05.01.2013 Views

Achim Blumensath blumensath@mathematik.tu-darmstadt.de is ...

Achim Blumensath blumensath@mathematik.tu-darmstadt.de is ...

Achim Blumensath blumensath@mathematik.tu-darmstadt.de is ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Achim</strong> <strong>Blumensath</strong><br />

<strong>blumensath@mathematik</strong>.<strong>tu</strong>-<strong>darmstadt</strong>.<strong>de</strong><br />

�<strong>is</strong> documentwas las<strong>tu</strong>pdated2012-08-08.<br />

�e latestversion can be found at<br />

www.mathematik.<strong>tu</strong>-<strong>darmstadt</strong>.<strong>de</strong>/~blumensath<br />

Copyright2012 <strong>Achim</strong> <strong>Blumensath</strong><br />

Allrights arereserved.Perm<strong>is</strong>sion <strong>is</strong> grantedto d<strong>is</strong>tribute and copyth<strong>is</strong><br />

documen<strong>tu</strong>n<strong>de</strong>rthe followingterms:<br />

◆ �euse <strong>is</strong>private and non-commercial. Inparticular,youare not<br />

allowed tosellprinted copies ofth<strong>is</strong> document.<br />

◆ All changes,additions,and om<strong>is</strong>sionstothe document are clearly<br />

marked assuch.<br />

◆ All excerpts, quotes, and translations contain an acknowledgement<br />

ofthe original.


Contents<br />

A. Set�eory 1<br />

a1 Basic set theory 3<br />

1 Sets and classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2 Stages and h<strong>is</strong>tories . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

3 �e cumulative hierarchy . . . . . . . . . . . . . . . . . . . . . . 18<br />

a2 Relations 27<br />

1 Relations and functions . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2 Products andunions . . . . . . . . . . . . . . . . . . . . . . . . 36<br />

3 Graphs andpartial or<strong>de</strong>rs . . . . . . . . . . . . . . . . . . . . . 39<br />

4 Fixedpoints and closure operators . . . . . . . . . . . . . . . . 47<br />

a3 Ordinals 57<br />

1 Well-or<strong>de</strong>rs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />

2 Ordinals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />

3 Induction and fixed points . . . . . . . . . . . . . . . . . . . . . 74<br />

4 Ordinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br />

a4 Zermelo-Fraenkel set theory 105<br />

1 �e Axiom of Choice . . . . . . . . . . . . . . . . . . . . . . . . 105<br />

2 Cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

3 Cardinal arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 116<br />

4 Cofinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath v


Contents<br />

5 �e Axiom ofReplacement. . . . . . . . . . . . . . . . . . . . . 131<br />

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br />

B. Universal Algebra 137<br />

b1 Struc<strong>tu</strong>res and homomorph<strong>is</strong>ms 139<br />

1 Struc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br />

2 Homomorph<strong>is</strong>ms . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br />

3 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152<br />

4 Congruences andquotients . . . . . . . . . . . . . . . . . . . . 160<br />

b2 Trees and lattices 173<br />

1 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173<br />

2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181<br />

3 I<strong>de</strong>als and filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

4 Prime i<strong>de</strong>als andultrafilters . . . . . . . . . . . . . . . . . . . . 194<br />

5 Atomic lattices andpartition rank . . . . . . . . . . . . . . . . . 200<br />

b3 Algebraicconstructions 213<br />

1 Terms andterm algebras . . . . . . . . . . . . . . . . . . . . . . 213<br />

2 Direct andreducedproducts . . . . . . . . . . . . . . . . . . . . 224<br />

3 Direct and inverse limits . . . . . . . . . . . . . . . . . . . . . . 232<br />

b4 Topology 243<br />

1 Open and closedsets . . . . . . . . . . . . . . . . . . . . . . . . 243<br />

2 Continuous functions . . . . . . . . . . . . . . . . . . . . . . . . 248<br />

3 Hausdorffspaces and compactness . . . . . . . . . . . . . . . . 252<br />

4 �eProducttopology . . . . . . . . . . . . . . . . . . . . . . . . 259<br />

5 Densesets and <strong>is</strong>olatedpoints . . . . . . . . . . . . . . . . . . . 263<br />

6 Spectra andStone duality . . . . . . . . . . . . . . . . . . . . . . 272<br />

7 Stonespaces and Cantor-Bendixsonrank . . . . . . . . . . . . 279<br />

vi


Contents<br />

b5 ClassicalAlgebra 287<br />

1 Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287<br />

2 Group actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291<br />

3 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300<br />

4 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306<br />

5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314<br />

6 Or<strong>de</strong>red fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329<br />

C. First-Or<strong>de</strong>r Logic and its Extensions 343<br />

c1 First-or<strong>de</strong>r logic 345<br />

1 Infinitary first-or<strong>de</strong>r logic . . . . . . . . . . . . . . . . . . . . . 345<br />

2 Axiomat<strong>is</strong>ations . . . . . . . . . . . . . . . . . . . . . . . . . . . 356<br />

3 �eories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362<br />

4 Normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

5 Translations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374<br />

6 Extensions of first-or<strong>de</strong>r logic . . . . . . . . . . . . . . . . . . . 383<br />

c2 Elementarysubstruc<strong>tu</strong>res an<strong>de</strong>mbeddings 395<br />

1 Homomorph<strong>is</strong>ms and embeddings . . . . . . . . . . . . . . . . 395<br />

2 Elementary embeddings . . . . . . . . . . . . . . . . . . . . . . 400<br />

3 �e�eorem of Löwenheim andSkolem . . . . . . . . . . . . . 405<br />

4 �e Compactness �eorem . . . . . . . . . . . . . . . . . . . . 412<br />

5 Amalgamation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422<br />

c3 Typesandtypespaces 427<br />

1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427<br />

2 Typespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433<br />

3 Retracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446<br />

4 Localtypespaces . . . . . . . . . . . . . . . . . . . . . . . . . . 456<br />

5 Stabletheories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461<br />

vii


Contents<br />

c4 Back-and-forthequivalence 473<br />

1 Partial <strong>is</strong>omorph<strong>is</strong>ms . . . . . . . . . . . . . . . . . . . . . . . . 473<br />

2 Hintikka formulae . . . . . . . . . . . . . . . . . . . . . . . . . . 482<br />

3 Ehrenfeucht-Fraïssé games . . . . . . . . . . . . . . . . . . . . . 485<br />

4 κ-complete back-and-forthsystems . . . . . . . . . . . . . . . . 494<br />

5 �etheorems of Hanf and Gaifman . . . . . . . . . . . . . . . . 501<br />

c5 General mo<strong>de</strong>ltheory 509<br />

1 Classifying logical systems . . . . . . . . . . . . . . . . . . . . . 509<br />

2 Hanf and Löwenheim numbers . . . . . . . . . . . . . . . . . . 513<br />

3 �e�eorem of Lindström . . . . . . . . . . . . . . . . . . . . . 520<br />

4 Projective classes. . . . . . . . . . . . . . . . . . . . . . . . . . . 532<br />

5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542<br />

6 Fixed-point logics . . . . . . . . . . . . . . . . . . . . . . . . . . 553<br />

D. Axiomat<strong>is</strong>ation and Definability 581<br />

d1 Quantifierelimination 583<br />

1 Preservationtheorems . . . . . . . . . . . . . . . . . . . . . . . 583<br />

2 Quantifier elimination . . . . . . . . . . . . . . . . . . . . . . . 587<br />

3 Ex<strong>is</strong>tentially closedstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . . 597<br />

4 Abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603<br />

5 Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608<br />

d2 Productsandvarieties 615<br />

1 Ultraproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615<br />

2 �etheorem of Ke<strong>is</strong>ler andShelah . . . . . . . . . . . . . . . . 620<br />

3 Reducedproducts and Horn formulae . . . . . . . . . . . . . . 633<br />

4 Quasivarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638<br />

5 �e�eorem of Feferman and Vaught . . . . . . . . . . . . . . 650<br />

viii


Contents<br />

d3 O-minimalstruc<strong>tu</strong>res 655<br />

1 Or<strong>de</strong>redtopologicalstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . 655<br />

2 O-minimal groups andrings . . . . . . . . . . . . . . . . . . . . 661<br />

3 Cell <strong>de</strong>compositions . . . . . . . . . . . . . . . . . . . . . . . . . 663<br />

E. Classical Mo<strong>de</strong>l �eory 683<br />

e1 Sa<strong>tu</strong>ration 685<br />

1 Homogeneousstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . . . . . 685<br />

2 Sa<strong>tu</strong>ratedstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . . . . . . . . 690<br />

3 Projectively sa<strong>tu</strong>ratedstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . 701<br />

4 Pseudo-sa<strong>tu</strong>ratedstruc<strong>tu</strong>res . . . . . . . . . . . . . . . . . . . . 705<br />

5 Definability inprojectively sa<strong>tu</strong>rated mo<strong>de</strong>ls . . . . . . . . . . 712<br />

e2 Prime mo<strong>de</strong>ls 721<br />

1 Isolatedtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721<br />

2 �e Omitting Types�eorem . . . . . . . . . . . . . . . . . . . 723<br />

3 Prime and atomic mo<strong>de</strong>ls . . . . . . . . . . . . . . . . . . . . . 731<br />

4 Constructed mo<strong>de</strong>ls . . . . . . . . . . . . . . . . . . . . . . . . . 735<br />

e3ℵ0-categoricaltheories 743<br />

1 ℵ0-categorical theories and automorph<strong>is</strong>ms . . . . . . . . . . . 743<br />

2 Fraïssé limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759<br />

3 Zero-one laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 765<br />

e4 Ind<strong>is</strong>cerniblesequences 773<br />

1 Ramsey�eory . . . . . . . . . . . . . . . . . . . . . . . . . . . 773<br />

2 Ramsey�eory fortrees . . . . . . . . . . . . . . . . . . . . . . 777<br />

3 Ind<strong>is</strong>cerniblesequences . . . . . . . . . . . . . . . . . . . . . . . 789<br />

4 �e in<strong>de</strong>pen<strong>de</strong>nce andstrict or<strong>de</strong>rproperties . . . . . . . . . . 799<br />

ix


Contents<br />

e5 Functorsan<strong>de</strong>mbeddings 809<br />

1 Local functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 809<br />

2 Word constructions . . . . . . . . . . . . . . . . . . . . . . . . . 816<br />

3 Ehrenfeucht-Mostowski mo<strong>de</strong>ls . . . . . . . . . . . . . . . . . . 825<br />

e6 Abstract elementaryclasses 839<br />

1 Abstract elementary classes . . . . . . . . . . . . . . . . . . . . 839<br />

2 Amalgamation andsa<strong>tu</strong>ration . . . . . . . . . . . . . . . . . . . 848<br />

3 Limits of chains . . . . . . . . . . . . . . . . . . . . . . . . . . . 861<br />

4 Categoricity andstability . . . . . . . . . . . . . . . . . . . . . . 865<br />

F. Geometric Mo<strong>de</strong>l �eory 873<br />

f1 Geometries 875<br />

1 Depen<strong>de</strong>ncerelations . . . . . . . . . . . . . . . . . . . . . . . . 875<br />

2 Matroids and geometries . . . . . . . . . . . . . . . . . . . . . . 880<br />

3 Modular geometries . . . . . . . . . . . . . . . . . . . . . . . . . 887<br />

4 Strongly minimalsets . . . . . . . . . . . . . . . . . . . . . . . . 893<br />

5 Vaughtian pairs andthe�eorem of Morley . . . . . . . . . . . 901<br />

f2 Ranksand forking 913<br />

1 Morleyrank and ∆-rank . . . . . . . . . . . . . . . . . . . . . . 913<br />

2 In<strong>de</strong>pen<strong>de</strong>ncerelations . . . . . . . . . . . . . . . . . . . . . . . 927<br />

3 Preforkingrelations . . . . . . . . . . . . . . . . . . . . . . . . . 940<br />

4 Forkingrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . 953<br />

f3 Simpletheories 965<br />

1 Dividing and forking . . . . . . . . . . . . . . . . . . . . . . . . 965<br />

2 Simpletheories andthetreeproperty . . . . . . . . . . . . . . . 975<br />

3 �e In<strong>de</strong>pen<strong>de</strong>nce�eorem . . . . . . . . . . . . . . . . . . . . 992<br />

x


Contents<br />

Litera<strong>tu</strong>re 1007<br />

Symbol In<strong>de</strong>x 1009<br />

In<strong>de</strong>x 1019<br />

xi


PartA.<br />

Set�eory


a1. Basicsettheory<br />

1. Setsandclasses<br />

In mathematicsthere are basically two waysto <strong>de</strong>finethe objectsun<strong>de</strong>r<br />

consi<strong>de</strong>ration. Onthe one hand, one can explicitly constructthem from<br />

already known objects. For instance, therational numbers andthereal<br />

numbers areusually introduced inth<strong>is</strong> way. Onthe other hand, one can<br />

takethe axiomatic approach,that <strong>is</strong>, one compiles a l<strong>is</strong>t of <strong>de</strong>siredproperties<br />

and one investigates any object meetingtheserequirements.Some<br />

well known examples are groups, fields, vector spaces, and topological<br />

spaces.<br />

Since set theory <strong>is</strong> meant as foundation of mathematics there are<br />

no more basic objects available in terms of which we could <strong>de</strong>finesets.<br />

�erefore, we will followthe axiomatic approach. We will present a l<strong>is</strong>t<br />

ofsix axioms and any objectsat<strong>is</strong>fying all ofthem will be called a mo<strong>de</strong>l<br />

of set theory. Such a mo<strong>de</strong>l cons<strong>is</strong>ts of two parts: (1) a collection S of<br />

objectsthat we will callsets, and(2)some method which, giventwosets<br />

a and b,tellsus whether a <strong>is</strong>anelement of b.<br />

We will not care what exactlythe objects inSare or howth<strong>is</strong> method<br />

looks like. For example, one could imagine a mo<strong>de</strong>l of set theory cons<strong>is</strong>ting<br />

of na<strong>tu</strong>ral numbers. If we <strong>de</strong>fine that a na<strong>tu</strong>ral number a <strong>is</strong> an<br />

element of the na<strong>tu</strong>ral number b if and only if the a-th bit in the binary<br />

encoding ofb<strong>is</strong> 1,then all but one of our axioms will besat<strong>is</strong>fied. It<br />

<strong>is</strong> conceivable that asimilar but more involved <strong>de</strong>finition might yield a<br />

mo<strong>de</strong>lthatsat<strong>is</strong>fies all ofthem.<br />

We will introduce our axioms in a stepw<strong>is</strong>e fashion during the following<br />

sections. To help rea<strong>de</strong>rs trying to look up a certain axiom we<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 3


a1. Basicsettheory<br />

inclu<strong>de</strong> a complete l<strong>is</strong>t below even if most ofthe nee<strong>de</strong>d <strong>de</strong>finitions are<br />

still m<strong>is</strong>sing.<br />

Axiom ofExtensionality. Two sets a and b are equal if, and only if, we<br />

have x∈ a⇔x∈ b, for allsets x.<br />

Axiom ofSeparation. If a <strong>is</strong> aset and φ apropertythen{x∈a∣φ} <strong>is</strong><br />

aset.<br />

Axiom ofCreation. For everyset athere <strong>is</strong> asetS suchthat S <strong>is</strong> astage<br />

and a∈S.<br />

Axiom of Infinity. �ere ex<strong>is</strong>ts asetthat <strong>is</strong> a limitstage.<br />

Axiom ofChoice. For everyset Athere ex<strong>is</strong>ts a well-or<strong>de</strong>r R over A.<br />

Axiom ofReplacement. If F <strong>is</strong> a function and dom F <strong>is</strong> a set then so <strong>is</strong><br />

rng F.<br />

Asking whether these axioms are true does make as much sense as<br />

the question of whether the field axioms are true, or those of a vector<br />

space. Instead, what we are concerned with <strong>is</strong>theircons<strong>is</strong>tency andcompleteness.<br />

�at <strong>is</strong>, there should ex<strong>is</strong>t at least one object sat<strong>is</strong>fying these<br />

axioms and all such objects should look alike. Unfor<strong>tu</strong>nately, one can<br />

provethatthere <strong>is</strong> no complete axiomsystem forsettheory. Hence, we<br />

will haveto <strong>de</strong>al withthe factthatthere are many different mo<strong>de</strong>ls ofset<br />

theory andthere <strong>is</strong> no wayto choose one ofthem asthe‘canonical one’.<br />

