05.01.2013 Views

Radiation Protection Radiation Protection

Radiation Protection Radiation Protection

Radiation Protection Radiation Protection

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

WNU–Summer Institute 2012<br />

Christ Church Lecture Hall, University of Oxford, UK; August 2th Christ Church Lecture Hall, University of Oxford, UK; August 2 , 2012<br />

th , 2012<br />

<strong>Radiation</strong> <strong>Protection</strong><br />

1. Epistemology of <strong>Radiation</strong><br />

2. International Paradigms<br />

Abel J. González<br />

Vice-President Vice Vice-President President of the International Commission on Radiological <strong>Protection</strong> Protec <strong>Protection</strong> tion (ICRP)<br />

Representative to the United Nations Scientific Committee on the th the e Effects of Atomic <strong>Radiation</strong> (UNSCEAR)<br />

Member of the Commission of Safety Standards of the IAEA<br />

Autoridad Regulatoria Nuclear; Nuclear Nuclear; ; Av. Av. Av. del Libertador 8250; (C1429BNP) ( (C1429BNP) C1429BNP) Ciudad de Buenos Aires, Aires Aires, , Argentina<br />

+54 +54 +54 11 6323 1758; (official) (official) (official) agonzalez@arn.gob.ar; (private) (private) (private) abel_j_gonzalez@yahoo.com<br />

1


Content<br />

FIRST PART<br />

Epistemology:<br />

<strong>Radiation</strong> Science and its Limitations<br />

Quantification<br />

Levels<br />

Effects<br />

SECOND PART<br />

<strong>Protection</strong> Paradigm<br />

The International <strong>Radiation</strong> <strong>Protection</strong> System<br />

The International Organizations<br />

<strong>Radiation</strong> <strong>Protection</strong> Recommendations<br />

Global Regime<br />

2


FIRST PART<br />

Epistemology:<br />

<strong>Radiation</strong> Science and its Limitations<br />

26 July, 2012 3


(1)<br />

Quantification<br />

of <strong>Radiation</strong> Exposure<br />

WNU-Summer Institute<br />

4


Radioactive<br />

substance<br />

(radioactivity<br />

measured in<br />

Becquerels<br />

[or curie])<br />

<strong>Radiation</strong> emitted<br />

(radiation fluence)<br />

Absorbed dose<br />

(incurred due to<br />

radioactivity<br />

inside the body<br />

or radiation fluence<br />

from outside<br />

–measured in gray<br />

[or rad])<br />

5


Activity,A<br />

(bequerel or curie)<br />

Fluence,Φ<br />

Absorbed dose, D<br />

(gray or rad)


Absorbed dose, D<br />

(gray or rad)<br />

<strong>Radiation</strong><br />

weighting factor, w R<br />

Equivalent dose, H T<br />

(sievert or rem)


Equivalent dose, H T<br />

(sievert or rem)<br />

Tissue<br />

weighting factor), wT Effective dose, E<br />

(sievert or rem)


Activity<br />

(Bq)<br />

Fluence<br />

(cm-2 Fluence<br />

(cm ) -2 )<br />

Conversion<br />

Factor<br />

(Sv Bq-1 Conversion<br />

Factor<br />

(Sv Bq ) -1 )<br />

Absorbed<br />

Dose<br />

(Gy)<br />

Conversion<br />

Factor<br />

(Sv cm2 Conversion<br />

Factor<br />

(Sv cm ) 2 )<br />

w R<br />

Equivalent<br />

Dose (organ)<br />

(Sv)<br />

w T<br />

Efective<br />

Dose<br />

(Sv)<br />

9


(2)<br />

International Estimates of Global<br />

<strong>Radiation</strong> Exposure Levels


Natural<br />

Cosmic Cosmic rays<br />

Terrestrial<br />

Terrestrial<br />

Inhalation<br />

Inhalation<br />

[radon]<br />

Sources<br />

Artificial<br />

Medical Medical<br />

Military Military<br />

Nuclear Nuclear Power<br />

Occupational<br />

Occupational<br />

Accidents<br />

Accidents<br />

11


Natural Background<br />

Few people<br />

In few areas <br />

Many people<br />

In many areas <br />

Majority of people<br />

around the world <br />

~100<br />

~ 10<br />

~2.4<br />

~1<br />

annual dose<br />

mSv/year<br />

VERY HIGH<br />

TYPICALLY HIGH<br />

AVERAGE<br />

MINIMUM<br />

12


OSU, Stillwater, OK, USA, February 2008<br />

13


Exposure to natural sources<br />

Source Global average dose Typical range<br />

(mSv per year) (mSv per year)<br />

External exposure<br />

Cosmic rays 0.4 0.3 to 1.0<br />

Terrestrial gamma rays 0.5 0.3 to 1.0<br />

Internal exposure<br />

Inhalation (mainly radon) 1.3 0.2 to 10<br />

Ingestion 0.3 0.2 to 1.0<br />

Total 2.4 1 to 13<br />

highest…up to above 100!<br />

14


Medical<br />

sources


Radio-diagnostic procedures<br />

Average annual frequency per 1000<br />

1308<br />

High<br />

Health-care<br />

332<br />

Medium<br />

Health-care<br />

20<br />

Low<br />

Health-care<br />

482<br />

Global<br />

average<br />

16


Annual average per-caput dose<br />

(in mSv)<br />

1.88<br />

High<br />

Health-care<br />

0.32<br />

Medium<br />

Health-care<br />

0.03<br />

Low<br />

Health-care<br />

0.61<br />

Global<br />

average<br />

17


No. of procedures (millions)<br />

70.0<br />

60.0<br />

50.0<br />

40.0<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

procedures by year (millions)<br />

Annual growth > 10%/yr<br />

Annual growth of >10% per yea<br />

U.S. population < 1%/yr<br />

18.3<br />

19.5<br />

21.0<br />

22.6<br />

CT scans by year in US (millions<br />

25.1<br />

26.3<br />

Computerized tomography (CT)<br />

30.6<br />

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006<br />

34.9<br />

39.6<br />

45.4<br />

50.1<br />

53.9<br />

57.6<br />

62.0<br />

18


Military activities<br />

20


NUMBER<br />

150<br />

100<br />

50<br />

0<br />

50<br />

100<br />

1945<br />

Nuclear weapons tests<br />

Atmospheric tests<br />

Underground tests<br />

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000<br />

21


Annual effective dose (mSv)<br />

Doses due to atmospheric nuclear testing<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

1945 1955 1965 1975 1985 1995 2005<br />

Year<br />

22


Civil nuclear power<br />

23


Global average levels<br />

Natural<br />

sources<br />

80%<br />

Source: UNSCEAR 2000 Report<br />

Medical<br />

examinations<br />

20%<br />

Weapons<br />

fallout<br />


Occupational exposures<br />

25


Annual effective dose (mSv)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Nuclear industry<br />

