen to<br />

identify the positive c<strong>and</strong>idate hits. To further<br />

explore possible effects of RNAi silenc<strong>in</strong>g <strong>and</strong><br />

overexpression of positive genes on dnj-14 -/- -<br />

<strong>in</strong>duced age-dependent neurodegeneration,<br />

appropriate C. elegans neuronal promoters<br />

would need to be selected <strong>in</strong> order to <strong>in</strong>corporate<br />

targeted transgene expression of a positive gene<br />

<strong>and</strong> ga<strong>in</strong> <strong>in</strong>sights <strong>in</strong>to its role <strong>in</strong> neuronal<br />

subtype survival, vulnerability <strong>and</strong> function.<br />

Direct visual screens for neurodegeneration<br />

have become feasible as neuronal loss can be<br />

reliably assayed <strong>in</strong> live worms by monitor<strong>in</strong>g the<br />

morphological <strong>and</strong> degenerative changes of all<br />

or a discrete subset of neurons labelled with<br />

green fluorescent prote<strong>in</strong> (GFP) reporter (45,46).<br />

However, it rema<strong>in</strong>s possible that some of the<br />

localisation patterns reported do not accurately<br />

reflect the localisation of the correspond<strong>in</strong>g<br />

endogenously expressed prote<strong>in</strong>s (3,44). Here,<br />

we subjected 6 transgenic l<strong>in</strong>es conta<strong>in</strong><strong>in</strong>g either<br />

50


A<br />

P rab-3::EGFP<br />

B<br />

P unc-17::GFP<br />

FIGURE 2: Localisation of GFP<br />

expression <strong>in</strong> transgenic C. elegans is<br />

confirmed by fluorescent reporter<br />

constructs <strong>in</strong> extrachromosomal arrays.<br />

Fluorescence microscopy of whole body<br />

(A,B;C-F: left panels) or magnified 3D<br />

confocal reconstruction of neuronal<br />

architecture <strong>in</strong> the head region (C-F: right<br />

panels). A, The pan-neuronal localisation<br />

of enhanced GFP (EGFP) expression is<br />

consistent with the expected rab-3<br />

promoter driven expression pattern <strong>in</strong> all<br />

worm neurons. B, Punc-17::GFP labels most<br />

regions of the nervous system,<br />

predom<strong>in</strong>antly chol<strong>in</strong>ergic motor neuronal<br />

processes. C, The dat-1 promoter labels all<br />

eight dopam<strong>in</strong>e (DA) neurons: six anterior<br />

neurons <strong>in</strong> the head <strong>and</strong> two posterior<br />

deirid neurons (PDEs, thick arrow). 3D<br />

C<br />

P dat-1::GFP<br />

D<br />

P osm-6::GFP<br />

E<br />

P glr-1::GFP<br />

F<br />

P gcy-8::GFP<br />

confocal reconstruction of the magnified head region (right), detail<strong>in</strong>g the six anterior-most DA neurons: four cephalic<br />

CEP neurons (asterisks) project dendrites (th<strong>in</strong> arrows) to the tip of the nose <strong>and</strong> two anterior deirid ADE neurons (arrow<br />

head) extend ciliated processes posteriorly. The CEP dendritic processes of another worm are also visible. D, Posm-6::GFP<br />

selectively labels all 60 ciliated sensory neurons. E, The glr-1 promoter drives expression of the GFP <strong>in</strong> the ventral cord<br />

<strong>in</strong>terneurons, motorneurons <strong>and</strong> nerve r<strong>in</strong>g. F, gcy-8::GFP localises exclusively to one thermo-sensory AFD pair (dashed<br />

arrow). 3D confocal reconstruction (right) shows that the AFD dendrites extend anteriorly to the tip of the nose. The<br />

sensory end<strong>in</strong>gs of both neurons are positioned at the tip of the dendrites (double asterisks). All animals imaged are<br />

young adults, four days post-hatch. They <strong>in</strong>clude transgenic N2 <strong>and</strong> RM2754 l<strong>in</strong>es overexpress<strong>in</strong>g GFP reporter alone (A,<br />

C <strong>and</strong> F) or together with HSF-1 <strong>in</strong> the targeted neurons of PS3551 stra<strong>in</strong>, a hsf-1 mutant (B,D,E). All 3D confocal<br />

reconstructions shown are maximal projections of z-stacks. Anterior to the left (C,E,F: right panesl); Anterior to the right<br />

(D, right panel). Scale bars: A,B;C-F: left panels, 100 μm; C-F: right panels, 10 μm. Representative images of at least 5<br />

worms from each transgenic l<strong>in</strong>e are shown.<br />

*<br />

*<br />

51


pan-neuronal or discrete neuronal promoters to<br />

confocal microscopy <strong>and</strong> 3D reconstructions <strong>and</strong><br />

verified the accuracy of their GFP localisations.<br />

We observed <strong>in</strong> N2;Ex[Prab-3::EGFP] transgenic<br />

l<strong>in</strong>e, that the rab-3 reporter for synaptic vesicle<br />

does <strong>in</strong>deed drive the expected pan-neuronal<br />

enhanced GFP (EGFP) expression <strong>in</strong> the nerve<br />

r<strong>in</strong>g, axons of ventral <strong>and</strong> dorsal nerve cords,<br />

neuronal cell bodies, dendrites of sensory<br />

neurons as well as outgrowth of motor neuron<br />

commissures that connect ventral <strong>and</strong> dorsal<br />

cord (Fig. 2A). The unc-17 promoter is active <strong>in</strong><br />

most regions of the nervous system, <strong>in</strong>clud<strong>in</strong>g<br />

nerve r<strong>in</strong>g, dorsal <strong>and</strong> ventral nerve cord <strong>and</strong><br />

pharyngeal nervous system. GFP expression<br />

pattern observed correspond exactly to the<br />

expected localisation of unc-17 (Fig. 2B).<br />

C. elegans haemarphrodites have precisely<br />

eight dopam<strong>in</strong>ergic (DA) neurons <strong>and</strong> their<br />

anatomic locations can be readily visualised with<br />

an endogenous dopam<strong>in</strong>e–specifc transporter<br />

promoter (Pdat-1) which drive transgene<br />

expression exclusively <strong>in</strong> all DA neurons (Fig.<br />

2C). Expression of osm-6 gene is limited to 60<br />

ciliated sensory neurons, where it has a role <strong>in</strong><br />

transduc<strong>in</strong>g chemo- <strong>and</strong> mechanosensory<br />

stimuli. GFP is easily detected <strong>in</strong> the complex<br />

neuronal process bundles that extend to the tip of<br />

the nose of the worm (Fig. 2D). glr-1 encodes an<br />

AMPA-type ionotropic glutamate receptor<br />

subunit. Expression of GFP is limited to four of<br />

the five pairs of comm<strong>and</strong> <strong>in</strong>terneurons of the<br />

motor circuit, as well as several classes of motor<br />

neurons, ventral nerve cord <strong>and</strong> nerve r<strong>in</strong>g (Fig.<br />

2E). gcy-8 encodes a receptor-type guanylyl<br />

cyclase <strong>and</strong> is expressed exclusively to a pair of<br />

AFD thermosensory neurons that regulate<br />

thermotaxis (Fig. 2F).<br />

DISCUSSION<br />

The c<strong>and</strong>idate gene strategy described here<strong>in</strong><br />

is <strong>in</strong> keep<strong>in</strong>g with the recent preselected screens<br />

(20,21) which unlike previous genome-wide<br />

screens, pooled genes that were preselected<br />

based on their established role <strong>in</strong> neuronal<br />

function or for their predicted role <strong>in</strong><br />

neurodegeneration (47). We have m<strong>in</strong>ed <strong>and</strong><br />

ref<strong>in</strong>ed genetic modifiers of three well-studied<br />

model organisms to produce a tractable list of 47<br />

C. elegans c<strong>and</strong>idates practical for detailed<br />

future <strong>in</strong>vestigation by genetic <strong>and</strong>/or chemical<br />

means with low false-negative rate, that could<br />

contribute to the identification of prote<strong>in</strong>s whose<br />

expression has the potential to modulate CSP<br />

activity <strong>and</strong> <strong>in</strong> particular protect from<br />

neurodegeneration <strong>in</strong> CSPs absence. For several<br />

reasons, we believe that our target gene set is<br />

likely to be an underestimate of the true<br />

conservation among all disease modifier genes.<br />

Firstly, the present approach differs from<br />

previous genome-wide screen<strong>in</strong>g for genetic<br />

modifiers. Although this focused strategy may<br />

enhance our ability to identify functionally<br />

relevant effectors or enrich for certa<strong>in</strong> groups or<br />

categories of genes, the selection of genetic<br />

modifiers <strong>in</strong> our study was based on prior<br />

knowledge <strong>and</strong> will therefore consist of only<br />

biased, preselected subsets which are likely to<br />

miss many important genes, gene families, or<br />

novel pathways, that may be potential effectors<br />

of prote<strong>in</strong> misfold<strong>in</strong>g <strong>and</strong> neuroprotection <strong>in</strong> C.<br />

elegans, which would otherwise be identified by<br />

genome-wide screen<strong>in</strong>g (12,20). Secondly,<br />

before the discovery of neuronal RNAi<br />

hypersensitive stra<strong>in</strong>s such as eri-1, rrf-3, l<strong>in</strong>-35,<br />

eri-1;l<strong>in</strong>-15B, <strong>and</strong> sid-1 transgenic TU3311<br />

stra<strong>in</strong>s, RNAi resistance <strong>in</strong> WT C. elegans<br />

postmitotic neurons was a stumbl<strong>in</strong>g block for<br />

<strong>in</strong>terrogat<strong>in</strong>g neuronal gene function with<br />

confidence. In order to overcome the potential<br />

problems caused by the neuronal <strong>in</strong>tractability of<br />

this species, many research groups performed<br />

genetic modifier RNAi screens by<br />

overexpress<strong>in</strong>g human prote<strong>in</strong>s <strong>in</strong> non-neuronal<br />

cells i.e. body wall muscles <strong>and</strong> <strong>in</strong>test<strong>in</strong>e cells <strong>in</strong><br />

order to rapidly pre-screen potential modifiers<br />

(12,15,20,48,49). Muscle cells may be large <strong>and</strong><br />

easy to score, <strong>and</strong> certa<strong>in</strong> models may also<br />

express certa<strong>in</strong> postsynaptic receptors that<br />

receive synaptic signals from neurons, but given<br />

that processes such as threshold for pathology<br />

relevant to neurons are likely very different to<br />

muscle cells, expression <strong>in</strong> muscle is not a<br />

suitable model. This could not only lead to<br />

identification of regulators not expressed <strong>in</strong><br />

neurons (i.e. muscle-specific), but certa<strong>in</strong><br />

neuronal tissue-specific genes that affect<br />

neurodegeneration <strong>and</strong> the actual site where the<br />

misfolded prote<strong>in</strong>s <strong>in</strong> question cause disease,<br />

52


may have also been missed (11,47,50). Thirdly,<br />

with<strong>in</strong> WormBase, most of the modifier genes<br />

are annotated with more than one RNAi<br />

phenotype. Amongst all the RNAi lethal genes<br />

we excluded, some are def<strong>in</strong>itive essential genes<br />

with 100% lethality reported <strong>in</strong> all prior studies,<br />

whereas others may be false-negative or lowconfidence<br />

lethal that were automatically<br />

elim<strong>in</strong>ated from our set because of a s<strong>in</strong>gle<br />

RNAi experiment. The strong penetrance<br />

reported by one RNAi assay may not genu<strong>in</strong>ely<br />

reflect the phenotypic outcome <strong>and</strong> should be<br />

<strong>in</strong>terpreted cautiously (51). RNAi <strong>in</strong> C. elegans<br />

is known to yield varied efficacy on all tissues<br />

due to <strong>in</strong>herent variability <strong>in</strong> the level of target<br />

mRNA knock-down for different genes <strong>and</strong><br />

tissues, result<strong>in</strong>g <strong>in</strong> different phenotypes <strong>in</strong><br />

RNAi screens. As such, some potential „hits‟<br />

may have been overlooked because the genes<br />

may not be knocked down far enough to result <strong>in</strong><br />

a phenotype, lead<strong>in</strong>g to <strong>in</strong>sufficient or <strong>in</strong>correct<br />

annotation of RNAi phenotypes (11,12,16,50).<br />

With regard to the specificity <strong>and</strong> confidence of<br />

this subset, there is not a strong consensus<br />

between the c<strong>and</strong>idates we collected <strong>and</strong> the<br />

Sieburth et al. (44) data, suggest<strong>in</strong>g that our<br />

target genes lack enrichment for synaptic<br />

function. Most genes pulled-out by Sieburth et<br />

al. that are expressed <strong>in</strong> neurons are also<br />

expressed outside the nervous system, which<br />

could expla<strong>in</strong> why our modifier might not be<br />

enriched among the positives of their screen.<br />

In general, a large proportion of the modifiers<br />

that have been robustly demonstrated to alter the<br />

toxicity <strong>and</strong> aggregation phenotypes screened <strong>in</strong><br />

animal models have diverse cellular functions<br />

that act either directly (components of prote<strong>in</strong><br />

fold<strong>in</strong>g <strong>and</strong> ubiquit<strong>in</strong>-proteasome system) or<br />

<strong>in</strong>directly (signal transduction pathway<br />

components, cytoskeletal prote<strong>in</strong>s <strong>and</strong><br />

transcription factors) <strong>in</strong> cellular prote<strong>in</strong> quality<br />

control <strong>and</strong> different age<strong>in</strong>g pathways. Recent<br />

genetic screens have further exp<strong>and</strong>ed the range<br />

of modifiers to <strong>in</strong>clude additional classes of<br />

modifiers, some are clearly novel <strong>and</strong> are at<br />

present not well expla<strong>in</strong>ed i.e. RNAi metabolism<br />

(12,16,50,52), but possess potentially broad<br />

significance to neurodegeneration.<br />

It was strik<strong>in</strong>g to see that the pathology <strong>and</strong><br />

functional deficits of each of the NDs can be<br />

<strong>in</strong>duced or <strong>in</strong>fluenced by alterations of a<br />

multitude of disease-prote<strong>in</strong>-specific molecular<br />

processes. Components of the vesiculartraffick<strong>in</strong>g<br />

mach<strong>in</strong>ery specifically modify αsynucle<strong>in</strong><br />

toxicity <strong>and</strong> aggregation, but are rarely<br />

found as modifiers of polyQ <strong>and</strong> tau toxicity <strong>and</strong><br />

aggregation. This <strong>in</strong>dicates that the α-synucle<strong>in</strong><br />

misfold<strong>in</strong>g <strong>and</strong> toxicity may be more sensitive to<br />

perturbations <strong>in</strong> this specific biological process<br />

than the underly<strong>in</strong>g common denom<strong>in</strong>ator of<br />

polyQ diseases, the cellular prote<strong>in</strong> quality<br />

control system. However, this does not wean the<br />

magnitude of prote<strong>in</strong> fold<strong>in</strong>g <strong>and</strong> degradation <strong>in</strong><br />

pathological processes associated with αsynucle<strong>in</strong><br />

toxicity <strong>and</strong> accumulation s<strong>in</strong>ce<br />

several of them such as Hsp70 are known to alter<br />

α-synucle<strong>in</strong> toxicity <strong>in</strong> a fly α-synucle<strong>in</strong><br />

overexpression model (40). It is possible that<br />

vesicle traffick<strong>in</strong>g may be more important as an<br />

early stage effect related to the <strong>in</strong>itiation of αsynucle<strong>in</strong><br />

pathology than the typical prote<strong>in</strong><br />

aggregation modifiers (12).<br />

As suggested previously, the technical<br />

differences between the screens could also<br />

confound mak<strong>in</strong>g direct comparisons between<br />

studies. Consider<strong>in</strong>g the many variables <strong>in</strong> each<br />

of the genetic modifier screens conducted,<br />

<strong>in</strong>clud<strong>in</strong>g different model organisms <strong>and</strong><br />

transgenic constructs, different modes of gene<br />

target<strong>in</strong>g <strong>and</strong> scor<strong>in</strong>g criteria for different<br />

phenotypes, <strong>in</strong>sufficient congruence even<br />

between screens that have a similar scope is not<br />

entirely surpris<strong>in</strong>g. Furthermore, genetic screens<br />

to date have only implicated a limited number of<br />

tau, SOD <strong>and</strong> Aβ1-42 toxicity modifier genes, <strong>in</strong><br />

comparison with those identified for α-synucle<strong>in</strong><br />

<strong>and</strong> polyQ.<br />

Given that components of ubiquit<strong>in</strong>degradation<br />

systems were found to co-localise<br />

with aggregated prote<strong>in</strong>s <strong>and</strong> various molecular<br />

chaperone <strong>in</strong> the bra<strong>in</strong> of patients (47), <strong>and</strong><br />

<strong>in</strong>tegration of stress response <strong>and</strong> age<strong>in</strong>g has<br />

recently been demonstrated to facilitate agerelated<br />

failures <strong>in</strong> proteostasis (53), it is not<br />

surpris<strong>in</strong>g to f<strong>in</strong>d that hsf-1, hsp-1 <strong>and</strong> sir-2.1<br />

play pivotal roles <strong>in</strong> ameliorat<strong>in</strong>g the onset,<br />

development <strong>and</strong> progression of prote<strong>in</strong><br />

misfold<strong>in</strong>g, aggregation <strong>and</strong> toxicity associated<br />

with expression of different disease prote<strong>in</strong>s <strong>in</strong><br />

models of multiple NDs (53).<br />

53


Despite its apparent neuronal simplicity, C.<br />

elegans has different neuronal classes, <strong>in</strong>clud<strong>in</strong>g<br />

motor neurons, sensory neurons, <strong>and</strong><br />

<strong>in</strong>terneurons (3). Certa<strong>in</strong> neurodegenerative<br />

disorders such as HD have been reported to<br />

confer differential vulnerability of specific<br />

neuronal populations which lead to dist<strong>in</strong>ct<br />

cl<strong>in</strong>ical phenotypes (54). This can therefore be<br />

reproduced <strong>in</strong> C. elegans as neurons manifest<strong>in</strong>g<br />

neurodegeneration are characterised by<br />

dist<strong>in</strong>ctive loss of neuron soma <strong>and</strong> breakdown<br />

of neurites (45). Screens have used pan-neuronal<br />

promoters (1,17,19) as well as neuronal specific<br />

promoters (21,55,56) to direct expression of<br />

aggregation-prone prote<strong>in</strong>s such as mutant<br />

SOD1, tau, α-synucle<strong>in</strong>, polyQ constructs, <strong>and</strong><br />

Htt fragment <strong>in</strong> targeted C. elegans neurons to<br />

mimic the selective neuronal vulnerability <strong>and</strong><br />

pathology observed <strong>in</strong> higher organisms. In<br />

particular, dat-1 promoter has been well<br />

established as a valid means of prob<strong>in</strong>g αsynucle<strong>in</strong>-age-dependent<br />

neurodegeneration <strong>in</strong><br />

multiple studies (45,46,57,58). The six neuronal<br />

promoters we selected direct GFP expression<br />

exclusively <strong>in</strong> targeted neurons, <strong>and</strong> are<br />

therefore feasible for future fluorescence<br />

imag<strong>in</strong>g of transgenic worms to ga<strong>in</strong> <strong>in</strong>sights<br />

<strong>in</strong>to the roles of positive genetic modifiers <strong>in</strong><br />

neuronal subtype vulnerability <strong>and</strong> CSP KO<strong>in</strong>duced<br />

neurodegeneration.<br />

Taken together, modifier genes identified <strong>in</strong><br />

disparate models are clearly pert<strong>in</strong>ent to many<br />

aspects of neurological phenotype expression,<br />

though most have a disease-specific role <strong>in</strong><br />

certa<strong>in</strong> disease prote<strong>in</strong>s rather than a general role<br />

affect<strong>in</strong>g every disease prote<strong>in</strong>. The small<br />

number of c<strong>and</strong>idates isolated <strong>in</strong> this study<br />

which modulate phenotypic consequences,<br />

directly or <strong>in</strong>directly, provides a basis for more<br />

detailed molecular analyses. A hypothesis-driven<br />

RNAi screen would be performed <strong>and</strong> to<br />

maximise neuronal RNAi efficacy, we would<br />

create a dnj-14; rrf-3 double mutant by cross<strong>in</strong>g,<br />

with the latter stra<strong>in</strong> be<strong>in</strong>g recently reported as a<br />

mutant most sensitised to neuronal RNAi (59).<br />

This would reveal conserved genes <strong>and</strong><br />

pathways that are important for CSP loss of<br />

function defects or alternatively <strong>in</strong>dependent<br />

factors that regulate neurodegeneration. With<br />

either outcome, they are vital for future<br />

development of neuroprotective therapeutic<br />

strategies.<br />

Acknowledgments....<br />

References<br />

1. Brignull, H. R., Morley, J. F., <strong>and</strong> Morimoto,<br />

R. I. (2007) Adv Exp Med Biol 594, 167-189<br />

2. Caldwell, G. A., <strong>and</strong> Caldwell, K. A. (2008)<br />

Dis Model Mech 1, 32-36<br />

3. Vois<strong>in</strong>e, C., <strong>and</strong> Hart, A. C. (2004) Methods<br />

Mol Biol 277, 141-160<br />

4. Z<strong>in</strong>smaier, K. E., <strong>and</strong> Imad, M. (2011)<br />

Cyste<strong>in</strong>e-Str<strong>in</strong>g Prote<strong>in</strong>‟s Role at Synapses.<br />

<strong>in</strong> Fold<strong>in</strong>g for the Synapse (Wyttenbach, A.,<br />

<strong>and</strong> O'Connor, V. eds.), Spr<strong>in</strong>ger US. pp<br />

145-176<br />

5. Johnson, J. N., Ahrendt, E., <strong>and</strong> Braun, J. E.<br />

A. (2010) Biochem Cell Biol 88, 157-165<br />

6. Ch<strong>and</strong>ra, S., Gallardo, G., Fern<strong>and</strong>ez-<br />

Chacon, R., Schluter, O. M., <strong>and</strong> Sudhof, T.<br />

C. (2005) Cell 123, 383-396<br />

7. Fernández-Chacón, R., Wölfel, M.,<br />

Nishimune, H., Tabares, L., Schmitz, F.,<br />

Castellano-Muñoz, M., Rosenmund, C.,<br />

Montes<strong>in</strong>os, M. L., Sanes, J. R.,<br />

Schneggenburger, R., <strong>and</strong> Südhof, T. C.<br />

(2004) Neuron 42, 237-251<br />

8. Z<strong>in</strong>smaier, K., Eberle, K., Buchner, E.,<br />

Walter, N., <strong>and</strong> Benzer, S. (1994) Science<br />

263, 977-980<br />

9. Miller, L. C., Swayne, L. A., Chen, L., Feng,<br />

Z.-P., Wacker, J. L., Muchowski, P. J.,<br />

Zamponi, G. W., <strong>and</strong> Braun, J. E. A. (2003)<br />

J Biol Chem 278, 53072-53081<br />

10. Kearney, J. A. (2011) Current Op<strong>in</strong>ion <strong>in</strong><br />

Genetics & Development 21, 349-353<br />

11. Johnson, J. R., Jenn, R. C., Barclay, J. W.,<br />

Burgoyne, R. D., <strong>and</strong> Morgan, A. (2010)<br />

Biochem Soc Trans 38, 559-563<br />

12. van Ham, T. J., Thijssen, K. L., Breitl<strong>in</strong>g, R.,<br />

Hofstra, R. M. W., Plasterk, R. H. A., <strong>and</strong><br />

Nollen, E. A. A. (2008) PLoS Genet 4,<br />

e1000027<br />

13. Parker, J. A., Metzler, M., Georgiou, J.,<br />

Mage, M., Roder, J. C., Rose, A. M.,<br />

Hayden, M. R., <strong>and</strong> Neri, C. (2007) J<br />

Neurosci 27, 11056-11064<br />

14. Kraemer, B. C., Burgess, J. K., Chen, J. H.,<br />

Thomas, J. H., <strong>and</strong> Schellenberg, G. D.<br />

(2006) Hum Mol Genet 15, 1483-1496<br />

54


15. L<strong>in</strong>k, C. D. (1995) Proc Natl Acad Sci U S A<br />

92, 9368-9372<br />

16. Nollen, E. A. A., Garcia, S. M., van Haaften,<br />

G., Kim, S., Chavez, A., Morimoto, R. I.,<br />

<strong>and</strong> Plasterk, R. H. A. (2004) Proc Natl Acad<br />

Sci U S A 101, 6403-6408<br />

17. Wang, J., Farr, G. W., Hall, D. H., Li, F.,<br />

Furtak, K., Dreier, L., <strong>and</strong> Horwich, A. L.<br />

(2009) PLoS Genet 5, e1000350<br />

18. Ni, Z., <strong>and</strong> Lee, S. S. (2010) Brief Funct<br />

Genomics 9, 53-64<br />

19. Kraemer, B. C., Zhang, B., Leverenz, J. B.,<br />

Thomas, J. H., Trojanowski, J. Q., <strong>and</strong><br />

Schellenberg, G. D. (2003) Proc Natl Acad<br />

Sci U S A 100, 9980-9985<br />

20. Hamamichi, S., Rivas, R. N., Knight, A. L.,<br />

Cao, S., Caldwell, K. A., <strong>and</strong> Caldwell, G. A.<br />

(2008) Proc Natl Acad Sci U S A 105, 728-<br />

733<br />

21. Kuwahara, T., Koyama, A., Koyama, S.,<br />

Yosh<strong>in</strong>a, S., Ren, C.-H., Kato, T., Mitani, S.,<br />

<strong>and</strong> Iwatsubo, T. (2008) Hum Mol Genet 17,<br />

2997-3009<br />

22. Bates, E. A., Victor, M., Jones, A. K., Shi,<br />

Y., <strong>and</strong> Hart, A. C. (2006) J Neurosci 26,<br />

2830-2838<br />

23. Cohen, E., Bieschke, J., Perciavalle, R. M.,<br />

Kelly, J. W., <strong>and</strong> Dill<strong>in</strong>, A. (2006) Science<br />

313, 1604-1610<br />

24. Kraemer, B. C., <strong>and</strong> Schellenberg, G. D.<br />

(2007) Hum Mol Genet 16, 1959-1971<br />

25. Guthrie, C. R., Schellenberg, G. D., <strong>and</strong><br />

Kraemer, B. C. (2009) Hum Mol Genet 18,<br />

1825-1838<br />

26. Yamanaka, K., Okubo, Y., Suzaki, T., <strong>and</strong><br />

Ogura, T. (2004) J Struct Biol 146, 242-250<br />

27. Faber, P. W., Vois<strong>in</strong>e, C., K<strong>in</strong>g, D. C., Bates,<br />

E. A., <strong>and</strong> Hart, A. C. (2002) Proc Natl Acad<br />

Sci U S A 99, 17131-17136<br />

28. Will<strong>in</strong>gham, S., Outeiro, T. F., DeVit, M. J.,<br />

L<strong>in</strong>dquist, S. L., <strong>and</strong> Muchowski, P. J.<br />

(2003) Science 302, 1769-1772<br />

29. Yeger-Lotem, E., Riva, L., Su, L. J., Gitler,<br />

A. D., Cashikar, A. G., K<strong>in</strong>g, O. D., Auluck,<br />

P. K., Geddie, M. L., Valastyan, J. S.,<br />

Karger, D. R., L<strong>in</strong>dquist, S., <strong>and</strong> Fraenkel, E.<br />

(2009) Nat Genet 41, 316-323<br />

30. Giorg<strong>in</strong>i, F., Guidetti, P., Nguyen, Q.,<br />

Bennett, S. C., <strong>and</strong> Muchowski, P. J. (2005)<br />

Nat Genet 37, 526-531<br />

31. Cooper, A. A., Gitler, A. D., Cashikar, A.,<br />

Haynes, C. M., Hill, K. J., Bhullar, B., Liu,<br />

K., Xu, K., Strathearn, K. E., Liu, F., Cao, S.,<br />

Caldwell, K. A., Caldwell, G. A.,<br />

Marsischky, G., Kolodner, R. D., Labaer, J.,<br />

Rochet, J. C., Bon<strong>in</strong>i, N. M., <strong>and</strong> L<strong>in</strong>dquist,<br />

S. (2006) Science 313, 324-328<br />

32. Gitler, A. D., Chesi, A., Geddie, M. L.,<br />

Strathearn, K. E., Hamamichi, S., Hill, K. J.,<br />

Caldwell, K. A., Caldwell, G. A., Cooper, A.<br />

A., Rochet, J.-C., <strong>and</strong> L<strong>in</strong>dquist, S. (2009)<br />