Inparticular, there <strong>is</strong> nosuchthing as‘thereal mo<strong>de</strong>l ofsettheory’.<br />

Moreseriously, it <strong>is</strong> even impossibletoprovethat our axiom system<br />

<strong>is</strong> cons<strong>is</strong>tent. �at <strong>is</strong>, it might be the case that there <strong>is</strong> no mo<strong>de</strong>l of set<br />

theory and we have wasted ourtimes<strong>tu</strong>dying a nonsensical theory.<br />

�e firstproblem <strong>is</strong> <strong>de</strong>alt withrather easily. It does not matter which<br />

ofthese mo<strong>de</strong>ls we are givensince anytheoremthat we can <strong>de</strong>rive from<br />

the axioms holds in every mo<strong>de</strong>l. Butthesecondproblem <strong>is</strong>serious. All<br />

we can do <strong>is</strong> to restrict ourselves to as few axioms as possible and to<br />

hopethat no one will ever be ableto <strong>de</strong>rive a contradiction. Of course,<br />

the weaker the axioms the more different mo<strong>de</strong>ls we might get andthe<br />

fewertheorems we will be abletoprove.<br />

4


1. Setsandclasses<br />

Inthe following we will assumethatS<strong>is</strong> an arbitrary but fixed mo<strong>de</strong>l<br />

of set theory. �at <strong>is</strong>, S <strong>is</strong> a collection of objects that sat<strong>is</strong>fies all the<br />

axioms we will introduce below. S will be called the universe and its<br />

elements are calledsets. NotethatSitself <strong>is</strong> not asetsince we willprove<br />

belowthat noset <strong>is</strong> an element of itself. By convention, if below wesay<br />

thatsomesetex<strong>is</strong>tsthen we meanthat it <strong>is</strong> contained inS.Similarly, we<br />

saythatallsets havesomeproperty if all elements ofSdoso.<br />

In<strong>tu</strong>itively, aset <strong>is</strong> a collection of objects called itselements. Ifa andb<br />

aresets, i.e., elements ofS, we write a∈bif a <strong>is</strong>anelement of b and we<br />

<strong>de</strong>fine<br />

a⊆b : iff every element x∈a <strong>is</strong> also an element x∈ b.<br />

If a⊆b, we call a a subset of b, and we say that a <strong>is</strong> inclu<strong>de</strong>d in b, or<br />

that b <strong>is</strong> a superset of a. We use the usual abbreviations such as a⊂b<br />

for a⊆band a≠b; a∋bforb∈a; and a∉bif a∈bdoes not hold.<br />

Since aset <strong>is</strong> a collection of objects it <strong>is</strong> na<strong>tu</strong>raltorequirethat aset <strong>is</strong><br />

uniquely <strong>de</strong>termined by its elements. Our first axiom can therefore be<br />

regar<strong>de</strong>d asthe <strong>de</strong>finition of aset.<br />

Axiom of Extensionality. Twosets aandbareequal if,and only if,<br />

x∈a iff x∈ b , forallsets x.<br />

Lemma1.1. Twosets aandbareequal ifand only if a⊆bandb⊆a.<br />

In or<strong>de</strong>rto <strong>de</strong>fine aset we havetosay what its elements are. Iftheset<br />

<strong>is</strong> finite we can just enumerate them. Otherw<strong>is</strong>e, we have to find some<br />

propertyφsuchthat an object x <strong>is</strong> an element of a if, and only if, it has<br />

theproperty φ.<br />

Definition1.2. (a) Let φ be aproperty.{x∣φ} <strong>de</strong>notestheset a such<br />

that, for allsets x, we have<br />

x∈a iff x haspropertyφ.<br />

5


a1. Basicsettheory<br />

If S does not contain such an object then the expression{x ∣ φ} <strong>is</strong><br />

un<strong>de</strong>fined.<br />

(b) Letb0,... ,bn−1 besets. We <strong>de</strong>fine<br />

{b0,... ,bn−1}∶={x∣x=bi forsome i


already been <strong>de</strong>fined,the nextstage<br />

HFn+1∶={x∣ x⊆ HFn}<br />

1. Setsandclasses<br />

cons<strong>is</strong>ts of allsetsthat we can construct from elements of HFn.<br />

Aset <strong>is</strong> called hereditary finite if it <strong>is</strong> an element ofsome HFn.�eset<br />

of all hereditary finitesets <strong>is</strong><br />

HF∶={x∣x∈ HFn forsome n}.<br />

Notethat we cannotprove atthe momentthatHFreally <strong>is</strong> aset.Since<br />

the emptyuniverseS=∅trivially sat<strong>is</strong>fies the Axiom of Extensionality,<br />

we even cannot show that the empty set ex<strong>is</strong>ts without additional axioms.<br />

Le<strong>tu</strong>s assume forthe moment that HF does ex<strong>is</strong>ts. Its firststages<br />

are<br />

HF0=∅<br />

HF1={∅}<br />

HF2={∅,{∅}}<br />

HF3={∅,{∅},{{∅}},{∅,{∅}}}<br />

...<br />

By induction on n, one can prove that HFn⊆ HFn+1 and each set a∈<br />

HFn+1 <strong>is</strong> of the form a = {b0,...,bk−1}, for finitely many elements<br />

b0,...,bk−1∈ HFn. Note that each stage HFn <strong>is</strong> hereditary finite since<br />

HFn∈ HFn+1⊆ HF, buttheirunion HF <strong>is</strong> not because HF∉HF.<br />

Exerc<strong>is</strong>e 1.1. Prove the following statements by induction on n. (Although<br />

we have not <strong>de</strong>fined the na<strong>tu</strong>ral numbers yet, you may assume<br />

for th<strong>is</strong> exerc<strong>is</strong>e that they are available and that their usual properties<br />

hold.)<br />

(a) HFn⊆ HFn+1.<br />

(b) HFn has finitely many elements.<br />

7


a1. Basicsettheory<br />

(c) Every set a∈HFn+1 <strong>is</strong> ofthe form a={b0,... ,bk−1}, for finitely<br />

many elements b0,... ,bk−1∈ HFn.<br />

HF can beregar<strong>de</strong>d as an approximationtothe class of allsets. In fact,<br />

all but one of the usual axioms of set theory hold for HF. �e only exception<br />

<strong>is</strong>the Axiom of Infinity whichstatesthatthere ex<strong>is</strong>ts an infinite<br />

set.<br />

We can enco<strong>de</strong> na<strong>tu</strong>ral numbers byspecial hereditary finitesets.<br />

Definition1.4. To each na<strong>tu</strong>ral number n we associatetheset<br />

[n]∶={[0],...,[n− 1]}.<br />

�eset of all na<strong>tu</strong>ral numbers <strong>is</strong><br />

N∶={[n]∣n a na<strong>tu</strong>ral number}.<br />

Notethat[n]∈HFn+1 but[n]∉HFn, and N∉HF. �<strong>is</strong> construction<br />

can beusedto <strong>de</strong>finethe na<strong>tu</strong>ral numbers inpurelysettheoretic terms.<br />

In the following by a na<strong>tu</strong>ral number we will always mean a set of the<br />

form[n].<br />

It would be nice if there were a universe S that contains all sets of<br />

the form{x∣φ}. Unfor<strong>tu</strong>nately, such a universe does not ex<strong>is</strong>ts, that<br />

<strong>is</strong>, if we add the axiom that claims that{x ∣ φ} <strong>is</strong> <strong>de</strong>fined for all φ,<br />

we obtain a theory that <strong>is</strong> incons<strong>is</strong>tent, i.e., it contradicts itself. In fact,<br />

we can even showthatthere areproperties φ suchthat no mo<strong>de</strong>l ofset<br />

theory contains a set of the form{x∣φ}. And we can do so without<br />

using asingle axiom ofsettheory.<br />

�eorem1.5(Zermelo-RussellParadox). {x∣x∉ x} <strong>is</strong> notaset.<br />

Proof. Supposethattheseta∶={x∣x∉x}ex<strong>is</strong>ts. Letx be an arbitrary<br />

set. By <strong>de</strong>finition, we have x∈a if and only if x∉x. In particular, for<br />

x=a,we obtain a∈a iff a∉a. A contradiction. ◻<br />

To betterun<strong>de</strong>rstand what <strong>is</strong> going on, le<strong>tu</strong>sseewhat happens ifwe<br />

restrict ourselves to hereditary finite sets. �e set{x∈ HF∣x∉x}<br />

8


1. Setsandclasses<br />

equals HF since no hereditary finite set contains itself. But HF∉HF <strong>is</strong><br />

not hereditary finite.�esame happens inrealsettheory.�e condition<br />

x∉ x <strong>is</strong>sat<strong>is</strong>fied by all sets andwe have{x∣x∉ x}=S,which <strong>is</strong> not a<br />

set.<br />

In general, an expression of the form{x∣φ} <strong>de</strong>notes a collection<br />

X⊆ S that may or may not be a set, i.e., an element X∈S. We will<br />

call objects ofthe form{x∣φ}classes. Classes that are notsetswill be<br />

called proper classes. If X={x∣φ} and Y={x∣ ψ} are classes and<br />

a <strong>is</strong> aset,wewrite<br />

a∈ X : iff a haspropertyφ ,<br />

X⊆ Y : iff every setwithproperty φ also haspropertyψ ,<br />

and X= Y : iff X⊆Y andY⊆ X.<br />

If X <strong>is</strong> a proper class then we <strong>de</strong>fine X∉ Y, for every Y. Note that, if<br />

X and Y are sets then these <strong>de</strong>finitions coinci<strong>de</strong> with the ones above.<br />

Finally, we remark that every set a <strong>is</strong> a class since we can write a as<br />

{x∣ x∈a}.<br />

When <strong>de</strong>fining classeswe haveto be a bit careful aboutwhatwe call<br />

a property. Let us <strong>de</strong>fine a property to be a statement that <strong>is</strong> build up<br />

from basicpropositions ofthe form x∈y and x=y by<br />

◆ logical conjunctions like‘and’,‘or’,‘not’,‘if-then’;<br />

◆ constructs of the form ‘there ex<strong>is</strong>ts a set x suchthat ...’ and ‘for<br />

allsets x it holdsthat...’.<br />

(Such statements will be <strong>de</strong>fined in a more formal way in Chapter c1<br />

wherewewill callthem‘first-or<strong>de</strong>r formulae’.)�ingswe are not allowed<br />

to say inclu<strong>de</strong> statements of the form ‘�ere ex<strong>is</strong>ts a property φ such<br />

that...’ or‘For all classes X it holdsthat...’.<br />

We have <strong>de</strong>fined a class to be an object of the form{x∣φ} where<br />

φ <strong>is</strong> astatement aboutsets.What happens ifwe allowstatements about<br />

arbitrary classes? Note that, if φ <strong>is</strong> a property referring to a class X=<br />

{x ∣ ψ} then we can transform φ into an equivalent statement only<br />

talking aboutsets byreplacing allpropositions y∈ X, X∈y, X=y, etc.<br />

bytheirrespective <strong>de</strong>finitions.<br />

9


a1. Basicsettheory<br />

Example. Let X={x∣∅∉ x}.We canwritethe class<br />

inthe form<br />

{y∣ y≠∅and y⊆ X}<br />

{y∣ y≠∅and∅∉ x for all x∈y}.<br />

�esi<strong>tu</strong>ation <strong>is</strong> analogoustothe case ofthe complex numberswhich<br />

are obtained fromthereal numbers by adding imaginary elements.We<br />

can translate any statement about complex numbers x+iy into one<br />

about pairs⟨x,y⟩ of real numbers. Consequently, it does not matter<br />

whetherwe allow classes inthe <strong>de</strong>finition of other classes.<br />

In<strong>tu</strong>itively, the reason for a proper class such as S not being a set <strong>is</strong><br />

that it <strong>is</strong> too ‘large’. For instance, when consi<strong>de</strong>ring HF we see that a<br />

set a⊆HF <strong>is</strong> hereditary finite if, and only if, it has only finitely many<br />

elements. Hence, if we can show that a class X={x∣φ} <strong>is</strong> ‘small’, it<br />

should form aset.What dowe mean by‘small’? Clearly, wewould like<br />

every set to be small. Furthermore, it <strong>is</strong> na<strong>tu</strong>ral to require that, if Y <strong>is</strong><br />

small and X⊆ Y then X <strong>is</strong> alsosmall. �erefore,we <strong>de</strong>fine a class X to<br />

besmall if it <strong>is</strong> asubclass X⊆aofsomeset a.<br />

Definition1.6. For a class A and aproperty φwe <strong>de</strong>fine<br />

{x∈ A∣ φ}∶={x∣x∈A and x haspropertyφ}.<br />

�<strong>is</strong> <strong>de</strong>finition ensures that every class of the form X={x∈a∣φ}<br />

wherea<strong>is</strong> aset <strong>is</strong>small. Conversely, if X={x∣ φ} <strong>is</strong>smallthen X⊆ a,<br />

forsomeset a, andwe have X={x∈a∣φ}. Oursecond axiomstates<br />

that everysmall class <strong>is</strong> aset.<br />

Axiom of Separation. If a <strong>is</strong>asetandφaproperty thentheclass<br />

<strong>is</strong>aset.<br />

10<br />

{x∈ a∣φ}


2. Stagesand h<strong>is</strong>tories<br />

With th<strong>is</strong> axiom westill cannot provethat there <strong>is</strong> any set. But if we<br />

have at least oneset a,we can <strong>de</strong>duce, for instance, that alsothe empty<br />

set∅={x∈ a∣x≠x} ex<strong>is</strong>ts.<br />

Definition1.7. LetA and B be classes.<br />

(a) �e intersection ofA <strong>is</strong>the class<br />

⋂A∶={x∣ x∈y for all y∈A}.<br />

(b) �e intersection ofA and B <strong>is</strong><br />

A∩B∶={x∣x∈A and x∈B}.<br />

(c) �edifference between A and B <strong>is</strong><br />

A∖B∶={x∈ A∣ x∉ B}.<br />

Lemma 1.8. Let a be aset and B aclass.�en a∩Band a∖B are sets.<br />

If Bcontainsat least oneelementthen⋂B <strong>is</strong>aset.<br />

Proof. �e factthat a∩B={x∈a∣x∈B} and a∖B aresets follows<br />

immediately from the Axiom of Separation. If B contains at least one<br />

element c∈Bthenwe canwrite<br />

⋂B={x∈ c∣x∈y for all y∈B}. ◻<br />

Notethat⋂∅=S<strong>is</strong> not aset.<br />

2. Stagesand h<strong>is</strong>tories<br />

�e construction ofHF above can be exten<strong>de</strong>dto one ofthe classSof all<br />

sets.We <strong>de</strong>fineSastheunion of an increasingsequence ofsetsSα , called<br />

thestages ofS. Again,westartwiththe emptysetS0∶=∅. IfSα <strong>is</strong> <strong>de</strong>fined<br />

thenthe nextstage Sα+1 contains all subsets of Sα. Butth<strong>is</strong>time,we do<br />

not stop when we have <strong>de</strong>fined Sα for all na<strong>tu</strong>ral numbers α. Instead,<br />

11


a1. Basicsettheory<br />

every time we have <strong>de</strong>fined an infinite sequence of stages we continue<br />

bytakingtheirunionto formthe nextstage.So oursequencestartswith<br />

S0= HF0 , S1= HF1 , S2= HF2 , ...<br />

�e nextstage a�er allthe finite ones <strong>is</strong>Sω∶= HF andwe continue with<br />

Sω+1={x∣ x⊆ HF} , Sω+2={x∣x⊆Sω+1} , ...<br />

A�erwe have <strong>de</strong>fined Sω+n for all na<strong>tu</strong>ral numbers n we againtakethe<br />

union<br />

Sω+ω={x∣ x∈ Sω+n forsome n},<br />

andso on.<br />

Unfor<strong>tu</strong>nately, makingth<strong>is</strong> constructionprec<strong>is</strong>e<strong>tu</strong>rns outto bequite<br />

technical since we cannot <strong>de</strong>finethe numbers α yet thatwe need to in<strong>de</strong>xthesequenceSα.�<strong>is</strong><br />

hastowai<strong>tu</strong>ntilSection a3.2. Instead,we start<br />

by giving a condition for some set S to be a stage, i.e., one of the Sα. If<br />

we or<strong>de</strong>r allsuchsets by inclusionthenwe obtainthe <strong>de</strong>siredsequence<br />

S0⊆ S1⊆⋅⋅⋅⊆Sω⊆ Sω+1⊆⋯ ,<br />

withoutthe needtoreferto its indices.<br />

First,we <strong>is</strong>olatesome character<strong>is</strong>tic properties ofthesets HFn which<br />

we would like that our stages Sα share. Note that, at the moment, we<br />

cannotprovethat any ofthesets mentioned below ac<strong>tu</strong>ally ex<strong>is</strong>ts.<br />

Definition 2.1. LetA be a class.<br />

12<br />

(a) We call Atransitive if x∈y∈A impliesx∈A.<br />

(b) We call A hereditary if x⊆y∈A impliesx∈ A.<br />

(c) �eaccumulation of A <strong>is</strong>the class<br />

acc(A)∶={x∣there <strong>is</strong>some y∈Asuchthat x∈y or x⊆y}.<br />

Notethat eachstage HFn of HF <strong>is</strong> hereditary andtransitive.