Millions<br />

exposed<br />

Man-made sources Natural sources<br />

Defence<br />

Medicine<br />

Coal mining<br />

Other mining<br />

Aircrew<br />

0 10 20 30<br />

Other workplaces<br />

Artificial<br />

Natural<br />

26


Global annual per caput dose (mSv)<br />

27


Annual per caput dose (mSv) for USA<br />

28


In summary:<br />

Patients are<br />

being exposed<br />

to increased<br />

radiation<br />

levels<br />

29


(3)<br />

Recent Developments on the epistemology of<br />

<strong>Radiation</strong> Health Effects<br />

(Method, validity and scope of the scientific knowledge<br />

on the detrimental effects of radiation exposure)<br />

WNU-Summer Institute<br />

30


26 July, 2012<br />

Chromosomes<br />

WNU-Summer Institute<br />

DNA<br />

31


26 July, 2012<br />

WNU-Summer Institute<br />

32


Chromosomes<br />

26 July, 2012<br />

are a<br />

condensed<br />

packing of<br />

DNA<br />

1400<br />

nano<br />

meters<br />

0.2 meters!<br />

2 nanometers<br />

33


26 July, 2012<br />

34


The Enciclopedy of Life<br />

26 July, 2012<br />

Bases Letters<br />

Codons Words<br />

Introns Interruptions<br />

Exons Paragraphs<br />

Genes Chapters<br />

Chromosomes Volumes<br />

WNU-Summer Institute<br />

35


26 July, 2012<br />

<strong>Radiation</strong> harm to DNA<br />

WNU-Summer Institute 36


26 July, 2012<br />

Mutation!<br />

WNU-Summer Institute<br />

37


Many other<br />

mutations occur due<br />

to DNA miscopying,<br />

thermal agitation, etc.<br />

Usually they can be<br />

correctly repaired by<br />

26 July, 2012<br />

copying the DNA<br />

template.<br />

WNU-Summer Institute<br />

39


What is the<br />

problem then?:<br />

the chromosome is<br />

26 July, 2012<br />

a very complex<br />

packing of DNA<br />

WNU-Summer Institute<br />

nucleosomes<br />

41


26 July, 2012<br />

0.5 Mev <br />

WNU-Summer Institute<br />

10 nm<br />

2nm<br />

43


26 July, 2012<br />

WNU-Summer Institute<br />

44


26 July, 2012<br />

Chromosomes deletions<br />

WNU-Summer Institute 45


26 July, 2012<br />

Chromosomes Translocations<br />

WNU-Summer Institute 46


26 July, 2012<br />

Chromosomal aberrations are easily<br />

identifiable in the microscope<br />

WNU-Summer Institute<br />

48


adiation<br />

hits a cell<br />

nucleus!<br />

26 July, 2012<br />

WNU-Summer Institute<br />

No change<br />

DNA mutation<br />

49


26 July, 2012<br />

Probability<br />

of mutation<br />

p = a D + b D2 p = a D + b D2 p = a D<br />

WNU-Summer Institute<br />

pD (a D + b D2 ) e-cD pD (a D + b D2 ) e-cD Dose<br />

50


DNA mutation<br />

p a D a D D 3)Cell survives<br />

26 July, 2012<br />

1) Mutation<br />

repaired<br />

2) Cell dies<br />

but mutated<br />

WNU-Summer Institute<br />

No effects<br />

Deterministic<br />

Effects (>~1Sv)<br />

Stochastic<br />

effects<br />

51


26 July, 2012<br />

First possible outcome:<br />

mutation is repaired<br />

Mutation<br />

repaired<br />

Viable Cell<br />

WNU-Summer Institute 52


26 July, 2012<br />

Second possible outcome:<br />

cell killing (apoptosis)<br />

Unviable Cell<br />

WNU-Summer Institute 53


26 July, 2012<br />

Cell killingat around 1000mSv <br />

deterministic effects:burns, organ failure,<br />

death!<br />

100%<br />

Probability<br />

Acute dose<br />

> ~1000 mSv<br />

WNU-Summer Institute 54


<strong>Radiation</strong> accidents involving<br />

masive cell killing are rare<br />

Since 1944 there were around 400 accidents<br />

worldwide.<br />

Approximately 3000 persons were injured,<br />

with 120 fatalities (including 28 Chernobyl<br />

victims).<br />

55


26 July, 2012<br />

Third possible outcome:<br />

viable but mutated cell<br />

Cell survives<br />

but mutated<br />

Altered process<br />

WNU-Summer Institute 60


26 July, 2012<br />

Normal process<br />

WNU-Summer Institute 61


26 July, 2012<br />

Altered process<br />

WNU-Summer Institute 62


26 July, 2012<br />

Cell survives<br />

but mutated<br />

Stochastic effects<br />

WNU-Summer Institute 63


26 July, 2012<br />

Stochastic effects<br />

Cancer<br />

Hereditable<br />

Antenatal<br />

WNU-Summer Institute 64


26 July, 2012<br />

Cancer<br />

WNU-Summer Institute<br />

65


<strong>Radiation</strong><br />

mutates DNA<br />

26 July, 2012<br />

Prevalent opinion on<br />

radiation-induced cancer<br />

Tumour<br />

promotion<br />

Failure to<br />

repair DNA<br />

INMUNE SYSTEM<br />

Malignant<br />

conversion<br />

Viable cell with<br />

carcinogenes<br />

Metastasis of<br />

malignancy<br />

66


Estimates of the Risk of Cancer due to<br />

26 July, 2012<br />

<strong>Radiation</strong> Exposure<br />

WNU-Summer Institute<br />

68


26 July, 2012<br />

Radioepidemiology<br />

(Epidemia (Gk): prevalence of disease)<br />

WNU-Summer Institute<br />

69


Control group<br />

“N” people<br />

“C” cancers<br />

“n” probability of<br />

‘natural ‘natural’ natural’ cancer<br />

26 July, 2012<br />

WNU-Summer Institute<br />

Exposed group<br />

“N” people<br />

“E” cancers<br />

“n” probability of<br />

‘natural ‘natural’cancer<br />

natural’cancer cancer<br />

‘p D’ probability of<br />

‘radiation ‘radiation’ radiation’ cancer<br />

70


26 July, 2012<br />

Difficult to<br />

assess!<br />

C<br />

=n N<br />

Number<br />

of<br />

cancers<br />

in<br />

control<br />

group<br />

E-C<br />

WNU-Summer Institute<br />

E<br />

= n N<br />

+<br />

p d D N<br />

Number<br />

of<br />

cancers<br />

in<br />

exposed<br />

group<br />

71


UNSCEAR has reviewed many many<br />

epidemiological data on effects of radiation in<br />

26 July, 2012<br />

exposed populations<br />

WNU-Summer Institute<br />

72


26 July, 2012<br />

The radium dial painters,…<br />

WNU-Summer Institute 73


…the early x-rays doctors and patients…<br />

26 July, 2012<br />

WNU-Summer Institute 74


26 July, 2012<br />

..the Mayak cohort of workers…<br />

MAYAK<br />

WNU-Summer Institute 75


..the survivors of Hiroshima y Nagasaki..<br />

..the survivors of Hiroshima y Nagasaki..<br />

26 July, 2012<br />

WNU-Summer Institute<br />

76


…all these victims of radiation exposure have<br />

unwillingly contributed to the<br />

UNSCEAR’s epidemiological assessments.<br />

26 July, 2012<br />

WNU-Summer Institute<br />

77


26 July, 2012<br />

Cohort of Hiroshima & Nagasaki<br />

(LIFE SPAN STUDY, LSS)<br />

Slide 6<br />

Mt.Hiji<br />

WNU-Summer Institute 78


Solid Cancer Mortality<br />

47 years of follow-up (1950-1997)<br />

Exposed population: 9,335 (10,127) cancer deaths<br />

Reference population: 8,895 (9,648) cancer deaths<br />

~440 (479) cancers attributable to radiation (5%)<br />

26 July, 2012<br />

Preston et al, Radiat Res 160:381-407, 2003<br />

(updated figures)<br />

79


Lifetime cancer mortality risk<br />

(after 1000 mSv acute dose)<br />

~ 0.6-1.0%. for leukæmia<br />

and<br />

~4.3–7.2% for all solid cancers combined,<br />

(lower for men than for women)<br />

Lifetime cancer risk estimates for those exposed as children might be a factor of<br />

2 to 3 times higher than the estimates for a population exposed at all ages.<br />