Nat Genet 41, 308-315<br />

33. Blard, O., Feuillette, S., Bou, J., Chaumette,<br />

B., Frebourg, T., Campion, D., <strong>and</strong><br />

Lecourtois, M. (2007) Hum Mol Genet 16,<br />

555-566<br />

34. Kaltenbach, L. S., Romero, E., Beckl<strong>in</strong>, R.<br />

R., Chettier, R., Bell, R., Phansalkar, A.,<br />

Str<strong>and</strong>, A., Torcassi, C., Savage, J., Hurlburt,<br />

A., Cha, G. H., Ukani, L., Chepanoske, C.<br />

L., Zhen, Y., Sahasrabudhe, S., Olson, J.,<br />

Kurschner, C., Ellerby, L. M., Peltier, J. M.,<br />

Botas, J., <strong>and</strong> Hughes, R. E. (2007) PLoS<br />

Genet 3, e82<br />

35. Branco, J., Al-Ramahi, I., Ukani, L., Pérez,<br />

A. M., Fern<strong>and</strong>ez-Funez, P., R<strong>in</strong>cón-Limas,<br />

D., <strong>and</strong> Botas, J. (2008) Hum Mol Genet 17,<br />

376-390<br />

36. Shulman, J. M., <strong>and</strong> Feany, M. B. (2003)<br />

Genetics 165, 1233-1242<br />

37. Bilen, J., <strong>and</strong> Bon<strong>in</strong>i, N. M. (2007) PLoS<br />

Genet 3, 1950-1964<br />

38. Fern<strong>and</strong>ez-Funez, P., N<strong>in</strong>o-Rosales, M. L.,<br />

de Gouyon, B., She, W.-C., Luchak, J. M.,<br />

Mart<strong>in</strong>ez, P., Turiegano, E., Benito, J.,<br />

Capovilla, M., Sk<strong>in</strong>ner, P. J., McCall, A.,<br />

Canal, I., Orr, H. T., Zoghbi, H. Y., <strong>and</strong><br />

Botas, J. (2000) Nature 408, 101-106<br />

39. Kazemi-Esfarjani, P., <strong>and</strong> Benzer, S. (2000)<br />

Science 287, 1837-1840<br />

40. Auluck, P. K., Chan, H. Y. E., Trojanowski,<br />

J. Q., Lee, V. M.-Y., <strong>and</strong> Bon<strong>in</strong>i, N. M.<br />

(2002) Science 295, 865-868<br />

41. GExplore 1.1 (2011) Available at:<br />

http://genome.sfu.ca/gexplore/. Accessed 1 st<br />

May - 3 rd June 2011.<br />

42. WormBase web site release WS224 (2011)<br />

Available at: http://www.wormbase.org.<br />

Accessed 13th May 2011.<br />

43. Zhang, C., Wu, B., Beglopoulos, V., W<strong>in</strong>es-<br />

Samuelson, M., Zhang, D., Dragatsis, I.,<br />

Sudhof, T. C., <strong>and</strong> Shen, J. (2009) Nature<br />

460, 632-636<br />

44. Sieburth, D., Ch'ng, Q., Dybbs, M.,<br />

Tavazoie, M., Kennedy, S., Wang, D.,<br />

Dupuy, D., Rual, J.-F., Hill, D. E., Vidal, M.,<br />

Ruvkun, G., <strong>and</strong> Kaplan, J. M. (2005) Nature<br />

436, 510-517<br />

45. Yao, C., El Khoury, R., Wang, W., Byrd, T.<br />

A., Pehek, E. A., Thacker, C., Zhu, X.,<br />

55


Smith, M. A., Wilson-Delfosse, A. L., <strong>and</strong><br />

Chen, S. G. (2010) Neurobiol Dis 40, 73-81<br />

46. Nass, R., <strong>and</strong> Nichols, C. D. (2007)<br />

Invertebrates as Powerful Genetic Models<br />

for Human Neurodegenerative Diseases. <strong>in</strong><br />

H<strong>and</strong>book of Contemporary<br />

Neuropharmacology, John Wiley & Sons,<br />

Inc. pp<br />

47. van Ham, T. J., Breitl<strong>in</strong>g, R., Swertz, M. A.,<br />

<strong>and</strong> Nollen, E. A. A. (2009) EMBO<br />

Molecular Medic<strong>in</strong>e 1, 360-370<br />

48. Harr<strong>in</strong>gton, A. J., Knight, A. L., Caldwell, G.<br />

A., <strong>and</strong> Caldwell, K. A. (2011) Methods 53,<br />

220-225<br />

49. Mohri-Shiomi, A., <strong>and</strong> Gars<strong>in</strong>, D. A. (2008)<br />

J Biol Chem 283, 194-201<br />

50. Teschendorf, D., <strong>and</strong> L<strong>in</strong>k, C. (2009) Mol<br />

Neurodegener 4, 1-13<br />

51. Fern<strong>and</strong>ez, A. G., Gunsalus, K. C., Huang,<br />

J., Chuang, L.-S., Y<strong>in</strong>g, N., Liang, H.-l.,<br />

Tang, C., Schetter, A. J., Zegar, C., Rual, J.-<br />

F., Hill, D. E., Re<strong>in</strong>ke, V., Vidal, M., <strong>and</strong><br />

Piano, F. (2005) Genome Res 15, 250-259<br />

52. Williams, A. J., <strong>and</strong> Paulson, H. L. (2008)<br />

Trends Neurosci 31, 521-528<br />

53. Vois<strong>in</strong>e, C., Pedersen, J. S., <strong>and</strong> Morimoto,<br />

R. I. (2010) Neurobiol Dis 40, 12-20<br />

54. Khurana, V., <strong>and</strong> L<strong>in</strong>dquist, S. (2010) Nat<br />

Rev Neurosci 11, 436-449<br />

55. Faber, P. W., Alter, J. R., MacDonald, M. E.,<br />

<strong>and</strong> Hart, A. C. (1999) Proc Natl Acad Sci U<br />

S A 96, 179-184<br />

56. Parker, J. A., Connolly, J. B., Well<strong>in</strong>gton, C.,<br />

Hayden, M., Dausset, J., <strong>and</strong> Neri, C. (2001)<br />

Proc Natl Acad Sci U S A 98, 13318-13323<br />

57. Cao, S., Gelwix, C. C., Caldwell, K. A., <strong>and</strong><br />

Caldwell, G. A. (2005) J Neurosci 25, 3801-<br />

3812<br />

58. Kuwahara, T., Koyama, A., Gengyo-Ando,<br />

K., Masuda, M., Kowa, H., Tsunoda, M.,<br />

Mitani, S., <strong>and</strong> Iwatsubo, T. (2006) J Biol<br />

Chem 281, 334-340<br />

59. Zhuang, J. J., <strong>and</strong> Hunter, C. P. (2011)<br />

Genetics<br />

56


Section 6<br />

Techniques <strong>and</strong> Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

Techniques <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

This part of the module consists of a series of lectures on a wide range of modern research<br />

techniques, <strong>in</strong>clud<strong>in</strong>g stem cell <strong>and</strong> tissue eng<strong>in</strong>eer<strong>in</strong>g, use of biolum<strong>in</strong>escent <strong>in</strong>tracellular<br />

probes, electrophysiology, gene expression analysis, proteomic approaches, etc. These<br />

lectures are complemented by tutorials designed to develop the fundamental skills required<br />

for laboratory research, <strong>in</strong>clud<strong>in</strong>g data h<strong>and</strong>l<strong>in</strong>g, generation of Figures, scientific writ<strong>in</strong>g <strong>and</strong><br />

preparation of poster <strong>and</strong> oral presentations.<br />

Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

In this part of the module, the emphasis is on how state-of-the-art research techniques are<br />

used to advance knowledge <strong>in</strong> specific biomedical research areas <strong>and</strong> on modern<br />

methods/approaches employed <strong>in</strong> the diagnosis of disease <strong>and</strong> the treatment of patients.<br />

Lectures on these topics are complemented by tutorials <strong>and</strong> journal clubs designed to<br />

develop analytical <strong>and</strong> critical th<strong>in</strong>k<strong>in</strong>g skills.<br />

Both the Techniques <strong>and</strong> Frontiers modules are enhanced by Sem<strong>in</strong>ars <strong>and</strong> <strong>Biomedical</strong><br />

Review Lectures with<strong>in</strong> the Institute of <strong>Translational</strong> Medic<strong>in</strong>e. Em<strong>in</strong>ent scientists from<br />

throughout the UK contribute to this by present<strong>in</strong>g their research on a variety of topics.<br />

Sem<strong>in</strong>ars take place weekly; <strong>Biomedical</strong> Review Lectures take place periodically on<br />

Thursdays from 5-6pm. It is important that <strong>MRes</strong> students attend both Sem<strong>in</strong>ars <strong>and</strong><br />

<strong>Biomedical</strong> Review Lectures to broaden their knowledge <strong>and</strong> range of learn<strong>in</strong>g experiences.<br />

Sem<strong>in</strong>ars are organized by the <strong>in</strong>dividual Departments with<strong>in</strong> the Institute <strong>and</strong> are advertised<br />

regularly via email. Attendance at certa<strong>in</strong> Departmental sem<strong>in</strong>ars may be recommended by<br />

str<strong>and</strong> convenors to enhance awareness of research that is particularly relevant to <strong>in</strong>dividual<br />

<strong>MRes</strong> str<strong>and</strong>s.<br />

F<strong>in</strong>ally, str<strong>and</strong>-specific activities are an important part of the Techniques <strong>and</strong> Frontiers<br />

modules, as they facilitate awareness of the science associated with particular research<br />

str<strong>and</strong>s.<br />

Students will be assessed on one short review based on the Techniques module, one<br />

short review based on the Frontiers module, <strong>and</strong> a referees report based on a journal<br />

club.<br />

6.1 Preparation of Short Reviews <strong>and</strong> Referees Reports<br />

Short Reviews<br />

Students should make every effort to ensure that their work is presented <strong>in</strong> good English,<br />

<strong>and</strong> is clearly written. The sources used to prepare the review should be listed at the end, <strong>in</strong><br />

full, <strong>and</strong> cited at the appropriate po<strong>in</strong>t <strong>in</strong> the text; citations <strong>and</strong> bibliography should appear <strong>in</strong><br />

Physiological Reviews style. Any material - text or figures - that is taken verbatim from<br />

other sources must be fully identified. In the case of text, it is essential to use quotation<br />

marks (“....”) to identify such material <strong>in</strong> order to avoid accusations of plagiarism (which is a<br />

serious academic offence). Any schematic diagrams, cartoons etc used as Figures should,<br />

wherever possible, be created by yourself us<strong>in</strong>g appropriate graphics packages, rather than<br />

by copy<strong>in</strong>g <strong>and</strong> past<strong>in</strong>g from published (<strong>and</strong> hence copyright protected) literature. The<br />

University policy with regard to plagiarism is expla<strong>in</strong>ed <strong>in</strong> this h<strong>and</strong>book.<br />

A good review should <strong>in</strong>clude: (a) an open<strong>in</strong>g statement that <strong>in</strong>troduces the subject, sets it <strong>in</strong><br />

the context of published work, <strong>and</strong> attracts the attention of the reader. (b) In the ma<strong>in</strong> part of<br />

the review, the major theme, should be developed <strong>and</strong> critically discussed. Po<strong>in</strong>ts should be<br />

made systematically us<strong>in</strong>g paragraph head<strong>in</strong>gs if appropriate <strong>and</strong> avoid<strong>in</strong>g repetition. The<br />

57


text should <strong>in</strong>clude citations to the relevant literature, which should be described <strong>and</strong><br />

discussed <strong>in</strong> sufficient detail for the review to st<strong>and</strong> on its own as a piece of scientific writ<strong>in</strong>g.<br />

(c) A f<strong>in</strong>al conclud<strong>in</strong>g statement may take the form of an overview, summary or outl<strong>in</strong>e of<br />

prospects for future work (or all three).<br />

Short reviews should be no more than 2,500 words (exclud<strong>in</strong>g references). Marks will be<br />

deducted proportionally for exceed<strong>in</strong>g this limit (for example, 2,750 words = 10% over the<br />

limit = 10% deducted), down to a m<strong>in</strong>imum cap set at 50% for the assignment. Short reviews<br />

should <strong>in</strong>clude up to 30 citations to peer-reviewed papers. It will often be the case that many<br />

more papers have been consulted; the process of select<strong>in</strong>g the most appropriate literature<br />

citations is therefore a matter of judgement <strong>and</strong> this will be reflected <strong>in</strong> the quality of the f<strong>in</strong>al<br />

product. Three copies of the short review should be submitted <strong>in</strong> pr<strong>in</strong>ted form (i.e. produced<br />

on a word-processor): one for the lecturer giv<strong>in</strong>g the topic <strong>and</strong> two to your str<strong>and</strong> convenor.<br />

You also need to submit an electronic copy of the f<strong>in</strong>al version (<strong>in</strong>clud<strong>in</strong>g any Figures) via<br />

Turnit<strong>in</strong>. Please attach a front cover sheet to your report stat<strong>in</strong>g your name, the title of your<br />

review, your student number, the name of the lecturer giv<strong>in</strong>g the topic, the title of the report,<br />

<strong>and</strong> the word count. A template cover sheet is supplied at the end of this Section for<br />

this purpose.<br />

Short review 1<br />

Choose a technique that was discussed <strong>in</strong> the lecture course “Techniques <strong>in</strong> <strong>Biomedical</strong><br />

<strong>Sciences</strong>”. This should not be connected to the ma<strong>in</strong> method used <strong>in</strong> your first project, <strong>and</strong><br />

should not be a lecture given by your str<strong>and</strong> convenor. It is essential that you contact the<br />

lecturer of your chosen Techniques lecture well <strong>in</strong> advance of the deadl<strong>in</strong>e to check<br />

that they are available to assess your review <strong>and</strong> to get advice on the content of the<br />

planned short review. Once the chosen lecturer has agreed to mark your short review,<br />

you should immediately contact your str<strong>and</strong> convenor to <strong>in</strong>form them of the<br />

arrangement. Prepare a short review style article discuss<strong>in</strong>g the pr<strong>in</strong>ciples on which the<br />

technique is based, any practical problems <strong>in</strong> apply<strong>in</strong>g the technique, <strong>and</strong> the importance of<br />

the technique <strong>in</strong> modern <strong>Biomedical</strong> <strong>Sciences</strong>.<br />

Short review 2<br />

Choose a topic covered <strong>in</strong> “Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong>”. This should not be connected<br />

to the ma<strong>in</strong> method used <strong>in</strong> your first project, <strong>and</strong> should not be a lecture given by your<br />

str<strong>and</strong> convenor. It is essential that you contact the lecturer of your chosen Techniques<br />

lecture well <strong>in</strong> advance of the deadl<strong>in</strong>e to check that they are available to assess your<br />

review <strong>and</strong> to get advice on the content of the planned short review. Once the chosen<br />

lecturer has agreed to mark your short review, you should immediately contact your<br />

str<strong>and</strong> convenor to <strong>in</strong>form them of the arrangement. Prepare a short review style article<br />

discuss<strong>in</strong>g the importance of the subject, its topicality, <strong>and</strong> why or how recent progress has<br />

been made.<br />

Journal Club<br />

The idea beh<strong>in</strong>d a journal club is to provide <strong>in</strong>sights <strong>in</strong>to how to critically analyse papers <strong>and</strong><br />

allow an appreciation of recent advances. Our journal club will be organised as follows: one<br />

str<strong>and</strong> will be allocated to each paper. The paper will be chosen by the presenter of the<br />

preced<strong>in</strong>g lecture. An electronic copy will be made available (or a reference to the paper<br />

given) at the lecture. The paper will be chosen to illustrate some important technical aspects<br />

or novel biological f<strong>in</strong>d<strong>in</strong>gs, or to highlight problems with the data/<strong>in</strong>terpretations <strong>in</strong> the<br />

paper. Excessively long papers should preferably be avoided. All participat<strong>in</strong>g students will<br />

be expected to read the paper <strong>and</strong> prepare a brief summary, as a series of bullet po<strong>in</strong>ts, of<br />

the major issues. These will be helpful for the discussions of the paper <strong>and</strong> should be<br />

emailed to the chairperson <strong>in</strong> advance of each journal club.<br />

58


Referee’s report<br />

A paper that was discussed at a Journal Club should provide the basis for this submission.<br />

Your str<strong>and</strong> convenor will <strong>in</strong>form you which journal club is to be chosen for this nearer the<br />

time. After the Journal Club, you should produce a written account <strong>in</strong> the style of an<br />

extended referee‟s report. Guidance on how to construct referees‟ reports will be given by<br />

the Programme Director <strong>in</strong> the Science Skills session on Scientific Publish<strong>in</strong>g <strong>and</strong> also <strong>in</strong> the<br />

<strong>in</strong>troductory lecture to the Frontiers module, <strong>and</strong> these can be used to provide the basis for<br />

the written account. Your referees report should be no more than 1000 words <strong>and</strong> the word<br />

count should be <strong>in</strong>dicated. Marks will be deducted proportionally for exceed<strong>in</strong>g this limit (for<br />

example, 1100 words = 10% over the limit = 10% deducted), down to a m<strong>in</strong>imum cap set at<br />

50% for the assignment. The referee‟s report should be submitted to the lecturer giv<strong>in</strong>g the<br />

topic <strong>and</strong> the Str<strong>and</strong> Convenor <strong>in</strong> pr<strong>in</strong>ted form (i.e. produced on a word-processor) <strong>and</strong> a<br />

copy of the refereed paper should be attached. You also need to submit an electronic copy<br />

of the f<strong>in</strong>al version via Turnit<strong>in</strong>. Please attach a front cover sheet to your report stat<strong>in</strong>g your<br />

name, your student number, the name of the lecturer giv<strong>in</strong>g the topic, the title of the report,<br />

<strong>and</strong> the word count. A template cover sheet is supplied at the end of this Section for<br />

this purpose.<br />

6.2 Assessment<br />

Each short review will contribute 8%, <strong>and</strong> the referee‟s report 4% of the total marks.<br />

Therefore, the Techniques <strong>and</strong> Frontiers modules contribute 20% of the total marks<br />

available for the <strong>MRes</strong>.<br />

Both short reviews <strong>and</strong> referees reports will be double marked by the person who gave the<br />

lecture or journal club <strong>and</strong> a 2 nd <strong>in</strong>ternal assessor (usually the str<strong>and</strong> convenor). The mark<br />

awarded will be the average of these two marks.<br />

Please note that the st<strong>and</strong>ard university penalty for late submission of written work applies (see<br />

earlier, under overview of assessment).<br />

Details of the assessment criteria used <strong>and</strong> the assessment forms that will be used by markers<br />

are given on the on the pages that follow, as are examples of a short review <strong>and</strong> a referee‟s<br />

report.<br />

59


6.2.1 Assessment Form for short reviews<br />

<strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong><br />

Short Review Assessment Form<br />

Student:<br />

Rotation:<br />

Project Title:<br />

Supervisor (lecturer):<br />

Moderator:<br />

Please complete this form when mark<strong>in</strong>g the M.Res write ups, <strong>and</strong> return it, with the SHORT REVIEW to your<br />

str<strong>and</strong> convenor. INDICATION OF POTENTIAL DEGREE CLASS BY MARK ATTAINED (Dist<strong>in</strong>ction 70-100); (Merit 60-<br />

69); (Pass 50-59); (Fail


6.2.2 Specific mark<strong>in</strong>g criteria for assessments of short reviews<br />

Dist<strong>in</strong>ction Level 100% - 90%<br />

90% - 80%<br />

80% - 70%<br />

Pass Level 69% - 65%<br />

64% - 60%<br />

59% - 55%<br />

54% - 50%<br />

Fail Level 49% - 45%<br />

44% - 40%<br />

39% - 35%<br />

34% - 10%<br />

0%<br />

Outst<strong>and</strong><strong>in</strong>g. No (or virtually no – use scal<strong>in</strong>g) better<br />

result conceivable at Masters level. Comprehensive.<br />

Factually correct, with extensive evidence of critical<br />

th<strong>in</strong>k<strong>in</strong>g. Evidence of extensive research of relevant<br />

literature. Very logical structure, very well written <strong>and</strong><br />

presented. Clear evidence of orig<strong>in</strong>al thought <strong>and</strong><br />

cogent scientific argument.<br />

Excellent. Clear evidence of achievement on a scale<br />

reserved for exceptionally high quality work at Masters<br />

level. Essentially correct <strong>and</strong> complete, with evidence of<br />

critical th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> excellent use of relevant literature.<br />

Logical structure, well written <strong>and</strong> presented, display<strong>in</strong>g<br />

vary<strong>in</strong>g degrees (use scal<strong>in</strong>g) of orig<strong>in</strong>al thought <strong>and</strong><br />

cogent scientific argument.<br />

Very Good. Content essentially without any major<br />

flaws, very well expla<strong>in</strong>ed with clear evidence of a high<br />

level of scientific competence, <strong>and</strong> mature, critical<br />

scientific judgement.<br />

Good. Well expla<strong>in</strong>ed, show<strong>in</strong>g good evidence of<br />

critical scientific judgement.<br />

Quite Good. A well expla<strong>in</strong>ed report, with good<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> some evidence of critical scientific<br />

judgement<br />

Fairly Good. A generally sound report with a good or<br />

quite good level of underst<strong>and</strong><strong>in</strong>g, evidence of sound<br />

scientific competence <strong>and</strong> judgement.<br />

Adequate. Show<strong>in</strong>g some progress but with some<br />

deficiencies <strong>in</strong> one or more aspects of knowledge of the<br />

literature <strong>and</strong> scientific judgement.<br />

A poor report with an overall superficial approach.<br />

Essentially an <strong>in</strong>complete report with major omissions <strong>in</strong><br />

several areas <strong>and</strong> evidence of a poor underst<strong>and</strong><strong>in</strong>g.<br />

A poor report with an overall superficial approach <strong>and</strong><br />

more errors <strong>and</strong>/or omissions <strong>and</strong>/or evidence of a<br />

deficiency of effort <strong>and</strong>/or poor underst<strong>and</strong><strong>in</strong>g.<br />

A marked deficiency <strong>in</strong> content of underst<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

application.<br />

Even more marked deficiencies <strong>in</strong> content (on a variable<br />

scale) of underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application <strong>and</strong><br />

presentation.<br />

A complete absence of relevant content.<br />

61


6.2.3 Assessment Form for referees’ reports<br />

62


6.2.4 Specific mark<strong>in</strong>g criteria for assessments of referees’ reports<br />

Dist<strong>in</strong>ction Level 100% - 90%<br />

90% - 80%<br />

80% - 70%<br />

Pass Level 69% - 65%<br />

64% - 60%<br />

59% - 55%<br />

54% - 50%<br />

Fail Level 49% - 45%<br />

44% - 40%<br />

39% - 35%<br />

34% - 10%<br />

0%<br />

Outst<strong>and</strong><strong>in</strong>g. No better result conceivable at Masters<br />

level. Extensive evidence of critical th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> cogent<br />

scientific argument. Evidence of read<strong>in</strong>g around the<br />

subsect of the paper reviewed<br />

Excellent. Essentially correct <strong>and</strong> complete, with<br />

evidence of critical th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> excellent use of the<br />

paper reviewed. Logical structure, well written <strong>and</strong><br />

presented, display<strong>in</strong>g a cogent scientific argument.<br />

Very Good. Content essentially without any major<br />

flaws, very well expla<strong>in</strong>ed with clear evidence of a high<br />

level of scientific competence, <strong>and</strong> mature, critical<br />

scientific judgement.<br />

Good. Well expla<strong>in</strong>ed, show<strong>in</strong>g good evidence of<br />

critical scientific judgement.<br />

Quite Good. A well expla<strong>in</strong>ed review, with good<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> some evidence of critical scientific<br />

judgement.<br />

Fairly Good. A generally sound review with a good or<br />

quite good level of underst<strong>and</strong><strong>in</strong>g, evidence of sound<br />

scientific competence <strong>and</strong> judgement.<br />

Adequate. Show<strong>in</strong>g some progress but with some<br />

deficiencies <strong>in</strong> one or more aspects of underst<strong>and</strong><strong>in</strong>g of<br />

the paper <strong>and</strong> scientific judgement.<br />

A poor report with an overall superficial approach.<br />

Essentially an <strong>in</strong>complete report with major omissions <strong>in</strong><br />

several areas <strong>and</strong> evidence of a poor underst<strong>and</strong><strong>in</strong>g.<br />

A poor report with an overall superficial approach <strong>and</strong><br />

more errors, omissions <strong>and</strong> evidence of a deficiency of<br />

effort <strong>and</strong> poor underst<strong>and</strong><strong>in</strong>g.<br />

A marked deficiency <strong>in</strong> content of underst<strong>and</strong><strong>in</strong>g the<br />

paper <strong>and</strong> the task set.<br />

Even more marked deficiencies <strong>in</strong> content of<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application.<br />

A complete absence of relevant work presented.<br />

63


6.3 Front sheet for referee’s report <strong>and</strong> short review submissions<br />

(example)<br />

Short Review [Insert number] or Referee’s Report<br />

TITLE OF YOUR REVIEW<br />

OR REPORT<br />

Joe Bloggs<br />

Student I.D. 200700000<br />

Lecturer (who gave the Techniques/Frontiers lecture): [Insert name]<br />

Str<strong>and</strong>: [Insert name of your str<strong>and</strong>]<br />

Word Count: [Insert word count]<br />

64


6.4 Example of a short review<br />

Galect<strong>in</strong>-3 – a cancerous jack-of-all-trades<br />

Author name<br />

Department of Cellular <strong>and</strong> Molecular Physiology, Institute of <strong>Translational</strong> Medic<strong>in</strong>e, University of Liverpool,<br />

Crown Street, Liverpool L69 3BX, UK<br />

Galect<strong>in</strong>-3 is a member of a family of animal lect<strong>in</strong>s that b<strong>in</strong>d β-galactosides. It is <strong>in</strong>volved <strong>in</strong> a vast<br />

range of biological processes <strong>and</strong> its expression has been related to cancer progression <strong>and</strong><br />

metastasis. Galect<strong>in</strong>-3 exerts different functions depend<strong>in</strong>g on its cellular localisation <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g<br />

partners. It has been implicated <strong>in</strong> regulation of cell growth, proliferation, cellular transformation,<br />

immune reactions <strong>and</strong> spread<strong>in</strong>g of cancer metastases, to name a few. This review summarises<br />

the diversity of its functions with particular emphasis on its role <strong>in</strong> cancer pathogenesis <strong>and</strong><br />

metastasis.<br />

INTRODUCTION<br />

Lect<strong>in</strong>s are carbohydrate-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s that serve as a l<strong>in</strong>k between glycan recognition <strong>and</strong><br />

cellular responses (56). One of lect<strong>in</strong> families comprises galect<strong>in</strong>s – multifunctional animal prote<strong>in</strong>s<br />

that share highly conserved carbohydrate recognition doma<strong>in</strong>s (CRDs), which b<strong>in</strong>d to β-galactoside<br />

(6). To date, 15 members of this family have been isolated <strong>and</strong> classified <strong>in</strong>to subgroups depend<strong>in</strong>g<br />

on their structure <strong>and</strong> the number of CRDs (63). Prototypical galect<strong>in</strong>s (galect<strong>in</strong>-1, -2, -5, -7, -10, -11,<br />

-13, -14 <strong>and</strong> -15) conta<strong>in</strong> one CRD, whereas the t<strong>and</strong>em-repeat galect<strong>in</strong>s (galect<strong>in</strong>-4, -6, -8, -9 <strong>and</strong> -<br />

12) have two CRDs separated by a l<strong>in</strong>ker region <strong>in</strong> a s<strong>in</strong>gle polypetide cha<strong>in</strong>. Galect<strong>in</strong>-3, <strong>in</strong> turn, is the<br />

exclusive member of the chimera-type subgroup <strong>and</strong> it conta<strong>in</strong>s a CRD connected to an extended<br />

non-lect<strong>in</strong> N-term<strong>in</strong>al doma<strong>in</strong>.<br />

Galect<strong>in</strong>-3 is probably the best-studied animal lect<strong>in</strong> <strong>and</strong> s<strong>in</strong>ce its discovery <strong>in</strong> 1982 (22, 14)<br />

the diversity of its functions <strong>in</strong> physiological <strong>and</strong> pathological processes seems to exp<strong>and</strong><br />

cont<strong>in</strong>uously. It is <strong>in</strong>volved <strong>in</strong> growth <strong>and</strong> apoptosis regulation, proliferation, cell-cell adhesion,<br />

angiogenesis <strong>and</strong> regulation of immune response, just to mention a few. Similarly to some other<br />

galect<strong>in</strong>s, galect<strong>in</strong>-3 is ubiquitously expressed <strong>in</strong> mammalian tissues <strong>and</strong> is often deregulated <strong>in</strong><br />

human cancers (63). The plethora of tumours <strong>in</strong> which it is overexpressed, makes it a promis<strong>in</strong>g<br />

therapeutic target. Moreover, galect<strong>in</strong>-3 is now often used as a prognostic marker for certa<strong>in</strong><br />

cancers.<br />

Thorough underst<strong>and</strong><strong>in</strong>g of the cellular mechanisms that <strong>in</strong>volve galect<strong>in</strong>s-3 is pivotal to<br />

del<strong>in</strong>eate the complexity of transformation <strong>and</strong> tumour metastasis, as well as the many physiological<br />

processes, <strong>in</strong> which this particular lect<strong>in</strong> is implicated. This review will present a comprehensive<br />

summary of the multitude of tasks performed by galect<strong>in</strong>-3 <strong>and</strong> will focus on its role <strong>in</strong> cancer<br />

development <strong>and</strong> progression.<br />

GENERAL CHARACTERISTICS<br />

Structural properties<br />

Galect<strong>in</strong>-3 was first characterised as a 32kDa antigen called Mac-2 expressed on the surface of<br />

mur<strong>in</strong>e macrophages (22). It was also previously known as CBP-35, HL-29, RL-29, IgEBP, hL-31 <strong>and</strong><br />