2. Stagesand h<strong>is</strong>tories<br />

Exerc<strong>is</strong>e 2.1. By induction on n,showthattheset[n] <strong>is</strong>transitive. Give<br />

an example of a number n suchthat[n] <strong>is</strong> not hereditary.<br />

�e next lemmas follow immediately fromthe <strong>de</strong>finitions.<br />

Lemma 2.2. Let Abeaclass,andb,c sets. �e followingstatements are<br />

equivalent:<br />

(a) c∈b∈A implies c∈A,that <strong>is</strong>,A <strong>is</strong>transitive.<br />

(b) b∈A impliesb⊆A.<br />

(c) b∈A impliesb∩A= b.<br />

Lemma 2.3. Let AandBbeclasses.<br />

(a) A⊆ acc(A)<br />

(b) IfB<strong>is</strong> hereditaryandtransitiveand ifA⊆ B,then acc(A)⊆ B.<br />

(c) A <strong>is</strong> hereditaryandtransitive if,and only if, acc(A)= A.<br />

Lemma 2.4. IfAandBaretransitiveclassesthenso <strong>is</strong> A∩B.<br />

Exerc<strong>is</strong>e 2.2. Prove Lemmas2.2, 2.3, and 2.4.<br />

Definition 2.5. LetA be a class.<br />

(a) A minimalelement of A <strong>is</strong> an element b∈Asuchthat b∩A=∅,<br />

that <strong>is</strong>,there <strong>is</strong> no element c∈Awith c∈b.<br />

(b) Aset a <strong>is</strong> foun<strong>de</strong>d if everysetb∋a has a minimal element.<br />

(c) �e foun<strong>de</strong>dpart of A <strong>is</strong>theset<br />

fnd(A)∶={x∈ A∣ x <strong>is</strong> foun<strong>de</strong>d}.<br />

Example. �e emptyset∅andtheset{∅} are foun<strong>de</strong>d.Toseethat{∅}<br />

<strong>is</strong> foun<strong>de</strong>d, consi<strong>de</strong>r asetb∋{∅}. If{∅} <strong>is</strong> not a minimal element ofb,<br />

then b∩{∅}≠∅. Hence,∅∈ b <strong>is</strong> a minimal element ofb.<br />

Exerc<strong>is</strong>e 2.3. Provethat every hereditary finiteset <strong>is</strong> foun<strong>de</strong>d.<br />

13


a1. Basicsettheory<br />

Wewill introduce an axiom belowwhich impliesthat every class has a<br />

minimal element. Hence, everyset <strong>is</strong> foun<strong>de</strong>d andwe have fnd(A)= A,<br />

for all classesA. Althoughthe notions of a foun<strong>de</strong>dset andthe foun<strong>de</strong>d<br />

part of asetwill<strong>tu</strong>rn outto betrivial,westill needthemto <strong>de</strong>finestages<br />

andto formulatethe axiom.<br />

Lemma 2.6. IfB<strong>is</strong>ahereditaryclassand a∈Bthen fnd(a)∈fnd(B).<br />

Proof. For a contradiction suppose that fnd(a)∉fnd(B). Since B <strong>is</strong><br />

hereditary and fnd(a)⊆ a∈B, we have fnd(a)∈ B. Consequently,<br />

fnd(a)∉ fnd(B) impliesthatthere <strong>is</strong>somesetx∋ fnd(a)without minimal<br />

element. Inparticular, fnd(a) <strong>is</strong> not a minimal element of x,that<br />

<strong>is</strong>,there ex<strong>is</strong>tssomeset y∈x∩ fnd(a). But y∈ fnd(a) impliesthat y <strong>is</strong><br />

foun<strong>de</strong>d.�erefore, from y∈xit followsthatx has a minimal element.<br />

A contradiction. ◻<br />

Inthe language ofSection a3.1 the next theorem states that the membership<br />

relation∈<strong>is</strong>well-foun<strong>de</strong>d on every class oftransitive, hereditary<br />

sets.<br />

�eorem 2.7. Let Abeanonemptyclass. Ifeveryelementx∈ A <strong>is</strong> hereditaryandtransitive,then<br />

A hasaminimalelement.<br />

Proof. Choose an arbitrary element c∈A andset<br />

b∶={ fnd(x)∣ x∈ c∩A}.<br />

If b=∅ then c∩A=∅ and c <strong>is</strong> a minimal element of A. �erefore,<br />

we may assume that b≠∅. Since c∈A <strong>is</strong> hereditary, it follows from<br />

Lemma2.6thatb⊆fnd(c). Fixsomex∈ b⊆fnd(c).�enx <strong>is</strong> foun<strong>de</strong>d<br />

andx∈ b impliesthatbhas a minimal element y. By <strong>de</strong>finition ofb,we<br />

have y=fnd(z), forsomez∈c∩A.<br />

We claimthatz<strong>is</strong> a minimal element of A.Suppose otherw<strong>is</strong>e.�en<br />

there ex<strong>is</strong>tssome element u∈z∩A.Since c <strong>is</strong>transitive we have u∈c.<br />

Hence, u∈c∩Aimplies fnd(u)∈b. On the other hand, since z∈A<br />

<strong>is</strong> hereditary it follows from Lemma 2.6 that fnd(u)∈fnd(z). Hence,<br />

14


2. Stagesand h<strong>is</strong>tories<br />

fnd(u)∈fnd(z)∩b≠∅ and y= fnd(z) <strong>is</strong> not a minimal element ofb.<br />

A contradiction. ◻<br />

We would like to <strong>de</strong>fine that a set S <strong>is</strong> a stage if it <strong>is</strong> hereditary and<br />

transitive. Unfor<strong>tu</strong>nately, th<strong>is</strong> <strong>de</strong>finition <strong>is</strong> too weak to show that the<br />

stages can be arranged in an increasingsequenceS0⊆ S1⊆⋯⊆Sα⊆⋯.<br />

�erefore, our <strong>de</strong>finitionwill beslightly more involved.To eachstageSα<br />

wewill associate its h<strong>is</strong>tory<br />

H(Sα)={Sβ∣ β


a1. Basicsettheory<br />

Proof. (a) a⊆a∈Himplies a∈ acc(H)= S.<br />

(b) By <strong>de</strong>finition of a h<strong>is</strong>tory, we have a = acc(H∩a). Hence, if<br />

we can show that H∩a<strong>is</strong> a h<strong>is</strong>tory then its stage <strong>is</strong> a. Clearly, every<br />

element of H∩a⊆H<strong>is</strong> hereditary andtransitive. Letb∈H∩a.�en<br />

b⊆acc(H∩a)= a. It followsthat H∩b=(H∩a)∩b. Furthermore,<br />

since H <strong>is</strong> a h<strong>is</strong>torywe have<br />

b= acc(H∩b)=acc((H∩a)∩b) ,<br />

whichshowsthat H∩a <strong>is</strong> a h<strong>is</strong>tory.<br />

(c) Letb∈S.�e class<br />

a∶={s∈H∣b∈sorb⊆s}<br />

<strong>is</strong> nonempty becauseb∈S= acc(H). By�eorem2.7, it has a minimal<br />

elements∈a.<br />

If b∈s=acc(H∩s), there <strong>is</strong> some set z∈H∩s suchthat b∈z or<br />

b⊆z. It followsthat z∈a. But z∈s∩a impliesthats <strong>is</strong> not a minimal<br />

element of a. Contradiction.<br />

�erefore, b∉s which implies, by <strong>de</strong>finition of a, that b⊆s. For<br />

transitivity, notethatx∈ b implies<br />

x∈ b⊆s= acc(H∩s)⊆acc(H)= S.<br />

For hereditarity, let x ⊆ b. �en x ⊆ b⊆s∈H, which implies x ∈<br />

acc(H)=S.<br />

(d) By (c) we know that x⊆s∈S implies x∈S. For the other direction,<br />

suppose that x∈S= acc(H). �ere <strong>is</strong> some set s∈H such that<br />

x∈ s or x⊆ s. By (a), (b), and (c) it followsthat s∈S, s <strong>is</strong> a stage, and<br />

s <strong>is</strong> hereditary and transitive. By transitivity, if x∈ s then x⊆s. Consequently,<br />

we havex⊆ s∈Sin both cases andthe claim follows.<br />

(e) By (d),we have S= acc(H(S)). It remains to show that H(S) <strong>is</strong><br />

a h<strong>is</strong>tory. By (c), every element s∈H(S) <strong>is</strong> hereditary and transitive.<br />

Furthermore,since S <strong>is</strong>transitive we haves⊆Sand it followsthat<br />

H(S)∩s={x∈ s∣x<strong>is</strong> astage}.<br />

Sinces<strong>is</strong> astagewe know by(d)thats= acc(H(S)∩s). ◻<br />

16


2. Stagesand h<strong>is</strong>tories<br />

Notethat, by(a) and(b) above,we have H⊆ H(S), for all h<strong>is</strong>tories H<br />

of S. In fact, H(S) <strong>is</strong> the only h<strong>is</strong>tory of S but we need some further<br />

results beforewe canproveth<strong>is</strong>.<br />

Exerc<strong>is</strong>e 2.4. Prove, by induction on n, that{HF0,... ,HFn−1} <strong>is</strong> a h<strong>is</strong>torywithstage<br />

HFn.<br />

Exerc<strong>is</strong>e 2.5. Construct a hereditarytransitivity setathat <strong>is</strong> not astage.<br />

Hint. It <strong>is</strong>sufficientto consi<strong>de</strong>r sets HFn⊂ a⊂ HFn+1, for asmall n.<br />

A�erwe haveseen howto <strong>de</strong>finestageswe nowprovethatthey form<br />

astrictly increasingsequence S0⊆ S1⊆....Togetherwith�eorem2.7<br />

it followsthatthe class of all stages <strong>is</strong>well-or<strong>de</strong>red bythe membership<br />

relation∈(seeSection a3.1).<br />

�eorem 2.10. IfS andT arestagesthataresetsthenwe have<br />

S∈T or S=T or T∈ S .<br />

Proof. Supposethatthere arestages S and T suchthat<br />

(∗) S∉T, S≠T , and T∉ S.<br />

Define<br />

A∶={s∣s<strong>is</strong> astage andthere <strong>is</strong>somestage t suchthat<br />

s and t sat<strong>is</strong>fy(∗)}.<br />

By�eorem2.7,the class A has a minimal element S0. Define<br />

B∶={t∣t<strong>is</strong> astagesuchthat S0 and t sat<strong>is</strong>fy(∗)}.<br />

Againthere <strong>is</strong> a minimal element T0∈ B.<br />

Ifwe canshowthat H(S0)=H(T0), it followsthat<br />

S0= acc(H(S0))=acc(H(T0))= T0<br />

17


a1. Basicsettheory<br />

in contradiction to our choice of S0 and T0.<br />

Lets∈S0 be astage.�ens≠T0sinceT0∉ S0. Furthermore,we have<br />

T0∉ s since, otherw<strong>is</strong>e, transitivity of S0 would imply that T0∈ S0. By<br />

minimality of S0 it follows that s and T0 do not sat<strong>is</strong>fy(∗). �erefore,<br />

we haves∈T0.<br />

We haveshownthat H(S0)⊆H(T0). Asymmetric argumentshows<br />

that H(T0)⊆H(S0). Hence,we have H(S0)=H(T0) as <strong>de</strong>sired. ◻<br />

Lemma 2.11. Let S and T bestagesthataresets.<br />

(a) S∉ S<br />

(b) S⊆ T ifand only ifS∈ T orS=T.<br />

(c) S⊆ T or T⊆ S.<br />

(d) S⊂ T if,and only if, S∈T.<br />

Proof. (a)Suppose otherw<strong>is</strong>e. LetXbethe class of allstagesssuchthat<br />

s∈s. By �eorem 2.7, X has a minimal element s, that <strong>is</strong>, an element<br />

suchthats∩ X=∅. Buts∈s∩X. Contradiction.<br />

(b) If S=Tthen S⊆T, and if S∈Tthen S⊆T, bytransitivity of T.<br />

Conversely, if neither S=Tnor S∈ T then �eorem 2.10 impliesthat<br />

T∈ S. IfS⊆T then T∈ S⊆Twould contradict (a).<br />

(c) If S⊈Tthen (b) impliesthat S∉Tand S≠T. By �eorem 2.10,<br />

it followsthatT∈ S which, again by(b), impliesT⊆ S.<br />

(d) We have S⊂Tiff S⊆Tand S≠T. By (a) and (b), the latter <strong>is</strong><br />

equivalent toS∈ T. ◻<br />

3. �ecumulative hierarchy<br />

Intheprevioussectionwe haveseenthatwe can arrange allstages in an<br />

increasing sequence<br />

S0⊂ S1⊂⋅⋅⋅⊂Sα⊂⋯ ,<br />

whichwewill call thecumulative hierarchy. If S∈Tarestages then we<br />

willsaythatS <strong>is</strong>earlierthan T, orthat T <strong>is</strong> laterthan S.<br />

18


3. �ecumulative hierarchy<br />

From the axioms we have available we cannot prove that there ac<strong>tu</strong>ally<br />

are any stages. We introduce a new axiom which ensures that<br />

enoughstages are available.<br />

Axiom of Creation. Foreveryset athere <strong>is</strong>aset S∋awhich <strong>is</strong>astage.<br />

Inparticular, th<strong>is</strong> axiom impliesthat<br />

◆ for every stage S that <strong>is</strong> aset, there ex<strong>is</strong>ts a later stage T∋ S that<br />

<strong>is</strong> also aset.<br />

◆ theuniverseS<strong>is</strong>theunion of allstages.<br />

Of course, evenwithth<strong>is</strong> new axiomwe mightstill haveS=∅. But if at<br />

least oneset ex<strong>is</strong>ts,we can nowprovethat HF⊆S. Inparticular, S=HF<br />

sat<strong>is</strong>fies all axiomswe have introduced so far.<br />

Exerc<strong>is</strong>e 3.1. ProvethatS<strong>is</strong> astagewith h<strong>is</strong>tory<br />

H(S)={S∣S<strong>is</strong> astage}.<br />

Definition 3.1. (a) Wesay that a stage T <strong>is</strong> the successor of the stage S<br />

if S∈Tand there ex<strong>is</strong>ts nostage T ′ suchthat S∈T ′ ∈ T. A nonempty<br />

stage <strong>is</strong> a limit if it <strong>is</strong> notthesuccessor ofsome otherstage.<br />

(b) Let A be a class. We <strong>de</strong>note by S(A) the earliest stage such that<br />

A⊆ S(A).<br />

NotethatS(A) <strong>is</strong>well-<strong>de</strong>fined by�eorem2.7.We haveS(s)= s, for<br />

every stage s, in particular, S(∅)=∅. �e stages S and HF are limits<br />

and HFn+1 <strong>is</strong>thesuccessor ofthestage HFn.<br />

Lemma 3.2. a∈bimplies S(a)∈ S(b).<br />

Proof. Since a∈b⊆S(b)=acc(H(S(b))) it followsthatthere <strong>is</strong>some<br />

stage s∈S(b) such that a∈s or a⊆s. In particular, S(a) <strong>is</strong> not later<br />

than s which implies that S(a)⊆s∈S(b). As S(b) <strong>is</strong> hereditary we<br />

therefore have S(a)∈ S(b). ◻<br />

Lemma 3.3. S <strong>is</strong>the onlystagethat <strong>is</strong>aproperclass.<br />

19


a1. Basicsettheory<br />

Proof. Let S be a stage. If S≠ S, there <strong>is</strong> some set a∈S∖S. Hence,<br />

S(a)∉ S which impliesthat<br />

T∉ H(S) , for allstages T⊇ S(a).<br />

By Lemma2.9(e) and�eorem2.10,we have<br />

H(S)⊆{T∣ T <strong>is</strong> astagewith T∈ S(a)}= H(S(a)).<br />

Inparticular, H(S) <strong>is</strong> aset,which impliesthatso <strong>is</strong>S= acc(H(S)). ◻<br />