26 July, 2012<br />

UNSCEAR Estimates of NOMINAL Cancer Risk<br />

WNU-Summer Institute 80


26 July, 2012<br />

Hereditable Effects<br />

WNU-Summer Institute<br />

81


Prevalent opinion on the induction of<br />

hereditable effects from radiation exposure<br />

<strong>Radiation</strong><br />

Mutes the DNA<br />

of a Germinal<br />

26 July, 2012<br />

Cell<br />

Failure to<br />

Repair<br />

Viable Sperm<br />

or Ovum<br />

Containing<br />

Defective Genes<br />

WNU-Summer Institute 82


The risk is so low that the estimation has<br />

to be based on animal studies<br />

26 July, 2012<br />

WNU-Summer Institute 83


26 July, 2012<br />

Hereditable Effects<br />

Total risk to first generation<br />

following parental exposure:<br />

~ 0.2% per Sv<br />

>1/10 the risk of fatal carcinogenesis<br />

constitutes 0.5% of baseline<br />

WNU-Summer Institute 84


26 July, 2012<br />

Antenatal Effects<br />

WNU-Summer Institute<br />

85


26 July, 2012<br />

WNU-Summer Institute 86


26 July, 2012<br />

1000mSv<br />

= IQ<br />

WNU-Summer Institute 87


26 July, 2012<br />

Shift in the IQ curve:<br />

30 IQ units per 1000 mSv incurred during the 8-15 weeks<br />

1000mSv<br />

= IQ<br />

WNU-Summer Institute 88


Latest news<br />

89


Summary<br />

of the scientific knowledge<br />

93


Likelihood<br />

of health<br />

effects<br />

100%<br />

(certainty)<br />

~ 10%<br />

~5%<br />

(UNSCEAR<br />

estimate)<br />

~ 1%<br />

Approx.<br />

lower bound of<br />

epidemiological<br />

knowledge<br />

Estimated Estimated likelihood likelihood of of cancer<br />

cancer<br />

Subjective<br />

(Bayesian)<br />

estimation<br />

~0,1<br />

Approx.<br />

lower bound<br />

of pathological<br />

knowledge<br />

Tissue reactions<br />

Clinical diagnosis<br />

(individual pathology)<br />

Cytogenetic exposure indicators<br />

General radiobiological information<br />

radiation<br />

syndromes<br />

and death<br />

Increase incidence of malignancies<br />

Statistical estimates (epidemiology of populations)<br />

Frequentist<br />

(Bernoullian)<br />

estimation<br />

~1 ~10<br />

Dose (Sv)<br />

94


Likelihood<br />

of health<br />

effects<br />

100%<br />

(certainty)<br />

~ 10%<br />

~5%<br />

(UNSCEAR<br />

estimate)<br />

~ 1%<br />

Typical<br />

Background<br />

Approx.<br />

lower bound of<br />

epidemiological<br />

knowledge<br />

Estimated Estimated likelihood likelihood of of cancer cancer<br />

~0,1<br />

Region of inference<br />

of radiation risks<br />

Approx.<br />

lower bound<br />

of pathological<br />

knowledge<br />

Increased<br />

syndromes<br />

and death<br />

Dose (Sv)<br />

~1 ~10<br />

Region of individual<br />

attribution of effects<br />

Region of collective attribution of effects<br />

95


Likelihood<br />

of health<br />

effects<br />

100%<br />

(certainty)<br />

~ 10%<br />

~5%<br />

(UNSCEAR<br />

estimate)<br />

~ 1%<br />

Typical<br />

Background<br />

Approx.<br />

lower bound of<br />

epidemiological<br />

knowledge<br />

Estimated Estimated likelihood likelihood of of cancer cancer<br />

~0,1<br />

Region of inference<br />

of radiation risks<br />

Approx.<br />

lower bound<br />

of pathological<br />

knowledge<br />

Increased<br />

syndromes<br />

and death<br />

Dose (Gy)<br />

~1 ~10<br />

Region of individual<br />

attribution of effects<br />

Region of collective attribution of effects<br />

96


Total<br />

background<br />

incidence of<br />

effects<br />

Presumed<br />

radiation-related<br />

background incidence<br />

<strong>Radiation</strong>-unrelated<br />

background<br />

incidence<br />

Postulated<br />

likelihood of health effects<br />

Background<br />

annual dose<br />

(average 2.4,<br />

typical 10 mSv y -1 )<br />

Incremental dose<br />

0.005%/mSv<br />

Nominal incremental<br />

likelihood<br />

of health effects<br />

Dose<br />

97


26 July, 2012<br />

Take away points<br />

WNU-Summer Institute<br />

98


Activity bequerel<br />

Dose sievert (1 Sv = 1000 milliSieverts)<br />

milliSieverts<br />

milliSieverts) )<br />

(mSv (mSv) mSv)<br />

Background 2.4 mSv/y<br />

Background 2.4 mSv/y (up up to above 100 mSv) mSv mSv)<br />

Medical <br />

Nuclear <br />

26 July, 2012 WNU-Summer Institute 99


Dose<br />

Very low dose:<br />

about 10 mSv or less<br />

Low dose:<br />

towards 100 mSv<br />

Moderate dose:<br />

towards<br />

1000 mSv (acute whole<br />

body dose)<br />

High dose:<br />

above 1000 mSv (acute<br />

whole body dose)<br />

Effects on<br />

individuals<br />

No acute effects;<br />

extremely small additional<br />

cancer risk<br />

No acute effects;<br />

subsequent additional<br />

cancer risk of less than 1%<br />

Nausea, vomiting possible,<br />

mild bone marrow<br />

depression;<br />

subsequent additional<br />

cancer risk of about 10%<br />

Certain nausea, likely bone<br />

marrow syndrome; high risk<br />

of death from about 4000<br />

mSv (without medical treatment).<br />

Significant additional<br />

cancer risk!<br />

Consequences for<br />

an exposed<br />

population<br />

No observable increase in<br />

the incidence of cancer, even<br />

in a large exposed group<br />

Possible observable increase<br />

in the incidence of cancer, if<br />

the exposed group is very<br />

large (e.g., >100,000 people)<br />

Probable observable<br />

increase in the incidence of<br />

cancer, if the exposed group<br />

is more than a few hundred<br />

people<br />

Observable increase in the<br />

incidence of cancer<br />

100


26 July, 2012<br />

… above the prevalent background dose,<br />

an increment in dose<br />

is assumed to result (for rad. prot. purposes)<br />

in a proportional increment<br />

in the probability of stochastic effects of<br />

0.005% per mSv<br />

WNU-Summer Institute<br />

101


Remember!<br />

1. <strong>Radiation</strong> exposure at high acute levels,<br />

e.g. above several thousand of millisieverts<br />

is very dangerous.<br />

2. <strong>Radiation</strong> exposure at low chronic levels,<br />

e.g. towards tens of millisieverts per year,<br />

presents an extremely low risk.<br />

3. <strong>Radiation</strong> exposure at very low chronic levels,<br />

e.g. < 1 millisievert per year,<br />

is not an individual health issue.<br />

26 July, 2012 WNU-Summer Institute 102


agonzalez@arn.gob.ar<br />

26 July, 2012<br />

Thank you!<br />