LBP, as a result of its isolation from different species (14). Its structure rema<strong>in</strong>s highly conserved<br />

across animal k<strong>in</strong>gdom <strong>and</strong> is unique <strong>in</strong> the whole galect<strong>in</strong> family (13). It comprises a CRD <strong>and</strong> an<br />

unusual flexible N-term<strong>in</strong>al doma<strong>in</strong> (ND) (Fig.1) of about 110-130 am<strong>in</strong>o acids, depend<strong>in</strong>g on species<br />

of orig<strong>in</strong>. The ND consists of 7-14 repeats of a<br />

65


FIG. 1. A schematic representation of monomeric (left) <strong>and</strong> pentameric (right) structures of galect<strong>in</strong>-<br />

3. The carbohydrate-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> consists of about 130 am<strong>in</strong>o acid residues, the prol<strong>in</strong>e-,<br />

glyc<strong>in</strong>e- <strong>and</strong> tyros<strong>in</strong>e-rich repeats of N-term<strong>in</strong>al doma<strong>in</strong> conta<strong>in</strong> about 100 residues <strong>and</strong> the small Nterm<strong>in</strong>al<br />

doma<strong>in</strong> of galect<strong>in</strong>-3 conta<strong>in</strong>s about 30 residues. Adapted from (6).<br />

n<strong>in</strong>e am<strong>in</strong>o acid sequence: Pro-Gly-Ala-Tyr-Pro-Gly <strong>and</strong> 3 extra am<strong>in</strong>o acids (8, 14). It is also referred<br />

to (as) a collagen-like ND, due to its homology to collagen α1 (II) cha<strong>in</strong> (49).<br />

The ND is essential for multimerisation of galect<strong>in</strong>-3 <strong>and</strong> is sensitive to proteolysis by MMP-2<br />

<strong>and</strong> MMP-9 matrix metalloprote<strong>in</strong>ases (37, 45). Moreover, it is <strong>in</strong>dispensable for the activity of<br />

galect<strong>in</strong>-3 (54) <strong>and</strong> it has been demonstrated that it takes part <strong>in</strong> carbohydrate-b<strong>in</strong>d<strong>in</strong>g via its Tyr102<br />

residue (5). The first 12 am<strong>in</strong>o acids of the ND, referred to as small ND, are necessary for galect<strong>in</strong>-3<br />

secretion as well as its nuclear localization (20, 40) <strong>and</strong> the highly conserved Ser6 is responsible for<br />

the anti-apoptotic activity (65), which will be discussed later.<br />

The C-term<strong>in</strong>al CRD of galect<strong>in</strong>-3 conta<strong>in</strong>s approximately 130 am<strong>in</strong>o acids that form a<br />

globular structure compris<strong>in</strong>g five- <strong>and</strong> six-str<strong>and</strong>ed β-sheets arranged <strong>in</strong> a β-s<strong>and</strong>wich (54), similar<br />

to galect<strong>in</strong>-1 <strong>and</strong> -2. The CRD constitutes the galect<strong>in</strong> activity, as it creates the entire carbohydrate<br />

b<strong>in</strong>d<strong>in</strong>g site (25, 46, 54). It conta<strong>in</strong>s a NWGR (Asp-Trp-Gly-Arg) motif, which is essential for b<strong>in</strong>d<strong>in</strong>g βgalactosides<br />

(2, 13) as well as for homodimerisation (61). This motif is also present <strong>in</strong> the B-cell<br />

lymphoma 2 (Bcl2) family members of apoptosis regulators <strong>and</strong> it has been confirmed to be<br />

responsible for the anti-apoptotic activity of galect<strong>in</strong>-3 (62).<br />

Both lactose (Lac) <strong>and</strong> N-acetyllactosam<strong>in</strong>e (LacNAc) are specifically recognised by the CRD<br />

of galect<strong>in</strong>-3, which has a 5-times higher b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ity for the latter (3, 53, 54). What is more, the<br />

ND of galect<strong>in</strong>-3 seems to contribute to its <strong>in</strong>creased aff<strong>in</strong>ity for larger oligosaccharides (extended<br />

Lac or LacNAc), as compared to other galect<strong>in</strong>s (21). It has been demonstrated that b<strong>in</strong>d<strong>in</strong>g of<br />

carbohydrate lig<strong>and</strong>s results <strong>in</strong> a conformational change of galect<strong>in</strong>-3 (3) <strong>and</strong> it can be modulated by<br />

phosphorylation of Ser6 (39). Furthermore, the multiple <strong>in</strong>teract<strong>in</strong>g partners of galect<strong>in</strong>-3 also<br />

encompass many <strong>in</strong>tracellular prote<strong>in</strong>s that are recognised <strong>in</strong> a carbohydrate-<strong>in</strong>dependent manner<br />

(15, 41, 48, 57, 58).<br />

Multimerisation <strong>and</strong> cellular localisation<br />

As mentioned before, oligomerisation of galect<strong>in</strong>-3 is accredited to both the CRD <strong>and</strong> the ND (37,<br />

61), but the formation of pentamers (Fig.1) occurs only via the NDs <strong>in</strong> the presence of multivalent<br />

carbohydrate lig<strong>and</strong>s (1). In solution, however, galect<strong>in</strong>-3 has been shown to primarily occur as a<br />

monomer (42).<br />

Extracellularly, galect<strong>in</strong>-3 can be found <strong>in</strong> the extracellular matrix (ECM) <strong>and</strong> <strong>in</strong> biological<br />

fluids (14) <strong>and</strong> its multimers form lattice-like structures by cross-l<strong>in</strong>k<strong>in</strong>g glycoconjugates on the cell<br />

surface (1, 9). This br<strong>in</strong>gs about cell-cell associations or bridg<strong>in</strong>g of cells to extracellular matrix<br />

prote<strong>in</strong>s <strong>and</strong>, hence, results <strong>in</strong> trigger<strong>in</strong>g of downstream signall<strong>in</strong>g (35, 44, 63), as discussed later.<br />

Galect<strong>in</strong>-3 does not conta<strong>in</strong> endoplasmic reticulum (ER) translocation signal sequence, <strong>and</strong>,<br />

66


therefore, it is not secreted via the classical ER/Golgi pathway, but by the not fully understood<br />

process of ectocytosis, which is dependent on the ND (27, 40).<br />

Intracellularly, galect<strong>in</strong>-3 is present <strong>in</strong> both the cytoplasm <strong>and</strong> nucleus, depend<strong>in</strong>g on the cell<br />

proliferation status <strong>and</strong> a range of factors, such as cell type <strong>and</strong> the stage of tumour progression<br />

(14). For some cancer types, there is a general shift from nucleus to the cytoplasm, where galect<strong>in</strong>-3<br />

can <strong>in</strong>teract with a multitude of its b<strong>in</strong>d<strong>in</strong>g partners (4, 52). The translocation from the nucleus<br />

<strong>in</strong>volves the nuclear export signal (NES) conta<strong>in</strong>ed with<strong>in</strong> the CRD (60), whereas the nuclear import<br />

might be attributed to the ND (20), but there is some evidence for the implication of the CRD <strong>in</strong> this<br />

process (19).<br />

Physiological functions<br />

The different cellular localisations of galect<strong>in</strong>-3 imply its vast range of functions <strong>in</strong> normal <strong>and</strong><br />

pathological conditions. Extracellular galect<strong>in</strong>-3 has been shown to be <strong>in</strong>volved <strong>in</strong> cell adhesion via<br />

glycan-dependent <strong>in</strong>teractions with <strong>in</strong>tegr<strong>in</strong>s: α1β1 <strong>and</strong> α subunit of αMβ1 (14). Besides, it mediates<br />

cell adhesion by associat<strong>in</strong>g with glycosylated cell surface <strong>and</strong> ECM prote<strong>in</strong>s, such as collagen IV,<br />

elast<strong>in</strong>, fibronect<strong>in</strong> <strong>and</strong> lam<strong>in</strong><strong>in</strong>. In this way, extracellular galect<strong>in</strong>-3 plays important role <strong>in</strong> autocr<strong>in</strong>e<br />

<strong>and</strong> paracr<strong>in</strong>e signall<strong>in</strong>g.<br />

Galect<strong>in</strong>-3 has a particular function <strong>in</strong> immune response. For example, it stimulates<br />

production of superoxide <strong>and</strong> <strong>in</strong>duces production of <strong>in</strong>terleuk<strong>in</strong>-1 by monocytes, result<strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>creased <strong>in</strong>flammation (29, 34). Among its other effects, galect<strong>in</strong>-3 enhances phagocytosis of<br />

neutrophils (16) <strong>and</strong> oxidative response of immune cells (17).<br />

Besides, extracellular activity of galect<strong>in</strong>-3 is <strong>in</strong>volved <strong>in</strong> morphogenesis of endothelial cells<br />

<strong>and</strong> angiogenesis (43). At high concentration, its function is also associated with chemoattraction<br />

<strong>and</strong> an <strong>in</strong>creased Ca 2+ <strong>in</strong>flux <strong>in</strong> monocytes, whereas at low concentration galect<strong>in</strong>-3 promotes<br />

chemok<strong>in</strong>esis (14). It also participates <strong>in</strong> endocytosis of modified low density lipoprote<strong>in</strong>s <strong>and</strong><br />

advanced glycation end products.<br />

Functions of galect<strong>in</strong>-3 <strong>in</strong>side the cell are better described than for other galect<strong>in</strong>s (63). In<br />

the cytoplasm, galect<strong>in</strong>-3 b<strong>in</strong>ds to Bcl-2 <strong>and</strong> <strong>in</strong>hibits cell apoptosis (62). What is more, it has also<br />

been demonstrated that it <strong>in</strong>teracts with a death receptor CD95 (APO-1/Fas), as well as with nucl<strong>in</strong>g<br />

<strong>and</strong> Alix/AIP1 – prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> apoptosis regulation (14). Moreover, cytosolic galect<strong>in</strong>-3 exhibits<br />

important effects on cell survival, differentiation <strong>and</strong> proliferation. To substantiate these multiple<br />

functions, it has been shown that galect<strong>in</strong>-3 <strong>in</strong>teracts with activated GTP-bound K-Ras (15, 55) <strong>and</strong> it<br />

affects Akt signal<strong>in</strong>g (33, 47).<br />

On the other h<strong>and</strong>, nuclear galect<strong>in</strong>-3, like galect<strong>in</strong>-1, regulates splic<strong>in</strong>g of pre-mRNA <strong>and</strong><br />

takes part <strong>in</strong> spliceosome assembly (14, 63). Its <strong>in</strong>teraction with pre-mRNA may occur <strong>in</strong>directly via<br />

complexes <strong>in</strong>clud<strong>in</strong>g its nuclear b<strong>in</strong>d<strong>in</strong>g partner Gem<strong>in</strong>4. In nucleus, galect<strong>in</strong>-3 has also been shown<br />

to regulate gene transcription by enhanc<strong>in</strong>g transcription factor association with Spi1 <strong>and</strong> CRE<br />

elements <strong>in</strong> gene promoter sequences, e.g. to <strong>in</strong>duce cycl<strong>in</strong> D1 expression (14). Also, <strong>in</strong>tranuclear<br />

galect<strong>in</strong>-3 seems to regulate Wnt pathway signall<strong>in</strong>g.<br />

Certa<strong>in</strong>ly, this myriad of functions exhibited by galect<strong>in</strong>-3 is a result of juxtaposition of its<br />

unique characteristics: the atypical ND, the diverse cellular localisations <strong>and</strong> wide tissue distribution<br />

(14, 21). Galect<strong>in</strong>-3 has been found widely expressed <strong>in</strong> human tissues, <strong>in</strong>clud<strong>in</strong>g immune cells,<br />

epithelial cells of many organs as well as respiratory <strong>and</strong> gastro<strong>in</strong>test<strong>in</strong>al tracts <strong>and</strong> <strong>in</strong> some sensory<br />

neurons (14, 26). However, dur<strong>in</strong>g early stages of human embryogenesis, galect<strong>in</strong>-3 shows a more<br />

specific expression pattern, ma<strong>in</strong>ly <strong>in</strong> the epithelia, kidney, chondrocytes <strong>and</strong> the liver (14). Yet,<br />

galect<strong>in</strong>-3 knock-out mice rema<strong>in</strong> viable <strong>and</strong> display no obvious abnormalities (13), which <strong>in</strong>dicates<br />

that galect<strong>in</strong>-3 functions may be redundant. Conversely, galect<strong>in</strong>-3 overexpression is a predom<strong>in</strong>ant<br />

feature of many cancers <strong>and</strong>, therefore, the <strong>in</strong>sights <strong>in</strong>to its functions <strong>in</strong> physiological processes are<br />

of great importance <strong>in</strong> elucidat<strong>in</strong>g its role <strong>in</strong> these pathological states (14, 63).<br />

ROLE IN TUMOUR DEVELOPMENT<br />

Galect<strong>in</strong>-3 overepression has been shown to be associated with tumourigenesis <strong>and</strong> <strong>in</strong>creased<br />

metastatic potential of transformed cells (14, 63). Its role <strong>in</strong> cancer pathogenesis encompasses<br />

67


egulation of a diverse range of cancer-related processes: transformation, cell survival, proliferation,<br />

<strong>in</strong>hibition of apoptosis <strong>and</strong> spread<strong>in</strong>g of metastasis (Fig.2, Fig.3). In majority of tumours galect<strong>in</strong>-3<br />

expression is enhanced <strong>and</strong> its cellular distribution is altered (14). Its <strong>in</strong>tracellular localisation is<br />

ma<strong>in</strong>ly cytoplasmic <strong>and</strong> is related to its anti-apoptotic activity (62). In turn, extracellular galect<strong>in</strong>-3 is<br />

associated with dissem<strong>in</strong>ation of metastatic cells (63). The follow<strong>in</strong>g sections will compile the various<br />

functions of galect<strong>in</strong>-3 <strong>in</strong> different stages <strong>and</strong> aspects of cancer development <strong>and</strong> metastasis, with<br />

particular emphasis on its b<strong>in</strong>d<strong>in</strong>g partners.<br />

FIG. 2. A simplified representation of the many roles of galect<strong>in</strong>-3 <strong>in</strong> cancer pathogenesis – for<br />

further details refer to text.<br />

68


FIG. 3. The diversity of galect<strong>in</strong>-3 functions <strong>in</strong> cancer progression <strong>and</strong> metastasis – only few ma<strong>in</strong><br />

processes <strong>in</strong> which galect<strong>in</strong>-3 is <strong>in</strong>volved could be depicted this figure. Galect<strong>in</strong>-3 has a crucial role <strong>in</strong><br />

cellular transformation, <strong>in</strong>hibition of apoptosis <strong>and</strong> possibly <strong>in</strong> cell cycle regulation. Dur<strong>in</strong>g<br />

metastasis, galect<strong>in</strong>-3 is engaged <strong>in</strong> several dist<strong>in</strong>ct processes, which <strong>in</strong>clude cell-cell <strong>and</strong> cell-matrix<br />

adhesions <strong>and</strong> angiogenesis. Adapted from (35).<br />

Initiation of transformation<br />

Substantial evidence is accumulat<strong>in</strong>g regard<strong>in</strong>g the role of galect<strong>in</strong>-3 <strong>in</strong> neoplastic transformation<br />

(15, 23, 35, 66). In highly malignant human breast carc<strong>in</strong>oma cells, suppression of galect<strong>in</strong>-3 resulted<br />

69


<strong>in</strong> reversion of the altered cell morphology as well as <strong>in</strong> loss of anchorage- <strong>and</strong> serum-<strong>in</strong>dependent<br />

growth (23). Moreover, it led to <strong>in</strong>hibition of tumour growth <strong>in</strong> immunologically suppressed mice.<br />

Likewise, <strong>in</strong>hibition of galect<strong>in</strong>-3 by antisense cDNA <strong>in</strong> human thyroid papillary carc<strong>in</strong>oma cell l<strong>in</strong>e<br />

led to suppression of anchorage-<strong>in</strong>dependent growth (66). What is more, transfection of galect<strong>in</strong>-3<br />

cDNA <strong>in</strong>to normal thyroid follicular cells resulted <strong>in</strong> altered gene expression, loss of contact<br />

<strong>in</strong>hibition <strong>and</strong> serum-<strong>in</strong>dependent growth (59). These results suggest that the ma<strong>in</strong>tenance of the<br />

transformed phenotype <strong>in</strong> malignant breast <strong>and</strong> thyroid cells is dependent on high levels of galect<strong>in</strong>-<br />

3 expression.<br />

The molecular mechanisms beh<strong>in</strong>d galect<strong>in</strong>-3 function <strong>in</strong> transformation <strong>in</strong>itiation may<br />

<strong>in</strong>volve <strong>in</strong>teractions with oncogenic K-Ras4B (15). Galect<strong>in</strong>-3 selectively promotes Ras-dependent<br />

phosphatidyl<strong>in</strong>ositol 3-k<strong>in</strong>ase (PI3-K) <strong>and</strong> Raf-1 activation <strong>and</strong> attenuates ERK that results <strong>in</strong> altered<br />

transcriptional outcomes. Hence, galect<strong>in</strong>-3 might be necessary for Ras anchorage to the plasma<br />

membrane <strong>and</strong> for Ras-dependent cell transformation.<br />

The tumourigenic potential of galect<strong>in</strong>-3 may also <strong>in</strong>volve <strong>in</strong>teractions with β-caten<strong>in</strong> that<br />

subsequently result <strong>in</strong> enhanced expression of cycl<strong>in</strong> D <strong>and</strong> c-MYC (58, 63). Nuclear localisation of<br />

galect<strong>in</strong>-3 may also imply its role <strong>in</strong> regulation of gene transcription <strong>and</strong>, <strong>in</strong>deed, it has been shown<br />

to <strong>in</strong>teract with transcription factors <strong>in</strong>volved <strong>in</strong> activation of cycl<strong>in</strong> D1 expression <strong>and</strong> possibly<br />

expression of cycl<strong>in</strong> A, E, p27/KIP1 <strong>and</strong> p21/CIP1 (14). In this way galect<strong>in</strong>-3 might be <strong>in</strong>volved <strong>in</strong><br />

regulation of the cell cycle. Also, it has been demonstrated that galect<strong>in</strong>-3 b<strong>in</strong>d to the thyroidspecific<br />

transcriptiona factor 1 (TTF-1) <strong>in</strong> human papillary thyroid cancer cells, <strong>and</strong>, hence<br />

contributes to cell proliferation (48).<br />

Inhibition of apoptosis<br />

Regulation of apoptosis is probably the best studied function of galect<strong>in</strong>-3 related to cancer<br />

progression (35). Galect<strong>in</strong>-3 bears high sequence homology to anti-apoptotic Bcl-2 (2, 62), to which<br />

it b<strong>in</strong>ds <strong>in</strong> vitro. Po<strong>in</strong>t mutations with<strong>in</strong> the homologous NWGR motif lead to the attenuation of the<br />

anti-apoptotic activity of galect<strong>in</strong>-3. Follow<strong>in</strong>g apoptotic stimuli, overexpressed galect<strong>in</strong>-3 has been<br />

shown to translocate to the mitochondria, where it protects the cell from the production of reactive<br />

oxygen species, blocks the alteration of mitochondrial membrane potential <strong>and</strong> <strong>in</strong>hibits cytochrome<br />

c release (38, 67).<br />

Interest<strong>in</strong>gly, cytoplasmic galect<strong>in</strong>-3 <strong>in</strong>teractcs with synex<strong>in</strong> <strong>in</strong> human breast epithelial cells<br />

(67). This calcium-dependent <strong>and</strong> phospholipid-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> is responsible for the translocation<br />

of galect<strong>in</strong>-3 to the mitochondria <strong>and</strong> is essential for its anti-apoptotic activity. Furthermore,<br />

phosphorylation of galect<strong>in</strong>-3 at ser<strong>in</strong>e6 by case<strong>in</strong> k<strong>in</strong>ase I is <strong>in</strong>dispensable for its export from the<br />

nucleus <strong>and</strong> activation of the mitogen activated prote<strong>in</strong> k<strong>in</strong>ase (MAPK) pathway, <strong>and</strong>, hence, it is<br />

essential for anti-apoptotic activity of galect<strong>in</strong>-3 (35). Besides, galect<strong>in</strong>-3 is capable of prevent<strong>in</strong>g<br />

anoikis – a type of apoptosis <strong>in</strong>duced by loss of cell-ECM <strong>in</strong>teractions – of human breast carc<strong>in</strong>oma<br />

cells, possibly due to mediat<strong>in</strong>g cell cycle arrest (31). On the other h<strong>and</strong>, <strong>in</strong>hibition of apoptosis <strong>in</strong><br />

human bladder carc<strong>in</strong>oma cells by galect<strong>in</strong>-3 seems to be mediated via Akt signall<strong>in</strong>g (47).<br />

Conversely, <strong>in</strong> human prostate cancer cell l<strong>in</strong>e galect<strong>in</strong>-3 plays a dual role <strong>in</strong> apoptosis<br />

regulation (11). In the cytosol it exhibits anti-apoptotic activity, whereas <strong>in</strong> the nucleus it promotes<br />

apoptosis. Moreover, extracellular galect<strong>in</strong>-3 also exerts a pro-apoptotic effect, presumably by<br />

b<strong>in</strong>d<strong>in</strong>g to cell surface glycoprote<strong>in</strong>s (35). Taken together, the effects of galect<strong>in</strong>-3 on the regulation<br />

of apoptosis are complex <strong>and</strong> depend on its cellular localisation. In oncogenesis, however, its role is<br />

predom<strong>in</strong>atly anti-apoptotic <strong>and</strong> it might be regulated by upstream p53 pathway (63).<br />

ROLE IN METASTASIS<br />

Neoplastic metastases are the result of <strong>in</strong>creased tumour cell motility, alteration of cell adhesion,<br />

angiogenesis <strong>and</strong> immune response evasion (35). There is substantial evidence that galect<strong>in</strong>-3 is<br />

implicated <strong>in</strong> all of these pathological processes; thus, underst<strong>and</strong><strong>in</strong>g of its function is imperative <strong>in</strong><br />

elucidat<strong>in</strong>g the mechanisms of tumour <strong>in</strong>vasiveness <strong>and</strong> dissem<strong>in</strong>ation through biological fluids. Yet,<br />

overexpression of galect<strong>in</strong>-3 <strong>in</strong> some cancer types appears to be a potential diagnostic marker for<br />

their malignancy. For <strong>in</strong>stance, high levels of galect<strong>in</strong>-3 expression could be predictive for high<br />

70


<strong>in</strong>vasiveness of a neuroendocr<strong>in</strong>e tumour pheochromocytoma (51), epithelial ovarian carc<strong>in</strong>oma<br />

(31), primary cutaneous melanoma (10), thyroid cancer (12), colorectactal cancer (7) <strong>and</strong> pituitary<br />

tumours (50), to name a few. Henceforth, the importance of galect<strong>in</strong>-3 <strong>in</strong> cancer prognosis seems to<br />

be <strong>in</strong>valuable <strong>and</strong> its role <strong>in</strong> different aspects of metastasis will be discussed below.<br />

Angiogenesis<br />

Formation of new blood vessels from pre-exist<strong>in</strong>g vessels – angiogenesis – is considered to be a<br />

crucial process <strong>in</strong> tumour <strong>in</strong>vasiveness (35). New blood vessels supply oxygen <strong>and</strong> the essential<br />

nutrients to tumour cells <strong>and</strong> serve as a l<strong>in</strong>k between primary <strong>and</strong> secondary tumour sites. The role<br />

of galect<strong>in</strong>-3 <strong>in</strong> angiogenesis has been extensively documented <strong>and</strong> it appears that it might be<br />

connected to <strong>in</strong>duction of endothelial cells morphogenesis <strong>and</strong> their <strong>in</strong>creased motility (43).<br />

In fact, <strong>in</strong> vivo mice studies revealed that exogenous galect<strong>in</strong>-3 <strong>in</strong>duces formation of new<br />

capillaries surround<strong>in</strong>g the transplanted human breast tumour (43). The mechanism by which<br />

galect<strong>in</strong>-3 exhibits this angiogenic activity may <strong>in</strong>volve formation of complexes conta<strong>in</strong><strong>in</strong>g α3β1<br />

<strong>in</strong>tegr<strong>in</strong> <strong>and</strong> a transmembrane proteoglycan NG2 (18). Also, it may be a result of galect<strong>in</strong>-3dependent<br />

cluster<strong>in</strong>g of αvβ <strong>in</strong>tegr<strong>in</strong> <strong>and</strong> activation of focal adhesion k<strong>in</strong>ase that leads to<br />

modulation of vascular endothelial growth factor (VEGF) <strong>and</strong> basic fibroblast growth factor (bFGF)mediated<br />

angiogenesis (36). F<strong>in</strong>ally, galect<strong>in</strong>-3 could mediated vascularisation via b<strong>in</strong>d<strong>in</strong>g to<br />

am<strong>in</strong>opeptidase N/CD13 - the endothelial cell surface enzyme <strong>in</strong>volved <strong>in</strong> early steps of angiogenesis<br />

(64).<br />

Cell adhesion<br />

Loss of cell-cell <strong>and</strong> cell-matrix adhesion is l<strong>in</strong>ked to <strong>in</strong>itiation of tumour metastases (35). As a result,<br />

cancer cells detach from the primary tumour site <strong>and</strong> start migration to secondary sites. Indeed,<br />

galect<strong>in</strong>-3, as well as galect<strong>in</strong>s -1 <strong>and</strong> -8, <strong>in</strong>hibits cancer cell-ECM prote<strong>in</strong>s adhesion possibly via<br />

disruption of normal <strong>in</strong>teractions that consequently leads to escape of cancer cells from their<br />

primary tumour site (44).<br />

On the contrary, galect<strong>in</strong>-3 can promote cell adhesion thanks to its multivalent properties<br />

(35). In this way, galect<strong>in</strong>-3 could augment homotypic adhesion of tumour cell <strong>and</strong> could enhance<br />

tumour-endothelial cells adhesion at secondary tumour sites, therefore, promot<strong>in</strong>g metastasis. For<br />

example, highly <strong>in</strong>vasive human breast carc<strong>in</strong>oma cells show enhanced galect<strong>in</strong>-3-dependent<br />

adhesion to endothelial cells (30). This process may <strong>in</strong>volve galect<strong>in</strong>-3 b<strong>in</strong>d<strong>in</strong>g to Mgat5-modified Nglycans<br />

on the tumour cell surface <strong>and</strong> trigger<strong>in</strong>g α5β1 <strong>in</strong>tegr<strong>in</strong> translocation to fibrillar adhesions<br />

(32). Some potential galect<strong>in</strong>-3 cell adhesion lig<strong>and</strong>s <strong>in</strong> human colon carc<strong>in</strong>oma <strong>in</strong>clude lam<strong>in</strong><strong>in</strong> <strong>and</strong><br />

lysosome-associated membrane glycoprote<strong>in</strong>s. Also, cross-l<strong>in</strong>k<strong>in</strong>g <strong>and</strong> prevent<strong>in</strong>g of endocytosis of<br />

epidermal growth factor receptor (EGFR) or transform<strong>in</strong>g growth factor-β receptor (TGFβR) by<br />

galect<strong>in</strong>-3 cell-surface lattices may affect cell growth <strong>and</strong> receptor density <strong>and</strong>, hence, could result <strong>in</strong><br />

<strong>in</strong>creased <strong>in</strong>vasiveness of tumour cells (7).<br />

Tumour cell spread<strong>in</strong>g<br />

Circulat<strong>in</strong>g galect<strong>in</strong>-3 has been detected at a 5-fold higher concentration <strong>in</strong> the bloodstream of<br />

patients with colorectal cancer as compared to healthy <strong>in</strong>dividuals (28). Increased levels of galect<strong>in</strong>-3<br />

<strong>in</strong> blood circulation could be prognostic for metastatic potential of colorectal tumours (7). In the<br />

bloodstream, galect<strong>in</strong>-3 has been shown to b<strong>in</strong>d to the oncofoetal Thomsen-Friedenreich<br />

(galactoseβ1,3N-acetylgalactosam<strong>in</strong>eα, TF) antigen present on MUC1 – a glycosylated<br />

transmembrane muc<strong>in</strong> highly expressed <strong>in</strong> many cancers (68). This <strong>in</strong>teraction triggers polarisation<br />

<strong>and</strong> redistribution of MUC1 on the cell surface <strong>and</strong> subsequent exposure of smaller cell adhesion<br />

molecules. As a result, there is <strong>in</strong>creased cancer cell adhesion to vascular endothelial cells <strong>and</strong><br />

<strong>in</strong>creased homotypic <strong>in</strong>teractions between transformed cells. The latter effect leads to formation of<br />

cancer cell aggregates (emboli) that survive longer <strong>in</strong> blood circulation <strong>and</strong>, hence, allow tumour cell<br />

spread<strong>in</strong>g to sites distant from the primary tumour.<br />

Furthermore, overexpressed galect<strong>in</strong>-3 <strong>in</strong> human breast carc<strong>in</strong>oma cells contributes to the<br />

remodell<strong>in</strong>g of the cytoskeletal microfilaments, which are <strong>in</strong>volved <strong>in</strong> cell spread<strong>in</strong>g (35). F<strong>in</strong>ally,<br />

71


ecause galect<strong>in</strong>-3 b<strong>in</strong>ds to <strong>and</strong> stimulates expression of <strong>in</strong>tegr<strong>in</strong>s, which take part <strong>in</strong> cell migration,<br />

it may also regulate tumour <strong>in</strong>vasion by activat<strong>in</strong>g <strong>in</strong>tegr<strong>in</strong>s.<br />