Lemma 3.4. Let Abeaclass.�e followingstatements areequivalent:<br />

(1) A <strong>is</strong>aproperclass.<br />

(2) S(A) <strong>is</strong>aproperclass.<br />

(3) S(A)=S.<br />

Proof. (3)⇒(1) By the Axiom of Creation, ifA <strong>is</strong> a set then so <strong>is</strong>S(A).<br />

(1)⇒(2) IfS(A) <strong>is</strong> a set then A⊆ S(A) implies that<br />

A={x∈ S(A)∣ x∈ A}<br />

<strong>is</strong> also a set.<br />

(2)⇒(3) follows by Lemma 3.3. ◻<br />

With the Axiom of Creationwe are finally able to prove most ‘obvious’<br />

properties ofsetssuchthat noset <strong>is</strong> an element of itself orthattheunion<br />

ofsets <strong>is</strong> aset.<br />

Lemma 3.5. If a <strong>is</strong>asetthen a∉a.<br />

Proof. Supposethatthere ex<strong>is</strong>tssomesetsuchthat a∈a.�en a∈a⊆<br />

S(a) and, by Lemma 2.9(d), there <strong>is</strong> some stage s∈S(a) with a⊆s.<br />

�<strong>is</strong> contradicts the minimality of S(a). ◻<br />

�eorem 3.6. Every nonemptyclassA hasaminimalelement.<br />

20


3. �ecumulative hierarchy<br />

Proof. By �eorem 2.7, we can choose some element b∈A such that<br />

S(b) <strong>is</strong> minimal. We claim that b <strong>is</strong> a minimal element of A. Suppose<br />

otherw<strong>is</strong>e.�enthere ex<strong>is</strong>tssome elementx∈ A∩b.Sincex∈ b⊆S(b),<br />

Lemma2.9(d) impliesthatthere <strong>is</strong>somestages∈S(b)suchthat x⊆ s.<br />

Hence, x <strong>is</strong> an element of A with S(x)∈ S(b) in contradiction to the<br />

choice ofb. ◻<br />

Wewillsee inSection a3.1 that �eorem 3.6 implies that there are no<br />

infinite <strong>de</strong>scending sequences a0∋a1∋... ofsets. (Ifsuch asequence<br />

ex<strong>is</strong>tsthentheset{a0,a1,...} has no minimal element.)<br />

Example. By induction on n, ittrivially followsthat, if a0∋⋯∋ ak−1 <strong>is</strong><br />

asequence of setsstarting with a0∈ HFn,then k


a1. Basicsettheory<br />

Proof. Let S0 and S1 be stages such that a∈S0 and b∈S1. We know<br />

thatS0⊆S1 orS1⊆S0. By choosing eitherS0 orS1we can find astageS<br />

suchthat S0⊆Sand S1⊆ S. Bytransitivity of S it followsthat<br />

⋃a={x∈ S∣x∈ b forsomeb∈a},<br />

a∪b={x∈ S∣x∈ a or x∈ b},<br />

{a}={x∈ S∣x=a},<br />

and ℘(a)={b∈S∣ b⊆a}. ◻<br />

Corollary 3.9. If a0,... ,an−1 aresetsthenso <strong>is</strong><br />

{a0,... ,an−1}={a0}∪⋅⋅⋅∪{an−1}.<br />

Inparticular,every finiteclass <strong>is</strong>aset.<br />

�e next <strong>de</strong>finitionprovi<strong>de</strong>s ausefultoolwhichsometimes allowsus<br />

to replace a proper class A by a set a. Instead of taking every element<br />

x∈Awe only consi<strong>de</strong>r thosesuchthat S(x) <strong>is</strong> minimal.<br />

Definition 3.10. �ecut of a classA <strong>is</strong>theset<br />

cutA∶={x∈ A∣ S(x)⊆ S(y) for all y∈A}.<br />

Exerc<strong>is</strong>e 3.2. What are cutS and cut{x∣a∈x}?<br />

Lemma 3.11. Everyclass ofthe form cutA <strong>is</strong>aset.<br />

Proof. IfA=∅then cutA=∅. Otherw<strong>is</strong>e, choose an arbitraryseta∈ A.<br />

�en cutA⊆ S(a)which impliesthat cutA<strong>is</strong> aset. ◻<br />

�e following lemmas clarify the struc<strong>tu</strong>re of the cumulative hierarchy.<br />

Lemma 3.12. �esuccessor ofastage S <strong>is</strong>℘(S).<br />

22


3. �ecumulative hierarchy<br />

Proof. By �eorem 2.7, there ex<strong>is</strong>ts a minimal stage T with S∈T. We<br />

havetoprovethat T=℘(S). a⊆S∈Timplies a∈T since T <strong>is</strong> hereditary.<br />

Hence,℘(S)⊆ T.<br />

Conversely, if s∈T<strong>is</strong> a stage then S∉s because T <strong>is</strong> the successor<br />

of S. By�eorem2.10, it followsthats∈Sors=S.�<strong>is</strong> impliess⊆S.<br />

We have shown that s ∈ T iff s ⊆ S, for all stages s. It follows by<br />

Lemma2.9(d)that<br />

T={x∣x⊆ s forsomestages∈T}<br />

={x∣x⊆ s forsomestages⊆S}={x∣ x⊆S}=℘(S). ◻<br />

Lemma 3.13. Let S be a nonempty stage. �e following statements are<br />

equivalent:<br />

(1) S <strong>is</strong>alimitstage.<br />

(2) S=⋃ H(S).<br />

(3) Foreveryset a∈S,thereex<strong>is</strong>ts somestages∈Swith a∈s.<br />

(4) If a∈Sthen℘(a)∈ S.<br />

(5) If a∈Sthen{a}∈ S.<br />

(6) If a⊆Sthen cuta∈S.<br />

Proof. (2)⇒(1) Suppose that S <strong>is</strong> the successor of a stage T. �en we<br />

have<br />

H(S)={T}∪ H(T).<br />

Sinces⊆T, for all s∈H(T), it followsthat<br />

⋃ H(S)= T≠ S.<br />

(1)⇒(2)Supposethat S <strong>is</strong> a limitstage. By Lemma2.9(d),we have<br />

S=⋃{℘(s)∣ s∈H(S)}<br />

=⋃{t∣t<strong>is</strong>thesuccessor ofsomestage s∈H(S)}<br />

=⋃{t∣t∈H(S)}<br />

=⋃ H(S).<br />

23


a1. Basicsettheory<br />

(1)⇒(3) Suppose that S <strong>is</strong> a limit and let a∈S. By Lemma 2.9(d),<br />

there <strong>is</strong>somestage s∈Swith a⊆s. Hence, a∈℘(s).Since T∶=℘(s) <strong>is</strong><br />

thesuccessor ofswe haveT∈ S.<br />

(3)⇒(4) For each a∈S, there <strong>is</strong> some stage s∈Swith a∈s. Since<br />

s <strong>is</strong> transitive it follows that x⊆a implies x∈ s. Hence,℘(a)⊆s. By<br />

transitivity of S,we obtain℘(a)∈ S.<br />

(4)⇒(5) Ifa∈S then{a}⊆℘(a)∈ S. SinceS<strong>is</strong> hereditary, it follows<br />

that{a}∈ S.<br />

(5)⇒(1) IfS<strong>is</strong> no limit, there <strong>is</strong> some stageT∈ SsuchthatS=℘(T).<br />

By assumption,{T}∈S=℘(T). Hence,{T}⊆ T which implies that<br />

T∈ T. A contradiction.<br />

(3)⇒(6) Letb∶= cuta. Ifa=∅thenb=∅andwe are done. Ifthere<br />

<strong>is</strong> some element x∈a then, by assumption, we can find a stage s∈S<br />

with x∈ s. By <strong>de</strong>finition, b⊆s, and it followsthatb∈S.<br />

(6)⇒(5) Let a∈S and set b∶={x∈S∣a⊆x}. Clearly, b⊆S. By<br />

assumption, we therefore have c∶= cutb∈S. Hence,{a}⊆ c implies<br />

{a}∈ S. ◻<br />

So far,westill might haveS=∅ orS=HF.To exclu<strong>de</strong>these caseswe<br />

introduce a new axiomwhichstatesthat HF∈S.<br />

Axiom of Infinity. �ereex<strong>is</strong>tsasetthat <strong>is</strong>alimitstage.<br />

We callthetheory cons<strong>is</strong>ting ofthe four axioms<br />

◆ Axiom of Extensionality<br />

◆ Axiom ofSeparation<br />

◆ Axiom of Creation<br />

◆ Axiom of Infinity<br />

basic set theory. Every mo<strong>de</strong>l of th<strong>is</strong> theory cons<strong>is</strong>t of a hierarchy of<br />

stages<br />

S0⊂ S1⊂⋯⊂Sω⊂ Sω+1⊂ ...<br />

whereSn= HFn, for finite n.�e differences between twosuch mo<strong>de</strong>ls<br />

can be classified accordingtotwo axes:the length ofthe hierarchy and<br />

thesize of eachstage.<br />

24


3. �ecumulative hierarchy<br />

LetSandS ′ betwo mo<strong>de</strong>lswithstages(Sα)α


a1. Basicsettheory<br />

26


a2. Relations<br />

1. Relationsand functions<br />

With basicsettheory availablewe can <strong>de</strong>fine most ofthe conceptsused<br />

in mathematics. �esimplest one <strong>is</strong>the notion of an or<strong>de</strong>red pair. �e<br />

character<strong>is</strong>tic property ofsuchpairs <strong>is</strong>that⟨a,b⟩=⟨c,d⟩ implies a=c<br />

and b=d.<br />

Definition1.1. (a) Let a andbbesets.�e or<strong>de</strong>red pair⟨a,b⟩ <strong>is</strong>theset<br />

⟨a,b⟩∶={{a},{a,b}}.<br />

(b) Let A and B be classes. �e cartesian product of A and B <strong>is</strong> the<br />

class<br />

A×B∶={c∣c=⟨a,b⟩ forsome a∈A and b∈B}.<br />

Le<strong>tu</strong>sshowthat or<strong>de</strong>redpairs havethe <strong>de</strong>siredproperty.<br />

Lemma1.2. If{a,b}={a,c}thenb=c.<br />

Proof. We have b∈{a,b}={a,c}. Hence,b=a or b=c. Inthe latter<br />

case we are done. Otherw<strong>is</strong>e, we have c∈{a,c}={a,b}={b}which<br />

impliesthat c=b. ◻<br />

Lemma1.3. If⟨a,b⟩=⟨c,d⟩then a=candb=d.<br />

Proof. Supposethat⟨a,b⟩=⟨c,d⟩.<br />

{a}∈{{a},{a,b}}={{c},{c,d}}<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 27


a2. Relations<br />

implies{a}={c} or{a}={c,d}. Inthe latter case,we have a=c=d.<br />

In both cases, wetherefore have{a}={c}. Bythepreceding lemma, it<br />

follows that{a,b}={c,d} and, applying the lemma again, we obtain<br />

b=d. ◻<br />

Remark. �e above <strong>de</strong>finition of an or<strong>de</strong>redpair⟨a,b⟩ does onlywork<br />

for sets. Nevertheless we will use also pairs⟨A,B⟩ where A or B are<br />

proper classes.�ere areseveral waysto makesuch an expressionwell<strong>de</strong>fined.<br />

Asimple one <strong>is</strong>to <strong>de</strong>fine<br />

⟨A,B⟩∶=({[0]}×A)∪({[1]}×B) (= A⊍B)<br />

whenever at least one ofA andB<strong>is</strong> aproper class.(�e operation⊍will<br />

be <strong>de</strong>fined more generally in the next section.) It <strong>is</strong> easy to check that<br />

withth<strong>is</strong> <strong>de</strong>finitiontheterm⟨A,B⟩ hastheproperties of an or<strong>de</strong>redpair,<br />

that <strong>is</strong>, A⊍B=C⊍DimpliesA= C and B=D.<br />

Definition1.4. (a) Forsets a0,... ,an we <strong>de</strong>fine inductively<br />

⟨⟩∶=∅ , ⟨a0⟩∶= a0 ,<br />

and ⟨a0,... ,an⟩∶=⟨⟨a0,... ,an−1⟩,an⟩.<br />

We call⟨a0,... ,an−1⟩ a<strong>tu</strong>ple of length n.⟨⟩ <strong>is</strong>theempty<strong>tu</strong>ple.<br />

(b) For a class A,we <strong>de</strong>fine its n-thpower by<br />

A 0 ∶={⟨⟩} , A 1 ∶= A , and A n+1 ∶= A n ×A , for n> 1.<br />

Definition1.5. Arelation, or apredicate, ofarity n <strong>is</strong> asubclassR⊆S n .<br />

IfR⊆A n , forsome class A,wesaythatR<strong>is</strong> over A.<br />

Notethat∅and{⟨⟩} arethe onlyrelations of arity0. In logicthey are<br />

usually interpreted as false andtrue. Arelation of arity 1 over A <strong>is</strong> just a<br />

subclassR⊆A.<br />

Definition1.6. LetRbe a binary relation.�edomain ofR<strong>is</strong>the class<br />

28<br />

domR∶={a∣⟨a,b⟩∈ R forsomeb},


and itsrange <strong>is</strong><br />

rngR∶={b∣⟨a,b⟩∈ R forsome a}.<br />

�e field of R <strong>is</strong> domR∪rngR.<br />

1. Relationsand functions<br />

Inparticular, domR andrngR arethesmallest classessuchthat<br />

R⊆domR×rngR.<br />

Definition 1.7. (a) A binary relation R <strong>is</strong> called functional if, for every<br />

a∈ domR,there ex<strong>is</strong>ts exactly onesetbsuchthat⟨a,b⟩∈ R.We <strong>de</strong>note<br />

th<strong>is</strong>unique elementbby R(a). Hence,we canwrite R as<br />

R={⟨a,R(a)⟩∣ a∈ domR}.<br />

A functional relation R⊆A×B<strong>is</strong> also called apartial function from A<br />

toB.<br />

(b) A function from A to B <strong>is</strong> a functional relation f ⊆ A× B with<br />

dom f= A and rng f⊆ B. Functions are also called maps or mappings.<br />

Wewrite f∶ A→ Bto <strong>de</strong>notethe factthat f <strong>is</strong> a function fromAtoB.<br />

A function ofarity n <strong>is</strong> a function ofthe form<br />

f∶ A0×⋯×An−1→ B.<br />

We will write x↦y to <strong>de</strong>note the function f such that f(x)= y.<br />

(Usually, y will be an expression <strong>de</strong>pending onx.)<br />

(c) For asetaand a classB,we <strong>de</strong>note byB a the class of all functions<br />

f∶ a→B.<br />

Remark. A 0-ary function f ∶ A 0 → B <strong>is</strong> uniquely <strong>de</strong>termined by the<br />

value f(⟨⟩).Wewill callsuch functionsconstants and i<strong>de</strong>ntifythemwith<br />

their only value.<br />

Sometimes wewrite binary relations and functions in infix notation,<br />

that <strong>is</strong>, for arelationR∈A×A,wewritea R b instead of⟨a,b⟩∈ R and,<br />

for f∶ A×A→ A,wewrite a f b instead of f(a,b).<br />

29


a2. Relations<br />

Definition 1.8. (a) For every class A, we <strong>de</strong>fine the i<strong>de</strong>ntity function<br />

idA∶A→ A by idA(a)∶= a.<br />

(b) If R⊆A× B and S⊆B×C are relations, we can <strong>de</strong>fine their<br />

composition S○R∶A×C by<br />

S○R∶={⟨a,c⟩∣there <strong>is</strong>someb∈Bsuchthat<br />

⟨a,b⟩∈ R and⟨b,c⟩∈ S}.<br />

(Note the reversal of the or<strong>de</strong>ring.) In particular, if f ∶ A→ B and g∶<br />

B→C are functionsthen<br />

(g○ f)(x)∶= g( f(x)).<br />

(c)�e inverse of arelation R⊆A×B <strong>is</strong>therelation<br />

R −1 ∶={⟨b,a⟩∣⟨a,b⟩∈ R}.<br />

Inparticular, a function g∶B→A <strong>is</strong>the inverse ofthe function f∶ A→<br />

B if<br />

g( f(a))= a and f(g(b))=b , for all a∈A and b∈B ,<br />

that <strong>is</strong>, if g○ f= idA and f○ g= idB.<br />

Forb∈B,wewillwrite<br />

R −1 (b)∶={a∣⟨a,b⟩∈ R}.<br />

Notethat, ifR −1 <strong>is</strong> a function,we have already <strong>de</strong>fined<br />

R −1 (b)∶= a fortheunique asuchthat⟨a,b⟩∈ R.<br />

Itshould always be clear fromthe contextwhich ofthesetwo <strong>de</strong>finitions<br />

we have in mindwhenwewriteR −1 (b).<br />

(d)�erestriction of arelation R⊆A×Bto a classC <strong>is</strong>therelation<br />

30<br />

R∣C∶= R∩(C×C).