Av. del Libertador 8250<br />

Buenos Aires<br />

Argentina<br />

WNU, ,<br />

+541163231758<br />

103


Additional information to the<br />

FIRST PART<br />

26 July, 2012 104


26 July, 2012<br />

A close book?<br />

WNU-Summer Institute<br />

The Health Effects<br />

of <strong>Radiation</strong><br />

105


Physics<br />

and<br />

chemistry<br />

Biology<br />

10 -15 s. 10 -9 s. 10 -3 s. 10 2 m. 100 years<br />

Exposure<br />

Physiology<br />

?<br />

WNU-Summer Institute<br />

Epidemio-<br />

logy<br />

Time<br />

Manifestation<br />

of<br />

effects<br />

The time scale of the phenomena limits knowledge.<br />

26 July, 2012<br />

106


26 July, 2012<br />

WNU-Summer Institute<br />

107


New UNSCEAR’s assessments<br />

Epidemiological evaluation of cardiovascular disease<br />

Non-targeted and delayed effects of radiation exposure<br />

Effects of ionizing radiation on the immune system<br />

26 July, 2012<br />

WNU-Summer Institute 108


26 July, 2012<br />

Cardiovascular diseases<br />

WNU-Summer Institute<br />

109


26 July, 2012<br />

Chernobyl workers,<br />

atomic bomb survivors, and<br />

radiotherapy patients …<br />

… seem to suffer a higher risk of<br />

cardiovascular diseases.<br />

WNU-Summer Institute<br />

110


26 July, 2012<br />

‘Non-targeted’<br />

and<br />

delayed effects<br />

of radiation exposure<br />

WNU-Summer Institute<br />

111


26 July, 2012<br />

Adaptive Response<br />

+<br />

Mutation<br />

Mutations<br />

Mutations<br />

WNU-Summer Institute 112


26 July, 2012<br />

conditioning<br />

dose<br />

challenging<br />

dose<br />

conditioning<br />

dose<br />

Adaptive response<br />

+<br />

challenging<br />

dose<br />

<br />

<br />

<br />

response<br />

response<br />

response<br />

WNU-Summer Institute 113


The role of apoptosis<br />

(cell killing by mutations)<br />

If at low doses, apoptosis >> carcinogenesis...<br />

...<br />

26 July, 2012<br />

..then.. hormesis! hormesis hormesis!<br />

WNU-Summer Institute 114


26 July, 2012<br />

Mutation<br />

Rate<br />

Apoptosis<br />

hormesis<br />

Carcinogenesis<br />

Dose rate<br />

WNU-Summer Institute<br />

Apoptosis<br />

115


26 July, 2012<br />

Genomic instability …<br />

Genomic instability …<br />

… or … increased rate of acquisition of<br />

alterations in the genome.<br />

WNU-Summer Institute 116


Basic paradigms of radiobiology<br />

Damage fixed in DNA of irradiated cell,<br />

if not lethal, transmitted to descendant<br />

Effects occur in cells whose<br />

nucleus crossed by radiation


Challenge to the paradigm<br />

Mutation Chromosomal<br />

aberration<br />

Genomic instability<br />

Cellular<br />

death<br />

Mitotic failure:<br />

aneuploid<br />

Micronucleus


26 July, 2012<br />

WNU-Summer Institute<br />

119


Bystander effects<br />

The so-called “bystander” effect is the ability of irradiated<br />

26 July, 2012<br />

cells to convey damage to neighbouring cells<br />

not directly irradiated.<br />

120


26 July, 2012<br />

“Bystander” effect<br />

121


26 July, 2012<br />

Signals via intercellular unions<br />

(Azamm 2001)<br />

Signals via medium/plasma<br />

ROS<br />

Nitric oxide<br />

Cytokines<br />

TGF<br />

(Lehnert 1997)<br />

122


Clastogenic plasma factors<br />

There is a large body of evidence that blood plasma from<br />

26 July, 2012<br />

irradiated animals and humans can contain so-called<br />

“clastogenic plasma factors” capable of inducing<br />

chromosomal damage in unexposed cells.<br />

WNU-Summer Institute 123


26 July, 2012<br />

WNU-Summer Institute<br />

124


Abscopal effects<br />

An abscopal effect is said to occur if there is a significant<br />

response in a tissue that is physically separate from the<br />

region of the body exposed to radiation.<br />

Human & Experimental Toxicology, Volume 23, Issue 2, 1 February 2004, Arnold<br />

26 July, 2012<br />

WNU-Summer Institute 125


26 July, 2012<br />

Effects in another organ<br />

Irradiation of<br />

an organ<br />

WNU-Summer Institute<br />

126


26 July, 2012<br />

Effects of ionizing radiation on the<br />

immune system<br />

WNU-Summer Institute<br />

127


Does radiation exposure affect the immune system?<br />

26 July, 2012<br />

Infections<br />

Cancer<br />

Immune<br />

system<br />

WNU-Summer Institute 128


SECOND PART<br />

<strong>Protection</strong> Paradigm:<br />

The International <strong>Radiation</strong> <strong>Protection</strong> System<br />

26 July, 2012 129


(1)<br />

The International Organizations<br />

26 July, 2012 WNU-Summer Institute<br />

130


Epistemology of radiation<br />

Method, validity and scope of the scientific<br />

knowledge on radiation<br />

<strong>Radiation</strong> <strong>Protection</strong> Paradigm<br />

Conceptual model for keeping people protected<br />

Global <strong>Radiation</strong> Safety Regime<br />

Establishing international safety standards and<br />

providing for their global application<br />

26 July, 2012 131


UNSCEAR<br />

26 July, 2012 WNU-Summer Institute<br />

132


The United Nations Scientific Committee on<br />

the Effects of Atomic <strong>Radiation</strong> (UNSCEAR)<br />

Established by the UN General Assembly in 1955<br />

Assess levels & effects of ionizing radiation<br />

Reports findings to Assembly<br />

Scientists from 21 UN Member States<br />

Other States provide relevant data<br />

Holds annual sessions in Vienna<br />

UNEP arranges secretariat and provides support<br />

133


Member States on UNSCEAR<br />

Argentina<br />

Brazil<br />

Mexico<br />

Peru<br />

Australia<br />

China<br />

India<br />

Indonesia<br />

Japan<br />

Korea<br />

Pakistan<br />

Canada<br />

USA<br />

Egypt<br />

Sudan<br />

Belgium<br />

Belarus<br />

Finland<br />

France<br />

Germany<br />

Poland<br />

Russia<br />

Slovakia<br />

Spain<br />

Sweden<br />

UK<br />

Ukraine<br />

134


The latest UNSCEAR reports<br />

Sources Efects<br />

26 July, 2012<br />

Hereditable<br />

New<br />

UNSCEAR 2000 Report (sources): http://www.unscear.org/unscear/en/publications/2000_1.html<br />

UNSCEAR 2000 Report (effects): http://www.unscear.org/unscear/en/publications/2000_2.html<br />

UNSCEAR 2001Report (hereditary): http://www.unscear.org/unscear/en/publications/2001.html<br />

WNU-Summer Institute 135<br />

UNSCEAR 2006 Report (new): http://www.unscear.org/unscear/en/publications/2006_1.html<br />