Importantly, galect<strong>in</strong>-3 can suppress immune response <strong>and</strong> consequently may aid tumour<br />

cells <strong>in</strong> evasion of the immune surveillance (35). Unfortunately, due to space restrictions, it is<br />

beyond the scope of this review to describe the complexity of immune reactions regulated by<br />

galect<strong>in</strong>-3. In short, galect<strong>in</strong>-3 is responsible for T-cell apoptosis <strong>and</strong> cross-l<strong>in</strong>k<strong>in</strong>g of T-cell receptors<br />

(TCRs) that results <strong>in</strong> TCR-dependent signal <strong>in</strong>hibition. Also, it is capable of reduc<strong>in</strong>g IL5 production<br />

<strong>and</strong> <strong>in</strong>hibit<strong>in</strong>g B lymphocyte differentiation (35).<br />

CONCLUSION AND PERSPECTIVES<br />

Galect<strong>in</strong>-3 is a multi-talented lect<strong>in</strong> that mediates a myriad of physiological processes. Its implication<br />

<strong>in</strong> cancer pathogenesis is obvious <strong>and</strong> is associated with a multitude of prote<strong>in</strong>-prote<strong>in</strong> <strong>and</strong> prote<strong>in</strong>glycan<br />

<strong>in</strong>teractions. Galect<strong>in</strong>-3 is a promis<strong>in</strong>g therapeutic target, as its <strong>in</strong>hibition by the CRD-specific<br />

lig<strong>and</strong>s has been shown to be effective <strong>in</strong> reduc<strong>in</strong>g lung <strong>and</strong> liver metastases <strong>in</strong> melanoma <strong>and</strong><br />

sarcoma mouse models, respectively (7). However, future studies are necessary for develop<strong>in</strong>g<br />

cl<strong>in</strong>ically significant therapeutics.<br />

Clearly, galect<strong>in</strong>-3 is a potential diagnostic <strong>and</strong> prognostic biomarker <strong>in</strong> several cancers.<br />

However, care should be taken <strong>in</strong> <strong>in</strong>terpretation of the results, as they may not always reflect the<br />

correct outcome of tumour progression/diagnosis (14). Moreover, many of the aforementioned<br />

<strong>in</strong>teractions of galect<strong>in</strong>-3 with its b<strong>in</strong>d<strong>in</strong>g partners/lig<strong>and</strong>s have been <strong>in</strong>vestigated only <strong>in</strong> vitro <strong>and</strong><br />

there is no data regard<strong>in</strong>g b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities of its <strong>in</strong>tracellular lig<strong>and</strong>s (7); therefore, it is important<br />

not to over-<strong>in</strong>terpret galect<strong>in</strong>-3 function at physiological levels.<br />

Much rema<strong>in</strong>s to be learned about the role of galect<strong>in</strong>-3 <strong>in</strong> cancer progression <strong>and</strong><br />

metastasis, as well as <strong>in</strong> non-pathological processes. The mechanistic detail of its action at different<br />

cellular locations might be crucial <strong>in</strong> underst<strong>and</strong><strong>in</strong>g tumourigenesis <strong>and</strong> develop<strong>in</strong>g better anticancer<br />

therapies. Additionally, galect<strong>in</strong>-3 has been shown to be <strong>in</strong>volved <strong>in</strong> other disease conditions,<br />

such as diabetes, atherosclerosis <strong>and</strong> <strong>in</strong>flammation (63), <strong>and</strong>, hence, it may also be a promis<strong>in</strong>g<br />

therapeutic target for these pathological states.<br />

REFERENCES<br />

1. Ahmad N, Gabius HJ, Andre S, Kaltner H, Sabesan S, Roy R, Liu B, Macaluso F, Brewer CF.<br />

Galect<strong>in</strong>-3 precipitates as a pentamer with synthetic multivalent carbohydrates <strong>and</strong> forms<br />

heterogeneous cross-l<strong>in</strong>ked complexes. J. Biol. Chem. 279: 10841–10847, 2004.<br />

2. Akahani S, Nangia-Makker P, Inohara H, Kim HR & Raz A. Galect<strong>in</strong>-3: a novel antiapoptotic<br />

molecule with a functional BH1 (NWGR) doma<strong>in</strong> of Bcl-2 family. Cancer Res. 57: 5272–5276,<br />

1997.<br />

3. Agrwal N, Sun Q, Wang SY, Wang JL. Carbohydrate-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 35. I. Properties of the<br />

recomb<strong>in</strong>ant polypeptide <strong>and</strong> the <strong>in</strong>dividuality of the doma<strong>in</strong>s. J. Biol. Chem. 268: 14932–<br />

14939, 1993.<br />

4. Andre S, Kojima S, Yamazaki N, F<strong>in</strong>k C, Kaltner H, Kayser K, Gabius HJ. Galect<strong>in</strong>-1 <strong>and</strong> -3 <strong>and</strong><br />

their lig<strong>and</strong>s <strong>in</strong> tumour biology. Non-uniform properties <strong>in</strong> cell surface presentation <strong>and</strong><br />

modulation of adhesion to matrix glycoprote<strong>in</strong>s for various tumor cell l<strong>in</strong>es, <strong>in</strong><br />

biodistribution of free <strong>and</strong> liposome-bound galect<strong>in</strong>s <strong>and</strong> <strong>in</strong> their expression by breast <strong>and</strong><br />

colorectal carc<strong>in</strong>omas with/without metastatic propensity. J. Cencer Res. Cl<strong>in</strong> Oncol 125:<br />

461-474, 1999.<br />

5. Barboni EA, Bawumia S, Henrick K, Hughes RC. Molecular model<strong>in</strong>g <strong>and</strong> mutagenesis<br />

studies of the N-term<strong>in</strong>al doma<strong>in</strong>s of galect<strong>in</strong>-3: evidence for participation with the Cterm<strong>in</strong>al<br />

carbohydrate recognition doma<strong>in</strong> <strong>in</strong> oligosaccharide b<strong>in</strong>d<strong>in</strong>g. Glycobiology 10:<br />

1201–1208, 2000.<br />

6. Barondes SH, Castronovo V, Cooper DN, Cumm<strong>in</strong>gs RD, Drickamer K, Feizi T, Gitt MA,<br />

Hirabayashi J, Hughes C, Kasai K, Leffler H, Liu F-T, Lotan R, Mercurio AM, Monsigny M,<br />

72


Pillai S, Poirer F, Raz A, Rigby PWJ, R<strong>in</strong>i JM, Wang JL. Galect<strong>in</strong>s: a family of animal betagalactoside-b<strong>in</strong>d<strong>in</strong>g<br />

lect<strong>in</strong>s. Cell 76: 597–598, 1994.<br />

7. Barrow H, Rhodes JM, Yu L-G. The role of galect<strong>in</strong>s <strong>in</strong> colorectal cancer progression. Int J<br />

Cancer 129: 1-8, 2011.<br />

8. Birdsall B, Feeney J, Burdett IDJ, Bawumia S, Barboni EAM <strong>and</strong> Hughes RC. NMR solution<br />

studies of hamster galect<strong>in</strong>-3 <strong>and</strong> electron microscopic visualization of surface-adsorbed<br />

complexes: evidence for <strong>in</strong>teractions between the N- <strong>and</strong> C-term<strong>in</strong>al doma<strong>in</strong>s. Biochemistry<br />

40: 4859–4866, 2001.<br />

9. Brewer CF, Miceli MC & Baum LG. Clusters, bundles, arrays <strong>and</strong> lattices: novel mechanisms<br />

for lect<strong>in</strong>-saccharide-mediated cellular <strong>in</strong>teractions. Curr. Op<strong>in</strong>. Struct. Biol. 12: 616–623,<br />

2002.<br />

10. Buljan M, Situm M, Tomas D, Milošević M, Krušl<strong>in</strong> B. Prognostic value of galect<strong>in</strong>-3 <strong>in</strong><br />

primary cutaneous melanoma. J Eur Acad Dermatol Venereol. 2010 (ahead of pr<strong>in</strong>t)<br />

11. Califice S, Castronovo V, Bracke M & van Den Brule F. Dual activities of galect<strong>in</strong>-3 <strong>in</strong> human<br />

prostate cancer: tumor suppression of nuclear galect<strong>in</strong>-3 vs tumor promotion of cytoplasmic<br />

galect<strong>in</strong>-3. Oncogene 23: 7527–7536, 2004.<br />

12. Cheng S, Serra S, Mercado M, Ezzat S, Asa SL. A high-throughput proteomic approach<br />

provides dist<strong>in</strong>ct signatures for thyroid cancer behavior. Cl<strong>in</strong> Cancer Res. 17(8): 2385-2394,<br />

2011.<br />

13. Colnot C, Fowlis D, Ripoche MA, Bouchaert I, <strong>and</strong> Poirier F. Embryonic implantation <strong>in</strong><br />

galect<strong>in</strong> 1/galect<strong>in</strong> 3 double mutant mice. Dev. Dyn. 211: 306–313, 1998.<br />

14. Dumic J, Dabelic S, Flögel M. Galect<strong>in</strong>-3: an open-ended story. Biochim Biophys<br />

Acta. 1760(4): 616-635, 2006.<br />

15. Elad-Sfadia G, Haklai R, Ballan E. & Kloog Y. Galect<strong>in</strong>-3 augments K-Ras activation <strong>and</strong><br />

triggers a Ras signal that attenuates ERK but not phospho<strong>in</strong>ositide 3-k<strong>in</strong>ase activity. J. Biol.<br />

Chem. 279: 34922–34930, 2004.<br />

16. Fern<strong>and</strong>ez GC, Ilarregui JM, Rubel CJ, Toscano MA, Gomez SA, Beigier Bompadre M, Isturiz<br />

MA, Rab<strong>in</strong>ovich GA, Palermo MS. Galect<strong>in</strong>-3 <strong>and</strong> soluble fibr<strong>in</strong>ogen act <strong>in</strong> concert to<br />

modulate neutrophil activation <strong>and</strong> survival: <strong>in</strong>volvement of alternative MAPK pathways.<br />

Glycobiology 15: 519–527, 2005.<br />

17. Feuk-Lagerstedt E, Jordan ET, Leffler H, Dahlgren C, Karlsson A. Identification of CD66a <strong>and</strong><br />

CD66b as the major galect<strong>in</strong>-3 receptor c<strong>and</strong>idates <strong>in</strong> human neutrophils. J. Immunol. 163:<br />

5592–5598, 1999.<br />

18. Fukushi J, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell<br />

motility <strong>and</strong> angiogenesis via engagement of galect<strong>in</strong>-3 <strong>and</strong> alpha3beta1 <strong>in</strong>tegr<strong>in</strong>. Mol. Biol.<br />

Cell 15: 3580–3590, 2004.<br />

19. Gaud<strong>in</strong> JC, Mehul B, Hughes RC. Nuclear localisation of wild type <strong>and</strong> mutant galect<strong>in</strong>-3 <strong>in</strong><br />

transfected cells. Biol. Cell 92: 49–58, 2000.<br />

20. Gong HC, Honjo Y, Nangia-Makker P, Hogan V, Mazurak N, Bresalier RS, Raz A. The NH2<br />

term<strong>in</strong>us of galect<strong>in</strong>-3 governs cellular compartmentalization <strong>and</strong> functions <strong>in</strong> cancer cells.<br />

Cancer Res. 59: 6239–6245, 1999.<br />

21. Hirabayashi J, Hashidate T, Arata Y, Nishi N, Nakamura T, Hirashima M, Urashima T, Oka T,<br />

Futai M, Muller WEG, Yagi F <strong>and</strong> Kasai K. Oligosaccharide specificity of galect<strong>in</strong>s: a search by<br />

frontal aff<strong>in</strong>ity chromatography. Biochim. Biophys. Acta 1572: 232–254, 2002.<br />

22. Ho MK, Spr<strong>in</strong>ger TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific<br />

antigen def<strong>in</strong>ed by monoclonal antibodies, J. Immunol. 128: 1221–1228, 1982.<br />

23. Honjo Y, Nangia-Makker P, Inohara H & Raz A. Downregulation of galect<strong>in</strong>-3 suppresses<br />

tumorigenicity of human breast carc<strong>in</strong>oma cells. Cl<strong>in</strong>. Cancer Res. 7: 661–668, 2001.<br />

24. Houzelste<strong>in</strong> D, Goncalves IR, Fadden AJ, Sidhu SS, Cooper DN, Drickamer K, Leffler H,<br />

Poirier F. Phylogenetic analysis of the vertebrate galect<strong>in</strong> family. Mol. Biol. Evol. 21: 1177–<br />

1187, 2004.<br />

25. Hsu DK, Zuberi RI, Liu F-T. Biochemical <strong>and</strong> biophysical characterization of human<br />

recomb<strong>in</strong>ant IgE-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>, an S-type animal lect<strong>in</strong>. J. Biol. Chem. 267: 14167–14174,<br />

1992.<br />

73


26. Hughes RC. The galect<strong>in</strong> family of mammalian carbohydrate-b<strong>in</strong>d<strong>in</strong>g molecules. Biochem.<br />

Soc. Transact. 25: 1194–1198, 1997.<br />

27. Hughes R.C. Secretion of the galect<strong>in</strong> family of mammalian carbohydrate-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s.<br />

Biochim. Biophys. Acta 1473: 172–185, 1999.<br />

28. Iurisci I, T<strong>in</strong>ari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of galect<strong>in</strong>-<br />

3 <strong>in</strong> the sera of normal controls <strong>and</strong> cancer patients. Cl<strong>in</strong> Cancer Res 6: 1389-1393, 2000.<br />

29. Jeng KC, Frigeri LG, Liu FT. An endogenous lect<strong>in</strong>, galect<strong>in</strong>-3 (epsilon BP/Mac-2), potentiates<br />

IL-1 production by human monocytes. Immunol. Lett. 42: 113–116, 1994.<br />

30. Khaldoyanidi SK, Gl<strong>in</strong>sky VV, Sikora L, Gl<strong>in</strong>skii AB, Moss<strong>in</strong>e VV, Qu<strong>in</strong>n TP, Gl<strong>in</strong>sky<br />

GV, Sriramarao P. MDA-MB-435 human breast carc<strong>in</strong>oma cell homo- <strong>and</strong> heterotypic<br />

adhesion under flow conditions is mediated <strong>in</strong> part by Thomsen-Friedenreich antigengalect<strong>in</strong>-3<br />

<strong>in</strong>teractions. J. Biol. Chem. 278: 4127–4134, 2003.<br />

31. Kim MK, Sung CO, Do IG, Jeon HK, Song TJ, Park HS, Lee YY, Kim BG, Lee JW, Bae DS.<br />

Overexpression of Galect<strong>in</strong>-3 <strong>and</strong> its cl<strong>in</strong>ical significance <strong>in</strong> ovarian carc<strong>in</strong>oma. Int J Cl<strong>in</strong><br />

Oncol. 2011 (ahead of pr<strong>in</strong>t)<br />

32. Lagana A, Goetz JG, Cheung P, Raz A, Dennis JW, Nabi IR. Galect<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to Mgat5modified<br />

N-glycans regulates fibronect<strong>in</strong> matrix remodel<strong>in</strong>g <strong>in</strong> tumor cells. Mol Cell Biol.<br />

26(8): 3181-3193, 2006.<br />

33. Lee YJ, Song YK, Song JJ, Siervo-Sassi RR, Kim HR, Li L, Spitz DR, Loksh<strong>in</strong> A, Kim JH.<br />

Reconstitution of galect<strong>in</strong>-3 alters glutathione content <strong>and</strong> potentiates TRAIL-<strong>in</strong>duced<br />

cytotoxicity by dephosphorylation of Akt. Exp. Cell Res. 288: 21–34, 2003.<br />

34. Liu FT, Hsu DK, Zuberi RI, Kuwabara I, Chi EY, Henderson WR Jr. Expression <strong>and</strong> function of<br />

galect<strong>in</strong>-3, a beta-galactoside-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong>, <strong>in</strong> human monocytes <strong>and</strong> macrophages. Am. J.<br />

Pathol. 147: 1016–1028, 1995.<br />

35. Liu FT, Rab<strong>in</strong>ovich GA. Galect<strong>in</strong>s as modulators of tumour progression. Nat Rev Cancer.<br />

5(1): 29-41, 2005.<br />

36. Markowska AI, Liu FT, Panjwani N. Galect<strong>in</strong>-3 is an important mediator of VEGF- <strong>and</strong> bFGFmediated<br />

angiogenic response. J Exp Med. 207(9): 1981-1993, 2010.<br />

37. Massa SM, Cooper DN, Leffler H, Barondes SH. L-29, an endogenous lect<strong>in</strong>, b<strong>in</strong>ds to<br />

glycoconjugate lig<strong>and</strong>s with positive cooperativity, Biochemistry 32 260–267, 1993.<br />

38. Matarrese P, T<strong>in</strong>ari N, Semeraro ML, Natoli C, Iacobelli S, Malorni W. Galect<strong>in</strong>-3<br />

overexpression protects from cell damage <strong>and</strong> death by <strong>in</strong>fluenc<strong>in</strong>g mitochondrial<br />

homeostasis. FEBS Lett. 473: 311–315, 2000.<br />

39. Mazurek N, Conkl<strong>in</strong> J, Byrd JC, Raz A, Bresalier RS. Phosphorylation of the beta-galactosideb<strong>in</strong>d<strong>in</strong>g<br />

prote<strong>in</strong> galect<strong>in</strong>-3 modulates b<strong>in</strong>d<strong>in</strong>g to its lig<strong>and</strong>s. J. Biol. Chem. 275: 36311–36315,<br />

2000.<br />

40. Menon RP, Hughes RC. Determ<strong>in</strong>ants <strong>in</strong> the N-term<strong>in</strong>al doma<strong>in</strong>s of galect<strong>in</strong>-3 for secretion<br />

by a novel pathway circumvent<strong>in</strong>g the endoplasmic reticulum–Golgi complex. Eur. J.<br />

Biochem. 264: 569–576, 1999.<br />

41. Menon RP, Strom M, Hughes RC. Interaction of a novel cyste<strong>in</strong>e <strong>and</strong> histid<strong>in</strong>e-rich<br />

cytoplasmic prote<strong>in</strong> with galect<strong>in</strong>-3 <strong>in</strong> a carbohydrate-<strong>in</strong>dependent manner. FEBS Lett. 470:<br />

227–231, 2000.<br />

42. Morris S, Ahmad N, André S, Kaltner H, Gabius HJ, Brenowitz M, Brewer F. Quaternary<br />

solution structures of galect<strong>in</strong>s-1, -3, <strong>and</strong> -7. Glycobiology 14(3): 293-300, 2004.<br />

43. Nangia-Makker P, Honjo Y, Sarvis R, Akahani S, Hogan V, Pienta KJ, Raz A. Galect<strong>in</strong>-3<br />

<strong>in</strong>duces endothelial cell morphogenesis <strong>and</strong> angiogenesis. Am. J. Pathol. 156: 899–909,<br />

2000.<br />

44. Ochieng J, Furtak V & Lukyanov P. Extracellular functions of galect<strong>in</strong>-3. Glycoconj. J. 19:<br />

527–535 (2004).<br />

45. Ochieng J, Green B, Evans S, James O, Warfield P. Modulation of the biological functions of<br />

galect<strong>in</strong>-3 by matrix metalloprote<strong>in</strong>ases. Biochim. Biophys. Acta 1379: 97–106, 1998.<br />

46. Ochieng J, Platt D, Tait L, Hogan V, Raz T, Carmi P, Raz A. Structure–function relationship of<br />

a recomb<strong>in</strong>ant human galactosideb<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Biochemistry 32: 4455–4460, 1993.<br />

74


47. Oka N, Nakahara S, Takenaka Y, Fukumori T, Hogan V, Kanayama HO, Yanagawa T, Raz A.<br />

Galect<strong>in</strong>-3 <strong>in</strong>hibits tumor necrosis factor-related apoptosis-<strong>in</strong>duc<strong>in</strong>g lig<strong>and</strong>-<strong>in</strong>duced<br />

apoptosis by activat<strong>in</strong>g Akt <strong>in</strong> human bladder carc<strong>in</strong>oma cells. Cancer Res. 65: 7546–7553,<br />

2005.<br />

48. Paron I, Scaloni A, P<strong>in</strong>es A, Bachi A, Liu F-T, Pupp<strong>in</strong> C, P<strong>and</strong>olfi M, Ledda L, Di Loreto C,<br />

Damante G, Tell G. Nuclear localization of Galect<strong>in</strong>-3 <strong>in</strong> transformed thyroid cells: a role <strong>in</strong><br />

transcriptional regulation. Biochem. Biophys. Res. Commun. 302: 545–553, 2003.<br />

49. Raz A, Pazer<strong>in</strong>i G, Carmi P. Identification of the metastasis-associated, galactoside-b<strong>in</strong>d<strong>in</strong>g<br />

lect<strong>in</strong> as a chimeric gene product with homology to an IgE-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Cancer Res. 49:<br />

3489–3493, 1989.<br />

50. Righi A, J<strong>in</strong> L, Zhang S, Still<strong>in</strong>g G, Scheithauer BW, Kovacs K, Lloyd RV. Identification <strong>and</strong><br />

consequences of galect<strong>in</strong>-3 expression <strong>in</strong> pituitary tumors. Mol Cell Endocr<strong>in</strong>ol. 326(1-2): 8-<br />

14, 2010.<br />

51. Saffar H, Sanii S, Heshmat R, Haghpanah V, Larijani B, Rajabiani A, Azimi S <strong>and</strong> Tavangar<br />

SM. Expression of galect<strong>in</strong>-3, nm-23, <strong>and</strong> cyclooxygenase-2 could potentially discrim<strong>in</strong>ate<br />

between benign <strong>and</strong> malignant pheochromocytoma. Am. J. Cl<strong>in</strong>. Pathol. 135 (3): 454-460,<br />

2011.<br />

52. Sanjuan X, Fern<strong>and</strong>ez PL, Castells A, Castronovo V, van den Brule F, Liu FT, Cardesa A,<br />

Campo E. Differential expression of galect<strong>in</strong>-3 <strong>and</strong> galect<strong>in</strong>-1 <strong>in</strong> colorectal cancer<br />

progression. Gastroenterology 113: 1906-1915, 1997.<br />

53. Sato S, Hughes RC. B<strong>in</strong>d<strong>in</strong>g specificity of a baby hamster kidney lect<strong>in</strong> for H type I <strong>and</strong> II<br />

cha<strong>in</strong>s, polylactosam<strong>in</strong>e glycans, <strong>and</strong> appropriately glycosylated forms of lam<strong>in</strong><strong>in</strong> <strong>and</strong><br />

fibronect<strong>in</strong>. J. Biol. Chem. 267: 6983–6990, 1992.<br />

54. Seetharaman J, Kanigsberg A, Slaaby R, Leffler H, Barondes SH, R<strong>in</strong>i JM. X-ray crystal<br />

structure of the human galect<strong>in</strong>-3 carbohydrate recognition doma<strong>in</strong> at 2.1-A resolution. J.<br />

Biol. Chem. 273: 13047–13052, 1998.<br />

55. Shalom-Feuerste<strong>in</strong> R, Cooks T, Raz A, Kloog Y. Galect<strong>in</strong>-3 regulates a molecular switch from<br />

N-Ras to K-Ras usage <strong>in</strong> human breast carc<strong>in</strong>oma cells. Cancer Res. 65: 7292–7300, 2005.<br />

56. Sharon N. Lect<strong>in</strong>s: carbohydrate-specific reagents <strong>and</strong> biological recognition molecules. J<br />

Biol Chem. 282(5):2753-2764, 2007.<br />

57. Shimura T, Takenaka Y, Fukumori T, Tsutsumi S, Okada K, Hogan V, Kikuchi A, Kuwano H,<br />

Raz A. Implication of galect<strong>in</strong>-3 <strong>in</strong> Wnt signal<strong>in</strong>g. Cancer Res. 65: 3535–3537, 2005.<br />

58. Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A, Raz A. Galect<strong>in</strong>-3, a novel b<strong>in</strong>d<strong>in</strong>g<br />

partner of beta-caten<strong>in</strong>. Cancer Res. 64: 6363–6367, 2004.<br />

59. Takenaka Y, Inohara H, Yoshii T, Oshima K, Nakahara S, Akahani S, Honjo Y, Yamamoto<br />

Y, Raz A, Kubo T. Malignant transformation of thyroid follicular cells by galect<strong>in</strong>-3. Cancer<br />

Lett. 195: 111–119, 2003.<br />

60. Tsay YG, L<strong>in</strong> NY, Voss PG, Patterson RJ, Wang JL. Export of galect<strong>in</strong>-3 from nuclei of<br />

digiton<strong>in</strong>-permeabilized mouse 3T3 fibroblasts. Exp.Cell Res. 252: 250–261, 1999.<br />

61. Yang R-Y, Hill PN, Hsu DK, Liu F-T. Role of the carboxylterm<strong>in</strong>al lect<strong>in</strong> doma<strong>in</strong> <strong>in</strong> selfassociation<br />

of galect<strong>in</strong>-3. Biochemistry 37: 4086–4092, 1998.<br />

62. Yang R-Y, Hsu DK & Liu F-T. Expression of galect<strong>in</strong>-3 modulates T-cell growth <strong>and</strong> apoptosis.<br />

PNAS 93: 6737–6742, 1996.<br />

63. Yang R-Y, Rab<strong>in</strong>ovich GA, Liu F-T. Galect<strong>in</strong>s: structure, function <strong>and</strong> therapeutic potential.<br />

Expert Rev Mol Med. 10: e17, 2008.<br />

64. Yang E, Shim JS, Woo HJ, Kim KW, Kwon HJ. Am<strong>in</strong>opeptidase N/CD13 <strong>in</strong>duces angiogenesis<br />

through <strong>in</strong>teraction with a pro-angiogenic prote<strong>in</strong>, galect<strong>in</strong>-3. Biochem Biophys Res<br />

Commun. 363(2): 336-341, 2007.<br />

65. Yoshii T, Fukumori T, Honjo Y, Inohara H, Kim HR, Raz A. Galect<strong>in</strong>-3 phosphorylation is<br />

required for its anti-apoptotic function <strong>and</strong> cell cycle arrest. J. Biol. Chem. 277: 6852–6857,<br />

2002.<br />

66. Yoshii T, Inohara H, Takenaka Y, Honjo Y, Akahani S, Nomura T, Raz A, Kubo T. Galect<strong>in</strong>-3<br />

ma<strong>in</strong>ta<strong>in</strong>s the transformed phenotype of thyroid papillary carc<strong>in</strong>oma cells. Int. J. Oncol. 18:<br />

787–792, 2001.<br />

75


67. Yu F, F<strong>in</strong>ley RL Jr, Raz A & Kim HR. Galect<strong>in</strong>-3 translocates to the per<strong>in</strong>uclear membranes<br />

<strong>and</strong> <strong>in</strong>hibits cytochrome c release from the mitochondria. A role for synex<strong>in</strong> <strong>in</strong> galect<strong>in</strong>-3<br />

translocation. J. Biol. Chem. 277: 15819–15827, 2002.<br />

68. Yu LG, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, Gerasimenko OV, Hilkens<br />

J, Hirabayashi J, Kasai K, Rhodes JM. Galect<strong>in</strong>-3 <strong>in</strong>teraction with Thomsen-Friedenreich<br />

disaccharide on cancer-associated MUC1 causes <strong>in</strong>creased cancer cell endothelial adhesion.<br />

J Biol Chem. 282(1): 773-781, 2007.<br />

76


6.5 Example of a Referee’s Report<br />

Deubiquitylase HAUSP stabilizes REST <strong>and</strong> promotes ma<strong>in</strong>tenance of neural progenitor<br />

cells<br />

Zhi Huang, Qiulian Wu, Olga A. Guryanova, L<strong>in</strong> Cheng, We<strong>in</strong>ian Shou, Jeremy N. Rich <strong>and</strong><br />

Shideng Bao<br />

The authors identify previously unknown regulatory mechanism of stabilisation of the<br />

repressor element 1-silenc<strong>in</strong>g transcription factor (REST). REST is responsible for ma<strong>in</strong>tenance of<br />

neuronal stem/progenitor cells (NPCs) <strong>and</strong> is a key silenc<strong>in</strong>g factor of neuronal <strong>and</strong> non-neuronal<br />

genes. Deregulation of REST expression is implicated <strong>in</strong> neurodegenerative diseases <strong>and</strong> neural<br />

tumours <strong>and</strong> the authors recognise the importance of str<strong>in</strong>gent regulation of REST levels <strong>in</strong> l<strong>in</strong>eage<br />

commitment <strong>and</strong> self-renewal.<br />

It has been previously demonstrated that β-TrCP is an E3 ligase that targets REST for<br />

degradation via the ubiquit<strong>in</strong>-proteasome pathway (UPS) dur<strong>in</strong>g neuronal differentiation. The authors<br />

reasoned that there must be a counterbalanc<strong>in</strong>g mechanism for USP-driven REST degradation <strong>and</strong><br />

they performed a screen to look for potential REST deubiquitylases. They identified the herpes virusassociated<br />

ubiquit<strong>in</strong>-specific protesase (HAUSP) (also known as USP7), which expression levels<br />

decrease concordantly with REST upon ret<strong>in</strong>oic acid (RA)-<strong>in</strong>duced differentiation of NPCs. In turn,<br />

expression levels of β-TrCP gradually <strong>in</strong>crease. This is demonstrated by both immunoblott<strong>in</strong>g <strong>and</strong><br />

immunofluorescence.<br />

Further experiments show that HAUSP antagonises β-TrCP <strong>and</strong> acts as a deubiquitylase<br />