Its le�restriction <strong>is</strong><br />

R↾C∶= R∩(C×B) .<br />

1. Relationsand functions<br />

(e) �e image of a class C un<strong>de</strong>r a binary relation R⊆A× B <strong>is</strong> the<br />

class<br />

R[C]∶=rng(R↾C).<br />

Remark. �esetA A togetherwiththe operation○ forms a monoid,that<br />

<strong>is</strong>,○<strong>is</strong>associative<br />

f○(g○h)=( f○ g)○ h , for all f , g, h∈A A ,<br />

andthere ex<strong>is</strong>ts a neutralelement<br />

idA○ f=f and f○ idA= f for all f∈ A A .<br />

Exerc<strong>is</strong>e1.1. Is ittruethatR −1 ○R=idA, for allrelations R⊆A×B?<br />

Exerc<strong>is</strong>e1.2. Provethat○<strong>is</strong> associative andthat idA <strong>is</strong> a neutral element.<br />

Definition1.9. Let f∶ A→ B be a function.<br />

(a) f <strong>is</strong> injective ifthere <strong>is</strong> nopair a,a ′ ∈ A of d<strong>is</strong>tinct elementssuch<br />

that f(a)= f(a ′ ).<br />

(b) f <strong>is</strong>surjective ifrng f= B.<br />

(c) f <strong>is</strong> called bijective if it <strong>is</strong> both injective andsurjective.<br />

Lemma1.10. Let f∶ A→ Bbeafunction.<br />

(a) �e followingstatements areequivalent:<br />

(1) f <strong>is</strong>bijective.<br />

(2) f −1 <strong>is</strong>afunction B→A.<br />

(3) �ereex<strong>is</strong>ts a function g∶B→Asuchthat g○ f= idA and<br />

f○ g= idB.<br />

31


a2. Relations<br />

(b) �e followingstatements areequivalent:<br />

(1) f <strong>is</strong> injective.<br />

(2) f○ g= f○ h implies g= h, forall functions g, h∶C→ A.<br />

(3) A=∅ or there ex<strong>is</strong>ts some function g∶B→A such that<br />

g○ f= idA.<br />

(4) f −1 [ f[X]]= X, forall X⊆A.<br />

(c) �e followingstatements areequivalent:<br />

(1) f <strong>is</strong>surjective.<br />

(2) g○ f= h○ f implies g= h, forall functions g, h∶B→C.<br />

(3) f[ f −1 [Y]]=Y, forallY⊆ B.<br />

(d) Ifthere ex<strong>is</strong>ts some function g∶B→Asuchthat f○ g= idB then<br />

f <strong>is</strong>surjective.<br />

Proof. (a) (1)⇒(2) Let b∈B. Since f <strong>is</strong> surjective there ex<strong>is</strong>ts some<br />

a∈Asuchthat f(a)=b. Ifa ′ ∈ A <strong>is</strong>some elementwith f(a ′ )=bthen<br />

the injectivity of f implies that a ′ = a. We have shown that, for every<br />

element b∈B, there <strong>is</strong> a unique a∈A such that f −1 (b)= a. Hence,<br />

f −1 <strong>is</strong> functional and dom f −1 = B.<br />

(2)⇒(3) f −1 ∶ B→A <strong>is</strong> a function and we have f −1 ○ f = idA and<br />

f○ f −1 = idB.<br />

(3)⇒(1) If f(a)= f(b), for a,b∈ A, then<br />

a= idA(a)=(g○ f)(a)=(g○ f)(b)=idA(b)=b .<br />

Consequently, f <strong>is</strong> injective. To show that it <strong>is</strong> also surjective let b∈B.<br />

Setting a∶= g(b)we have<br />

f(a)=( f○ g)(b)=idB(b)=b.<br />

Hence,b∈rng f.<br />

(b)(1)⇒(4) Let X⊆ A. For every a∈X,we have f(a)∈ f[X] and,<br />

therefore, a∈ f −1 [ f[X]]. Consequently, X⊆ f −1 [ f[X]]. Conversely,<br />

32


1. Relationsand functions<br />

supposethat a∈ f −1 [ f[X]] and set b∶= f(a).Since b∈ f[X] there <strong>is</strong><br />

some c∈Xwith f(c)=b. As f <strong>is</strong> injective th<strong>is</strong> impliesthat a=c∈X.<br />

(4)⇒(3) If A=∅ then there <strong>is</strong> nothing to do. Hence, assume that<br />

A≠∅.We <strong>de</strong>fine g as follows. For everyb∈rng f ,there <strong>is</strong>some element<br />

a∈Awith f(a)=b.Since f −1 (b)= f −1 [ f[{a}]]={a} it followsthat<br />

th<strong>is</strong> element a <strong>is</strong>unique. Hence, fixing a0∈Awe can <strong>de</strong>fine g by<br />

⎧⎪ a if f<br />

g(b)∶= ⎨<br />

⎪⎩<br />

−1 (b)={a} ,<br />

a0 ifb∉rng f .<br />

(3)⇒(2) IfA=∅, there are no functionsC→A andthe claim holds<br />

trivially. Hence, assume that A≠∅ and let k be a function such that<br />

k○ f= idA.�en f○ g= f○ h implies<br />

g= idA○g=k○ f○ g=k○ f○ h= idA○h=h.<br />

(2)⇒(1)Supposethat f <strong>is</strong> not injective. �enthere aretwo elements<br />

a,b∈A with a≠b such that f(a)= f(b). Let C∶=[1]={0} be a<br />

set with a single element and <strong>de</strong>fine g, h∶C→A by g(0)∶= a and<br />

h(0)∶= b.�en g≠h but f○ g= f○ h.<br />

(c) (1)⇒(2) Suppose that g≠h. �ere <strong>is</strong> some element b∈B with<br />

g(b)≠ h(b). Since f <strong>is</strong> surjective we can find an element a∈A with<br />

f(a)=b. Hence,(g○ f)(a)= g(b)≠ h(b)=(h○ f)(a).<br />

(2)⇒(1)Supposethat f <strong>is</strong> notsurjective.�enthere <strong>is</strong>some element<br />

b∈B∖rng f. LetC∶=[2]={0, 1} be asetwithtwo elements and <strong>de</strong>fine<br />

g, h∶B→Cby<br />

⎧⎪ 1 if x= b ,<br />

g(x)∶= ⎨<br />

⎪⎩<br />

0 otherw<strong>is</strong>e,<br />

and h(x)∶=0 , for all x∈ B.<br />

�enwe have g≠h but g○ f= h○ f.<br />

(3)⇒(1) f[ f −1 [B]]=B implies that rng f= B.<br />

(1)⇒(3) Let Y⊆ B. If b∈ f[ f −1 [Y]] then there <strong>is</strong> some a∈ f −1 [Y]<br />

with f(a)=b. Hence, a∈ f −1 [Y] implies that b= f(a)∈Y. Consequently,<br />

we have f[ f −1 [Y]]⊆Y.<br />

33


a2. Relations<br />

For the converse, let b∈Y. Since f <strong>is</strong> surjective there <strong>is</strong> some a∈<br />

A with f(a)=b. Hence, a∈ f −1 [Y] and it follows that b= f(a)∈<br />

f[ f −1 [Y]].<br />

(d) Let k be a functionsuchthat f○k= idB.�en g○ f= h○ f implies<br />

g=g○ idB=g○ f○ k=h○ f○ k=h○ idB= h.<br />

By(c), it followsthat f <strong>is</strong>surjective. ◻<br />

Remark. �e converse of(d) also holds butwe cannotprove itwithout<br />

the Axiom of Choice, which we will introduce in Section a4.1 below.<br />

Ac<strong>tu</strong>ally one can prove that the Axiom of Choice <strong>is</strong> equivalent to the<br />

claimthat, for everysurjective function f ,there ex<strong>is</strong>tssome function g<br />

with f○ g= id.<br />

Remark. �esubset of all bijective functions f∶ A→ A forms a group<br />

since, bythepreceding lemma, every element f has an inverse f −1 .<br />

Exerc<strong>is</strong>e1.3. Let f∶ A→ B and g∶B→Cbe functions. Prove that, if<br />

f and g are(a) injective, (b)surjective, or(c) bijective thenso <strong>is</strong> g○ f.<br />

We conclu<strong>de</strong>th<strong>is</strong> section with two important results about the ex<strong>is</strong>tence<br />

of functions. �e first one can be used to prove that there ex<strong>is</strong>ts<br />

a bijection between two given sets without constructing th<strong>is</strong> function<br />

explicitly.<br />

Lemma 1.11. Let A⊆ B⊆C be sets. If there ex<strong>is</strong>ts a bijective function<br />

f∶ C→A,there <strong>is</strong>alsoabijection g∶ C→B.<br />

Proof. Let<br />

Z∶=⋂{X⊆ C∣ C∖B⊆ X and f[X]⊆X}.<br />

�enC∖B⊆Zand f[Z]⊆ Z.We claimthat<br />

34<br />

⎧⎪ f(x) if x∈Z ,<br />

g(x)∶= ⎨<br />

⎪⎩<br />

x otherw<strong>is</strong>e,


C<br />

B<br />

A<br />

Z<br />

Y<br />

1. Relationsand functions<br />

f<br />

id<br />

Figure 1..�eproof of Lemma 1.11.<br />

Z∩B<br />

<strong>is</strong> the <strong>de</strong>sired bijection g∶ C→B.<br />

LetY∶= C∖Z be the complement ofZ. Since g[Y]⊆ Y and g[Z]⊆ Z<br />

it <strong>is</strong>sufficienttoshowthattherestrictions g↾Y∶Y→ Y and g↾Z∶Z→<br />

Z∩B are bijections. Clearly, g↾Y= idY <strong>is</strong> bijective and g↾Z= f↾Z <strong>is</strong><br />

injective. �erefore,we only needtoprovethat f[Z]= Z∩B.<br />

By <strong>de</strong>finition of Z,we have f[Z]⊆Z∩rng f⊆ Z∩B. For the other<br />

inclusion, supposethat there ex<strong>is</strong>ts some element a∈(Z∩B)∖ f[Z].<br />

Since a∈B theset X∶= Z∖{a}sat<strong>is</strong>fies C∖B⊆Xand f[X]⊆ X. By<br />

<strong>de</strong>finition of Z, it followsthat Z⊆X. Contradiction. ◻<br />

�eorem1.12(Bernstein). Ifthereare injective functions f∶ A→ Band<br />

g∶B→Athenthere ex<strong>is</strong>tsabijective function h∶A→ B.<br />

Proof. We have g[ f[A]]⊆g[B]⊆A. Since f and g are injective so<br />

<strong>is</strong> their composition g○ f. When regar<strong>de</strong>d as function g○ f ∶ A→<br />

g[ f[A]] it <strong>is</strong> alsosurjective. Hence, bythepreceding lemma,there ex<strong>is</strong>ts<br />

a bijective mapping h∶A→ g[B].Since k∶= g −1 ↾ g[B]∶ g[B]→ B <strong>is</strong><br />

bijective it followsthatso <strong>is</strong> k○h∶A→ B. ◻<br />

�e second result <strong>de</strong>als with functions between a set and its power<br />

set.<br />

�eorem1.13(Cantor). Foreveryset a,thereex<strong>is</strong>tsan injective function<br />

a→℘(a)but nosurjective one.<br />

Y<br />

35


a2. Relations<br />

Proof. �e function f∶ a→℘(a)with f(x)∶={x} <strong>is</strong> injective.<br />

For a contradiction, suppose that there <strong>is</strong> also a surjective function<br />

f∶ a→℘(a).We <strong>de</strong>finetheset<br />

z∶={x∈ a∣x∉ f(x)}⊆ a.<br />

Since f <strong>is</strong> surjective there <strong>is</strong> some element b∈a with f(b)=z. By<br />

<strong>de</strong>finition ofz,we have<br />

b∈ z iff b∉ f(b)=z.<br />

A contradiction. ◻<br />

Corollary1.14. Forallsets a,thereare no injective functions℘(a)→ a.<br />

Proof. Suppose that f ∶℘(a)→ a <strong>is</strong> injective. We <strong>de</strong>fine a function<br />

g∶a→℘(a) by<br />

⎧⎪ f<br />

g(x)∶= ⎨<br />

⎪⎩<br />

−1 (x) if x∈rng f ,<br />

∅ otherw<strong>is</strong>e.<br />

Note that g <strong>is</strong> well-<strong>de</strong>fined since f <strong>is</strong> injective. Furthermore, we have<br />

g○ f= id ℘(A). Hence, Lemma 1.10(d) impliesthat g <strong>is</strong>surjective. �<strong>is</strong><br />

contradicts the�eorem of Cantor. ◻<br />

2. Productsandunions<br />

So far, we have <strong>de</strong>fined cartesian products of finitely many sets and<br />

<strong>tu</strong>ples of finite length. In th<strong>is</strong> section we will show how to general<strong>is</strong>e<br />

these <strong>de</strong>finitions to infinitely many factors.<br />

Remark. (a) �ere <strong>is</strong> a canonical bijection π∶A [n] → A n between the<br />

setA [n] of all functions[n]→A andthe n-thpowerA n of A.πmaps a<br />

function f∶[n]→Atothe<strong>tu</strong>ple<br />

36<br />

π( f)∶=⟨ f(0),..., f(n− 1)⟩ ,


2. Productsandunions<br />

and its inverseπ −1 maps a <strong>tu</strong>ple⟨a0,... ,an−1⟩tothe function f∶[n]→<br />

Awith f(i)= ai.<br />

(b)�ere <strong>is</strong> also a canonical bijection π∶(A×B)×C→A×(B×C)<br />

<strong>de</strong>fined by<br />

π⟨⟨a,b⟩,c⟩∶=⟨a,⟨b,c⟩⟩.<br />

(c) Finally, le<strong>tu</strong>s <strong>de</strong>fine a canonical bijection π∶A B×C →(A C ) B that<br />

maps a function f∶ B×C→Atothe function g∶B→A C with<br />

g(b)∶= hb where hb(c)∶= f(b,c) , forb∈B, c∈C.<br />

Inthetheory ofprogramming languages th<strong>is</strong>transformation of a function<br />

B×C→A into a function B→A C <strong>is</strong> calledcurrying.<br />

Part (a) of the above remark gives a hint on how to general<strong>is</strong>e finite<br />

<strong>tu</strong>ples. A<strong>tu</strong>ple of length n correspondsto a map[n]→A.�erefore,we<br />

<strong>de</strong>fine an infinite<strong>tu</strong>ple as mapN→ A.<br />

Definition 2.1. (a) Let A be a class and I aset. A function f∶ I→A <strong>is</strong><br />

called asequence, or family, over I. If f(i)= ai then we alsowrite f in<br />

the form(ai)i∈I.<br />

(b) Let I be aset,(Ai)i∈I asequence ofsets, and A∶=⋃{Ai∣ i∈I}<br />

theirunion.�eproduct of(Ai)i∈I <strong>is</strong>the class<br />

∏Ai∶={ f∈ A<br />

i∈I<br />

I ∣ f(i)∈ Ai for all i}.<br />

(c) Let(Ai)i∈I be asequence of sets and k∈I.�e projection tothe<br />

k-th coordinate <strong>is</strong>the map<br />

pr k ∶∏ i∈I<br />

Ai→ Ak with pr k ( f)∶= f(k).<br />

Remark. (a) IfAi= A, for all i∈I,then∏i∈I Ai= A I .<br />

(b) As we have seen above there <strong>is</strong> a canonical bijection between<br />

A0×A1 and∏i∈[2]Ai. Inthe followingwewill not d<strong>is</strong>tingu<strong>is</strong>h between<br />

thesesets.<br />

37


a2. Relations<br />

Le<strong>tu</strong>s introducesome notation and conventionsregardingsequences.<br />

To indicate that a certain variable refers to a sequence we will write it<br />

with a bar ā. Ifthesequence <strong>is</strong> over I,the components of ā will always<br />

be(ai)i∈I. Sometimes we will not d<strong>is</strong>tingu<strong>is</strong>h between a sequence ā=<br />

(ai)i∈I and its range rngā={ai∣ i∈I}. Inparticular, wewrite ā∪ ¯ b<br />

instead ofrngā∪rng ¯ b and, ifwe do notwanttospecifythe in<strong>de</strong>xset I,<br />

wewill write ā⊆A instead of ā∈A I . Finally, for a function f∶ A→ B,<br />

wewrite f(ā)to <strong>de</strong>notethesequence( f(ai))i∈I.<br />

Lemma 2.2. Let A be a set and(Bi)i∈I a sequence of sets. For every sequence(<br />

fi)i∈I of functions fi ∶ A→ Bi there ex<strong>is</strong>ts a unique function<br />

g∶ A→∏i Bi suchthat<br />

pr i ○ g= fi , forall i∈I.<br />

Proof. �e function<br />

g(a)∶=( fi(a))i∈I<br />

has obviously the <strong>de</strong>siredproperties.We havetoshowthat it <strong>is</strong>unique.<br />

Let h∶A→∏i Bi be another such function. If g≠h, there <strong>is</strong> some<br />

element a∈A such that g(a)≠ h(a). Let(bi)i∈I∶= h(a). For every<br />

i∈I,we have<br />

bi=(pr i ○ h)(a)= fi(a).<br />

Hence g(a)=( fi(a))i=(bi)i= h(a). A contradiction. ◻<br />

Definition 2.3. �e d<strong>is</strong>joint union of a sequence(Ai)i∈I of sets <strong>is</strong> the<br />

class<br />

⊍Ai∶={⟨i,a⟩∣ i∈I, a∈Ai}.<br />

i∈I<br />

Similarly, if A and B are classesthenwe can <strong>de</strong>finetheir d<strong>is</strong>joint union<br />

as<br />

38<br />

A⊍B∶=({[0]}×A)∪({[1]}×B).