135


ICRP<br />

26 July, 2012 WNU-Summer Institute<br />

137


26 July, 2012<br />

The International Commission<br />

on Radiological <strong>Protection</strong> (ICRP)<br />

Registered Registered charity established to advance<br />

radiological protection for the public benefit<br />

by providing recommendations and guidance.<br />

138<br />

WNU-Summer Institute 138


First ICRP meeting 1928<br />

139


140


141


IAEA<br />

26 July, 2012 WNU-Summer Institute<br />

142


26 July, 2012<br />

The International Atomic<br />

Energy Agency (IAEA)<br />

143<br />

WNU-Summer Institute<br />

143


The IAEA is the only organ within the UN<br />

system with specific statutory responsibilities<br />

on radiation protection and safety<br />

26 July, 2012 WNU-Summer Institute<br />

144


to establish<br />

standards<br />

IAEA<br />

statutory safety functions<br />

to provide for<br />

their application<br />

to service international conventions<br />

to service international conventions<br />

26 July, 2012 145


IAEA Safety Standards<br />

http://www-ns.iaea.org/standards/<br />

146


International Labour Organisation<br />

147


<strong>Radiation</strong> <strong>Protection</strong> Convention No. 115<br />

(1960) Date of entry into force: 17.6.1962<br />

Argentina 15.6.1978<br />

Azerbaijan 19.5.1992<br />

Barbados 8.5.1967<br />

Belarus 26.2.1968<br />

Belgium2.7.1965<br />

Beliz 15.12.1983<br />

Brazil 5.9.1966<br />

Chile 14.10.1994<br />

Czech Rep. 1.1.1993<br />

Denmark 7.2.1974<br />

Djibouti 3.8.1978<br />

Ecuador 9.3.1970<br />

Egypt 18.3.1964<br />

Finland 16.10.1978<br />

France 18.11.1971<br />

Germany 26.9.1973<br />

48 ratifications<br />

Ghana 7.11.1961<br />

Norway 17.6.1961<br />

Greece 4.6.1982<br />

Guinea 12.12.1966<br />

Guyana 8.6.1966<br />

Hungary 8.6.1968<br />

India 17.11.1975<br />

Iraq 26.10.1962<br />

Italy 5.5.1971<br />

Japan 31.7.1973<br />

Kyrgyzstan 31.3.1992<br />

Paraguay 10.7.1967<br />

Poland 23.12.1964<br />

Portugal 17.3.1994<br />

Russian Fed. 22.9.1967<br />

Slovakia 1.1.1993<br />

Spain 17.7.1962<br />

Sri Lanka 18.6.1986<br />

Sweden 12.4.1961<br />

Latvia 8.3.1993<br />

Switzerland 29.5.1963<br />

Lebanon 6.12.1977<br />

Luxembourg 8.4.2008<br />

Mexico 19.10.1983<br />

Netherlands 29.11.1966<br />

Nicaragua 1.10.1981<br />

Syrian A. R. 15.1.1964<br />

Tajikistan 26.11.1993<br />

Turkey 15.11.1968<br />

Ukraine 19.6.1968<br />

U.K. 9.3.1962<br />

Uruguay 22.9.1992<br />

148


(2)<br />

The International <strong>Radiation</strong><br />

<strong>Protection</strong> Recommendations<br />

The conceptual model for keeping people safe from radiation exposure<br />

26 July, 2012 149


In paradigm choice there is no standard higher<br />

than the assent of the relevant community<br />

Thomas S. Kuhn, The Structure of Scientific Revolutions, p. 93 (1960).<br />

150


Total<br />

background<br />

incidence of<br />

effects<br />

Presumed<br />

radiation-related<br />

background incidence<br />

<strong>Radiation</strong>-unrelated<br />

background<br />

incidence<br />

Postulated<br />

likelihood of health effects<br />

Background<br />

annual dose<br />

(average 2.4,<br />

typical 10 mSv y -1 )<br />

Incremental dose<br />

0.005%/mSv<br />

Nominal incremental<br />

likelihood<br />

of health effects<br />

Dose<br />

151


ICRP had to introduce the concept of<br />

‘detriment-adjusted’<br />

‘nominal’ risk coefficients<br />

152


Detriment-adjusted Nominal Risk Coefficients<br />

Risk Coefficient: A numeral, expressed in % Sv-1 Risk Coefficient: A numeral, expressed in % Sv , which<br />

-1 , which<br />

–multiplied by dose– quantifies the plausibility of harm.<br />

Nominal: The stated numeral does not necessarily<br />

correspond to its real value: it relates to hypothetical (no<br />

real) people who are averaged over age and sex.<br />

Detriment-adjusted: The numeral is multidimensional,<br />

expressing plausible expectation of harm, and including<br />

inter alia the weighted plausibility of fatal and non-fatal<br />

harm, and life-lost should the harm actually occur.<br />

153


Detriment-adjusted nominal risk coefficients<br />

Nominal<br />

Population<br />

Whole<br />

Adult<br />

Cancer &<br />

leukæmia<br />

5.5<br />

4.1<br />

[% Sv -1 ]<br />

Hereditable<br />

0.2<br />

0.1<br />

Total<br />

5.7<br />

4.2<br />

Rounded value used in RP standards~5%Sv-1 Rounded value used in RP standards~5%Sv-1 154


Time<br />

<strong>Protection</strong> basic dogma<br />

Shielding<br />

Distance<br />

……..but…..it depend on the situation!<br />

155


Time?<br />

156


The principles of<br />

radiological protection


The principles of radiological protection<br />

• The Principle of Justification<br />

• The Principle of Optimization of <strong>Protection</strong><br />

• The Principle of Dose Limits<br />

• The Principle of <strong>Protection</strong> of Future<br />

Generations and the Environment


The Principle of Justification<br />

• Any decision that alters the radiation exposure<br />

situation should do more good than harm.


Justification<br />

Good > bad


adioactive discharges<br />

(bad)<br />

Is the installation justied?<br />

good > bad?<br />

Electricity)<br />

(good)


Was evacuation justified?


Justification!


The Principle of Optimization of <strong>Protection</strong><br />

• Best protection under the<br />

prevailing circumstances<br />

(The likelihood of incurring exposure, the number of<br />

people exposed, and the magnitude of their individual<br />

doses should all be kept as low as reasonably achievable,<br />

taking into account economic and societal factors.)


Detriment<br />

Detriment +Social cost<br />

Optimal<br />

Social cost<br />

RP level<br />

167


The Principle of Dose Limitation<br />

• The total dose to any individual should not<br />

exceed appropriate limits, constraints or<br />

reference levels.


Restrictions: Restrictions:<br />

dose limits and constraints<br />

Natural<br />

background<br />

radiation<br />

Activity introduced<br />

Expected<br />

additional<br />

dose<br />

26 July, 2012 169


Nuclear power<br />

Mining<br />

Wastes<br />

Transport<br />

Dose limit<br />

Industry<br />

Hospitals<br />

26 July, 2012 170


Source constraint<br />

26 July, 2012 171


26 July, 2012<br />

Extant<br />

dose<br />

WNU-Summer Institute<br />

Averteble<br />

dose<br />

Reference<br />

level<br />

172<br />

172


The principle of protection of future<br />

generations and the environment<br />

Future generations must be protected against radiation.<br />

The environment must also be protected in order to:<br />

maintain biological diversity,<br />

ensure the conservation of species, and<br />

protect the health and status of natural habitats, communities,<br />

and ecosystems<br />

173


How to protect the future?


D<br />

Doses after 1 year of operation<br />

1 st year 2 nd year 3 rd year …. … …. n th year<br />

26 July, 2012 175<br />

t


Doses after 2 years of operation<br />

D<br />

2 nd year<br />

3 rd year<br />

4 th year ….<br />

1 st year 2 nd year 3 rd year …. … …. n th year<br />

26 July, 2012 176<br />

…<br />

….<br />

t


Doses after 3 years of operation<br />

D<br />

2 nd year<br />

3 rd year<br />

3 rd year<br />

4 th year<br />

5 th year<br />

4 th year ….<br />

1 st year 2 nd year 3 rd year …. … …. n th year<br />

26 July, 2012 177<br />

….<br />

…<br />

…<br />

….<br />

t


CONTROL<br />

EQUILIBRIUM: BUILD-UP BUILD UP<br />

178


Types of exposure situations


Types of exposure situations<br />

• Planned exposure situations<br />

• Emergency exposure situations<br />

• Existing exposure situations


Planned exposure situations,<br />

are situations involving the planned<br />

introduction and operation of sources.<br />

(…previously categorised as practices.)