(DUB) to stabilise REST. The authors utilise a variety of methods to substantiate their results. They<br />

demonstrate that HAUSP knockdown by shRNA <strong>in</strong> NPCs specifically decreases REST prote<strong>in</strong> levels<br />

as well as results <strong>in</strong> neuronal differentiation <strong>and</strong> disruption of self-renewal that can be rescued by<br />

ectopic expression of REST. Moreover, us<strong>in</strong>g real-time PCR (rtPCR), the authors show that the<br />

knockdown does not affect REST mRNA levels. In turn, immunoprecipitation experiments with<br />

REST- or ubiquit<strong>in</strong>-specific antibodies show that HAUSP knockdown leads to <strong>in</strong>creased<br />

polyubiquit<strong>in</strong>ation of REST. Conversely, overexpression of HAUSP results <strong>in</strong> <strong>in</strong>creased REST<br />

prote<strong>in</strong> levels <strong>and</strong> decreased polyubiquitynation.<br />

In vitro <strong>and</strong> <strong>in</strong> vivo deubiquitynation assays that utilise catalytically <strong>in</strong>active mutant HAUSP<br />

(Mt-HAUSP) further substantiate the specificity of HAUSP as a direct deubiquitylase of REST. Also,<br />

overexpression of HAUSP, but not Mt-HAUSP, rescues the neuronal differentiation phenotype<br />

<strong>in</strong>duced by the knockdown, which was demonstrated by immunosta<strong>in</strong><strong>in</strong>g, immunoprecipitation <strong>and</strong><br />

Western blott<strong>in</strong>g. F<strong>in</strong>ally, the authors identify a consensus b<strong>in</strong>d<strong>in</strong>g site of human REST (310-PYSS-<br />

313) that is required for HAUSP-dependent deubiquitynation of REST. This is confirmed by<br />

immunoprecipitation which reveals that mutant REST (S313A) is not deubiquitynated by HAUSP. In<br />

addition, RA-<strong>in</strong>duced neuronal differentiation results <strong>in</strong> <strong>in</strong>creased ubiquitylation of REST, whereas<br />

double-knockdown of β-TrCP <strong>and</strong> HAUSP leads to <strong>in</strong>termediate levels of REST ubiquit<strong>in</strong>ation.<br />

Taken together, these data validate that REST prote<strong>in</strong> levels are controlled by oppos<strong>in</strong>g roles of β-<br />

TrCP <strong>and</strong> HAUSP <strong>and</strong> the authors propose a „Y<strong>in</strong>g-Yang‟ model of deubiquit<strong>in</strong>ation <strong>and</strong><br />

ubiquit<strong>in</strong>ation as post-translational mechanisms that regulate REST prote<strong>in</strong> levels <strong>and</strong> NPC<br />

differentiation.<br />

General comments:<br />

The article demonstrates that deubiquitylase HAUSP plays essential role <strong>in</strong> the ma<strong>in</strong>tenance of<br />

neuronal progenitor cells. The various methods used by the authors provide solid arguments to claim<br />

that HAUSP is a critical factor <strong>in</strong> positive regulation of REST <strong>and</strong> <strong>in</strong>deed it acts directly on REST as<br />

its specific deubiquitylase to counteract β-TrCP-dependent ubiquitylation. Certa<strong>in</strong>ly, these results give<br />

important <strong>in</strong>sights <strong>in</strong>to the regulation of neuronal l<strong>in</strong>eage commitment <strong>and</strong>, hence, could significantly<br />

aid <strong>in</strong> elucidat<strong>in</strong>g the causes of pathological states, such as neurodegenerative diseases <strong>and</strong> bra<strong>in</strong><br />

cancers. Also, the authors are aware of the potential use of deubiquitylase HAUSP as a therapeutic<br />

target <strong>and</strong> as an <strong>in</strong>valuable tool <strong>in</strong> regenerative medic<strong>in</strong>e. The article is well-written <strong>and</strong> sounds<br />

conv<strong>in</strong>c<strong>in</strong>g; however, the data presented does not fully expla<strong>in</strong> or validate some of the conclusions<br />

77


drawn by the authors. Therefore, to substantiate their f<strong>in</strong>al conclusions, I recommend the follow<strong>in</strong>g<br />

changes before submission of the paper:<br />

Major po<strong>in</strong>ts:<br />

1) Figure 2 – immunoblott<strong>in</strong>g experiments use CoREST as a negative control to show that<br />

HAUSP knockdown specifically reduces REST prote<strong>in</strong> levels. Although CoREST is a<br />

primary co-factor of REST, the authors do not show whether HAUSP knockdown affects the<br />

levels of other factors <strong>in</strong> the repressor complex with REST, such as HDAC-1 <strong>and</strong> -2<br />

(Abrajano , J.J. et al.). It would be good to confirm whether these prote<strong>in</strong> levels rema<strong>in</strong><br />

unchanged to validate whether HAUSP specifically affects REST.<br />

2) Figure 4 – similarly to Figure 2, CoREST is used as a negative control for rtPCR to check<br />

whether mRNA levels of REST are affected by HAUSP knockdown. The authors should also<br />

<strong>in</strong>vestigate mRNA levels of other REST co-factors <strong>and</strong> possibly other transcription factors<br />

<strong>in</strong>volved <strong>in</strong> NPC differentiation.<br />

3) Figure S4d – the authors argue that „forced expression of flag-HAUSP (...) <strong>in</strong>creased REST<br />

prote<strong>in</strong> levels‟. This is not conv<strong>in</strong>c<strong>in</strong>g as immunoblott<strong>in</strong>g does not actually show any<br />

significant <strong>in</strong>crease <strong>in</strong> prote<strong>in</strong> levels.<br />

4) Figure 5e – <strong>in</strong> vitro deubiquitylation assay utilises prote<strong>in</strong>s that were overexpressed <strong>in</strong> 293T<br />

cells <strong>and</strong> subsequently purified. This means that there is a potential risk of co-purify<strong>in</strong>g other<br />

DUBs <strong>and</strong>/or other factors or scaffold prote<strong>in</strong>s that could affect REST polyubiquit<strong>in</strong>ation<br />

status. The result might be particularly dubious if WT-HAUSP, but not Mt-HAUSP was<br />

contam<strong>in</strong>ated, but this could be checked by mass spectrometry or prote<strong>in</strong> sequenc<strong>in</strong>g.<br />

5) Figure 7 – the authors claim to identify a consensus HAUSP b<strong>in</strong>d<strong>in</strong>g sequence <strong>in</strong> REST, but<br />

fail to show a direct loss of <strong>in</strong>teraction between HAUSP <strong>and</strong> mutant REST. Although<br />

decreased deubiquit<strong>in</strong>ation of REST(S313A) is demonstrated, immunoprecipitation of<br />

HAUSP <strong>and</strong> immunoblott<strong>in</strong>g with mutant REST would be crucial to validate the authors‟<br />

conclusions.<br />

6) Figure 8 – the concept of direct modulation of REST prote<strong>in</strong> levels <strong>and</strong>, hence, l<strong>in</strong>eage<br />

commitment <strong>and</strong> self-renewal, by β-TrCP <strong>and</strong> HAUSP as presented <strong>in</strong> the „Y<strong>in</strong>g-Yang‟ model<br />

is very simplified. The authors fail to discuss other potential factors <strong>in</strong>volved <strong>in</strong> this<br />

regulation, only with a brief mention of TRF2. Certa<strong>in</strong>ly, REST is a critical factor <strong>in</strong><br />

regulat<strong>in</strong>g NPC differentiation, but other factors are also implicated. For example, RA<strong>in</strong>duced<br />

differentiation results <strong>in</strong> activation of LIF (Asano, H. et al). F<strong>in</strong>ally, authors do not<br />

show how β-TrCP <strong>and</strong> HAUSP antagonise each other at the molecular level <strong>and</strong> whether<br />

modulation of REST prote<strong>in</strong> levels is phosphorylation-dependent, as β-TrCP requires a<br />

phosphodegron for ubiquit<strong>in</strong>ation (Westbrook, T.F. et al.).<br />

M<strong>in</strong>or po<strong>in</strong>ts<br />

1) Figure 1 – the authors show prote<strong>in</strong> levels of HAUSP, β-TrCP, REST <strong>and</strong> TUJ1 by<br />

immunoblott<strong>in</strong>g dur<strong>in</strong>g NPC differentiation <strong>and</strong> the results are confirmed by immunosta<strong>in</strong><strong>in</strong>g<br />

of all prote<strong>in</strong>s, but β-TrCP. It would be nice to <strong>in</strong>clude β-TrCP <strong>in</strong> this experiment <strong>and</strong> also to<br />

be consistent with the cell l<strong>in</strong>e used, as the authors sometimes utilise 15167 <strong>and</strong> sometimes<br />

ENStemA NPCs.<br />

2) Figure 3e – immunoblot shows prote<strong>in</strong> levels of ectopically expressed Flag-REST after<br />

HAUSP knockdown; it would be good to see also total REST levels.<br />

78


3) Figure 7b – immunoblot shows <strong>in</strong>complete disruption of deubiquitylation of REST(S313A)<br />

(lane 4) as compared to control not overexpress<strong>in</strong>g HAUSP (lane 2) – this is not discussed <strong>in</strong><br />

text.<br />

4) Figure S6: a –REST is almost completely degraded <strong>in</strong> differentiated cells (lane 2), although a<br />

proteasomal <strong>in</strong>hibitor is used. b – REST ubiquit<strong>in</strong>ation <strong>in</strong> cells overexpress<strong>in</strong>g HAUSP is<br />

only slightly reduced (lane 1) as compared to control (lane 2). These results are not expla<strong>in</strong>ed.<br />

5) Most of the immunoprecipitation experiments do not <strong>in</strong>clude <strong>in</strong>put REST levels (Figure 5c, e,<br />

f, Figure 6d, Figure 7b, c, d, Figure S4c <strong>and</strong> Figure S6), so it is hard to assess the relevancy of<br />

the results of deubiquit<strong>in</strong>ation assays.<br />

6) Figure 1, 3 <strong>and</strong> 6 – apart from TUJ1, it would be nice to use antibodies aga<strong>in</strong>st other neuronal<br />

markers to substantiate the results.<br />

References<br />

1. Abrajano JJ, Qureshi IA, Gokhan S, Zheng D, Bergman A, Mehler MF. REST <strong>and</strong> CoREST<br />

modulate neuronal subtype specification, maturation <strong>and</strong> ma<strong>in</strong>tenance. PLoS One. (2009)<br />

4(12):e7936.<br />

2. Asano H, Aonuma M, Sanosaka T, Kohyama J, Namihira M, Nakashima K. Astrocyte<br />

differentiation of neural precursor cells is enhanced by ret<strong>in</strong>oic acid through a change <strong>in</strong><br />

epigenetic modification. Stem Cells. (2009) 27(11):2744-52.<br />

3. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN, Liang A, Leng Y, Maehr R, Shi Y,<br />

Harper JW, Elledge SJ. SCF β-TRCP controls oncogenic transformation <strong>and</strong> neural<br />

differentiation through REST degradation. Nature (2008) 452, 370-374.<br />

79


Section 7<br />

Transferable Skills<br />

Tra<strong>in</strong><strong>in</strong>g <strong>in</strong> this module is on-go<strong>in</strong>g throughout the year <strong>and</strong> is delivered by staff <strong>in</strong>volved with<br />

the program <strong>and</strong> the University via central provisions. It <strong>in</strong>cludes tra<strong>in</strong><strong>in</strong>g <strong>in</strong> research<br />

techniques <strong>and</strong> the development of personal <strong>and</strong> professional transferable skills.<br />

Assessment of this module is via three assignments: the bus<strong>in</strong>ess plan <strong>and</strong> presentation<br />

given <strong>in</strong> the IP <strong>and</strong> Commercialisation component (8% of the marks), the PhD Studentship<br />

application (10% of the marks), <strong>and</strong> the Portfolio of Assessment Commentary (2% of the<br />

marks). Altogether, these 3 assignments contribute 20% of the total marks available for the<br />

<strong>MRes</strong>. Further <strong>in</strong>formation on the 3 assessed components of the module is given on the<br />

pages that follow.<br />

PhD Studentship Applications are assessed by two <strong>in</strong>dependent markers. The Portfolio of<br />

Assessment Commentary will be evaluated by the course director. The Bus<strong>in</strong>ess Proposal<br />

will be assessed by a panel represent<strong>in</strong>g members from the Management School, Bus<strong>in</strong>ess<br />

Gateway <strong>and</strong> the Programme Director.<br />

Please note the st<strong>and</strong>ard University penalty for late submission of written work applies (see<br />

under overview of assessment).<br />

7.1 Intellectual Property <strong>and</strong> Commercialization<br />

The IP <strong>and</strong> Commercialization Workshop will raise awareness of the issues associated<br />

with, <strong>and</strong> necessary for, successful commercialisation of academic research. Intellectual<br />

property is a key component for bus<strong>in</strong>ess success. You will learn about the types <strong>and</strong><br />

importance of <strong>in</strong>tellectual property <strong>and</strong> how to search for patent <strong>in</strong>formation on the Web. The<br />

routes available for creat<strong>in</strong>g value from basic research will be described. There will be a<br />

comparison of the licens<strong>in</strong>g <strong>and</strong> sp<strong>in</strong>-out routes, together with detail of the bus<strong>in</strong>ess plann<strong>in</strong>g<br />

process <strong>and</strong> the role of the technology transfer office. You will be work<strong>in</strong>g as a group to<br />

prepare a written bus<strong>in</strong>ess plan for potential commercialisation of research. In addition, you<br />

will be required to present your idea as a „pitch‟ to a panel of judges <strong>in</strong> a similar way to the<br />

popular television programme “Dragon‟s Den”. Marks will be awarded to each group by the<br />

judg<strong>in</strong>g panel based on both the bus<strong>in</strong>ess plan <strong>and</strong> the presentation.<br />

7.2 Writ<strong>in</strong>g a PhD Studentship<br />

The “Writ<strong>in</strong>g a PhD Studentship” workshop will enable students to create a coherent <strong>and</strong><br />

feasible research proposal for a scientific project to cont<strong>in</strong>ue study<strong>in</strong>g for a PhD, <strong>and</strong> to<br />

present this <strong>in</strong> a form suitable for external scrut<strong>in</strong>y. An overview of the material covered <strong>in</strong><br />

this workshop is given below.<br />

Aims:<br />

- To improve your underst<strong>and</strong><strong>in</strong>g of the concepts of hypothesis test<strong>in</strong>g <strong>and</strong><br />

experimental plann<strong>in</strong>g.<br />

- To practice the skills required for produc<strong>in</strong>g a scientific proposal <strong>in</strong> writ<strong>in</strong>g.<br />

Learn<strong>in</strong>g outcomes:<br />

On completion of this assignment, you will have improved your ability to:<br />

- formulate testable hypotheses<br />

80


- expla<strong>in</strong> the rationale <strong>and</strong> design of experiments to test specific hypotheses<br />

- write a scientific proposal <strong>in</strong> a structured way.<br />

How is this relevant to me?<br />

- In your later career you may need to th<strong>in</strong>k analytically about new experiments, <strong>and</strong><br />

may need to expla<strong>in</strong> your th<strong>in</strong>k<strong>in</strong>g <strong>in</strong> writ<strong>in</strong>g.<br />

- Almost all scientific activity that occurs <strong>in</strong> the outside world (<strong>and</strong> almost all new<br />

scientific activity <strong>in</strong> Universities) is based on written proposals that justify the work to<br />

be done.<br />

- In some cases, your future salary (or that of your colleagues) may even depend on<br />

the ability to write a conv<strong>in</strong>c<strong>in</strong>g proposal describ<strong>in</strong>g what you <strong>in</strong>tend to do.<br />

Examples of types of proposal<br />

Decid<strong>in</strong>g what experiments are worth do<strong>in</strong>g, how to design them to produce useful data, <strong>and</strong><br />

then how to expla<strong>in</strong> these processes to other people, is central to all modern scientific<br />

activity. The same generic approach is used at many different levels, <strong>in</strong>clud<strong>in</strong>g Ph.D.<br />

projects proposal you will need write as part of your transferable skill task, <strong>and</strong> proposals for<br />

grants that provide the salary for a post-doctoral researcher or a research fellow. The same<br />

general pr<strong>in</strong>ciples also apply to the formulation of proposals for large projects <strong>in</strong> <strong>in</strong>dustry<br />

designed to produce new products (eg drug discovery <strong>and</strong> development), <strong>and</strong> for big<br />

<strong>in</strong>ternational research projects that might <strong>in</strong>volve the collaboration of many different research<br />

groups.<br />

The elements of a scientific proposal<br />

The general questions that provide the basis for any scientific proposal are:<br />

(a) What is already known about the specific topic ? This component often takes the<br />

form of a review of previous studies <strong>in</strong> the area.<br />

(b) What are the gaps <strong>in</strong> present knowledge ? A critical analysis of previous work <strong>in</strong> the<br />

field may identify unanswered questions, or there may be conflict<strong>in</strong>g data that need<br />

to be expla<strong>in</strong>ed <strong>and</strong> reconciled. Developments <strong>in</strong> one field, <strong>in</strong>clud<strong>in</strong>g new types of<br />

technology, may suggest new applications <strong>in</strong> another field, or new ways of look<strong>in</strong>g at<br />

specific questions <strong>in</strong> other fields.<br />

(c) What specific hypothesis will provide the basis for the proposed experiments ? The<br />

concept of hypothesis-test<strong>in</strong>g lies at the foundation of much of modern science. A<br />

section below deals with this <strong>in</strong> more detail.<br />

(d) What experimental plan will be followed ? For a proposal to be conv<strong>in</strong>c<strong>in</strong>g, it needs to<br />

be clear what types of experiment are to be done <strong>and</strong> how; what problems are<br />

anticipated, <strong>and</strong> what strategies are available to overcome these problems ? There<br />

are often several different types of experiment that can be done to address a specific<br />

question, so it is useful to ask what is the rationale for a particular approach. Can<br />

multiple l<strong>in</strong>es of evidence be brought to a support a particular conclusion ? If so what<br />

are they ?<br />

(e) What outcomes are anticipated ? Any problems that are anticipated with data<br />

<strong>in</strong>terpretation should be identified. Virtually all experimental work costs money: will<br />

the f<strong>in</strong>ancial backer be able to use the outcomes of the experiment, will there by<br />

value for money ?<br />

Hypothesis test<strong>in</strong>g<br />

The def<strong>in</strong>ition of a hypothesis that most scientists would recognise goes someth<strong>in</strong>g like this:<br />

a supposition made as the basis for experiment without assumption of its truth. A typical<br />

example <strong>in</strong> physiology might take the form “substance X plays a role <strong>in</strong> regulat<strong>in</strong>g process<br />

Y”. Several obvious l<strong>in</strong>es of experiment to test the hypothesis might <strong>in</strong>clude measur<strong>in</strong>g the<br />

activity of Y after remov<strong>in</strong>g substance X, after over-stimulation by X, <strong>and</strong> after block<strong>in</strong>g the<br />

effects of X. It may be possible to do these experiments both <strong>in</strong> vivo (for example <strong>in</strong><br />

81


experimental animals) <strong>and</strong> <strong>in</strong> vitro (for example <strong>in</strong> cell l<strong>in</strong>es). Depend<strong>in</strong>g on the outcomes,<br />

the data would be said to be either consistent with the hypothesis (<strong>in</strong> which case one might<br />

then ask about the relevant mechanisms), or they are <strong>in</strong>consistent <strong>in</strong> which case the<br />

hypothesis should be rejected (<strong>and</strong> an alternative one developed).<br />

There are some major scientific projects that are not strongly based on hypothesis. An<br />

example would be the sequenc<strong>in</strong>g of the human genome which has sometimes been called<br />

“hypothesis-generat<strong>in</strong>g” activity. In general, however, most modern science is based on the<br />

formulation of specific testable hypotheses. The generation of hypotheses is one of the most<br />

important parts of any scientific plan.<br />

Good hypotheses are sometimes also described as “useful”. In turn, useful hypotheses<br />

generally possess most if not all of the follow<strong>in</strong>g: they take account of exist<strong>in</strong>g knowledge<br />

<strong>and</strong> <strong>in</strong>dicate ways <strong>in</strong> which this knowledge could be extended (if correct), <strong>and</strong> they provide<br />

the basis for design<strong>in</strong>g specific experiments (ie tests of the hypothesis) that should yield<br />

clear-cut answers one way or the other. They may also provide a way of unify<strong>in</strong>g disparate<br />

sets of observations.<br />

Writ<strong>in</strong>g a proposal<br />

The proposal you are asked to complete <strong>in</strong> this assignment is for a PhD studentship <strong>and</strong><br />

should have the follow<strong>in</strong>g sections: Summary, Background, Hypothesis, Specific aims &<br />

objectives, Experimental plan, Outcomes, & Sources of <strong>in</strong>formation (ie references etc). In<br />

addition, you are required to write a short summary of the proposal for both scientific <strong>and</strong> lay<br />

audiences. Each section should address a dist<strong>in</strong>ct set of po<strong>in</strong>ts.<br />

Summary: this should provide a brief overview of the entire proposal. The lay summary<br />

should avoid the use of technical terms <strong>and</strong> jargon that would not be familar to the average<br />

lay person.<br />

Background: exist<strong>in</strong>g knowledge should be reviewed (<strong>and</strong> sources referenced at the end of<br />

the proposal). If there are pilot data, or prelim<strong>in</strong>ary experimental f<strong>in</strong>d<strong>in</strong>gs available (see<br />

below), these can be described at the end of this section. The objective <strong>in</strong> writ<strong>in</strong>g this section<br />

should be the identification of worthwhile new experiments. You would like to reader to<br />

recognise you‟re your proposed experiments are exactly the right ones to do next.<br />

Hypothesis: The workshop will provide help <strong>in</strong> formulat<strong>in</strong>g hypotheses <strong>and</strong> <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g<br />

between useful <strong>and</strong> <strong>in</strong>appropriate hypotheses. A specific hypothesis can be quite brief (one<br />

or two sentences) but may represent a lot of hard th<strong>in</strong>k<strong>in</strong>g.<br />

Aims <strong>and</strong> objectives. These can be quite briefly expressed. In effect they should translate<br />

the hypothesis <strong>in</strong>to specific questions that your <strong>in</strong>tended experiments will answer.<br />

Experimental plan: at least <strong>in</strong> part this section may be written <strong>in</strong> the future tense s<strong>in</strong>ce it<br />

should describe what you <strong>in</strong>tend to do. It might help you to th<strong>in</strong>k <strong>in</strong> terms of three subsections;<br />

(1) The first part of the plan should outl<strong>in</strong>e the general strategy to be followed, <strong>and</strong><br />

may expla<strong>in</strong> why other strategies are rejected. If you have pilot data, or other reasons for<br />

suppos<strong>in</strong>g that a particular strategy will be successful, this should be expla<strong>in</strong>ed. (2) You may<br />

already have an idea of the specific experimental protocols that you propose to use: if so,<br />

expla<strong>in</strong> this – but consider also, what will happen if th<strong>in</strong>gs don‟t go exactly accord<strong>in</strong>g to plan?<br />

What priorities will govern your decisions <strong>in</strong> this case. . If the experimental methods are not yet worked out <strong>in</strong> detail, expla<strong>in</strong><br />

how you will go about optimis<strong>in</strong>g the methods to yield useful data. What criteria will be<br />

applied to evaluat<strong>in</strong>g any data from optimisation experiments. Depend<strong>in</strong>g on the specific<br />

experiments, you may need to def<strong>in</strong>e the number of observations required to yield useful<br />

conclusions; <strong>in</strong> addition, you should already consider what statistical methods will be applied<br />

to the analysis of the data. (3) For many complex projects it is useful to provide a time-l<strong>in</strong>e,<br />

or milestones; these are generally regarded as useful tools for project management. Ask<br />

82


yourself, should some projected tasks be completed before others, or by specific times<br />

with<strong>in</strong> the project as a whole? If so, how is this <strong>in</strong>corporated <strong>in</strong>to the experimental plan? In<br />

the real world, time <strong>and</strong> money are always limited: what resources will you need to achieve<br />

your objectives <strong>in</strong> an efficient <strong>and</strong> cost-effective way.<br />

Outcomes: Briefly summarise how, if everyth<strong>in</strong>g works well, you will have achieved your<br />

objectives (<strong>and</strong> how a f<strong>in</strong>ancial backer will have obta<strong>in</strong>ed value for money).<br />

Justification for support requested: Briefly describe how the funds requested will be spent,<br />

break<strong>in</strong>g down consumables funds to give an idea of how much <strong>in</strong>dividual parts of the<br />

experimental plan will cost.<br />

References: cite any sources of <strong>in</strong>formation quoted <strong>in</strong> the application. The application<br />

typically should <strong>in</strong>clude up to 25 citations to peer-reviewed papers.<br />

Not more than 2,000 words should be used to describe the research proposal (exclud<strong>in</strong>g<br />

the scientific <strong>and</strong> lay summaries, <strong>and</strong> exclud<strong>in</strong>g references). Each section should be written<br />

<strong>in</strong> good English (not note form or bullet po<strong>in</strong>ts). Make sure you also choose an <strong>in</strong>formative<br />

title. A template for you to enter the application on will be provided for the application<br />

nearer the time <strong>and</strong> an example PhD Studentship application is given <strong>in</strong> section 7.3.<br />

7.3 Portfolio of Assessment Commentary<br />

The Portfolio of Assessment Commentary will enable students to evaluate <strong>and</strong> reflect on<br />

the aims <strong>and</strong> objectives of the <strong>in</strong>dividual programme components, as well as their own<br />

achievements. Students will be required to assemble a professional-look<strong>in</strong>g portfolio that<br />

documents their progression through the programme <strong>in</strong> a form suitable for external scrut<strong>in</strong>y.<br />

Please note that completion of the portfolio self-assessment <strong>and</strong> participation <strong>in</strong> the English<br />

conversation sessions for oversees students are obligatory for completion of the program.<br />

7.3.1 Portfolio Contents<br />

Your portfolio should <strong>in</strong>clude the follow<strong>in</strong>g:<br />

1. The three Research Project Reports.<br />

2. Project presentations (poster presentations should be pr<strong>in</strong>ted on an A4 paper).<br />

3. The 2 Short Reviews.<br />

4. The Referee‟s Report, <strong>in</strong>clud<strong>in</strong>g the refereed paper.<br />

6. The Bus<strong>in</strong>ess Plan <strong>and</strong> presentation.<br />

7. The PhD studentship application.<br />

8. the Portfolio self-assessment commentary.<br />

Your portfolio will be viewed by the ma<strong>in</strong> External Exam<strong>in</strong>er <strong>and</strong> therefore should look<br />

professional <strong>and</strong> presentable.<br />

7.3.2 Portfolio Self-Assessment (Commentary)<br />

Students need to assess:<br />

1. The Research Projects.<br />

2. The Techniques <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> component.<br />

3. The Frontiers <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> component.<br />

4. The Transferable Skills component.<br />

83


Profile for a portfolio self-assessment:<br />

1. Describe the work to be assessed.<br />

2. Give the aim of the assignment.<br />

3. Describe your learn<strong>in</strong>g objectives.<br />

4. Critically evaluate your achievements.<br />

5. What are the learn<strong>in</strong>g outcomes?<br />

It is essential to use the same template for each item of work us<strong>in</strong>g the same head<strong>in</strong>gs<br />

(description, aims, learn<strong>in</strong>g objectives, achievements, learn<strong>in</strong>g outcomes; ~ one paragraph<br />

for each). A template for this purpose will be provided by the Programme Director.<br />

84


7.4 Assessment form for <strong>MRes</strong> PhD <strong>in</strong> <strong>Biomedical</strong> Studentship <strong>Sciences</strong> application<br />

Grant Application Assessment Form<br />

Student:<br />

Project Title:<br />

Marker 1:<br />

Moderator:<br />

Please complete this form when mark<strong>in</strong>g the M.Res write ups, <strong>and</strong> return it, with the grant application to your<br />

str<strong>and</strong> convenor. INDICATION OF POTENTIAL DEGREE CLASS BY MARK ATTAINED (Dist<strong>in</strong>ction 70-100); (Merit 60-<br />