�e k-th insertion <strong>is</strong> the canonical map<br />

ink∶ Ak→⊍ Ai with ink(a)∶=⟨k,a⟩ .<br />

i∈I<br />

Remark. IfAi= A, for all i∈I, then⊍i∈I Ai= I×A.<br />

3. Graphsandpartial or<strong>de</strong>rs<br />

Lemma 2.4. Let B be a set and(Ai)i∈I a sequence of sets. For every sequence(<br />

fi)i∈I of functions fi ∶ Ai → B there ex<strong>is</strong>ts a unique function<br />

g∶⊍i Ai→ Bsuchthat<br />

g○ ini=fi , forall i∈I .<br />

Proof. �e function<br />

g⟨i,a⟩∶= fi(a)<br />

has obviously the <strong>de</strong>siredproperties.We havetoshowthat it <strong>is</strong>unique.<br />

Let h∶⊍i Ai→ B be anothersuch function. If g≠hthenthere <strong>is</strong>some<br />

element⟨k,a⟩∈⊍i Ai suchthat g⟨k,a⟩≠ h⟨k,a⟩.We have<br />

h⟨k,a⟩=(h○ ink)(a)= fk(a)= g⟨k,a⟩.<br />

A contradiction. ◻<br />

3. Graphsandpartial or<strong>de</strong>rs<br />

When consi<strong>de</strong>ringrelations it <strong>is</strong> frequently necessarytospecifythesets<br />

they are over.<br />

Definition 3.1. A graph <strong>is</strong> a pair⟨A,R⟩ where R⊆A× A <strong>is</strong> a binary<br />

relation onA.<br />

More generally one can consi<strong>de</strong>rsetstogetherwithseveralrelations and<br />

functions. �<strong>is</strong>will leadtothe notion of astruc<strong>tu</strong>re in Chapter b1.<br />

Definition 3.2. Let⟨A,R⟩ be a graph.<br />

39


a2. Relations<br />

(a) R <strong>is</strong>reflexive if⟨a,a⟩∈ R, for all a∈A.<br />

(b) R <strong>is</strong> irreflexive if⟨a,a⟩∉ R, for all a∈A.<br />

(c) R <strong>is</strong>symmetric ifwe have⟨a,b⟩∈ R if, and only if,⟨b,a⟩∈ R, for<br />

all a,b∈A.<br />

(d) R <strong>is</strong>ant<strong>is</strong>ymmetric if⟨a,b⟩∈ R and⟨b,a⟩∈ R implies a=b.<br />

(e) R <strong>is</strong>transitive if⟨a,b⟩∈ R and⟨b,c⟩∈ R implies⟨a,c⟩∈ R, for all<br />

a,b,c∈A.<br />

Note that, for the <strong>de</strong>finition of reflexivity, it <strong>is</strong> important to specify<br />

the setA. If⟨A,R⟩ <strong>is</strong> reflexive and A⊂ B then⟨B,R⟩ <strong>is</strong> not reflexive.<br />

Example. (a) �e relation A×A <strong>is</strong> reflexive, symmetric, and transitive.<br />

It <strong>is</strong> irreflexive if, and only if,A=∅, and it <strong>is</strong> ant<strong>is</strong>ymmetric if, and only<br />

if,A contains at most one element.<br />

(b) �e diagonal idA={⟨a,a⟩∣ a∈A} <strong>is</strong> reflexive, symmetric, ant<strong>is</strong>ymmetric,<br />

and transitive. It <strong>is</strong> irreflexive if, and only if,A=∅.<br />

(c) �e empty relation∅⊆A×A<strong>is</strong> irreflexive, symmetric, ant<strong>is</strong>ymmetric,<br />

and transitive. It <strong>is</strong> reflexive if, and only if, A=∅.<br />

Definition 3.3. (a) A (non-strict) partial or<strong>de</strong>r <strong>is</strong> a graph⟨A,≤⟩where<br />

≤ <strong>is</strong> reflexive, transitive, and ant<strong>is</strong>ymmetric.<br />

(b) A strict partial or<strong>de</strong>r <strong>is</strong> a graph⟨A,


3. Graphsandpartial or<strong>de</strong>rs<br />

Similarly, if


a2. Relations<br />

the greatest element of X by maxA X and the least element by minAX,<br />

provi<strong>de</strong>dthese elements ex<strong>is</strong>t.<br />

(d) Let X⊆A. Wesay that a <strong>is</strong> an upper bound of X if x≤a, for all<br />

x∈X. If a <strong>is</strong> an upper bound of X and a≤b, for every other upper<br />

boundbof X,then a <strong>is</strong>the leas<strong>tu</strong>pperbound, orsupremum, of X. Ifthe<br />

leas<strong>tu</strong>pper bound of X ex<strong>is</strong>ts,we <strong>de</strong>note it bysup A X.<br />

�e notion of a (greatest) lower bound <strong>is</strong> <strong>de</strong>fined analogously. �e<br />

greatest lower bound <strong>is</strong> also called the infimum of X. We <strong>de</strong>note it by<br />

infA X. Ifthe or<strong>de</strong>r A <strong>is</strong>un<strong>de</strong>rstoodwewill omitthesubscript A andwe<br />

justwritesupX and inf X.<br />

(e) A linearly or<strong>de</strong>redsubsetC⊆A <strong>is</strong> called achain.<br />

Example. (a) Let Q∶=⟨Q,≤⟩. �e set I∶={x∈ Q∣x< √ 2} <strong>is</strong> an<br />

initial segment of Q. Every rational number y> √ 2 <strong>is</strong> anupper bound<br />

of I but I has no leas<strong>tu</strong>pper bound.<br />

(b) Consi<strong>de</strong>r⟨N,∣⟩. Its least element <strong>is</strong>the number 1 and its greatest<br />

element <strong>is</strong> 0. �e least upper bound of two elements[k],[m]∈N <strong>is</strong><br />

their least common multiple lcm(k, m), andtheir greatest lower bound<br />

<strong>is</strong>their greatest common div<strong>is</strong>or gcd(k, m).�eset P⊆N of all prime<br />

numbers has the least upper bound 0 and the greatest lower bound 1.<br />

�eset{2 n ∣ n∈N} of allpowers oftwo forms a chain.<br />

Exerc<strong>is</strong>e 3.1. Consi<strong>de</strong>r⟨B,⊆⟩where<br />

B∶={X⊆N∣ X <strong>is</strong> finite orN∖X <strong>is</strong> finite}.<br />

(a) Construct aset X⊆Bthat has no minimal element.<br />

(b) Construct aset X⊆Bwith lower bounds butwithout infimum.<br />

Lemma 3.5. Let⟨A,≤⟩beapartial or<strong>de</strong>r. IfA <strong>is</strong>aset,the followingstatementsareequivalent:<br />

42<br />

(1) Everysubset X⊆A hasasupremum.<br />

(2) Everysubset X⊆A hasan infimum.


3. Graphsandpartial or<strong>de</strong>rs<br />

Proof. We only prove (1)⇒(2). �e other direction follows in exactly<br />

thesameway. Let X⊆A andset<br />

C∶={a∈A∣ a <strong>is</strong> a lower bound of X}.<br />

By assumption, c∶= supC ex<strong>is</strong>ts. We claim that inf X=c. Let b∈X.<br />

By <strong>de</strong>finition, we have a≤b, for all a∈C. Hence, b <strong>is</strong> anupper bound<br />

of C andwe haveb≥supC= c. Asb was arbitrary it followsthat c <strong>is</strong> a<br />

lower bound of X. If a <strong>is</strong> an arbitrary lower bound of X,we have a∈C,<br />

which implies that a≤c. Consequently, c <strong>is</strong> the greatest lower bound<br />

of X. ◻<br />

Definition 3.6. Apartial or<strong>de</strong>r⟨A,≤⟩ <strong>is</strong>complete if everysubset X⊆A<br />

has an infimum and asupremum.<br />

Remark. Every complete partial or<strong>de</strong>r has a least element�∶= sup∅<br />

and a greatest element⊺∶= inf∅.<br />

Example. (a) Let A be aset. �epartial or<strong>de</strong>r⟨℘(A),⊆⟩ <strong>is</strong> complete. If<br />

X⊆℘(A)then<br />

supX=⋃X∈℘(A) and inf X=⋂X∈℘(A).<br />

(b)�e or<strong>de</strong>r⟨R,≤⟩ <strong>is</strong> complete.⟨Q,≤⟩ <strong>is</strong> notsincetheset<br />

{x∈ Q∣x≤π}<br />

has no leas<strong>tu</strong>pper bound inQ.<br />

(c) �e or<strong>de</strong>r⟨N,≤⟩ <strong>is</strong> not complete since inf∅ and supN do not<br />

ex<strong>is</strong>t.<br />

(d) Let A=⟨A,≤⟩ be an arbitrary partial or<strong>de</strong>r. We can construct a<br />

completepartial or<strong>de</strong>r C=⟨C,⊆⟩ containing A as follows. LetC⊆℘(A)<br />

betheset of all initial segments of A or<strong>de</strong>red by inclusion. �e <strong>de</strong>sired<br />

embedding f∶ A→ C <strong>is</strong> given by f(a)∶=⇓Aa.<br />

43


a2. Relations<br />

Nextwe <strong>tu</strong>rntothes<strong>tu</strong>dy of functions betweenpartial or<strong>de</strong>rs. Inparticular,wewill<br />

consi<strong>de</strong>r functions f∶ A→ A mapping onepartial or<strong>de</strong>r<br />

into itself.Tosimplify notation, wewillwrite<br />

f∶ A→B ,<br />

for partial or<strong>de</strong>rs A=⟨A,≤A⟩ and B=⟨B,≤B⟩, to <strong>de</strong>note that f <strong>is</strong> a<br />

function f∶ A→ B.<br />

Definition 3.7. Let A=⟨A,≤A⟩ and B=⟨B,≤B⟩ bepartial or<strong>de</strong>rs.<br />

(a) A function f∶ A→ B <strong>is</strong> increasing if<br />

a≤A b implies f(a)≤B f(b) , for all a,b∈ A ,<br />

and f <strong>is</strong>strictly increasing if<br />

a


3. Graphsandpartial or<strong>de</strong>rs<br />

Lemma 3.8. Let⟨A,≤A⟩and⟨B,≤B⟩bepartial or<strong>de</strong>rsand h∶A→ Ban<br />

increasing function. Let C⊆Aand a∈A.<br />

(a) If a <strong>is</strong>anupperbound ofCthen h(a) <strong>is</strong>anupperbound of h[C].<br />

(b) If a <strong>is</strong>alowerbound ofC then h(a) <strong>is</strong>alowerbound of h[C].<br />

Lemma 3.9. Let⟨A,≤A⟩and⟨B,≤B⟩bepartial or<strong>de</strong>rsand h∶A→ Ban<br />

embedding. LetC⊆Aand a∈A.<br />

(a) h(a)=sup h[C] implies a=supC.<br />

(b) h(a)= inf h[C] implies a= inf C.<br />

Proof. (a)Since h <strong>is</strong> an embedding it followsthat h(c)≤B h(a) implies<br />

c≤A a, for c∈C. Hence, a <strong>is</strong> an upper bound of C. To show that it <strong>is</strong><br />

the least one, suppose that b <strong>is</strong> another upper bound of C. �en c≤A<br />

b, for c∈C, implies h(c)≤B h(b). Hence, h(b) <strong>is</strong> an upper bound<br />

of h[C].Since h(a) <strong>is</strong>the leastsuch bound it followsthat h(a)≤B h(b).<br />

Consequently, we have a≤A b, as <strong>de</strong>sired.<br />

(b) h <strong>is</strong> also an embedding of⟨A,≥A⟩ into⟨B,≥B⟩. Hence,(b) follows<br />

from(a) byreversing the or<strong>de</strong>rs. ◻<br />

Corollary 3.10. Let⟨F,⊆⟩beapartial or<strong>de</strong>rwith F⊆℘(A)andC⊆F.<br />

(a)⋃C∈FimpliessupC=⋃C.<br />

(b)⋂C∈Fimplies inf C=⋂C.<br />

Proof. We can apply Lemma 3.9 to the inclusion map F→℘(A). ◻<br />

Corollary 3.11. Let A=⟨A,≤⟩beapartial or<strong>de</strong>r. IfB⊆A <strong>is</strong>anonempty<br />

setsuchthat<br />

inf AX∈ B and sup A X∈ B , forevery nonempty X⊆B ,<br />

then B∶=⟨B,≤⟩ <strong>is</strong> a complete partial or<strong>de</strong>r where, for every nonempty<br />

subset X⊆B,we have<br />

inf BX= inf AX and sup B X=sup A X.<br />

45


a2. Relations<br />

Proof. If X⊆B <strong>is</strong> nonemptythen, applying Lemma 3.9 to the inclusion<br />

map B→A, it followsthat<br />

inf BX= infAX and sup B X=sup A X.<br />

Inparticular, inf BXandsup B X ex<strong>is</strong>t. Forthe emptyset, it followssimilarlythat<br />

inf B∅=sup B B=sup A B∈B ,<br />

and sup B ∅=inf BB=inf AB∈B.<br />

Consequently, B <strong>is</strong> complete. ◻<br />

We haveseen that although increasing functions preserve the or<strong>de</strong>ring<br />

of elementsthey do not necessarily preservesupremums and infimums.<br />

Le<strong>tu</strong>stake a look at functionsthat do.<br />

Definition 3.12. Let⟨A,≤A⟩ and⟨B,≤B⟩ be partial or<strong>de</strong>rs. A function<br />

f ∶ A→ B <strong>is</strong> continuous if, whenever a nonempty chain C⊆A has a<br />

supremumthen f[C] also has asupremum andwe have<br />

sup f[C]= f(supC).<br />

f <strong>is</strong> called strictlycontinuous if it <strong>is</strong> continuous and injective.<br />

Remark. Every (strictly) continuous function <strong>is</strong>(strictly) increasing.<br />

Exerc<strong>is</strong>e 3.4. Provethat continuous functions are increasing.<br />

Example. (a) Let⟨A,≤⟩ bethe linear or<strong>de</strong>rwhereA=N⊍Nand<br />

46<br />

⟨i,a⟩≤⟨k,b⟩ : iff i


4. Fixed pointsandclosure operators<br />

�e function f∶ A→ A∶⟨i,a⟩↦⟨i,a+1⟩ <strong>is</strong> not continuous. Consi<strong>de</strong>r<br />

the initial segment X∶={0}×N=↓⟨1,0⟩⊆ A.We have supX=⟨1,0⟩<br />

but<br />

sup f[X]=⟨1,0⟩


a2. Relations<br />

Figure2.. Fixedpoints of f(x)= 1 4x 3 − 3 4x 2 + 3 4x+3 4<br />

Definition 4.1. Let f ∶ A→A be a function. An element a∈A with<br />

f(a)= a <strong>is</strong> called a fixed point of f. �e class of all fixed points of f <strong>is</strong><br />