Planned exposure situation<br />

Regulatory control<br />

Natural<br />

background<br />

Effective<br />

dose<br />

Practice<br />

26 July, 2012 182


Emergency exposure situations,<br />

• are unexpected situations such as those<br />

that may occur during the operation of a<br />

planned situation, or from a malicious act.


Existing exposure situations,<br />

• are exposure situations that already exist<br />

when a decision on control has to be taken,<br />

such as those caused by natural background<br />

radiation.


Emergency exposure<br />

situations<br />

Extant<br />

dose<br />

Existing exposure<br />

situations<br />

Avertable<br />

dose<br />

Regulatory<br />

ambition<br />

26 July, 2012 2009 WNU-Summer Institute<br />

185


3 systems<br />

homogeneous, coherent and consistent….but distinct<br />

Patients<br />

Occupational<br />

Public<br />

26 July, 2012 WNU-Summer Institute<br />

186


Doses to be constrained are<br />

those committed in a year<br />

rather than<br />

those incurred in a year!<br />

Source constraint<br />

26 July, 2012 187


Patients<br />

(The exposure is voluntary, beneficial for the individual exposed and measurable)<br />

• Radiodiagnosis<br />

• Radiotherapy<br />

26 July, 2012 WNU-Summer Institute<br />

188


Guidance for the<br />

protection of<br />

patients in<br />

radio-diagnosis<br />

radio diagnosis<br />

Fluoroscopy Fluoroscop <br />

Vertebral <br />

Torax rax <br />

100<br />

~ 10<br />

~ 1<br />

Doses in mSv<br />

HIGH<br />

TYPICALLY HIGH<br />

TYPICAL<br />

MINIMAL<br />

189


TRAINING..!!<br />

190


Workers<br />

(voluntary and individually monitored exposure)<br />

Monitored worker<br />

Occupational<br />

exposure:<br />

ALL exposure of<br />

workers incurred<br />

in the course of<br />

their work.<br />

26 July, 2012 WNU-Summer Institute<br />

193


Occupational<br />

Dose<br />

Restrictions<br />

mSv in a year<br />

1000<br />

500<br />

100<br />

50<br />

20<br />

Maximum<br />

(except life saving)<br />

Every very effort not no to exceed it<br />

All reasonable efforts effort<br />

not not<br />

to exceed it<br />

Annual dose limit<br />

Average dose limit<br />

Optimization<br />

of<br />

<strong>Protection</strong><br />

26 July, 2012 194<br />

R<br />

E<br />

S<br />

C<br />

U<br />

E<br />

N<br />

O<br />

R<br />

M<br />

A<br />

L


The female worker:<br />

protecting the<br />

unborn and<br />

the infant<br />

26 July, 2012 WNU-Summer Institute<br />

195


Members of the Public<br />

(involuntary no-individually monitored exposure)<br />

26 July, 2012 196


Members of the Public<br />

(involuntary no-individually monitored exposure)<br />

Planned exposure<br />

situations<br />

(Practices)<br />

restrict<br />

the expected<br />

additional doses<br />

below<br />

individual dose limits<br />

and source constraints<br />

Existing & emergency<br />

exposure situations<br />

(Interventions)<br />

reduce<br />

the extant<br />

avertable doses<br />

below<br />

reference levels<br />

26 July, 2012 197


(planned)<br />

‘Practices’