69); (Pass 50-59); (Fail


7.5 Mark<strong>in</strong>g criteria for assessment of PhD Studentship application<br />

Dist<strong>in</strong>ction Level 100% - 90%<br />

90% - 80%<br />

80% - 70%<br />

Pass Level 69% - 65%<br />

64% - 60%<br />

59% - 55%<br />

54% - 50%<br />

Fail Level 49% - 45%<br />

44% - 40%<br />

39% - 35%<br />

34% - 10%<br />

0%<br />

Outst<strong>and</strong><strong>in</strong>g. No better result conceivable at Masters<br />

level. Extensive evidence of critical th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> cogent<br />

scientific argument. Evidence of read<strong>in</strong>g around the<br />

topic. Excellent experimental design.<br />

Excellent. Essentially correct <strong>and</strong> complete, with<br />

evidence of critical th<strong>in</strong>k<strong>in</strong>g <strong>and</strong> excellent use of the<br />

literature. Logical structure, well written <strong>and</strong> presented,<br />

display<strong>in</strong>g a cogent scientific argument. Very good<br />

experimental design.<br />

Very Good. Content essentially without any major<br />

flaws, very well expla<strong>in</strong>ed with clear evidence of a high<br />

level of scientific competence. Good experimental<br />

design.<br />

Good. Well expla<strong>in</strong>ed, show<strong>in</strong>g good evidence of<br />

critical scientific judgement. Good experimental design.<br />

Quite Good. A well expla<strong>in</strong>ed application, with good<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> some evidence of critical scientific<br />

judgment. Satisfactory experimental design.<br />

Fairly Good. A generally sound review with a good or<br />

quite good level of underst<strong>and</strong><strong>in</strong>g, evidence of sound<br />

scientific competence <strong>and</strong> judgment.<br />

Adequate. Show<strong>in</strong>g some progress but with some<br />

deficiencies <strong>in</strong> one or more aspects of underst<strong>and</strong><strong>in</strong>g of<br />

the paper <strong>and</strong> scientific judgment.<br />

A poor application with an overall superficial approach.<br />

Essentially an <strong>in</strong>complete application with major<br />

omissions <strong>in</strong> several areas <strong>and</strong> evidence of a poor<br />

underst<strong>and</strong><strong>in</strong>g.<br />

A poor application with an overall superficial approach<br />

<strong>and</strong> more errors, omissions <strong>and</strong> evidence of a deficiency<br />

of effort <strong>and</strong> poor underst<strong>and</strong><strong>in</strong>g.<br />

A marked deficiency <strong>in</strong> content of underst<strong>and</strong><strong>in</strong>g of the<br />

work proposed <strong>and</strong> the task set.<br />

Even more marked deficiencies <strong>in</strong> content of<br />

underst<strong>and</strong><strong>in</strong>g <strong>and</strong> application.<br />

A complete absence of relevant work presented.<br />

86


7.6 Example PhD Studentship application<br />

1. APPLICANT (Please <strong>in</strong>clude full name, title, department <strong>and</strong> affiliation)<br />

Your name <strong>and</strong> details here<br />

2. TITLE OF RESEARCH PROJECT (no more than 220 characters)<br />

Us<strong>in</strong>g Caenorhabditis elegans to Fight Human Neurodegenerative Diseases<br />

3. SUMMARY OF RESEARCH<br />

a) For scientifically qualified assessors (no more than 200 words)<br />

In spite of excit<strong>in</strong>g progress, the molecular determ<strong>in</strong>ants <strong>in</strong>volved <strong>in</strong> the aetiology <strong>and</strong><br />

susceptibility of various chronic age-related neurodegenerative disorders (NDs) such as<br />

Alzheimer‟s disease (AD), Park<strong>in</strong>son‟s disease (PD), Hunt<strong>in</strong>gton‟s disease (HD), <strong>and</strong><br />

amyotrophic lateral sclerosis (ALS), rema<strong>in</strong> mechanistically undef<strong>in</strong>ed. Numerous genetic<br />

<strong>and</strong> pharmacological screens have been conducted <strong>in</strong> Caenorhabditis elegans disease<br />

models to unravel c<strong>and</strong>idate genes <strong>and</strong> /or specific cellular pathways pert<strong>in</strong>ent to multiple<br />

neurodegenerative cascades <strong>and</strong> successfully identified <strong>and</strong> validated many neuroprotective<br />

factors. The overall aim of this project is to elucidate critical cellular mediators of<br />

neuropathology <strong>and</strong> neuron vulnerability by exploit<strong>in</strong>g the experimental attributes of C.<br />

elegans <strong>and</strong> <strong>in</strong>tegrat<strong>in</strong>g genetic <strong>and</strong> pharmacological evaluation of a set of experimentally-<br />

del<strong>in</strong>eated genetic modifiers. Multiple transgenic, non-transgenic <strong>and</strong> toxicant C. elegans ND<br />

models will be generated <strong>and</strong> optimised by exam<strong>in</strong><strong>in</strong>g their pathological phenotypes. The<br />

bio<strong>in</strong>formatically prioritised modifiers will then be characterised <strong>and</strong> validated by phenocopy<br />

us<strong>in</strong>g a reverse genetic approach by apply<strong>in</strong>g RNA <strong>in</strong>terference (RNAi). In addition, a<br />

chemical reverse genetic screen will be performed to illum<strong>in</strong>ate neuroprotective compounds‟<br />

molecular targets, mechanism of action <strong>and</strong> affected molecular pathways.<br />

For lay readers (no more than 200 words)<br />

The biological underp<strong>in</strong>n<strong>in</strong>gs of a diverse spectrum of progressive neurological disorders<br />

have rema<strong>in</strong>ed elusive. Large-scale screens have been performed <strong>in</strong> model organisms to<br />

isolate genes that either rescue or exacerbate the manifestations of neurodegenerative<br />

disorders (NDs), which <strong>in</strong> turn yield valuable <strong>in</strong>sights <strong>in</strong>to mediators of disease with<strong>in</strong> cells<br />

<strong>and</strong> reveal targets for potential therapies. This project will utilise microscopic nematode<br />

roundworm, Caenorhabditis elegans to elucidate the <strong>in</strong>completely understood disease<br />

mechanisms <strong>and</strong> genetic susceptibility of multiple NDs. Worms are used because of their<br />

facile genetics <strong>and</strong> strik<strong>in</strong>gly similar neuronal mechanisms to the humans. Worms will be<br />

87


manipulated to simulate the card<strong>in</strong>al features of several NDs by <strong>in</strong>sert<strong>in</strong>g human disease<br />

prote<strong>in</strong>s, remov<strong>in</strong>g or deplet<strong>in</strong>g worm version of the disease prote<strong>in</strong>s <strong>and</strong> adm<strong>in</strong>ister<strong>in</strong>g toxic<br />

compounds, <strong>and</strong> the animals will be observed for any effects. A collection of previously<br />

identified C. elegans genes already known to <strong>in</strong>fluence the severity of dysfunction will be<br />

suppressed <strong>in</strong> a subsequent screen to discern how they work. In addition, a set of drugs<br />

known to alleviate some disease symptoms will also be applied to reveal their mechanism of<br />

action. Ultimately, the project aims to exp<strong>and</strong> our knowledge of the mechanisms of NDs.<br />

4. RESEARCH QUESTION<br />

a) What is your research question/hypothesis (no more than 100 words)<br />

This project will address the follow<strong>in</strong>g fundamental questions:<br />

1. What are the conserved genetic <strong>and</strong> molecular pathways underly<strong>in</strong>g<br />

neurodegenerative diseases?<br />

2. How do genetic modifiers <strong>and</strong> pharmacological reagents contribute to<br />

neurodegeneration <strong>and</strong> neuroprotection?<br />

3. Through what mechanisms do therapeutic c<strong>and</strong>idates mediate their neuroprotective<br />

effects?<br />

4. Do modifier genes have a widespread or disease-specific role <strong>in</strong> neurodegeneration?<br />

5. Are pathogenic mechanism shared between several or all NDs, irrespective of the<br />

specific disease?<br />

6. Which types of neurons are most vulnerable to alterations of modifier genes?<br />

b) Why is it important? (no more than 250 words)<br />

Neurodegenerative diseases (NDs) pose a tremendous economical <strong>and</strong> societal burden to<br />

our rapidly age<strong>in</strong>g populations. Though toxic functions of specific disease prote<strong>in</strong>s have<br />

been ascribed follow<strong>in</strong>g the identification of many predisposition genes, the lack of<br />

mechanistic <strong>in</strong>sights <strong>in</strong>to why <strong>and</strong> how these genes contribute or <strong>in</strong>fluence the aetiology <strong>and</strong><br />

progression of the NDs has severe repercussions for treatment of these crippl<strong>in</strong>g diseases<br />

s<strong>in</strong>ce effective therapeutic agents with disease-modify<strong>in</strong>g or preventive properties rema<strong>in</strong><br />

acutely deficient <strong>and</strong> development of new drugs cont<strong>in</strong>ues to be a challeng<strong>in</strong>g job. Def<strong>in</strong>itive<br />

<strong>in</strong>sights <strong>in</strong>to the complex mechanistic connections between specific cellular pathways <strong>and</strong><br />

specific misfolded prote<strong>in</strong> pathologies are likely to expla<strong>in</strong> the conundrums <strong>and</strong> facilitate the<br />

development of new disease biomarkers <strong>and</strong> promis<strong>in</strong>g disease-modify<strong>in</strong>g neuroprotective<br />

therapies for timely <strong>in</strong>tervention.<br />

5. DETAILS OF RESEARCH PROJECT: Summarise under the follow<strong>in</strong>g head<strong>in</strong>gs:-<br />

88


a) Aims <strong>and</strong> objectives of the project<br />

b) Work which has led up to the project<br />

c) Detailed experimental plan of <strong>in</strong>vestigation<br />

d) Outcomes<br />

e) Cont<strong>in</strong>gency plans<br />

f) Timetable <strong>and</strong> milestones<br />

NO MORE THAN 2,000 WORDS SHOULD BE USED TO DESCRIBE THE<br />

RESEARCH PROJECT (PLEASE INCLUDE A WORD COUNT)<br />

a) Aims <strong>and</strong> objectives of the project<br />

This project aims to use a comb<strong>in</strong>ed application of appropriate genetic <strong>and</strong> toxicant<br />

Caenorhabditis elegans (C. elegans) neurodegenerative diseases (NDs) models to unravel<br />

the <strong>in</strong>completely understood key molecular pathways, disease mechanisms <strong>and</strong> genetic<br />

susceptibility of multiple NDs. The ma<strong>in</strong> focus of the <strong>in</strong>vestigation is the genetic <strong>and</strong><br />

pharmacological characterisation of modifier genes <strong>in</strong>volved <strong>in</strong> neuropathology <strong>and</strong> neuron<br />

vulnerability, which contribute toward the identification of putative novel targets <strong>and</strong><br />

therapeutic leads.<br />

b) Work which has led up to the project<br />

Essentially, the majority of neurodegenerative disorders (NDs) are characterised by the<br />

mechanistic unify<strong>in</strong>g theme of aggregation, accumulation <strong>and</strong> deposition of prom<strong>in</strong>ent <strong>in</strong>tra-<br />

or extracellular toxic prote<strong>in</strong>aceous <strong>in</strong>clusions <strong>in</strong> a particular population of neurons (1) where<br />

subsequent necrotic or apoptotic neurodegeneration results <strong>in</strong> irreversible neuronal loss,<br />

synaptic impairments <strong>and</strong> eventual neuronal death. The use of Caenorhabditis elegans (C.<br />

elegans) as a primary platform to probe the poorly def<strong>in</strong>ed disease mechanisms of several<br />

major NDs <strong>and</strong> a more rapid means towards novel gene <strong>and</strong> drug discovery has escalated<br />

over the last decade, s<strong>in</strong>ce worms are amenable to high-throughput genetic, genomic,<br />

proteomic, <strong>and</strong> drug screen<strong>in</strong>g approaches. Indeed, a multitude of <strong>in</strong>formative, tissue-<br />

specific C. elegans ND models have been developed manifest<strong>in</strong>g abnormal behavioural or<br />

pathological phenotypes that partially recapitulate the salient cellular, molecular <strong>and</strong><br />

pathological aspects of complex ND processes (Table 1), to explore the dynamics of<br />

aggregate formation, cellular malfunctions, genetic <strong>and</strong> environmental susceptibility factors<br />

<strong>and</strong> putative neuroprotective genes <strong>and</strong> compounds aga<strong>in</strong>st disease-prote<strong>in</strong> toxicity (2). As<br />

shown <strong>in</strong> Figure 1, these models can be subjected to medium or high-throughput genome-<br />

wide forward <strong>and</strong> reverse genetic screens to identify genetic modifiers, which are essential<br />

physiologic determ<strong>in</strong>ants of aggregation <strong>and</strong> toxicity <strong>and</strong> yield new potential therapeutic<br />

targets or models for the given disease, as well as low-throughput chemical screens that<br />

directly explore effective lead compounds that rescue the phenotype to identify<br />

89


pharmacological treatments that block neurodegeneration. Targets identified <strong>in</strong> several<br />

disease models (Table 1) us<strong>in</strong>g RNAi screen<strong>in</strong>g <strong>and</strong> microarray analysis have already<br />

advanced to the stage of drug validation for efficacy <strong>in</strong> mammalian system (3-5).<br />

Substantial evidence implicates that while genetic regulators of prote<strong>in</strong> homeostasis, stress<br />

responsiveness <strong>and</strong> age<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g molecular chaperones <strong>and</strong> components of the<br />

ubiquit<strong>in</strong>-degradation systems, are common to most disease prote<strong>in</strong>s, the onset,<br />

development <strong>and</strong> progression of each of the NDs can be <strong>in</strong>duced or <strong>in</strong>fluenced by alterations<br />

of a multitude of disease-prote<strong>in</strong>-specific molecular processes (6). All C. elegans <strong>and</strong> yeast<br />

α-synucle<strong>in</strong> screens identified components of the vesicular-traffick<strong>in</strong>g mach<strong>in</strong>ery to<br />

specifically modify α-synucle<strong>in</strong> toxicity <strong>and</strong> aggregation, but are rarely found as modifiers of<br />

polyglutam<strong>in</strong>e (polyQ) <strong>and</strong> tau toxicity <strong>and</strong> aggregation, whereas those associated with RNA<br />

metabolism, prote<strong>in</strong> fold<strong>in</strong>g <strong>and</strong> degradation, <strong>and</strong> transcriptional regulation appear to<br />

<strong>in</strong>fluence the pathology of various disease prote<strong>in</strong>s, but are specifically enriched <strong>in</strong> polyQ<br />

aggregation <strong>and</strong> toxicity screens <strong>in</strong>clud<strong>in</strong>g those that have s<strong>in</strong>ce been validated <strong>in</strong> other<br />

model organisms <strong>and</strong> mammals. It also rema<strong>in</strong>s unclear which populations of neurons are<br />

most susceptible to the loss of modifier genes when comb<strong>in</strong>ed with ectopic-overexpression<br />

of aggregation-prone prote<strong>in</strong>s.<br />

Though genome-wide screen<strong>in</strong>g <strong>in</strong> C. elegans may facilitate the identification of all possible<br />

effectors of prote<strong>in</strong> misfold<strong>in</strong>g <strong>and</strong> neuroprotection, this approach is limited by its <strong>in</strong>efficiency<br />

<strong>in</strong> detect<strong>in</strong>g positive hits (2,7,8), due to <strong>in</strong>clusion of large gene sets that are not necessarily<br />

unique which <strong>in</strong> turn result <strong>in</strong> some redundancy, as well as important house-keep<strong>in</strong>g genes<br />

that give rise to non-specific, off-target effects <strong>and</strong> false positive results. Few screens have<br />

recently used a more focused strategy - a c<strong>and</strong>idate approach/hypothesis-driven approach<br />

to reveal potential modifier genes <strong>in</strong> a specific pathway based on hypothesis generated by<br />

screens <strong>in</strong> lower model organisms or exist<strong>in</strong>g knowledge of disease mechanisms <strong>and</strong><br />

pathways (9,10).<br />

Prelim<strong>in</strong>ary work <strong>in</strong> this laboratory adopted a c<strong>and</strong>idate approach to m<strong>in</strong>e the literature <strong>and</strong><br />

compile a collection of experimentally del<strong>in</strong>eated genetic modifiers of prote<strong>in</strong> aggregation,<br />

misfold<strong>in</strong>g <strong>and</strong> toxicity <strong>in</strong> C. elegans. Us<strong>in</strong>g onl<strong>in</strong>e databases WormBase<br />

(www.wormbase.org) <strong>and</strong> GExplore (http://genome.sfu.ca/gexplore/), modifier genes were<br />

further selected for to retrieve only those with known expression <strong>in</strong> adult neurons that are<br />

also non-RNAi lethal (Table 2) which form the basis for a hypothesis-driven RNAi screen <strong>and</strong><br />

subsequent <strong>in</strong>-depth analyses <strong>and</strong> mechanistic dissection. Our recent work also used<br />

fluorescence confocal imag<strong>in</strong>g of transgenic C. elegans l<strong>in</strong>es to confirm the promoter<br />

specificity of six neuronal promoters (Fig. 2) which are applicable as means of prob<strong>in</strong>g the<br />

role of positive genetic modifiers <strong>in</strong> the survival, vulnerability <strong>and</strong> function of specific sets of<br />

neurons <strong>and</strong> their subsequent validations.<br />

90


TABLE 1. Summary of all available C. elegans neurodegeneration models. Worms are subjected<br />

to molecular, genetic <strong>and</strong> chemical manipulations to <strong>in</strong>itiate the neurodegenerative cascade.<br />

Correspond<strong>in</strong>g pathological phenotypes <strong>and</strong> identified drug compounds that confer neuroprotection<br />

are <strong>in</strong>dicated. Models highlighted <strong>in</strong> beige are most suitable for this project. Human diseases: AD,<br />

Alzheimer‟s disease; HD, Hunt<strong>in</strong>gton‟s disease; PD, Park<strong>in</strong>son‟s disease; ALS, Amyotrophic lateral<br />

sclerosis; SMA, Sp<strong>in</strong>al muscular atrophy<br />

91


Method of<br />

disease model<br />

generation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Molecular<br />

manipulation<br />

Neurodegenerative<br />

diseases<br />

AD P unc-54::Aβ - constitutive muscle<br />

myo-3::Aβ 1-42 - <strong>in</strong>ducible muscle<br />

P unc-54::Aβ 1-42 - constitutive muscle<br />

Transgene expression Phenotype Drug References<br />

Uncoord<strong>in</strong>ated (Unc), paralysis, amyloid formation G<strong>in</strong>kgo biloba extract EGb 761 <strong>and</strong><br />

G<strong>in</strong>kgolide A (12)<br />

Soya isoflavone glycite<strong>in</strong> (35)<br />

Reserp<strong>in</strong>e (48)<br />

Thioflav<strong>in</strong> T; curcum<strong>in</strong> (21)<br />

92<br />

L<strong>in</strong>k et al (15)<br />

AD P snb-1::Aβ 1-42 - <strong>in</strong>ducible pan-neuronal Paralysis Wu et al (12)<br />

AD P aex-3::tau – pan-neuronal Unc, tau phosphorylation <strong>and</strong> aggregation,<br />

neurodegeneration<br />

- Kraemer et al(16)<br />

AD P mec-7::tau – mechanosensory neurons Mec, tau phosphorylation, neurodegeneration - Miyasaka et al (17)<br />

AD P rgef-1:: PHP tau- pan-neuronal Unc, decreased lifespan, defective neuronal<br />

development<br />

- Br<strong>and</strong>t et al (18)<br />

HD P myo-3::polyQ–GFP – <strong>in</strong>ducible muscle Paralysis, age-dependent polyQ aggregation - Caldwell et al (41)<br />

HD P unc-54::polyQ–GFP - constitutive muscle Motility defect - Wang et al (19)<br />

Saytal et al (20)<br />

HD P unc-54::DRPLAP::GFP- constitutive muscle - - Yamanaka et al (36)<br />

HD P mec-3::polyQ–GFP - mechanosensory neurons Mec, axon morphology abnormalities Resveratrol Parker et al (37)<br />

HD P osm-10::polyQ–GFP - chemosensory neurons polyQ aggregation, ASH neuron degeneration,<br />

nose-touch defective<br />

Lithium chloride; mithramyc<strong>in</strong> (23) Faber et al (42)<br />

HD P rgef-1::polyQ–GFP - pan-neuronal Unc, motility defects, paralysis - Brignull et al (22)<br />

HD pqe-1(rt13); Htn-Q150(rtIs11) Accelerated neurodegeneration - Vois<strong>in</strong>e et al (23)<br />

HD pha-1(e2123); Htn-Q150(rtIs11) ASH neuronal death Trichostat<strong>in</strong> (38) Vois<strong>in</strong>e et al (23)<br />

PD P aex-3::α-syn WT <strong>and</strong> A53T - pan-neuronal Unc, DA dendritic abnormalities, reduced motor<br />

movement<br />

- Lakso et al (24)<br />

Spr<strong>in</strong>ger et al (25)<br />

PD P snb-1::α-syn WT - pan-neuronal Mitochondrial stress - Ved et al (26)<br />

PD P unc-119::α-syn A53T- pan-neuronal Mitochondrial stress - Ved et al (26)<br />

PD P unc-51 ::α-syn WT,A30P <strong>and</strong> A53T - pan-neuronal Motor/developmental defects, endocytosis defects - Kuwahara et al (27)<br />

PD P dat-1 ::α-syn WT, A30P, A53T, A56P <strong>and</strong> A76P –<br />

DA neurons<br />

DA neurodegeneration, α-syn accumulation <strong>in</strong> DA<br />

neurons, reduced DA levels, altered DA neuronal<br />

activity<br />

Acetam<strong>in</strong>ophen (39)<br />

Bromocript<strong>in</strong>e, Qu<strong>in</strong>pirole (3)<br />

Lakso et al (24)<br />

Settivari et al (32)<br />

Cao et al (31)<br />

Kuwahara et al (27)<br />

Karp<strong>in</strong>ar et al (40)<br />

PD P acr-2::α-syn WT <strong>and</strong> A53T – motor neurons Reduced motor movement - Lakso et al (24)<br />

PD P mec-7::α-syn WT <strong>and</strong> A53T - mechanosensory<br />

neurons<br />

Impaired touch response - Kuwahara et al (27)<br />

PD P unc-54 ::α-syn::GFP - constitutive muscle α-syn misfold<strong>in</strong>g <strong>and</strong> accumulation - Hamamichi et al (10)<br />

Van Ham et al (2)<br />

PD P snb-1::LRRK2 WT, R1441C, G2019S – panneuronal<br />

PD eri-1 (mg366);P dat-1 ::α-syn WT,<br />

eri-1 (mg366);P dat-1 ::α-syn A53T<br />

eri-1 (mg366);P dat-1 ::α-syn A30P<br />

Mitochondrial stress, reduced DA levels, DA<br />

degeneration<br />

PD pdr-1(lg103); α-syn A53T Highly penetrant, temperature sensitive lethality,<br />

early larval arrest phenotype<br />

ALS P myo-3::SOD-1<br />

hsp-16::SOD-1 - body wall muscle or <strong>in</strong>ducible<br />

ALS P snb-1::SOD-1 WT, G85R, H46R/H48Q – YFP –<br />

pan-neuronal<br />

- Saha et al (28)<br />

Unc, growth retardation (Gro) - Kuwahara et al (27)<br />

- Kuwahara et al (27)<br />

Paraquat hypersensitivity - Oeda et al (43)<br />

Locomotory defects, <strong>in</strong>tra-neuronal aggregation,<br />

abnormal processes <strong>and</strong> synaptic function<br />

- Wang et al (44)<br />

Mutant/RNAi AD sel-12 or hop-1 Egg lay<strong>in</strong>g defective (Egl) - Lakowski et al (45)<br />

Mutant/RNAi HD pqe-1(rt13) Accelerated neurodegeneration - Vois<strong>in</strong>e et al (23)<br />

Mutant/RNAi HD pha-1(e2123) ASH neuronal death - Vois<strong>in</strong>e et al (23)<br />

Mutant/RNAi PD lrk-1 (km17), (km41), (tm1898) <strong>and</strong> (RNAi) Mitochondrial stress, ER stress sensitive - Saha et al (28)<br />

Mutant/RNAi PD pdr-1 (lg103), (XY1046, Park<strong>in</strong> KO3) <strong>and</strong> (RNAi) Mitochondrial stress, ER stress sensitive,<br />

decreased life span<br />

Mutant/RNAi PD p<strong>in</strong>k-1 (tm1779) Oxidative stress sensitive, neurite outgrowth<br />

defects, mitochondrial cristae defects<br />

- Samann et al (29)<br />

Spr<strong>in</strong>ger et al (25)<br />

Ved et al (26)<br />

- Samann et al (29)<br />

Mutant/RNAi PD catp-6 (RNAi) α-syn misfold<strong>in</strong>g - Gitler et al (46)<br />

Mutant/RNAi PD djr-1.1 (RNAi) Mitochondrial stress - Ved et al (26)<br />

Mutant/RNAi SMA smn-1 (ok355) Neuromuscular function deficits - Briese et al (47)<br />

Chemical treatment PD P dat-1::GFP subjected to 6-hydroxydopam<strong>in</strong>e (6-<br />

OHDA)<br />

Chemical treatment PD N2 , P dat-1::GFP, P dat-1::α-syn subjected to<br />

Manganese (Mn 2+ )<br />

DA neurodegeneration - Nass et al (30)<br />

Cao et al (31)<br />

Oxidative stress, mitochondrial stress, enhanced<br />

DA neurodegeneration, reduced DA levels<br />

- Settivari et al (32)<br />

Chemical treatment PD N2, P cat-2::GFP subjected to MPTP <strong>and</strong> MPP + DA neurodegeneration, motility defects, lethality Lisuride, apomorph<strong>in</strong>e, Rottler<strong>in</strong> (33) Braungart et al. (33)<br />

Chemical treatment PD p<strong>in</strong>k-1 (tm1779) subjected to Paraquat Oxidative stress - Samann et al (29)<br />

Chemical treatment PD pdr-1 (XY1046), P snb-1::α-syn WT, P unc-119::α-syn<br />

A53T, N2, lrk-1 (km17), P snb-1::LRRK2 WT,<br />

R1441C, G2019S subjected to Rotenone<br />

Chemical treatment PD P dat-1::GFP subjected to Streptomyces<br />

venezuelae secondary metabolite<br />

Mitochondrial stress, reduced viability - Ved et al (26)<br />

Saha et al (28)<br />

DA neurodegeneration - Caldwell et al (34)


WormBase C. elegans<br />

genome<br />

RNAi screen<br />

(reverse genetics)<br />

suppressor<br />

enhancer<br />

Feed<strong>in</strong>g worms<br />

with <strong>in</strong>dividual<br />

RNAi clones<br />

Confirmation of<br />

RNAi clones<br />

Genetic screen<br />

(forward genetics)<br />

suppressor<br />

enhancer<br />

EMS<br />

Mutagenesis<br />

Phenotype analysis<br />

Positive hits identified<br />

Gene mapp<strong>in</strong>g<br />

Hits prioritisation<br />

Hits validation<br />

Pharmacological <strong>in</strong>tervention <strong>in</strong> worms<br />

if successful<br />

Mammalian assays <strong>and</strong> identification<br />

of human orthologues<br />

Drug Validation<br />

genetic<br />

complementation<br />

<strong>and</strong> sequenc<strong>in</strong>g of<br />

mutant alleles<br />

Disease<br />

C. elegans disease model<br />

Functional C. elegans assay<br />

Recapitulation of phenotypes <strong>in</strong> worms<br />

Pharmacological screen<br />

Screen<strong>in</strong>g goal<br />

drug sensitivity<br />

drug resistance<br />

Determ<strong>in</strong>e optimal drug<br />

concentrations<br />

Distribution of compounds<br />

Confirmation of drug efficacy<br />

Exclude drug effects on<br />

growth/development <strong>and</strong><br />

ag<strong>in</strong>g pathway<br />

Secondary analyses <strong>in</strong> multiple worm models<br />

Tissue-specific expression<br />

of mutant disease gene;<br />

mutation/RNAi;<br />

compound-<strong>in</strong>duced<br />

Expression profil<strong>in</strong>g Epistatic analysis<br />

gene expression<br />

changes<br />

miRNA microarray<br />

Quantitative real-time<br />

PCR<br />

Target analysis<br />

mechanisms of<br />

disease<br />

Pharmacological<br />

<strong>in</strong>tervention<br />

FIGURE 1. Schematic diagram of the various screen<strong>in</strong>g routes for the identification of genetic or<br />

pharmacological targets of a C. elegans disease model<br />

93


Functional Category Gene name CGC<br />

Name<br />

Chaperone/quality<br />

control<br />

Prote<strong>in</strong><br />

turnover/degradation/<br />

UPS<br />

Neurotransmission <strong>and</strong><br />

signall<strong>in</strong>g<br />

Signal transduction<br />

Transcription cofactor<br />

ECM/Cytoskeletal<br />

organisation<br />

Enzymes<br />

Redox/oxidative stress<br />

Voltage-gated ion<br />

channels<br />

Description<br />

Human<br />

orthologues<br />

RNAi<br />

library<br />

F08H9.4 - heat shock prote<strong>in</strong> (HSP) of the HSP16 class HSPB6 Vidal<br />

T09B4.10 chn-1 mammalian carboxyl-term<strong>in</strong>us of Hsc70 <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> STUB1 CHIP Ahr<strong>in</strong>ger<br />

F55B12.3 sel-10<br />

F-box <strong>and</strong> WD-repeat-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> of CDC4/CUL-1<br />

family of E2-E3 ubiquit<strong>in</strong> ligases<br />

FBXW7 Vidal<br />

Y61A9LA.8 sut-2 Nuclear polyadenylated RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> ZC3H14<br />

Not<br />

available<br />

T05H10.1 - Putative ubiquit<strong>in</strong>-specific protease USP47 Ahr<strong>in</strong>ger<br />

T26A5.5 - F-box prote<strong>in</strong> JEMMA FBXL19 Vidal<br />

K09A9.6 - Aspartyl beta-hydroxylase ASPHD2 Ahr<strong>in</strong>ger<br />

F47G6.1 dyb-1 ZZ type z<strong>in</strong>c f<strong>in</strong>ger DTNA Vidal<br />

T04D1.3 unc-57 endophil<strong>in</strong> A, required for synaptic vesicle endocytosis SH3GL2 Vidal<br />