<strong>de</strong>noted by<br />

fix f∶={a∈A∣ f(a)= a}.<br />

We <strong>de</strong>notethe least and greatest fixedpoint of f , if it ex<strong>is</strong>ts, by<br />

lfp f∶= min fix f and gfp f∶= max fix f .<br />

Example. (a) Let⟨R,


4. Fixed pointsandclosure operators<br />

hasthe fixedpoints{0},{1},{0, 1}. It has no least fixedpoint.<br />

(d) Consi<strong>de</strong>r⟨F,⊆⟩where<br />

F∶={X⊆N∣ X orN∖X <strong>is</strong> finite}.<br />

�e function f∶ F→ F <strong>de</strong>fined by<br />

⎧⎪ X∪{1+maxX} if X <strong>is</strong> finite,<br />

f(X)∶= ⎨<br />

⎪⎩<br />

X otherw<strong>is</strong>e,<br />

has fixed points<br />

fix f={X⊆N∣N∖ X <strong>is</strong> finite} ,<br />

but no least one.<br />

Exerc<strong>is</strong>e 4.1. Let A=⟨℘(N),⊆⟩. Construct a function f∶ A→A that<br />

has a least fixedpoint but no greatest one.<br />

Not every function has fixed points. �e next theorem presents an<br />

important special casewherewe always have a least fixed point. InSection<br />

a3.3wewill collect furtherresults aboutthe ex<strong>is</strong>tence of fixedpoints<br />

and methodsto computethem.<br />

�eorem 4.2 (Knaster, Tarski). Let⟨A,≤⟩ be a complete partial or<strong>de</strong>r<br />

where A <strong>is</strong> a set. Every increasing function f ∶ A→ A has a least fixed<br />

pointandwe have<br />

lfp f= inf{a∈A∣ f(a)≤ a}.<br />

Proof. Set B∶={a∈A∣ f(a)≤ a} and b∶= inf B. For every a∈B,<br />

b≤a implies f(b)≤ f(a)≤ a,since f <strong>is</strong> increasing. Hence, f(b) <strong>is</strong> a<br />

lower bound ofBand it followsthat f(b)≤inf B=b.�<strong>is</strong> impliesthat<br />

f( f(b))≤ f(b) and, by <strong>de</strong>finition ofB, it followsthat f(b)∈ B. Hence,<br />

f(b)≥inf B=b. Consequently, we have f(b)=b andb<strong>is</strong> a fixedpoint<br />

of f.<br />

Let a be another fixed point of f. �en f(a)= a implies a∈B and<br />

we haveb= inf B≤a. Hence,b<strong>is</strong>the least fixedpoint of f. ◻<br />

49


a2. Relations<br />

�eorem4.3. Let⟨A,≤⟩beacompletepartial or<strong>de</strong>rwhereA <strong>is</strong>asetand<br />

let f∶ A→ Abe increasing.�eset F∶= fix f <strong>is</strong> nonemptyand F∶=⟨F,≤⟩<br />

formsacompletepartial or<strong>de</strong>rwhere, for X⊆ F,<br />

infF X=sup A {a∈A∣ a≤infAX and f(a)≥ a} ,<br />

sup F X= inf A{a∈A∣ a≥sup A X and f(a)≤ a}.<br />

Proof. We have already shown inthepreceding theorem that F≠∅. It<br />

remains toprove that F <strong>is</strong> complete. For X⊆ A, let U∶=⇑sup A X⊆A<br />

betheset of allupper bounds of X. If Z⊆U then<br />

sup A Z≥sup A X and inf AZ≥sup A X.<br />

It followsthatthepartial or<strong>de</strong>r⟨U,≤⟩ <strong>is</strong> complete. Furthermore, ifa∈ U<br />

andx∈Xthena≥ximplies f(a)≥ f(x). Hence, f↾U <strong>is</strong> an increasing<br />

functionU→U. By�eorem 4.2, it followsthat<br />

sup F X= lfp( f↾U)=infA{a∈U∣ f(a)≤ a} ,<br />

as <strong>de</strong>sired. �e claim for infF X follows by applying the equation for<br />

sup F X tothe dual or<strong>de</strong>r A op . ◻<br />

Example. Consi<strong>de</strong>r a closed interval[a,b]⊆Rofthereal line.<br />

(a)Sincethe or<strong>de</strong>r⟨[a,b],


4. Fixed pointsandclosure operators<br />

As a special case of �eorem 4.3we consi<strong>de</strong>r complete partial or<strong>de</strong>rs<br />

obtained via closure operators.<br />

Definition 4.4. LetA be a class.<br />

(a) Aclosure operator on A <strong>is</strong> a function c∶℘(A)→℘(A)suchthat,<br />

for all x,y∈℘(A),<br />

◆ x⊆c(x) ,<br />

◆ c(c(x))= c(x) , and<br />

◆ x⊆y impliesc(x)⊆ c(y).<br />

(b) Aset x⊆A <strong>is</strong>c-closed ifc(x)= x.<br />

(c) A closure operator c has finite character if, for all sets x⊆A, we<br />

have<br />

c(x)=⋃{c(x0)∣ x0⊆ x <strong>is</strong> finite}.<br />

If c has finite characterwe alsosaythat c <strong>is</strong>algebraic.<br />

(d) A closure operatorc <strong>is</strong>topological ifwe have<br />

◆ c(∅)=∅and<br />

◆ c(x∪ y)=c(x)∪c(y) , for all x,y∈℘(A).<br />

Remark. Letcbe a closure operator on A.<br />

(a) �e class of c-closedsets <strong>is</strong> fixc=rngc.<br />

(b) Ifthe class A <strong>is</strong> asetthen it <strong>is</strong> c-closed.<br />

Example. (a) Let V be a vector space. For X⊆V, let⟪X⟫ be the subspace<br />

ofV spanned by X.�e function X↦⟪X⟫ <strong>is</strong> a closure operator<br />

with finite character.<br />

(b) Let X be a topological space. For A⊆ X, let c(A) be the topological<br />

closure ofA in X.�enc<strong>is</strong> atopological closure operator.<br />

(c) LetA be aset and a∈A.�e functions c,d∶℘(A)→℘(A)with<br />

c(X)∶= X and d(X)∶= X∪{a}<br />

are closure operators on A.<br />

51


a2. Relations<br />

Exerc<strong>is</strong>e 4.2. Let A=⟨A,≤⟩ be apartial or<strong>de</strong>r. For X⊆A,we <strong>de</strong>fine<br />

c(X)∶={supC∣ C⊆X<strong>is</strong> a nonempty chainwithsupremum}.<br />

(a)Provethatthe function c <strong>is</strong> atopological closure operator on A.<br />

(b) Let B be asecond partial or<strong>de</strong>r and d the corresponding closure<br />

operator.Prove that a function f∶ A→B <strong>is</strong> continuous if, and only if,<br />

every d-closedset X∈ fixd has ac-closedpreimage f −1 [X]∈fixc.<br />

Exerc<strong>is</strong>e 4.3. Let⟨A,≤⟩ be apartial or<strong>de</strong>r. Forsets X⊆A,we <strong>de</strong>fine<br />

U(X)∶={a∈A∣ a <strong>is</strong> anupper bound of X} ,<br />

L(X)∶={a∈A∣ a <strong>is</strong> a lower bound of X}.<br />

Provethatthe function c∶X↦L(U(X)) <strong>is</strong> a closure operator on A.<br />

Lemma 4.5. Let c beaclosure operator on Aandx,y⊆Asets.<br />

(a) c(x)∪c(y)⊆ c(x∪ y).<br />

(b) c(x∪ y)= c(c(x)∪c(y)).<br />

Proof. (a) By monotonicity of c, we have c(x)⊆ c(x∪y) and c(y)⊆<br />

c(x∪ y).<br />

(b) It follows fromx∪y⊆c(x)∪c(y) and(a)that<br />

c(x∪ y)⊆ c(c(x)∪c(y))⊆ c(c(x∪ y))=c(x∪ y). ◻<br />

Lemma 4.6. Let c be a closure operator on A with finite character. For<br />

everychainC⊆ fixc,we have<br />

c(⋃C)=⋃C.<br />

Proof. By <strong>de</strong>finition, we have⋃C⊆c(⋃C). Forthe converse, let x0⊆<br />

⋃C be finite.SinceC <strong>is</strong> linearly or<strong>de</strong>red by⊆there ex<strong>is</strong>tssome element<br />

x∈Cwith x0⊆x. Hence,we have c(x0)⊆c(x)= x⊆⋃C. It follows<br />

that<br />

52<br />

c(⋃C)=⋃{c(x0)∣x0⊆⋃C finite}⊆⋃C. ◻


4. Fixed pointsandclosure operators<br />

If c <strong>is</strong> a closure operator, the setC ∶= fixc of c-closed sets has the<br />

followingproperties.<br />

Definition 4.7. AsetC⊆℘(A) <strong>is</strong> called asystem ofclosedsets ifwe have<br />

◆ A∈C and<br />

◆ ⋂Z∈C, for every Z⊆C.<br />

Apair⟨A,C⟩whereC⊆℘(A) <strong>is</strong> asystem of closedsets <strong>is</strong> called aclosure<br />

space.<br />

Lemma 4.8. (a) If c <strong>is</strong>aclosure operator on Athen fixc forms asystem<br />

ofclosedsets.<br />

(b) IfC⊆℘(A) <strong>is</strong>asystem ofclosedsetsthenthe mapping<br />

c∶X↦⋂{C∈C∣X⊆ C}<br />

<strong>de</strong>finesaclosure operator on Awith fixc=C.<br />

�e followingtheorem statesthatthe family of c-closedsets forms a<br />

completepartial or<strong>de</strong>r.We canuseth<strong>is</strong>resulttoprovethat a given partial<br />

or<strong>de</strong>r A <strong>is</strong> complete by <strong>de</strong>fining a closure operatorwhose closedsets<br />

are exactlythe elements of A. An example ofsuch aproof <strong>is</strong>provi<strong>de</strong>d in<br />

Corollary 4.17.<br />

�eorem 4.9. Let A be a set and c a closure operator on A. �e graph<br />

⟨F,⊆⟩with F∶= fixc forms acomplete partial or<strong>de</strong>rwith<br />

inf X=⋂X and supX=c(⋃X) , forall X⊆ F.<br />

Proof. Since closure operators are increasingwe can apply�eorem 4.3.<br />

By Lemma 4.8 (b), it follows that<br />

supX=⋂{Z⊆A∣ Z⊇⋃X and c(Z)⊆ Z}<br />

=⋂{Z⊆A∣ Z⊇⋃X and c(Z)= Z}<br />

= c(⋃X) ,<br />

53


a2. Relations<br />

and inf X=⋃{Z⊆ A∣ Z⊆⋂X and c(Z)⊇ Z}<br />

=⋃{Z⊆ A∣ Z⊆⋂X}<br />

=⋂X . ◻<br />

Corollary 4.10. Let c be a closure operator on Aand set F∶= fixc.�e<br />

operator c <strong>is</strong>continuous ifweconsi<strong>de</strong>r itasafunction<br />

c∶⟨℘(A),⊆⟩→⟨F,⊆⟩ .<br />

Proof. For a nonempty chain X⊆℘(A),we have<br />

c(supX)= c(⋃X)⊆ c(⋃c[X])=supc[X]<br />

⊆sup{c(supX)}= c(supX). ◻<br />

As an application of closure operators we consi<strong>de</strong>r equivalence relations.<br />

Definition 4.11. (a) A binaryrelation∼⊆A×A <strong>is</strong> anequivalencerelation<br />

on A if it <strong>is</strong>reflexive,symmetric, andtransitive.<br />

(b) Let∼⊆A× A be an equivalence relation. If A <strong>is</strong> a set, we <strong>de</strong>fine<br />

the∼-class of an element a∈A by<br />

[a]∼∶={b∈A∣ b∼a}.<br />

Forproper classes A,weset<br />

[a]∼∶= cut{b∈A∣ b∼a}.<br />

Notethat, <strong>de</strong>spitethe name, a∼-class <strong>is</strong> always aset.We <strong>de</strong>notethe class<br />

of all∼-classes by<br />

A/∼∶={[a]∼∣a∈A}.<br />

Example. (a)�e diagonal idA <strong>is</strong>thesmallest equivalencerelation onA.<br />

�e largest one <strong>is</strong>the fullrelation A×A.<br />

(b)�e <strong>is</strong>omorph<strong>is</strong>mrelation≅ <strong>is</strong> an equivalencerelation onthe class<br />

of allpartial or<strong>de</strong>rs.<br />

54


4. Fixed pointsandclosure operators<br />

Lemma4.12. Let∼beanequivalencerelation on Aand a,b∈ A.�en<br />

a∼b iff [a]∼=[b]∼ iff [a]∼∩[b]∼≠∅.<br />

Remark. LetA be aset. Apartition of A <strong>is</strong> asetP⊆℘(A) of nonempty<br />

subsets ofAsuchthatA=⋃P and p∩q=∅, for all p,q∈Pwith p≠q.<br />

If∼<strong>is</strong> an equivalence relation on Athen A/∼ forms apartition on A.<br />

Conversely, given apartition P of A,we can <strong>de</strong>fine an equivalence relation∼P<br />

onAwith A/∼P= P bysetting<br />

a∼P b : iff there <strong>is</strong>some p∈Pwith a,b∈ p.<br />

Definition 4.13. Let A be a set and R⊆A× A a binary relation on A.<br />

�etransitiveclosure of R <strong>is</strong>therelation<br />

TC(R)∶=⋂{S⊆ A×A∣ S⊇ R <strong>is</strong>transitive}.<br />

Since the family of transitive relations <strong>is</strong> closed un<strong>de</strong>r intersections<br />

we canuse Lemma 4.8(b)toprovethat TC <strong>is</strong> a closure operator.<br />

Lemma4.14. Let Abeaclass. TC <strong>is</strong>aclosure operator on A×A.<br />

Exerc<strong>is</strong>e 4.4. Prove Lemma 4.14.<br />

Lemma 4.15. If R⊆A×A<strong>is</strong>asymmetricrelationthenso <strong>is</strong> TC(R).<br />

Proof. LetS∶= TC(R)∩(TC(R)) −1 .SinceR<strong>is</strong>symmetricwe haveR⊆S.<br />

We claimthat S <strong>is</strong>transitive.<br />

Let⟨a,b⟩,⟨b,c⟩∈ S. �en⟨a,b⟩,⟨b,c⟩∈ TC(R) and⟨b,a⟩,⟨c,b⟩∈<br />

TC(R). �erefore, we have⟨a,c⟩∈TC(R) and⟨c,a⟩∈TC(R). �<strong>is</strong><br />

impliesthat⟨a,c⟩∈ S, as <strong>de</strong>sired.<br />

We have shown that S <strong>is</strong> a transitive relation containing R. By the<br />

<strong>de</strong>finition of TC it follows that TC(R)⊆ S=TC(R)∩TC(R) −1 . �<strong>is</strong><br />

impliesthat TC(R) −1 = TC(R). Hence, TC(R) <strong>is</strong>symmetric. ◻<br />

Lemma4.16. Let R⊆A×Abeabinaryrelation.<br />

(a) �esmallestreflexiverelationcontainingR<strong>is</strong> R∪idA.<br />

55


a2. Relations<br />

(b) �esmallestsymmetricrelationcontainingR<strong>is</strong> R∪R −1 .<br />

(c) �esmallesttransitiverelationcontaining R <strong>is</strong> TC(R).<br />

(d) �esmallestequivalencerelationcontainingR<strong>is</strong>TC(R∪R −1 ∪idA).<br />

Proof. (a) R∪idA <strong>is</strong> obviously reflexive and it contains R. Conversely,<br />

supposethat S⊇R<strong>is</strong>reflexive. �en idA⊆ S impliesthat R∪ idA⊆S.<br />

(b) <strong>is</strong>proved analogously.<br />

(c) Let S⊇R be transitive. �en the intersection in the <strong>de</strong>finition<br />

of TC contains S. Hence, TC(R)⊆ S. Furthermore, we have R⊆ TC(R)<br />

by <strong>de</strong>finition. Itremainstoprovethat TC(R) <strong>is</strong>transitive.<br />