Natural<br />

background<br />

radiation<br />

(planned) ‘Practices’<br />

Restrictions: Restrictions:<br />

dose limits and constraints<br />

Activity introduced<br />

Expected<br />

additional<br />

dose<br />

26 July, 2012 199


Nuclear power<br />

Mining<br />

Wastes<br />

Transport<br />

Dose limit<br />

Industry<br />

Hospitals<br />

26 July, 2012 200


Doses to be constrained are<br />

those committed in a year<br />

rather than<br />

those incurred in a year!<br />

Source constraint<br />

26 July, 2012 WNU-Summer Institute<br />

201


Restrictions on<br />

the dose<br />

attributable to<br />

practices<br />

mSv in a year<br />

(additional annual dose)<br />

1<br />

0.01<br />

WNU-Summer Institute<br />

Regulatory limit<br />

Optimization of protection<br />

<br />

Source constraint<br />

Regulatory exemption<br />

202


‘Interventions’<br />

(in existing and emergency situations)<br />

203


‘Interventions’<br />

(in existing and emergency situations)<br />

Extant<br />

Dose<br />

Should<br />

it be<br />

reduced?<br />

Avertable<br />

Dose<br />

How<br />

much?<br />

Reference<br />

level<br />

26 July, 2012 WNU-Summer Institute<br />

204


CRITERIA FOR<br />

INTERVENING<br />

(Extant Annual Dose)<br />

100<br />

10<br />

1<br />

WNU-Summer Institute<br />

mSv in a year<br />

INTERVENTION<br />

ALMOST ALWAYS<br />

JUSTIFIABLE<br />

INTERVENTION<br />

MAY BE<br />

JUSTIFIABLE<br />

INTERVENTION<br />

IS NOT LIKELY TO BE<br />

JUSTIFIABLE<br />

205


Simplified<br />

summary of dose<br />

restrictions<br />

and reference<br />

levels<br />

(in mSv in a year)<br />

100<br />

20<br />

1<br />

0.01<br />

NO INDIVIDUAL/SOCIETAL BENEFIT ABOVE THIS<br />

Emergency Emergency workers<br />

Evacuation/relocation in emergencies<br />

High levels of existing controllable exposures<br />

Information, training, monitoring<br />

DIRECT OR INDIRECT BENEFIT TO THE INDIVIDUAL<br />

Occupational exposure<br />

Sheltering, stable iodine, in emergencies<br />

Existing exposures such as radon<br />

Comforters and carers to patients<br />

Information, training, monitoring or assessment<br />

SOCIETAL, BUT NO INDIVIDUAL DIRECT BENEFIT<br />

Normal situations<br />

No information or training,<br />

No individual dose assessment<br />

Exclusion, exemption, clearance<br />

206


The use of a reference<br />

level in an existing<br />

exposure situation and<br />

the evolution of the<br />

distribution of<br />

individual doses with<br />

time as a result of the<br />

optimization process<br />

207


In paradigm choice there is no standard higher<br />

than the assent of the relevant community<br />

Decision-aiding Decision aiding Process<br />

based on radiation protection consideration<br />

Decision-making Decision making Process<br />

involving relevant ‘stakeholders’<br />

searching for their informed consent<br />

26 July, 2012 208


(4)<br />

The International<br />

Regime<br />

26 July, 2012 WNU-Summer Institute<br />

209


The IAEA is the only organ within the UN<br />

system with specific statutory responsibilities<br />

on radiation protection and safety<br />

26 July, 2012 WNU-Summer Institute<br />

210


“For their efforts<br />

[i] to prevent nuclear energy from being used for military purposes and<br />

[ii] to ensure that nuclear energy for peaceful purposes is<br />

used in the safest possible way“<br />

The Nobel Peace Prize<br />

2005<br />

26 July, 2012 WNU-Summer Institute<br />

211


to establish<br />

standards<br />

IAEA<br />

statutory safety functions<br />

to provide for<br />

their application<br />

to service international conventions<br />

to service international conventions<br />

26 July, 2012 WNU-Summer Institute<br />

212


Legally Binding<br />

Conventions<br />

213


Convention on Early Notification of<br />

a Nuclear Accident<br />

214


Convention on Assistance in the Case of a<br />

Nuclear Accident or Radiological Emergency<br />

215


Convention on Nuclear Safety<br />

216


Joint Convention on the<br />

Safety of Spent Fuel Management and on the<br />

Safety of Radioactive Waste Management<br />

217


Convention on Physical <strong>Protection</strong><br />

of Nuclear Material<br />

218


International<br />

<strong>Radiation</strong> Safety<br />

Standards<br />

26 July, 2012 WNU-Summer Institute<br />

219


Nuclear Safety<br />

Standards<br />

Committee<br />

(NUSSC)<br />

IAEA Board of Governors<br />

Commission<br />

on Safety Standards<br />

(CSS)<br />

<strong>Radiation</strong> Safety<br />

Standards<br />

Committee<br />

(RASSC)<br />

Waste Safety<br />

Standards<br />

Committee<br />

(WASSC)<br />

Transport Safety<br />

Standards<br />

Committee<br />

(TRANSSC)<br />

Expert Groups Expert Groups Expert Groups Expert Groups<br />

26 July, 2012 220


Long experience<br />

1962: first<br />

international<br />

standards.<br />

26 July, 2012 221


A large corpus of<br />

International<br />

Safety Standards<br />

is available<br />

26 July, 2012 222


Safety Standards Hierarchy<br />

Safety Fundamentals<br />

Safety Requirements<br />

Safety Guides<br />

26 July, 2012 WNU-Summer Institute<br />

223


http://www-pub.iaea.org/MTCD/publications/PDF/Pub1273c_web.pdf


Safety Principles<br />

1: Responsibility for safety<br />

2: Role of government<br />

3: Leadership and management for safety<br />

4: Justification of facilities and activities<br />

5: Optimization of protection<br />

6: Limitation of risks to individuals<br />

7: <strong>Protection</strong> of present and future generations<br />

8: Prevention of accidents<br />

9: Emergency preparedness and response<br />

10: Protective actions to reduce existing or<br />

unregulated radiation risks<br />

225


26 July, 2012 227


Provisions<br />

for the<br />

application<br />

of the<br />

standards:<br />

IAEA<br />

mechanisms<br />

providing<br />

TECHNICAL ASSISTANCE<br />

fostering<br />

INFORMATION EXCHANGE<br />

promoting<br />

EDUCATION & TRAINING<br />

coordinating<br />

RESEARCH & DEVELOPMENT<br />

rendering<br />

APPRAISAL SERVICES<br />

26 July, 2012 228


Example on how the system for<br />

establishing standards works:<br />

The Regulations for Safe Transport<br />

26 July, 2012 WNU-Summer Institute<br />

229


WNU-Summer Institute<br />

230


to Geneva<br />

26 July, 2012 WNU-Summer Institute<br />

231


232


233


234


235


236


237


Take away points<br />

1. Additional doses to members of the public<br />

should not exceed 1 millisievert in a year<br />

2. Total doses to workers should not exceed<br />

20 millisievert in a year, , except for<br />

emergency workers () ( () ) and pregnant workers () ( ()<br />

3. Existing doses to members of the public of<br />

several tens of millisieverts, , e.g. following an<br />

accident, will justify intervention with special<br />

protective measures, but if the doses are around<br />

1 millisievert intervention may not be justifiable.<br />

26 July, 2012 WNU-Summer Institute<br />

238


Take away points<br />

1. There is a growing international safety regime<br />

2. Obey the international conventions<br />

3. Comply with the international requirements<br />

4. Follow the international guides<br />

5. Use the IAEA application mechanisms<br />

26 July, 2012 239<br />

WNU-Summer Institute 239


Download into your computer<br />

the file<br />

González_Reading Material


agonzalez@arn.gob.ar<br />

26 July, 2012<br />

Thank you!<br />

Av. del Libertador 8250<br />

Buenos Aires<br />

Argentina<br />

WNU, ,<br />

+541163231758<br />

241


Additional information to the<br />

SECOND PART<br />

26 July, 2012 242


Epilogue<br />

Policy Implications:<br />

plausibility of effects at low doses<br />

versus<br />

their attributability<br />

26 July, 2012 WNU-Summer InstituteS<br />

243


Policy Implications on effects at low doses :<br />

The effects are<br />

probable and, therefore,<br />

plausible<br />

but, they are not<br />

provable!<br />

26 July, 2012<br />

Low-dose effects cannot be<br />

attributed<br />

to radiation exposure!<br />

S<br />

244


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

Limit of<br />

epidemiology<br />

epidemiology pathology<br />

WNU, , 2008<br />

Limit of<br />

pathology<br />

Dose (mSv)<br />

245


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

Plausible<br />

Epidemiology Pathology<br />

WNU, , 2008<br />

Collective<br />

estimate<br />

Dose (mSv)<br />

Individual<br />

diagnosis<br />

246


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

No<br />

attribution<br />

Epidemiology Pathology<br />

Collective<br />

attribution<br />

Dose (mSv)<br />

Individual<br />

attribution<br />

247


Dealing with uncertainties<br />

Is it plausible that there is a risk at low doses?<br />

Plausibility<br />

Apparently reasonable or probable,<br />

without necessarily being so.<br />

from L. plausibilis, from plaus-, plaudere ‘applaud’.<br />

26 July, 2012 WNU-Summer Institute<br />

248


26 July, 2012<br />

ICRP Publication 99<br />

Low - Dose Extrapolation<br />

of <strong>Radiation</strong> Related<br />

Cancer Risk<br />

WNU-Summer Institute<br />

2006<br />

Charles E Land; Uncertainty, low-dose low dose extrapolation and the threshold hypothesis; J. Radiol. Radiol.<br />