Y22F5A.3 ric-4 Intracellular prote<strong>in</strong> transport, neurotransmitter secretion SNAP-25 Vidal<br />

EEED8.9 p<strong>in</strong>k-1 BRPK/PTEN-<strong>in</strong>duced prote<strong>in</strong> k<strong>in</strong>ase PINK1 Ahr<strong>in</strong>ger<br />

T25F10.2 dbl-1<br />

a member of the transform<strong>in</strong>g growth factor beta<br />

(TGFbeta) superfamily<br />

BMP4 Vidal<br />

M04C9.5 dyf-5 a putative MAP k<strong>in</strong>ase MAK/ICK Ahr<strong>in</strong>ger<br />

K11E8.1 unc-43 type II calcium/calmodul<strong>in</strong>-dependent prote<strong>in</strong> k<strong>in</strong>ase CaMKII Vidal<br />

K07A9.2 cmk-1 Ca 2+ /calmodul<strong>in</strong>-dependent prote<strong>in</strong> k<strong>in</strong>ase I CaMK1 Vidal<br />

B0334.8 age-1 functions <strong>in</strong> an <strong>in</strong>sul<strong>in</strong>-like signall<strong>in</strong>g (ILS) pathway PI3K Ahr<strong>in</strong>ger<br />

W08G11.4 pptr-1 Ser<strong>in</strong>e/threon<strong>in</strong>e prote<strong>in</strong> phosphatase 2A PP2A<br />

Not<br />

available<br />

R11A8.4 sir-2.1 NAD-dependent deacetylase sirtu<strong>in</strong>-1 SIRT1 Ahr<strong>in</strong>ger<br />

R13H8.1 daf-16 sole C. elegans forkhead box O (FOXO) homologue FOXO4 Vidal<br />

H21P03.1 mbf-1 Transcription factor MBF1 EDF1 Vidal<br />

C04G6.3 pld-1 Phospholipase D1 PLD1 Vidal<br />

F02E9.4 s<strong>in</strong>-3 SIN3 family of histone deacetylase subunits SIN3 Vidal<br />

F39C12.2 add-1 cytoskeletal prote<strong>in</strong> alpha-adduc<strong>in</strong> ADD1 Vidal<br />

K05B2.3 ifa-4 a nonessential <strong>in</strong>termediate filament prote<strong>in</strong> IFB-1 Vidal<br />

R05D3.7 unc-116 k<strong>in</strong>es<strong>in</strong>-1 heavy cha<strong>in</strong> ortholog KIF5 Ahr<strong>in</strong>ger<br />

F47G4.7 smd-1 S-Adenosylmethion<strong>in</strong>e decarboxylase AMD1 Vidal<br />

C06E7.1 sams-3 S-adenosylmethion<strong>in</strong>e synthetase MAT1A Vidal<br />

F44E7.2 - p-Nitrophenyl phosphatase PDXP Vidal<br />

Y56A3A.13 nft-1 Carbon-nitrogen hydrolase FHIT Vidal<br />

C30H7.2 - human thioredox<strong>in</strong> doma<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong> 4 precursor ERP44 Vidal<br />

K08F4.7 gst-4 a putative glutathione-requir<strong>in</strong>g prostagl<strong>and</strong><strong>in</strong> D synthase GSTA3 Vidal<br />

F35E8.8 gst-38 unclassified GSTA4 Vidal<br />

C50C3.9 unc-36 alpha2/delta subunit of a voltage-gated calcium channel CACNA2D3 Vidal<br />

R05G6.7 - Por<strong>in</strong>/voltage-dependent anion-selective channel prote<strong>in</strong> VDAC2 Vidal<br />

Transport ATPase ZK256.1 pmr-1 a Golgi P-type ATPase Ca 2+ /Mn 2+ -pump ATP2C1<br />

Not<br />

available<br />

Dopam<strong>in</strong>e metabolism T23G5.5 dat-1 a plasma membrane dopam<strong>in</strong>e transporter SLC6A2/A3 Vidal<br />

Lipid metabolism C28C12.7 spp-10 sph<strong>in</strong>golipid metabolism/lysosomal PSAP Vidal<br />

RNA metabolism M88.5 - IGF-II mRNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> IMP IGF2BP2 Vidal<br />

Carbohydrate<br />

metabolism<br />

K11H3.1 gpdh-2 glycerol 3-phosphate dehydrogenases GPD1L Vidal<br />

Trehalose<br />

biosynthesis<br />

Unclassified<br />

T05A12.2 tre-2 putative trehalases of unknown function TREH Vidal<br />

W05E10.4 tre-3 putative trehalases of unknown function TREH Vidal<br />

C04B4.2 - unclassified None Vidal<br />

R74.3 xbp-1 unclassified None Vidal<br />

R13A1.8 glb-23 unclassified None Vidal<br />

F52C9.8 pqe-1 unclassified REXO1 Vidal<br />

F08C6.3 tag-197 unclassified VPS52 Vidal<br />

Y55F3AM.14 - unclassified None Vidal<br />

TABLE 2: Set of 47 modifier genes with known adult neuronal expression <strong>and</strong> non-RNAi lethality.<br />

Assigned functional category, C. elegans gene name, CGC approved name, available description <strong>and</strong><br />

human orthologue are shown. RNAi feed<strong>in</strong>g library coverage of the modifier genes is also <strong>in</strong>dicated. Four<br />

modifier genes are nematode specific <strong>and</strong> six genes rema<strong>in</strong> uncharacterised. UPS: ubiquit<strong>in</strong>-proteasome<br />

system, ECM: extracellular matrix.<br />

94


P rab-3::EGFP<br />

P unc-17::GFP<br />

E<br />

P dat-1::GFP<br />

P osm-6::GFP<br />

FIGURE 2: Promoter specificity of<br />

transgenic C. elegans is confirmed by Pglr-1::GFP fluorescent reporter constructs <strong>in</strong><br />

extrachromosomal arrays. Fluorescence<br />

microscopy of whole body (A,B;C-F left<br />

F<br />

panels) or magnified 3D confocal<br />

reconstruction of neuronal architecture <strong>in</strong><br />

the head region (C-F right panels). A, The<br />

pan-neuronal localisation of enhanced<br />

GFP (EGFP) expression is consistent with<br />

the expected rab-3 promoter driven<br />

expression pattern <strong>in</strong> all worm neurons. B,<br />

Punc-17::GFP labels most regions of the<br />

nervous system, predom<strong>in</strong>antly chol<strong>in</strong>ergic<br />

motor neuronal processes. C, The dat-1<br />

promoter labels all 8 dopam<strong>in</strong>ergic (DA)<br />

neurons: six anterior neurons <strong>in</strong> the head<br />

<strong>and</strong> two posterior deirid neurons (PDEs,<br />

thick arrow). 3D confocal reconstruction of<br />

Pgcy-8::GFP the magnified head region (right), detail<strong>in</strong>g the six anterior-most DA neurons: four cephalic CEP neurons (asterisks)<br />

project dendrites (th<strong>in</strong> arrows) to the tip of the nose <strong>and</strong> two anterior deirid ADE neurons (arrow head) extend ciliated<br />

processes posteriorly. The CEP dendritic processes of another worm are also visible. D, Posm-6::GFP selectively labels all<br />

60 ciliated sensory neurons. E, The glr-1 promoter drives expression of the GFP <strong>in</strong> the ventral cord <strong>in</strong>terneurons,<br />

motorneurons <strong>and</strong> nerve r<strong>in</strong>g. F, gcy-8::GFP localises exclusively to one thermo-sensory AFD pair (dashed arrow). 3D<br />

confocal reconstruction (right) shows that the AFD dendrites extend anteriorly to the tip of the nose. The sensory end<strong>in</strong>gs<br />

of both neurons are positioned at the tip of the dendrites (double asterisks). All animals imaged are young adults, four<br />

days post-hatch. They <strong>in</strong>clude transgenic N2 <strong>and</strong> RM2754 l<strong>in</strong>es overexpress<strong>in</strong>g GFP reporter alone (A, C <strong>and</strong> F) or<br />

together with HSF-1 <strong>in</strong> the targeted neurons of PS3551 stra<strong>in</strong>, a hsf-1 mutant (B,D,E). All 3D confocal reconstructions<br />

shown are maximal projections of z-stacks. Anterior to the left (C,E,F right panels); Anterior to the right (D, right panel).<br />

Scale bars: A,B;C-F: left panels, 100 μm; C-F right panels, 10 μm. Representative images of at least 5 worms from each<br />

transgenic l<strong>in</strong>e are shown.<br />

*<br />

*<br />

95


c) Detailed experimental plan of <strong>in</strong>vestigation<br />

S<strong>in</strong>ce the availability of a reliable disease model that recreates the molecular characteristics<br />

<strong>and</strong> associated major pathological hallmarks of neurodegenerative disorders (NDs), with a<br />

pronounced, measurable phenotype is the prerequisite for targets screen<strong>in</strong>g (5,11), this<br />

project will commence by generat<strong>in</strong>g <strong>and</strong> characteris<strong>in</strong>g multiple transgenic, non–transgenic<br />

<strong>and</strong> pharmacological disease models (Table 1, highlighted <strong>in</strong> beige) to choose the optimal<br />

models. Mutant models will be requested from the C. elegans mutant collection at the<br />

Caenorhabditis elegans Genetic Center, while st<strong>and</strong>ard transformation technique of<br />

micro<strong>in</strong>jection will be used to generate transgenic models overexpress<strong>in</strong>g a variety of wild-<br />

type <strong>and</strong> toxic ga<strong>in</strong>-of-function aggregation-prone prote<strong>in</strong>s under different promoters.<br />

Neuronal expression models will be favoured over muscle expression stra<strong>in</strong>s. The transgene<br />

will be chromosomally <strong>in</strong>tegrated by subsequent treatment with long-wave UV us<strong>in</strong>g a UV<br />

cross-l<strong>in</strong>ker. Immunohistochemistry, s<strong>in</strong>gle-worm PCR <strong>and</strong> Western blott<strong>in</strong>g will be<br />

performed to verify the expression of transgenes <strong>in</strong> transgenic l<strong>in</strong>es. Two Park<strong>in</strong>son‟s<br />

disease (PD) pharmacological models will also be generated by expos<strong>in</strong>g transgenic<br />

backgrounds to Park<strong>in</strong>sonism-<strong>in</strong>duc<strong>in</strong>g neurotox<strong>in</strong>s which will be purchased from Sigma (St<br />

Louis, MO). Among the behavioural assays that have been well established <strong>in</strong> C. elegans to<br />

assess neuronal toxicity-evoked phenotypic abnormalities (<strong>in</strong>clud<strong>in</strong>g thrash<strong>in</strong>g/swimm<strong>in</strong>g,<br />

body bend, paralysis, pharyngeal pump<strong>in</strong>g, <strong>and</strong> egg-lay<strong>in</strong>g) (12), this project will focus on<br />

locomotion <strong>and</strong> aldicarb (paralysis) assays to characterise <strong>and</strong> optimise disease models <strong>in</strong><br />

comparison with wild-types (WT). These assays exam<strong>in</strong>e motor impairments <strong>and</strong> defective<br />

exocytosis rate respectively, <strong>and</strong> can be applied generically to majority of the models. The<br />

food-sens<strong>in</strong>g assay which is exclusive to PD transgenic, mutant <strong>and</strong> compound <strong>in</strong>toxicated<br />

models with enhanced dopam<strong>in</strong>ergic (DA) neuron degeneration will be performed to<br />

determ<strong>in</strong>e aberrant basal slow<strong>in</strong>g behavioural phenotype s<strong>in</strong>ce C. elegans food-sens<strong>in</strong>g<br />

behaviour is mediated exclusively through an <strong>in</strong>tact DA neural circuitry. Typically 20-30 age-<br />

synchronised worms per stra<strong>in</strong> will be evaluated at all developmental stages <strong>and</strong> statistical<br />

significance will be determ<strong>in</strong>ed by a t-test for s<strong>in</strong>gle stra<strong>in</strong>s <strong>and</strong> one-way ANOVA for multiple<br />

stra<strong>in</strong>s. Disease models with prom<strong>in</strong>ent phenotypic deviations from control stra<strong>in</strong>s will be<br />

selected.<br />

Next a selective RNAi genetic modifier screen will be carried out <strong>in</strong> which bio<strong>in</strong>formatically<br />

prioritised modifiers retrieved from disparate datasets of previous genome-wide analyses<br />

(Table 2) will be specifically knocked down <strong>in</strong> the chosen disease models to characterise<br />

their function <strong>and</strong> the pathways through which they act. This laboratory has the published<br />

RNAi feed<strong>in</strong>g libraries, which together cover 95% of expressed worm genes. To circumvent<br />

RNAi resistance <strong>in</strong> WT C. elegans postmitotic neurons <strong>and</strong> to maximise RNAi efficacy, RNAi<br />

hypersensitive rrf-3 (mg373) stra<strong>in</strong> which has recently been reported as a mutant most<br />

sensitised to neuronal RNAi (13) will be <strong>in</strong>jected with transgene constructs of the chosen<br />

96


models together with a green fluorescent prote<strong>in</strong> (GFP) reporter, while models that were<br />

generated by mutagenesis will be crossed onto the rrf-3 background to construct the new<br />

double transgenic models. Synchronised larvae will be grown to young adults on agar plates<br />

conta<strong>in</strong><strong>in</strong>g the dsRNA-express<strong>in</strong>g bacterial culture that will target a specific C. elegans<br />

modifer gene (<strong>and</strong> one empty vector control per experiment), <strong>and</strong> then transferred to fresh<br />

RNAi plates conta<strong>in</strong><strong>in</strong>g FUdR (to prevent progeny growth) every five days. The <strong>in</strong>itial round<br />

of screen<strong>in</strong>g will be carried out based on exam<strong>in</strong><strong>in</strong>g locomotion at adult day 0, 2, 5, 7 <strong>and</strong> 9.<br />

These days have been selected to enable detection of either amelioration or exacerbation of<br />

the model-specific phenotypes. Knock-down rate of the target gene will be confirmed by<br />

reverse transcriptase polymerase cha<strong>in</strong> reaction (RT-PCR) <strong>and</strong> Western blot analysis. After<br />

<strong>in</strong>itial screen<strong>in</strong>g, positive hits will be re-tested three times to verify the <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>gs <strong>and</strong><br />

determ<strong>in</strong>e reproducibility. A neurodegeneration assay which has more direct implications for<br />

NDs will also be performed us<strong>in</strong>g the six validated pan-neuronal <strong>and</strong> discrete neuronal<br />

promoters (Fig. 2) to directly assess age-dependent neuronal loss dur<strong>in</strong>g the lifetime of the<br />

worms, <strong>and</strong> identify particular classes of neurons that are most vulnerable to the loss of<br />

modifier genes when comb<strong>in</strong>ed with disease prote<strong>in</strong> overexpression. However, this project<br />

aims to use methods for cultur<strong>in</strong>g C. elegans neurons to facilitate accurate quantitative<br />

evaluation of cumulative neurodegenerative changes <strong>in</strong> dist<strong>in</strong>ct C. elegans neuronal classes<br />

(14), as opposed to conventional neurodegeneration assays <strong>in</strong> whole nematode studies<br />

which have many considerable challenges i.e. liv<strong>in</strong>g-worm microscopy, follow<strong>in</strong>g neuronal<br />

loss <strong>in</strong> the same worm consecutively that would require repetitive worm recoveries etc.<br />

Follow<strong>in</strong>g dissociation from early embryos, cultured embryonic C. elegans cells are plated on<br />

culture dish surfaces covered with peanut lect<strong>in</strong> where they adhere <strong>and</strong> subsequently<br />

differentiate <strong>in</strong>to neurons. Rate of degeneration will be determ<strong>in</strong>ed by follow<strong>in</strong>g GFP-labeled<br />

neurons over time which can undergo further manipulation to provide a means for discern<strong>in</strong>g<br />

cellular mechanisms associated with ND (14). These molecular regulators will be validated<br />

further by overexpress<strong>in</strong>g the prote<strong>in</strong>s <strong>in</strong> WT <strong>and</strong> additional worm models before entry <strong>in</strong>to<br />

secondary analyses.<br />

It is conceivable that neuroprotective compounds mitigate the behavioural deficits <strong>and</strong> delay<br />

degenerative phenotype through unexplored pathways parallel, upstream or downstream of<br />

targets. Therefore, this project will aim to further identify the therapeutic targets <strong>and</strong><br />

pathways <strong>in</strong>volved <strong>in</strong> neuroprotective compounds‟ efficacy, <strong>and</strong> illum<strong>in</strong>ate their mechanism<br />

of action. A collection of twelve chemicals (Table1) i.e. antioxidants, k<strong>in</strong>ase <strong>in</strong>hibitors,<br />

dopam<strong>in</strong>e D2 receptor agonists <strong>and</strong> amyloid-b<strong>in</strong>d<strong>in</strong>g compounds (Sigma) that have been<br />

previously identified to confer neuroprotection will be tested <strong>in</strong> a chemical reverse genetics<br />

screen.<br />

Synchronised larvae of disease models express<strong>in</strong>g GFP <strong>in</strong> the targeted neurons will be<br />

<strong>in</strong>cubated with <strong>and</strong> without solubilised drugs for three days <strong>in</strong> 24-well plates. Each well will<br />

conta<strong>in</strong> a bacteria culture from the RNAi library express<strong>in</strong>g dsRNA to a C. elegans modifier<br />

97


gene (12 wells per bacteria), followed by addition of <strong>in</strong>dividual or a comb<strong>in</strong>ation of<br />

compounds per well. The presence or absence of GFP fluorescence will be evaluated <strong>in</strong><br />

each well to determ<strong>in</strong>e neuronal survival prior to replat<strong>in</strong>g on solid media for further<br />

behaviour assays for confirmation. Wells that conta<strong>in</strong> a weak or absent fluorescent signal<br />

would <strong>in</strong>dicate that the modifier is <strong>in</strong>volved <strong>in</strong> suppression of the compound‟s<br />

neuroprotective effects. Significance will be determ<strong>in</strong>ed us<strong>in</strong>g a Fisher‟s exact test which is<br />

appropriate for small sample sizes.<br />

d) Outcomes<br />

These <strong>in</strong>vestigations will help to reveal conserved molecular <strong>and</strong> therapeutic mechanisms<br />

which contribute not only to the molecular underst<strong>and</strong><strong>in</strong>g of human NDs but also eventually<br />

to the development of effective therapeutic preventions <strong>and</strong> <strong>in</strong>terventions for those who are<br />

at genetic risk or are affected cl<strong>in</strong>ically.<br />

e) Cont<strong>in</strong>gency plans<br />

Project progression may be temporarily slowed by some unexpected events, or potential<br />

difficulties <strong>in</strong> the operations. In such a case, efforts will be made to tackle the bottleneck as<br />

detailed below:<br />

Difficulties to <strong>in</strong>tegrate transgene <strong>in</strong> the germ-l<strong>in</strong>e of the animals.<br />

The difficulty with transgene expression <strong>in</strong> the C. elegans germ-l<strong>in</strong>e resides <strong>in</strong><br />

uncharacterised repression mechanisms of this organism <strong>and</strong> has long been a problem. In<br />

the event that no satisfactory transgene expression can be obta<strong>in</strong>ed by conventional<br />

micro<strong>in</strong>jection, double transgenic models will be created by genetic cross<strong>in</strong>g. Alternatively,<br />

this problem can also be circumvented by the new Mos1 techniques developed by<br />

Jorgensen Lab.<br />

RNAi knock-down rate cannot be confirmed by PCR<br />

GFP reporter will be used as an alternate to confirm reduced gene expression. Stra<strong>in</strong>s with<br />

GFP-labelled neurons will have gradual loss of fluorescence if RNAi have successfully<br />

suppressed gene expressions. Technical challenges of RNAi-based phenotypic analysis<br />

arise from the <strong>in</strong>herent limitations of RNA (i.e., neuronal <strong>in</strong>tractability, <strong>in</strong>herent variability <strong>in</strong><br />

the level of target mRNA knock-down for different genes, possibility of off-target effects). If<br />

this proves too difficult, alternative “loss of function” experiments can be validated with a<br />

forward genetic screen us<strong>in</strong>g knockout mutants.<br />

98


Milestone 1. Characterise <strong>and</strong> optimise<br />

neurodegenerative models<br />

Milestone 2. RNAi screens<br />

Year 1 Year 2 Year 3<br />

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4<br />

Generation of transgenic stra<strong>in</strong>s<br />

Screen <strong>and</strong> select<br />

Milestone 3. Suppressor chemical screens Obta<strong>in</strong><br />

Potential difficuties <strong>and</strong> cont<strong>in</strong>gency plans<br />

Genetic cross<strong>in</strong>g<br />

Forward genetic screens<br />

f) Timetable <strong>and</strong> milestones<br />

Word count: 1990<br />

References:<br />

Generate RNAi sensitive Identification of positive hits<br />

double transgenic models Validation of positive hits<br />

Screen <strong>and</strong> exam<strong>in</strong>e<br />

(12,15-48)<br />

1. Bon<strong>in</strong>i, N. M., <strong>and</strong> Fort<strong>in</strong>i, M. E. (2003) Annu Rev Neurosci 26, 627-656<br />

2. van Ham, T. J., Thijssen, K. L., Breitl<strong>in</strong>g, R., Hofstra, R. M. W., Plasterk, R. H. A., <strong>and</strong> Nollen, E.<br />

A. A. (2008) PLoS Genet 4, e1000027<br />

3. Marvanova, M., <strong>and</strong> Nichols, C. D. (2007) J Mol Neurosci 31, 127-137<br />

4. Nass, R., Hahn, M. K., Jessen, T., McDonald, P. W., Carvelli, L., <strong>and</strong> Blakely, R. D. (2005) J<br />

Neurochem 94, 774-785<br />

5. Harr<strong>in</strong>gton, A. J., Hamamichi, S., Caldwell, G. A., <strong>and</strong> Caldwell, K. A. (2010) Dev Dynam 239,<br />

1282-1295<br />

6. van Ham, T. J., Breitl<strong>in</strong>g, R., Swertz, M. A., <strong>and</strong> Nollen, E. A. A. (2009) EMBO Molecular<br />

Medic<strong>in</strong>e 1, 360-370<br />

7. Kraemer, B. C., Burgess, J. K., Chen, J. H., Thomas, J. H., <strong>and</strong> Schellenberg, G. D. (2006) Hum<br />

Mol Genet 15, 1483-1496<br />

8. Nollen, E. A. A., Garcia, S. M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R. I., <strong>and</strong><br />

Plasterk, R. H. A. (2004) Proc Natl Acad Sci U S A 101, 6403-6408<br />

9. Kuwahara, T., Koyama, A., Koyama, S., Yosh<strong>in</strong>a, S., Ren, C.-H., Kato, T., Mitani, S., <strong>and</strong><br />

Iwatsubo, T. (2008) Hum Mol Genet 17, 2997-3009<br />

10. Hamamichi, S., Rivas, R. N., Knight, A. L., Cao, S., Caldwell, K. A., <strong>and</strong> Caldwell, G. A. (2008)<br />

Proc Natl Acad Sci U S A 105, 728-733<br />

11. Artal-Sanz, M., de Jong, L., <strong>and</strong> Tavernarakis, N. (2006) Biotechnol J 1, 1405-1418<br />

12. Wu, Y., Wu, Z., Butko, P., Christen, Y., Lambert, M. P., Kle<strong>in</strong>, W. L., L<strong>in</strong>k, C. D., <strong>and</strong> Luo, Y.<br />

(2006) J Neurosci 26, 13102-13113<br />

13. Zhuang, J. J., <strong>and</strong> Hunter, C. P. (2011) Genetics<br />

14. Tucci, M. L., Caldwell, G. A., <strong>and</strong> Caldwell, K. A. (2011) Cell Culture to Investigate Neurotoxicity<br />

<strong>and</strong> Neurodegeneration Utiliz<strong>in</strong>g Caenorhabditis elegans. pp 129-143<br />

15. L<strong>in</strong>k, C. D. (1995) Proc Natl Acad Sci U S A 92, 9368-9372<br />

16. Kraemer, B. C., Zhang, B., Leverenz, J. B., Thomas, J. H., Trojanowski, J. Q., <strong>and</strong> Schellenberg,<br />

G. D. (2003) Proc Natl Acad Sci U S A 100, 9980-9985<br />

17. Miyasaka, T., D<strong>in</strong>g, Z., Gengyo-Ando, K., Oue, M., Yamaguchi, H., Mitani, S., <strong>and</strong> Ihara, Y.<br />

(2005) Neurobiol Dis 20, 372-383<br />

18. Br<strong>and</strong>t, R., Gergou, A., Wacker, I., Fath, T., <strong>and</strong> Hutter, H. (2009) Neurobiol Ag<strong>in</strong>g 30, 22-33<br />

19. Wang, H., Lim, P. J., Y<strong>in</strong>, C., Rieckher, M., Vogel, B. E., <strong>and</strong> Monteiro, M. J. (2006) Human<br />

Molecular Genetics 15, 1025-1041<br />

20. Satyal, S. H., Schmidt, E., Kitagawa, K., Sondheimer, N., L<strong>in</strong>dquist, S., Kramer, J. M., <strong>and</strong><br />

Morimoto, R. I. (2000) Proc Natl Acad Sci U S A 97, 5750-5755<br />

21. Alavez, S., Vantipalli, M. C., Zucker, D. J., Klang, I. M., <strong>and</strong> Lithgow, G. J. (2011) Nature 472,<br />

226-229<br />

22. Brignull, H. R., Moore, F. E., Tang, S. J., <strong>and</strong> Morimoto, R. I. (2006) J Neurosci 26, 7597-7606<br />

23. Vois<strong>in</strong>e, C., Varma, H., Walker, N., Bates, E. A., Stockwell, B. R., <strong>and</strong> Hart, A. C. (2007) PLoS<br />

One 2, e504<br />

24. Lakso, M., Vartia<strong>in</strong>en, S., Moilanen, A. M., Sirvio, J., Thomas, J. H., Nass, R., Blakely, R. D., <strong>and</strong><br />

Wong, G. (2003) J Neurochem 86, 165-172<br />

25. Spr<strong>in</strong>ger, W., Hoppe, T., Schmidt, E., <strong>and</strong> Baumeister, R. (2005) Hum Mol Genet 14, 3407-3423<br />

99


26. Ved, R., Saha, S., Westlund, B., Perier, C., Burnam, L., Sluder, A., Hoener, M., Rodrigues, C. M.,<br />

Alfonso, A., Steer, C., Liu, L., Przedborski, S., <strong>and</strong> Woloz<strong>in</strong>, B. (2005) J Biol Chem 280, 42655-<br />

42668<br />

27. Kuwahara, T., Koyama, A., Gengyo-Ando, K., Masuda, M., Kowa, H., Tsunoda, M., Mitani, S.,<br />

<strong>and</strong> Iwatsubo, T. (2006) J Biol Chem 281, 334-340<br />

28. Saha, S., Guillily, M. D., Ferree, A., Lanceta, J., Chan, D., Ghosh, J., Hsu, C. H., Segal, L.,<br />

Raghavan, K., Matsumoto, K., Hisamoto, N., Kuwahara, T., Iwatsubo, T., Moore, L., Goldste<strong>in</strong>,<br />

L., Cookson, M., <strong>and</strong> Woloz<strong>in</strong>, B. (2009) J Neurosci 29, 9210-9218<br />

29. Sämann, J., Hegermann, J., von Gromoff, E., Eimer, S., Baumeister, R., <strong>and</strong> Schmidt, E. (2009)<br />

J Biol Chem 284, 16482-16491<br />

30. Nass, R., Miller, D. M., <strong>and</strong> Blakely, R. D. (2001) Park<strong>in</strong>sonism & Related Disorders 7, 185-191<br />

31. Cao, S., Gelwix, C. C., Caldwell, K. A., <strong>and</strong> Caldwell, G. A. (2005) J Neurosci 25, 3801-3812<br />

32. Settivari, R., LeVora, J., <strong>and</strong> Nass, R. (2009) J. Biol. Chem., M109.051409<br />

33. Braungart, E., Gerlach, M., Riederer, P., Baumeister, R., <strong>and</strong> Hoener, M. C. (2004)<br />

Neurodegener Dis 1, 175-183<br />

34. Caldwell, K. A., Tucci, M. L., Armagost, J., Hodges, T. W., Chen, J., Memon, S. B., Blalock, J. E.,<br />

DeLeon, S. M., F<strong>in</strong>dlay, R. H., Ruan, Q., Webber, P. J., St<strong>and</strong>aert, D. G., Olson, J. B., <strong>and</strong><br />

Caldwell, G. A. (2009) PLoS One 4, e7227<br />

35. Gutierrez-Zepeda, A., Santell, R., Wu, Z., Brown, M., Wu, Y., Khan, I., L<strong>in</strong>k, C. D., Zhao, B., <strong>and</strong><br />

Luo, Y. (2005) BMC Neurosci 6, 54<br />

36. Yamanaka, K., Okubo, Y., Suzaki, T., <strong>and</strong> Ogura, T. (2004) J Struct Biol 146, 242-250<br />

37. Parker, J. A., Arango, M., Abderrahmane, S., Lambert, E., Tourette, C., Catoire, H., <strong>and</strong> Neri, C.<br />

(2005) Nat Genet 37, 349-350<br />

38. Bates, E. A., Victor, M., Jones, A. K., Shi, Y., <strong>and</strong> Hart, A. C. (2006) J Neurosci 26, 2830-2838<br />