Prot. 22 (2002) 1–7<br />

1<br />

249


Nominal statistical uncertainty distribution for excess lifetime<br />

risk of solid cancer mortality among atomic-bomb survivors<br />

26 July, 2012<br />

250<br />

Confidence limits<br />

7.5–12.5% Sv -1<br />

WNU-Summer Institute 250


Uncertainty distribution for excess lifetime risk<br />

26 July, 2012<br />

(taking into account extrapolation to another population)<br />

Cumulative<br />

probability<br />

approximately<br />

log-normal<br />

log normal<br />

1.0-<br />

0.8-<br />

0.6-<br />

0.4-<br />

0.2-<br />

95% upper limit<br />

5%<br />

‘<br />

2<br />

‘<br />

4<br />

251<br />

‘<br />

6<br />

‘<br />

8<br />

15 May, 2004 IRPA11: Sievert Lecture 134<br />

‘<br />

10<br />

‘<br />

12<br />

‘<br />

14<br />

Risk (%)/Sv<br />

confidence limits<br />

1.2–8.8% Sv-1 WNU-Summer Institute 251


26 July, 2012<br />

Cumulative<br />

probability<br />

1.0-<br />

0.8-<br />

0.6-<br />

0.4-<br />

0.2-<br />

95% upper limit<br />

5%<br />

‘<br />

2<br />

‘<br />

4<br />

‘<br />

6<br />

WNU-Summer Institute<br />

‘<br />

8<br />

8.8%/Sv<br />

‘<br />

10<br />

‘<br />

12<br />

‘<br />

14<br />

Assuming a<br />

Risk (%)/Sv<br />

20%<br />

probability<br />

of threshold<br />

252


26 July, 2012<br />

Cumulative<br />

probability<br />

1.0-<br />

0.8-<br />

0.6-<br />

0.4-<br />

0.2-<br />

95% upper limit<br />

5%<br />

‘<br />

2<br />

‘<br />

4<br />

‘<br />

6<br />

WNU-Summer Institute<br />

‘<br />

8<br />

8.8%/Sv<br />

7%/Sv<br />

‘<br />

10<br />

‘<br />

12<br />

‘<br />

14<br />

Assuming a<br />

Risk (%)/Sv<br />

50%<br />

probability<br />

of threshold<br />

253


26 July, 2012<br />

Cumulative<br />

probability<br />

1.0-<br />

0.8-<br />

0.6-<br />

0.4-<br />

0.2-<br />

95% upper limit<br />

5%<br />

‘<br />

2<br />

‘<br />

4<br />

‘<br />

6<br />

WNU-Summer Institute<br />

5%/Sv<br />

‘<br />

8<br />

8.8%/Sv<br />

‘<br />

10<br />

‘<br />

12<br />

‘<br />

14<br />

Assuming a<br />

Risk (%)/Sv<br />

80%<br />

probability<br />

of threshold<br />

254


26 July, 2012<br />

… Namely …<br />

…ICRP considers that due to the<br />

uncertainties in the radiation risk estimates,<br />

it should presume a nominal radiation risk at low<br />

doses and recommends to limit such nominal risk<br />

with radiation protection measures.<br />

255<br />

WNU-Summer Institute 255


Policy Implications:<br />

plausibility of effects at low doses<br />

versus<br />

their attributability<br />

26 July, 2012 WNU-Summer InstituteS<br />

256


Likelihood of radiation health effects<br />

Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood<br />

Uncertainty!<br />

0.005%/mSv for<br />

cancer<br />

0.0002%/mSv for<br />

hereditable<br />

Doses<br />

WNU-Summer Institute 257


Attributability<br />

Attribute: regard something as being caused by.<br />

from L. attribut- ‘allotted’: both from attribuere, from ad- ‘to’ + tribuere<br />

‘assign’.<br />

26 July, 2012 WNU-Summer Institute<br />

258


26 July, 2012<br />

Epistemological limits in radioepidemiology<br />

WNU-Summer Institute<br />

259


Control group<br />

“N” people<br />

“C” cancers<br />

“n” probability of<br />

‘natural ‘natural’ natural’ cancer<br />

26 July, 2012<br />

WNU-Summer Institute<br />

Exposed group<br />

“N” people<br />

“E” cancers<br />

“n” probability of<br />

‘natural ‘natural’cancer<br />

natural’cancer cancer<br />

‘p D’ probability of<br />

‘radiation ‘radiation’ radiation’ cancer<br />

260


26 July, 2012<br />

Difficult to<br />

detect!<br />

C<br />

=n N<br />

Number<br />

of<br />

cancers<br />

in<br />

control<br />

group<br />

E-C<br />

WNU-Summer Institute<br />

E<br />

= n N<br />

+<br />

p d D N<br />

Number<br />

of<br />

cancers<br />

in<br />

exposed<br />

group<br />

261


Limitation of knowledge in<br />

The standard deviation is<br />

epidemiology<br />

= 2 n N + p D N d N d<br />

If the excess cancers are to be detected with a statistical<br />

26 July, 2012<br />

confidence of 95%<br />

262<br />

E – C > 2 <br />

WNU-Summer Institute 262


Epidemiological limit<br />

Operating algebraically and as n >> p d D,<br />

N > constant / D2 N > constant / D2 which is the equation giving the number of people,<br />

N, needed for detecting excess cancers at dose D.<br />

26 July, 2012<br />

(Constant = 8 n / p d 2 )<br />

263<br />

WNU-Summer Institute 263


Dose (mSv ( mSv)<br />

10 2<br />

10 1<br />

10 -0<br />

10 -1 10 2 10 4 10 6 10 8<br />

26 July, 2012<br />

unprovable<br />

1 mSv<br />

WNU, ,<br />

SOLID CANCERS<br />

knowledge<br />

10 9 p.<br />

People<br />

264


Dose (mSv ( mSv)<br />

10 2<br />

10 1<br />

10 -0<br />

10 -1 10 2 10 4 10 6 10 8<br />

26 July, 2012<br />

unprovable<br />

~1 mSv<br />

~10 12 people!<br />

WNU, ,<br />

HEREDITABLE EFFECTS<br />

knowledge<br />

(very limited)<br />

People<br />

265


C H E R N O B Y L


267


<strong>Radiation</strong> Doses<br />

Average over 10 years 8 mSv<br />

For life 13 mSv<br />

268


Natural Background<br />

Chernobyl for life <br />

Few people<br />

In few areas <br />

Many people<br />

In many areas <br />

Majority of people<br />

around the world <br />

~100<br />

~ 10<br />

~2.4<br />

~1<br />

annual dose<br />

mSv/year<br />

VERY HIGH<br />

TYPICALLY HIGH<br />

AVERAGE<br />

MINIMUM<br />

269


Dose (mSv ( mSv)<br />

10 2<br />

10 1<br />

10 -0<br />

Chernobyl doses<br />

~10 mSv<br />

10 -1 10 2 10 4 10 6 10 8<br />

26 July, 2012<br />

unprovable<br />

WNU, ,<br />

SOLID CANCERS in Chernobyl<br />

(except thyroid cancers in children)<br />

Chernobyl residents<br />

in strict control areas<br />

~300 000<br />

knowledge<br />

People<br />

270


Dose (mSv ( mSv)<br />

10 2<br />

10 1<br />

10 -0<br />

10 -1 10 2 10 4 10 6 10 8<br />

26 July, 2012<br />

unprovable<br />

WNU, ,<br />

Thyroid Cancer<br />

knowledge<br />

(very expanded)<br />

Children<br />

272


273


Thyroid cancer in children in Belarus<br />

Number of cases<br />

Thyroid cancer in children in Belarus<br />

Thyroid 140 cancer in children in Belarus<br />

26 July, 2012<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1986<br />

1987<br />

1988<br />

1989<br />

274<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

Total<br />

1996<br />

0-4<br />

5-9<br />

10-14<br />

1997<br />

WNU, 274 ,


The ‘liquidators’<br />

“ЛIКВIДАТОРИ”<br />

275


Dose (mSv ( mSv)<br />

10 2<br />

10 1<br />

10 -0<br />

Liquidators’ Liquidators av.doses<br />

~10 mSv<br />

10 -1 10 2 10 4 10 6 10 8<br />

26 July, 2012<br />

unprovable<br />

WNU, ,<br />

DETECTABILITY OF LEUKÆMIAS<br />

Chernobyl liquidators<br />

~160 000<br />

knowledge<br />

People<br />

278


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

Limit of<br />

epidemiology<br />

epidemiology pathology<br />

WNU, ,<br />

Limit of<br />

pathology<br />

Dose (mSv)<br />

279


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

Plausible<br />

epidemiology pathology<br />

WNU, ,<br />

Collective<br />

estimate<br />

Dose (mSv)<br />

Individual<br />

diagnosis<br />

280


Certainty<br />

(100%)<br />

26 July, 2012<br />

Likelihood of<br />

Health Effect<br />

No<br />

attribution<br />

epidemiology pathology<br />

WNU, ,<br />

Collective<br />

attribution<br />

Dose (mSv)<br />

Individual<br />

attribution<br />

281


Take away points<br />

1. It is plausible that radiation exposure at low<br />

doses be detrimental to public health and,<br />

therefore: people shall be protected against<br />

radiation exposure at any dose however small.<br />

2. It is impossible and therefore incorrect to<br />

attribute health effects to low-dose radiation<br />

exposure situations.<br />

26 July, 2012 WNU, 282 ,


agonzale@arn.gob.ar<br />

26 July, 2012<br />

Thank you!<br />

Av. del Libertador 8250<br />

Buenos Aires<br />

Argentina<br />

WNU, ,<br />

+541163231758<br />

283

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!