39. Locke, C. J., Fox, S. A., Caldwell, G. A., <strong>and</strong> Caldwell, K. A. (2008) Neurosci Lett 439, 129-133<br />

40. Karp<strong>in</strong>ar, D. P., Balija, M. B., Kugler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H. Y.,<br />

Taschenberger, G., Falkenburger, B. H., Heise, H., Kumar, A., Riedel, D., Fichtner, L., Voigt, A.,<br />

Braus, G. H., Giller, K., Becker, S., Herzig, A., Baldus, M., Jackle, H., Eimer, S., Schulz, J. B.,<br />

Gries<strong>in</strong>ger, C., <strong>and</strong> Zweckstetter, M. (2009) EMBO J 28, 3256-3268<br />

41. Caldwell, G. A., Cao, S., Sexton, E. G., Gelwix, C. C., Bevel, J. P., <strong>and</strong> Caldwell, K. A. (2003)<br />

Hum Mol Genet 12, 307-319<br />

42. Faber, P. W., Alter, J. R., MacDonald, M. E., <strong>and</strong> Hart, A. C. (1999) Proc Natl Acad Sci U S A 96,<br />

179-184<br />

43. Oeda, T., Shimohama, S., Kitagawa, N., Kohno, R., Imura, T., Shibasaki, H., <strong>and</strong> Ishii, N. (2001)<br />

Hum Mol Genet 10, 2013-2023<br />

44. Wang, J., Farr, G. W., Hall, D. H., Li, F., Furtak, K., Dreier, L., <strong>and</strong> Horwich, A. L. (2009) PLoS<br />

Genet 5, e1000350<br />

45. Lakowski, B., Eimer, S., Göbel, C., Böttcher, A., Wagler, B., <strong>and</strong> Baumeister, R. (2003)<br />

Development 130, 2117-2128<br />

46. Gitler, A. D., Bevis, B. J., Shorter, J., Strathearn, K. E., Hamamichi, S., Su, L. J., Caldwell, K. A.,<br />

Caldwell, G. A., Rochet, J. C., McCaffery, J. M., Barlowe, C., <strong>and</strong> L<strong>in</strong>dquist, S. (2008) Proc Natl<br />

Acad Sci U S A 105, 145-150<br />

47. Briese, M., Esmaeili, B., Fraboulet, S., Burt, E. C., Christodoulou, S., Towers, P. R., Davies, K.<br />

E., <strong>and</strong> Sattelle, D. B. (2009) Hum Mol Genet 18, 97-104<br />

48. Arya, U., Dwivedi, H., <strong>and</strong> Subramaniam, J. R. (2009) Exp Gerontol 44, 462-466<br />

100


6. SUMMARY OF FINANCIAL SUPPORT REQUESTED<br />

STIPEND<br />

ANIMALS<br />

Specify the funds required for staff, animals, consumables <strong>and</strong> travel <strong>in</strong> the Table below.<br />

CONSUMABLES<br />

TRAVEL<br />

YEAR 1 YEAR 2 YEAR 3<br />

£13590 £13590 £13590<br />

- - -<br />

£10,000 £10,000 £10,000<br />

£1000 £1000 £1000<br />

TOTAL £24590 £24590 £24590<br />

7. JUSTIFICATION OF FINANCIAL SUPPORT REQUESTED<br />

In this section, justify the funds requested for animals, consumables <strong>and</strong> travel (no more than<br />

200 words).<br />

The applicant will be work<strong>in</strong>g full time <strong>and</strong> participat<strong>in</strong>g <strong>in</strong> the experimental design,<br />

application <strong>and</strong> analysis. She has ga<strong>in</strong>ed experience work<strong>in</strong>g with C. elegans <strong>in</strong> our<br />

laboratory dur<strong>in</strong>g three 10-week Masters-level rotation projects.<br />

The requested fund<strong>in</strong>g will cover the purchase for project-specific consumables such as<br />

rout<strong>in</strong>e chemicals <strong>and</strong> labware, the molecular biology techniques outl<strong>in</strong>ed above e.g.<br />

micro<strong>in</strong>jections, primary culture of embryonic neurons, as well as obta<strong>in</strong><strong>in</strong>g knockout<br />

mutants. The collection of drug compounds required for chemical screen<strong>in</strong>g costs around<br />

£5000 if to be purchased from Sigma, therefore contributes to a significant portion of the total<br />

costs. In addition, there are also charges relat<strong>in</strong>g to use of communal facilities (i.e. confocal<br />

microscope). F<strong>in</strong>ally, funds requested will cover travel expenses to attend <strong>and</strong> present<br />

research f<strong>in</strong>d<strong>in</strong>gs at relevant conferences.<br />

101


7.7 Demonstrator Tra<strong>in</strong><strong>in</strong>g Workshop<br />

Practical Based Teach<strong>in</strong>g<br />

Overview:<br />

This session will help postgraduate students to consider <strong>in</strong> more depth how their role <strong>in</strong> a practical<br />

class complements that of the lecturer <strong>and</strong> how they can take responsibility for help<strong>in</strong>g the<br />

students to get the most from the practical class.<br />

Aim:<br />

To help participants plan <strong>and</strong> teach a practical class.<br />

Objectives:<br />

Follow<strong>in</strong>g the session the participants will be able to:<br />

� def<strong>in</strong>e the purpose of practical-based teach<strong>in</strong>g <strong>and</strong> discuss their role with<strong>in</strong> it<br />

� discuss the <strong>in</strong>teractions between teach<strong>in</strong>g assistants <strong>and</strong> other members of staff <strong>and</strong><br />

students<br />

� prepare themselves prior to a practical class<br />

� identify the skills necessary to operate effectively as a teacher with<strong>in</strong> practical sessions<br />

� underst<strong>and</strong> the range of skills that practical classes can help students to develop<br />

� explore the ways <strong>in</strong> which language <strong>and</strong> attitude can affect communication<br />

� critically evaluate a number of <strong>in</strong>cidents occurr<strong>in</strong>g <strong>in</strong> practical classes, <strong>and</strong> identify<br />

appropriate courses of action<br />

� consider how to ensure reliability <strong>in</strong> mark<strong>in</strong>g assessments.<br />

102


Section 8<br />

Attendance Monitor<strong>in</strong>g & Absence Report<strong>in</strong>g<br />

Attendance Monitor<strong>in</strong>g<br />

Attendance at all scheduled activities <strong>in</strong> the <strong>MRes</strong> course is compulsory <strong>and</strong> will be monitored<br />

carefully. Any student who fails to attend such scheduled activities will be contacted by their str<strong>and</strong><br />

convenor <strong>and</strong> required to expla<strong>in</strong> their absence. Penalties for unauthorised absence will depend on<br />

the frequency of the absenteeism, <strong>and</strong> range from prevention of the award of a dist<strong>in</strong>ction, through<br />

loss of marks from the affected module, to suspension or term<strong>in</strong>ation of studies.<br />

Experience has shown us that students who are absent from scheduled activities are often hav<strong>in</strong>g<br />

either academic or personal problems. We therefore monitor attendance closely to identify<br />

problems as early as possible. The University also has a responsibility to report <strong>in</strong>ternational<br />

students with poor attendance to the UK Border Agency (UKBA) <strong>and</strong> this could lead to visa<br />

problems.<br />

Students will be asked to scan their student ID card at each scheduled activity to register their<br />

attendance. It is therefore important that students always carry their ID cards with them. If students<br />

forget their card, there is a temporary paper register available for sign<strong>in</strong>g. Students must scan their<br />

card or sign the register BEFORE the lecture commences. Students who arrive after the lecture<br />

has begun will not be able to scan/sign <strong>in</strong> <strong>and</strong> will be marked as absent. To avoid this, we request<br />

that students arrive 10 m<strong>in</strong>utes before the scheduled start time (e.g., at 8.50 am for lectures<br />

start<strong>in</strong>g at 9.00 am).<br />

NOTE: Your door access card does not conta<strong>in</strong> you student ID student. Because of this, if you<br />

scan this card <strong>in</strong>stead of your student ID card, you will be marked as absent.<br />

If a scheduled activity is missed for good reason (e.g. illness, family circumstances, medical<br />

appo<strong>in</strong>tment) students should complete an absence form (see below). Their attendance records<br />

will then be amended accord<strong>in</strong>gly.<br />

Students whose attendance fails to meet the required st<strong>and</strong>ard will be contacted by their str<strong>and</strong><br />

convenor <strong>and</strong> required to expla<strong>in</strong> their absence.<br />

Absence Report<strong>in</strong>g<br />

If for any reason you need to be absent (e.g. other meet<strong>in</strong>gs, courses, illness, etc) you should<br />

<strong>in</strong>form your supervisor <strong>and</strong> str<strong>and</strong> convenor as soon as possible, at the latest by 9.30am on<br />

the day that you will be away from the lab, by telephon<strong>in</strong>g or email<strong>in</strong>g them. You must provide<br />

<strong>in</strong>formation on when <strong>and</strong> why you will be absent, <strong>and</strong> ask him/her to make arrangements for any<br />

ongo<strong>in</strong>g experiments that you cannot complete that day. You should also email the Programme<br />

Adm<strong>in</strong>istrator to formally report your absence.<br />

If your absence is for 5 consecutive days or less, then you should use the Self-Certificates as<br />

detailed below (see items 1 <strong>and</strong> 2 below). Absences of longer than 5 consecutive days will require<br />

a Medical Certificate authorised by a medical practitioner (see item 3 below). Each of these three<br />

forms can be found <strong>in</strong> the Appendix at the back of this h<strong>and</strong>book.<br />

1. Self-Certificate of Absence caused by ILLNESS<br />

103


This can be used for a period of 5 consecutive days <strong>and</strong> does not require the signature of a<br />

medical practitioner. It should be submitted no later than 5 days after the last day of<br />

absence.<br />

a. Thoroughly complete the Self-Certificate of Absence caused by ILLNESS form.<br />

b. Obta<strong>in</strong> your supervisor‟s signature.<br />

c. Obta<strong>in</strong> your str<strong>and</strong> convenor‟s authorisation.<br />

d. Submit the form to the Programme Adm<strong>in</strong>istrator.<br />

2. Self-Certificate of Absence caused by OTHER REASONS (i.e. attend<strong>in</strong>g meet<strong>in</strong>gs, hospital<br />

appo<strong>in</strong>tments, <strong>in</strong>terviews).<br />

The form should be submitted no later than 5 days after the last day of absence.<br />

a. Thoroughly complete the Self-Certificate of Absence caused by OTHER REASONS<br />

form.<br />

b. Obta<strong>in</strong> your supervisor‟s signature.<br />

c. Obta<strong>in</strong> your str<strong>and</strong> convenor‟s authorisation.<br />

d. Submit the form to the Programme Adm<strong>in</strong>istrator.<br />

3. Absence due to Illness – VERIFIED BY A MEDICAL CERTIFICATE<br />

This form <strong>and</strong> accompany<strong>in</strong>g medical certificate should be submitted no later than 5 days<br />

after the last day of absence.<br />

a. Thoroughly complete the Absence due to Illness – VERIFIED BY A MEDICAL<br />

PRACTICTIONER form.<br />

b. Obta<strong>in</strong> your supervisor‟s signature.<br />

c. Obta<strong>in</strong> your str<strong>and</strong> convenor‟s authorisation.<br />

d. Submit the form <strong>and</strong> medical certificate to the Programme Adm<strong>in</strong>istrator.<br />

Mitigat<strong>in</strong>g Circumstances<br />

if you feel that your performance has been adversely affected by circumstances beyond your<br />

control, such as illness etc, <strong>and</strong> wish this to be taken <strong>in</strong>to account, you must fill out the appropriate<br />

form <strong>in</strong> this h<strong>and</strong>book. This form must be submitted to the Programme Adm<strong>in</strong>istrator as soon as<br />

possible after the event <strong>and</strong> should be accompanied by all relevant documentation.<br />

104


Section 9<br />

Student Feedback <strong>and</strong> Representation<br />

Feedback on assignments will be given by str<strong>and</strong> convenors <strong>in</strong> the first <strong>in</strong>stance. Students will also<br />

be able to meet with <strong>in</strong>dividual markers for additional feedback on assignments, if desired. We aim<br />

to mark all written assignments <strong>and</strong> provide feedback with 3 weeks of submission.<br />

There will be a Staff-Student Consultative Committee (SSCC), which will operate <strong>in</strong> accordance<br />

with the University Code of Practice <strong>and</strong> Guidel<strong>in</strong>es. It will meet once per semester (3 times per<br />

year), around the middle of each semester. In addition, there is student representation on the<br />

Board of Studies. Students will be elected to serve on both forums.<br />

Staff-Student Consultative Committee (SSCC)<br />

Constitution<br />

Elected <strong>MRes</strong> student represent<strong>in</strong>g each of the ma<strong>in</strong> str<strong>and</strong>s<br />

One <strong>MRes</strong> student from the previous year<br />

<strong>MRes</strong> Programme Director<br />

Str<strong>and</strong> Convenors<br />

<strong>MRes</strong> Programme Adm<strong>in</strong>istrator<br />

Institute Director of Postgraduate Studies<br />

Institute Senior Postgraduate Research Adm<strong>in</strong>istrator<br />

Head of Institute<br />

Senior Institute Adm<strong>in</strong>istrator<br />

Representative from the University Guild of Students<br />

The SSCC will report to the Board of Studies for the Programme.<br />

Board of Studies<br />

Constitution<br />

Elected <strong>MRes</strong> students represent<strong>in</strong>g each of the ma<strong>in</strong> str<strong>and</strong>s<br />

One <strong>MRes</strong> student from the previous year<br />

<strong>MRes</strong> Programme Director<br />

Str<strong>and</strong> Convenors<br />

<strong>MRes</strong> Programme Adm<strong>in</strong>istrator<br />

Institute Director of Postgraduate Studies<br />

Institute Senior Postgraduate Research Adm<strong>in</strong>istrator<br />

Head of Institute<br />

Senior Institute Adm<strong>in</strong>istrator<br />

Terms of Reference<br />

(i) All aspects of curriculum delivery;<br />

(ii) Resources provided for teach<strong>in</strong>g <strong>and</strong> learn<strong>in</strong>g;<br />

(iii) Matters of general relevance <strong>and</strong> <strong>in</strong>terest to the course.<br />

105


Section 10<br />

APPENDIX<br />

The follow<strong>in</strong>g pages conta<strong>in</strong> useful additional forms <strong>and</strong> <strong>in</strong>formation.<br />

A signed copy of the plagiarism form should be attached to all submitted written assignments<br />

(Research Project reports, Short Reviews, Referees Report, PhD studentship application).<br />

A copy of the appropriate absence report<strong>in</strong>g form, signed by you, your supervisor <strong>and</strong> your str<strong>and</strong><br />

convenor, should be submitted to the Programme Secretary to formally report any absences.<br />

The mitigat<strong>in</strong>g circumstances form should be copied, completed <strong>and</strong> submitted to the Programme<br />

Adm<strong>in</strong>istrator if you feel that your performance has been adversely affected by circumstances<br />

beyond your control such as illness etc <strong>and</strong> wish this to be taken <strong>in</strong>to account. This form must be<br />

submitted as soon as possible after the event <strong>and</strong> should be accompanied by relevant<br />

documentation.<br />

The campus map shows the location of the various University build<strong>in</strong>gs on campus.<br />

106


DECLARATION ON PLAGIARISM AND COLLUSION<br />

NAME……………………………………….STUDENT NUMBER………………………………....<br />

MODULE TITLE/CODE……………………………………………………………………………<br />

TITLE OF WORK…………………………………………………………………….……………<br />

This form should be completed by the student <strong>and</strong> appended to any piece of work that is submitted for<br />

summative assessment.<br />

Section 8.1 of the University‟s Code of Practice on Assessment provides the follow<strong>in</strong>g def<strong>in</strong>ition of<br />

plagiarism:<br />

“Plagiarism occurs when a student misrepresents, as his/her own work, the work, written or otherwise, of any<br />

other person (<strong>in</strong>clud<strong>in</strong>g another student) or of any <strong>in</strong>stitution. Examples of forms of plagiarism <strong>in</strong>clude: the<br />

verbatim (word for word) copy<strong>in</strong>g of another‟s work without appropriate <strong>and</strong> correctly presented<br />

acknowledgement; the close paraphras<strong>in</strong>g of another‟s work by simply chang<strong>in</strong>g a few words or alter<strong>in</strong>g the<br />

order of presentation, without appropriate <strong>and</strong> correctly presented acknowledgement; unacknowledged<br />

quotation of phrases from another‟s work; the deliberate <strong>and</strong> detailed presentation of another‟s concept as<br />

one‟s own.”<br />

“Another‟s work” covers all material, <strong>in</strong>clud<strong>in</strong>g, for example, written work, diagrams, designs, charts, musical<br />

compositions <strong>and</strong> pictures, from all sources, <strong>in</strong>clud<strong>in</strong>g, for example, the <strong>in</strong>ternet, journals, textbooks <strong>and</strong><br />

essays.<br />

You must also avoid self-plagiarism, i.e. re-us<strong>in</strong>g text, data or images that you have previously submitted for<br />

assessment. In other words, you are expressly forbidden from copy<strong>in</strong>g any such material from one of your<br />

written assignments to another.<br />

Section 8.1 of the University‟s Code of Practice on Assessment provides the follow<strong>in</strong>g def<strong>in</strong>ition of collusion:<br />

“Collusion occurs when, unless with official approval (e.g. <strong>in</strong> the case of group projects), two or more<br />

students consciously collaborate <strong>in</strong> the preparation <strong>and</strong> production of work which is ultimately submitted by<br />

each <strong>in</strong> an identical, or substantially similar, form <strong>and</strong>/or is represented by each to be the product of his or<br />

her <strong>in</strong>dividual efforts. Collusion also occurs where there is unauthorised co-operation between a student <strong>and</strong><br />

another person <strong>in</strong> the preparation <strong>and</strong> production of work which is presented as the student‟s own.”<br />

Further <strong>in</strong>formation on plagiarism <strong>and</strong> collusion can be found <strong>in</strong> departmental/programme h<strong>and</strong>books.<br />

Students found to have committed plagiarism or to have colluded <strong>in</strong> the production of work for assessment<br />

are liable to receive a mark of zero for the assessment concerned. Subsequent offences will attract more<br />

severe penalties, <strong>in</strong>clud<strong>in</strong>g possible term<strong>in</strong>ation of studies.<br />

STUDENT DECLARATION<br />

I confirm that I have read <strong>and</strong> understood the above def<strong>in</strong>itions of plagiarism, self-plagiarism <strong>and</strong> collusion. I<br />

confirm that I have not committed plagiarism when complet<strong>in</strong>g the attached piece of work, nor have I<br />

colluded with any other student <strong>in</strong> the preparation <strong>and</strong> production of this work.<br />

SIGNATURE………………………………………………………DATE…………………………………..<br />

107


ACTIVITY<br />

<strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e<br />

Name (<strong>in</strong> full):<br />

Student I.D.:<br />

Str<strong>and</strong> Name:<br />

Student Self-Certificate of Absence caused by ILLNESS<br />

PLEASE TICK BELOW THE ACTIVITIES YOU HAVE MISSED FROM EACH DAY OF YOUR ABSENCE:<br />

TYPE OF<br />

ACTIVITY<br />

Day 1<br />

of absence<br />

Day 2<br />

of absence<br />

Day 3<br />

of absence<br />

Day 4<br />

of absence<br />

Day 5<br />

of absence<br />

Lecture<br />

�<br />

Str<strong>and</strong><br />

Specific<br />

Activity<br />

�<br />

Science<br />

Skills<br />

�<br />

Journal<br />

Club<br />

�<br />

Debate<br />

�<br />

Lab<br />

Work<br />

�<br />

English<br />

Class<br />

�<br />

Other<br />

(specify<br />

below)<br />

ASSESSMENT(S) AFFECTED (TICK AS APPROPRIATE): my absence prevented my attendance at, or<br />

affected my submission of, the follow<strong>in</strong>g assessed work.<br />

�<br />

Research<br />

Project<br />

Report<br />

submission<br />

Research<br />

Project Oral<br />

or Poster<br />

presentation<br />

Short<br />

Review<br />

submission<br />

Referee’s<br />

Report<br />

Submission<br />

IP &<br />

Comm.<br />

Workshop<br />

Bus<strong>in</strong>ess<br />

Plan<br />

PhD<br />

Studentship<br />

Application<br />

submission<br />

F<strong>in</strong>al<br />

Portfolio<br />

submission<br />

108


STUDENT:<br />

I certify that I was absent from the University through illness dur<strong>in</strong>g the period:<br />

Date from:<br />

My attendance resumed on:<br />

The reason for illness was:<br />

Student Signature:<br />

HOW TO SUBMIT THIS FORM:<br />

1. Ask your Supervisor to sign this form (below).<br />

2. Ask your Str<strong>and</strong> Convenor to sign this form (below).<br />

3. Take the fully completed form to Mrs Helen Barclay, Physiology Build<strong>in</strong>g. This must be done with<strong>in</strong> 5<br />

days of your last day of absence.<br />

SUPERVISORS SIGNATURE:<br />

Supervisor’s Name:<br />

Signature:<br />

STRAND CONVENOR’S AUTHORISATION:<br />

Str<strong>and</strong> Convenor’s<br />

Name:<br />

Signature:<br />

FOR OFFICE USE ONLY:<br />

Date:<br />

Absence: 1 day [ ] 2 days [ ] 3 days [ ] 4 days [ ] 5 days [ ] more than 5 days<br />

[ ]<br />

Number of self-certificates submitted: 1 [ ] 2 [ ] 3 [ ] 4 [ ] more than 4 [ ]<br />

109


ACTIVITY<br />

<strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e<br />

Name (<strong>in</strong> full):<br />

Student I.D.:<br />

Str<strong>and</strong> Name:<br />

Student Self-Certificate of Absence caused by OTHER REASONS<br />

PLEASE TICK BELOW THE ACTIVITIES YOU HAVE MISSED FROM EACH DAY OF YOUR ABSENCE:<br />

TYPE OF<br />

ACTIVITY<br />

Day 1<br />

of absence<br />

Day 2<br />

of absence<br />

Day 3<br />

of absence<br />

Day 4<br />

of absence<br />

Day 5<br />

of absence<br />

Lecture<br />

�<br />

Str<strong>and</strong><br />

Specific<br />

Activity<br />

�<br />

Science<br />

Skills<br />

�<br />

Journal<br />

Club<br />

�<br />

Debate<br />

�<br />

Lab<br />

Work<br />

�<br />

English<br />

Class<br />

�<br />

Other<br />

(specify<br />

below)<br />

ASSESSMENT(S) AFFECTED (TICK AS APPROPRIATE): my absence prevented my attendance at, or<br />

affected my submission of, the follow<strong>in</strong>g assessed work.<br />

�<br />

Research<br />

Project<br />

Report<br />

submission<br />

Research<br />

Project Oral<br />

or Poster<br />

presentation<br />

Short<br />

Review<br />

submission<br />

Referee’s<br />

Report<br />

Submission<br />

IP &<br />

Comm.<br />

Workshop<br />

Bus<strong>in</strong>ess<br />

Plan<br />

PhD<br />

Studentship<br />

Application<br />

submission<br />

F<strong>in</strong>al<br />

Portfolio<br />

submission<br />

110


STUDENT:<br />

I certify that I was absent from the University dur<strong>in</strong>g the period:<br />

Date from:<br />

My attendance resumed on:<br />

The reason(s) for my absence were:<br />

Student Signature:<br />

ATTACH EVIDENCE CONFIRMING THE REASONS FOR ABSENCE WHERE AVAILABLE<br />

HOW TO SUBMIT THIS FORM:<br />

1. Ask your Supervisor to sign this form (below).<br />

2. Ask your Str<strong>and</strong> Convenor to sign this form (below).<br />

3. Take the fully completed form to Mrs Helen Barclay, Physiology Build<strong>in</strong>g. This must be done with<strong>in</strong> 5<br />

days of your last day of absence.<br />

SUPERVISORS SIGNATURE:<br />

Supervisor’s Name:<br />

Signature:<br />

STRAND CONVENOR’S AUTHORISATION:<br />

Str<strong>and</strong> Convenor’s<br />

Name:<br />

Signature:<br />

FOR OFFICE USE ONLY:<br />

Date:<br />

Absence: 1 day [ ] 2 days [ ] 3 days [ ] 4 days [ ] 5 days [ ] more than 5 days<br />

[ ]<br />

Number of self-certificates submitted: 1 [ ] 2 [ ] 3 [ ] 4 [ ] more than 4 [ ]<br />

111


ACTIVITY<br />

<strong>MRes</strong> <strong>in</strong> <strong>Biomedical</strong> <strong>Sciences</strong> <strong>and</strong> <strong>Translational</strong> Medic<strong>in</strong>e<br />

Student Name:<br />

Student I.D.:<br />

Str<strong>and</strong> Name:<br />

Absence due to Illness – VERIFIED BY A MEDICAL CERTIFICATE<br />

Students are to complete this form each time they submit a medical certificate<br />

or letter received from a doctor or hospital<br />

PLEASE TICK BELOW THE ACTIVITIES YOU HAVE MISSED FROM EACH DAY OF YOUR ABSENCE:<br />

TYPE OF<br />

ACTIVITY<br />

Day 1<br />

of absence<br />

Day 2<br />

of absence<br />

Day 3<br />

of absence<br />

Day 4<br />

of absence<br />

Day 5<br />

of absence<br />

Lecture<br />

�<br />

Str<strong>and</strong><br />

Specific<br />

Activity<br />

�<br />

Science<br />

Skills<br />

�<br />

Journal<br />

Club<br />

�<br />

Debate<br />

�<br />

Lab<br />

Work<br />

�<br />

English<br />

Class<br />

�<br />

Other<br />

(specify<br />

below)<br />

ASSESSMENT(S) AFFECTED (TICK AS APPROPRIATE): my absence prevented my attendance at, or<br />

affected my submission of, the follow<strong>in</strong>g assessed work.<br />

�<br />

Research<br />

Project<br />

Report<br />

submission<br />

Research<br />

Project Oral<br />

or Poster<br />

presentation<br />

Short<br />

Review<br />

submission<br />

Referee’s<br />

Report<br />

Submission<br />

IP &<br />

Comm.<br />

Workshop<br />

Bus<strong>in</strong>ess<br />

Plan<br />

PhD<br />

Studentship<br />

Application<br />

submission<br />

F<strong>in</strong>al<br />

Portfolio<br />

submission<br />

112


STUDENT:<br />

I certify that I was absent from the University through illness dur<strong>in</strong>g the period:<br />

Date from:<br />

My attendance resumed on:<br />

Student Signature:<br />

HOW TO SUBMIT THIS FORM:<br />

1. Ask your Supervisor to sign this form (below).<br />

2. Ask your Str<strong>and</strong> Convenor to sign this form (below).<br />

3. Take the fully completed form AND MEDICAL CERTIFICATE to Mrs Helen Barclay, Physiology Build<strong>in</strong>g.<br />

This must be done with<strong>in</strong> 5 days of your last day of absence.<br />

SUPERVISORS SIGNATURE:<br />

Supervisor’s Name:<br />

Signature:<br />

STRAND CONVENOR’S AUTHORISATION:<br />

Str<strong>and</strong> Convenor’s<br />

Name:<br />

Signature:<br />

FOR OFFICE USE ONLY:<br />

Date:<br />

Absence: 1 day [ ] 2 days [ ] 3 days [ ] 4 days [ ] 5 days [ ] more than 5 days<br />

[ ]<br />

Number submitted: 1 [ ] 2 [ ] 3 [ ] 4 [ ] more than 4 [ ]<br />

113


Application for Consideration of Mitigat<strong>in</strong>g Circumstances<br />

Full name: …………………………………………………………………………….<br />

Registration number: …………………………………………………………………<br />

Programme of study: ...……………………………………………………………….<br />

Year of study: …………………<br />

Modules affected by mitigat<strong>in</strong>g circumstances<br />

Module Code Module Name Assessment missed/affected<br />

Details of mitigat<strong>in</strong>g circumstances<br />

Please provide a description of the mitigat<strong>in</strong>g circumstances that may have affected your<br />

performance <strong>in</strong> the above modules, <strong>in</strong>clud<strong>in</strong>g the time period over which these circumstances<br />

occurred. Please state what aspect(s) of the assessment you feel have been affected.<br />

114


Support<strong>in</strong>g documentation<br />

Please list all the documentation provided <strong>in</strong> support of your claim. The documentation should be<br />

stapled to this form. Medical claims should be supported by a medical note, other claims should be<br />

supported by appropriate documentation (for example, police reports, <strong>in</strong>surance reports).<br />

Student declaration<br />

I confirm that all the <strong>in</strong>formation conta<strong>in</strong>ed <strong>in</strong> this statement is accurate <strong>and</strong> complete to the best of<br />

my knowledge. I consent to the <strong>in</strong>formation be<strong>in</strong>g used by the Mitigat<strong>in</strong>g Circumstances<br />

Committee, <strong>and</strong> underst<strong>and</strong> that the <strong>in</strong>formation will be treated <strong>in</strong> the strictest confidence.<br />

Signature of student:…………………………………………. Date:…………………<br />

FOR USE BY THE CHAIR OF THE MITIGATING CIRCUMSTANCES COMMITTEE ONLY<br />

I recommend that the follow<strong>in</strong>g action be taken <strong>in</strong> respect of this claim:<br />

Signature of Chair:……………………………………………………………………...<br />

Date: …………………………………………<br />

115

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!