Let⟨a,b⟩,⟨b,c⟩∈ TC(R). �en we have⟨a,b⟩,⟨b,c⟩∈ S, for every<br />

transitive relation S⊇R. Hence, we have⟨a,c⟩∈ S, for each such relation<br />

S.�<strong>is</strong> impliesthat⟨a,c⟩∈ TC(R).<br />

(d)SetE∶= TC(R∪R −1 ∪ idA). Clearly,we haveR⊆Eand, ifS⊇R <strong>is</strong><br />

an equivalencerelationthenE⊆ S. Hence, it <strong>is</strong>remainstoprovethatE <strong>is</strong><br />

an equivalencerelation. It <strong>is</strong>transitive by(c),symmetric by Lemma 4.15,<br />

and E <strong>is</strong>reflexivesince idA⊆ TC(R∪R −1 ∪ idA). ◻<br />

Corollary4.17. LetAbeasetand F⊆℘(A×A)theset ofallequivalence<br />

relations on A. �en⟨F,⊆⟩ forms a complete partial or<strong>de</strong>r. If X⊆F <strong>is</strong><br />

nonemptythenwe have<br />

inf X=⋂X and supX= TC(⋃X).<br />

Proof. By Lemma 4.16,we have F= fixcwherec <strong>is</strong>the closure operator<br />

with<br />

c(R)∶= TC(R∪R −1 ∪ idA).<br />

�e relation E∶=⋃X <strong>is</strong> reflexive and symmetric since X <strong>is</strong> nonempty.<br />

Hence, we have TC(E∪E −1 ∪ idA)=TC(E). Consequently, the claim<br />

follows from�eorem 4.9. ◻<br />

56


a3. Ordinals<br />

1. Well-or<strong>de</strong>rs<br />

When <strong>de</strong>finingstageswe frequentlyusedthe factthat any class ofstages<br />

has a minimal element. In th<strong>is</strong> section we s<strong>tu</strong>dy arbitrary or<strong>de</strong>rs with<br />

th<strong>is</strong>property.<br />

Definition1.1. Let⟨A,R⟩ be a graph.<br />

(a) An element a∈A <strong>is</strong>R-minimal if⟨b,a⟩∈ R impliesb=a.<br />

(b) ArelationR<strong>is</strong> le�-narrow ifR −1 (a) <strong>is</strong> aset, for everyseta∈rngR.<br />

(c) R <strong>is</strong>well-foun<strong>de</strong>d if every nonempty subset B⊆A contains an Rminimal<br />

element. A le�-narrow, well-foun<strong>de</strong>d linear or<strong>de</strong>r <strong>is</strong> called a<br />

well-or<strong>de</strong>r.<br />

Example. (a)⟨N,≤⟩ <strong>is</strong> awell-or<strong>de</strong>r.<br />

(b)⟨N,∣⟩ <strong>is</strong> awell-foun<strong>de</strong>dpartial or<strong>de</strong>r.<br />

(c)�e membershiprelation∈<strong>is</strong> awell-foun<strong>de</strong>dpartial or<strong>de</strong>r onS. It<br />

<strong>is</strong> awell-or<strong>de</strong>r onthe class of allstages.<br />

(d)⟨℘(N),⊆⟩ <strong>is</strong> notwell-foun<strong>de</strong>d.<br />

(e) Apartial or<strong>de</strong>r⟨A,≤⟩ <strong>is</strong> le�-narrow if, and only if,⇓a <strong>is</strong> aset, for<br />

all a∈A.<br />

Exerc<strong>is</strong>e1.1. Provethat⟨℘(N),⊆⟩ <strong>is</strong> notwell-foun<strong>de</strong>d.<br />

Lemma1.2. If⟨A,R⟩ <strong>is</strong>awell-foun<strong>de</strong>d graphandB⊆Athen⟨B,R∣B⟩ <strong>is</strong><br />

alsowell-foun<strong>de</strong>d.<br />

Proof. Every nonempty subset C⊆B <strong>is</strong> also a nonempty subset of A<br />

and has an R-minimal element. ◻<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 57


a3. Ordinals<br />

Lemma 1.3. If ⟨A,≤⟩ <strong>is</strong> a well-foun<strong>de</strong>d and le�-narrow partial or<strong>de</strong>r,<br />

there ex<strong>is</strong>ts no infinite sequence(an)n∈N∈A N such that an≠an+1 and<br />

an+1≤ an, forall n.<br />

Proof. If there ex<strong>is</strong>ts such an infinite sequence then the class rngā=<br />

{an∣ n∈N} <strong>is</strong> nonempty and has no≤-minimal element. Furthermore,<br />

rngā⊆⇓a0 <strong>is</strong> asetsincethe or<strong>de</strong>r <strong>is</strong> le�-narrow. ◻<br />

�ereasonwhywell-foun<strong>de</strong>drelations are of interest <strong>is</strong>thatthese are<br />

exactly thoserelations that admitproofs by induction. Asthe theorem<br />

belowshowswe canprovethat every element of awell-foun<strong>de</strong>dpartial<br />

or<strong>de</strong>r⟨A,≤⟩ sat<strong>is</strong>fies a given property φ by showing that, if every elementb


1. Well-or<strong>de</strong>rs<br />

Example. Consi<strong>de</strong>r the well-or<strong>de</strong>r⟨N,


a3. Ordinals<br />

Proof. Suppose that there ex<strong>is</strong>ts some a∈Awith a> f(a). Let a0 be<br />

the minimalsuch element. By minimality of a0 we have<br />

f(a0)≤ f( f(a0)).<br />

Onthe other hand,since f <strong>is</strong>strictly increasing we have<br />

f( f(a0))< f(a0).<br />

Contradiction. ◻<br />

Lemma 1.8. Let⟨A,≤⟩ be a well-or<strong>de</strong>r and I⊆A. �e following statementsareequivalent:<br />

(1) I <strong>is</strong>aproper initialsegment ofA.<br />

(2) I=↓Aa, forsome a∈A.<br />

(3) I <strong>is</strong>an initialsegment ofAand I <strong>is</strong> non-<strong>is</strong>omorphicto A.<br />

Proof. (1)⇒(2) If I <strong>is</strong> a proper subclass of A then A∖ I <strong>is</strong> nonempty<br />

and has a least element a. Consequently, we have I=↓a.<br />

(2)⇒(3) Let I=↓a. Supposethere ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m f∶ A→ I.<br />

By Lemma 1.7, we have f(a)≥ a. Hence, f(a)∉ I=rng f. Contradiction.<br />

(3)⇒(1) <strong>is</strong> trivial. ◻<br />

Corollary1.9. < <strong>is</strong>astrictpartial or<strong>de</strong>r onWo.<br />

Proof. We can see immediately from the <strong>de</strong>finition that


1. Well-or<strong>de</strong>rs<br />

Proof. Let f , g∶A→ B be <strong>is</strong>omorph<strong>is</strong>ms.�enso <strong>is</strong> g○ f −1 ∶ B→B. In<br />

particular, g○ f −1 <strong>is</strong>strictly increasing. By Lemma 1.7,we obtain<br />

f(a)≤(g○ f −1 )( f(a))= g(a) , for all a∈A.<br />

Similarly, we <strong>de</strong>rive g(a)≤ f(a), for all a. It followsthat f= g. ◻<br />

Westill have to provethat


a3. Ordinals<br />

�erestriction of h1 to↓a0 <strong>is</strong> an <strong>is</strong>omorph<strong>is</strong>m<br />

h1↾↓a0∶↓a0→↓h1(a0).<br />

Composing itwith h −1<br />

0 yields an <strong>is</strong>omorph<strong>is</strong>m<br />

(h1↾↓a0)○ h −1<br />

0 ∶↓b0→↓h1(a0).<br />

Butth<strong>is</strong> contradicts h1(a0)


1. Well-or<strong>de</strong>rs<br />

Proof. (⇒) By <strong>de</strong>finition, every continuous function sat<strong>is</strong>fies (2). Furthermore,<br />

a + =sup{a,a + } impliesthat f(a + )=sup{f(a), f(a + )}.<br />

(⇐) Forthe other direction,supposethat f sat<strong>is</strong>fies(1) and(2). First,<br />

we show that f <strong>is</strong> increasing. Suppose otherw<strong>is</strong>e and let a∈A be the<br />

minimal element such that f(b)> f(a), for some b


a3. Ordinals<br />

Proof. Ifa<strong>is</strong> the greatest element ofA,we can setb∶= a. Otherw<strong>is</strong>e,we<br />

have f(a + )> f(a)≥ a, by Lemma 1.7. Hence, there are elementsx∈A<br />

with f(x)>a. Let c be the least such element. We have c>� since<br />

f(c)> a≥ f(�). If c were a limitthen, by choice of c,wewould have<br />

f(c)=sup{ f(x)∣ x< c}≤ a< f(c).<br />

A contradiction. Hence, c <strong>is</strong> a successor and there ex<strong>is</strong>ts some b∈A<br />

with c=b + . By choice of c, we have f(b)≤a. Furthermore, if x>b<br />

then x≥c, which implies that f(x)≥ f(c)> a. �erefore, b <strong>is</strong> the<br />

<strong>de</strong>sired element. ◻<br />

2. Ordinals<br />

We have seen that there ex<strong>is</strong>ts a well-or<strong>de</strong>r on Wo if one does not d<strong>is</strong>tingu<strong>is</strong>h<br />

between <strong>is</strong>omorphic or<strong>de</strong>rs.Wewould liketo <strong>de</strong>fine asubclass<br />

On⊆Wo of ordinals such that, for each well-or<strong>de</strong>r A, there ex<strong>is</strong>ts a<br />

unique element B∈Onthat <strong>is</strong> <strong>is</strong>omorphicto A.<br />

Wewillpresenttwo approachesto doso.�eusual one – duetovon<br />

Neumann – hasthe d<strong>is</strong>advantage that itrequiresthe Axiom ofReplacement.<br />

Without it we cannot prove that, for every well-or<strong>de</strong>r α, there<br />

ex<strong>is</strong>ts an <strong>is</strong>omorphicvon Neumann ordinal.�erefore,wewill adopt a<br />

different approach.�erelation≅ forms a congruence(seeSection b1.4<br />

below) on the class of all well-or<strong>de</strong>rs. A first try might thus cons<strong>is</strong>t in<br />

representing awell-or<strong>de</strong>ring by its congruence class.Unfor<strong>tu</strong>nately,the<br />

class of all well-or<strong>de</strong>rs <strong>is</strong>omorphic to a given one <strong>is</strong> not a set. Hence,<br />

withth<strong>is</strong> <strong>de</strong>finition one could not formsets of ordinals. Instead of consi<strong>de</strong>ringall<br />

<strong>is</strong>omorphicwell-or<strong>de</strong>rswewilltherefore onlytakesome of<br />

them.<br />

Definition 2.1. �e or<strong>de</strong>rtype of awell-or<strong>de</strong>r A <strong>is</strong>theset<br />

ord(A)∶=[A]≅= cut{B∣B<strong>is</strong> awell-or<strong>de</strong>r <strong>is</strong>omorphicto A}.<br />

�e elements of On∶=rng(ord) are called ordinals.<br />

64


2. Ordinals<br />

Instead of asubclass On⊆Wothe above <strong>de</strong>finition results in a function<br />

ord∶Wo→On. Belowwewillseethatthere ex<strong>is</strong>ts a canonicalway<br />

to associate with every ordinal α∈ On a well-or<strong>de</strong>r f(α)∈Wo. Using<br />

th<strong>is</strong> injection f∶ On→Wowe can i<strong>de</strong>ntify the class Onwith its image<br />

f[On]⊆Wo.<br />

First, let us show that the mapping ord∶Wo→On has the <strong>de</strong>sired<br />

property of character<strong>is</strong>ing awell-or<strong>de</strong>rupto <strong>is</strong>omorph<strong>is</strong>m.<br />

Lemma 2.2. Let A and B be well-or<strong>de</strong>rs that are sets. �ere ex<strong>is</strong>ts an<br />

<strong>is</strong>omorph<strong>is</strong>m f∶ A→B if,and only if, ord(A)=ord(B).<br />

Proof. If f ∶ A → B <strong>is</strong> an <strong>is</strong>omorph<strong>is</strong>m then a well-or<strong>de</strong>r C <strong>is</strong> <strong>is</strong>omorphicto<br />

A if, and only if, it <strong>is</strong> <strong>is</strong>omorphicto B. �erefore ord(A)=<br />

ord(B). Conversely, suppose ord(A)=ord(B).Since A <strong>is</strong> awell-or<strong>de</strong>r<br />

<strong>is</strong>omorphic to A, we have ord(A)≠∅. Fix an arbitrary element C∈<br />

ord(A). By <strong>de</strong>finition, C <strong>is</strong> <strong>is</strong>omorphic to A and to B. Consequently,<br />

A and B are <strong>is</strong>omorphic. ◻<br />

Remark. Wewillprove in Lemma a4.5.3with the help of the Axiom of<br />

Replacement that any two well-or<strong>de</strong>red proper classes are <strong>is</strong>omorphic.<br />

In particular, it followsthat inthe above lemmawe can droptherequirement<br />

of A and B beingsets.<br />

Definition 2.3. Let On∶=⟨On,


a3. Ordinals<br />

�eorem 2.4. On <strong>is</strong>awell-or<strong>de</strong>r.<br />

�e notions of a successor ordinal and a limit ordinal are <strong>de</strong>fined in<br />

thesameway as for arbitrarywell-or<strong>de</strong>rs.Recallthatwe <strong>de</strong>notethesuccessor<br />

of α by α + . Furthermore,we <strong>de</strong>fine<br />

0∶= ord⟨∅,∅⟩ , 1∶=0 + , 2∶= 1 + ,...<br />

�e first limit ordinal <strong>is</strong> ω∶= ord⟨N,≤⟩.<br />

Lemma 2.5. Let α,β∈On. Ifα≤βthen S(α)⊆ S(β).<br />

Proof. If α=β, the claim <strong>is</strong> trivial. �erefore, we assume that α


Lemma 2.7. On <strong>is</strong> notaset.<br />

2. Ordinals<br />

Proof. Suppose that On <strong>is</strong> a set. Since On <strong>is</strong> well-or<strong>de</strong>red there ex<strong>is</strong>ts<br />

some ordinal α ∈ On with α = ord⟨On,≤⟩. We have just seen that<br />

ord⟨↓α,≤⟩=α. �erefore, there ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m f ∶↓α→On.<br />

But↓α <strong>is</strong> a proper initial segment of On. �<strong>is</strong> contradicts Lemma 1.8.<br />

◻<br />

Lemma 2.8. A subclass X⊆ On <strong>is</strong> a set if, and only if, it has an upper<br />

bound.<br />

Proof. (⇐) If X⊆ On has anupper bound α then X⊆⇓α.Since⇓α <strong>is</strong><br />

asetthe claim follows.<br />

(⇒) Suppose that X <strong>is</strong> a set. Since On <strong>is</strong> a proper class there ex<strong>is</strong>ts<br />

some ordinal α∈ On∖S(X).We claim that α <strong>is</strong> anupper bound of X.<br />

Suppose there ex<strong>is</strong>ts some β∈X with β≰α. �en α


a3. Ordinals<br />

Proof. (⇒) If A≤B then, by <strong>de</strong>finition, there ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m<br />

f ∶ A→ I between A and an initial segment I of B. In particular, f ∶<br />

A→ B <strong>is</strong> astrictly increasing function.<br />

(⇐) Suppose that f ∶ A→ B <strong>is</strong> a strictly increasing function and<br />

letC∶=rng f.SinceC⊆B <strong>is</strong>well-or<strong>de</strong>redthere ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m<br />

g∶C→ I⊆ On betweenCand an initialsegment of On.Similarly,there<br />

<strong>is</strong>some <strong>is</strong>omorph<strong>is</strong>m h∶B→J⊆ On.We claimthat<br />

k∶= h −1 ○ g○ f∶ A→ B<br />

<strong>is</strong>the <strong>de</strong>sired <strong>is</strong>omorph<strong>is</strong>m betweenA and an initialsegment ofB.Since<br />

f , g, and h −1 are <strong>is</strong>omorph<strong>is</strong>msso <strong>is</strong> k.Whatremainsto beshown <strong>is</strong>that<br />

k <strong>is</strong> in factwell-<strong>de</strong>fined,that <strong>is</strong>, I=rng g⊆rng h= J.<br />

We claim that g(c)≤ h(c), for all c∈C. Since I and J are initial<br />

segmentsth<strong>is</strong> impliesthat I⊆J. For a contradiction, supposethatthere<br />

<strong>is</strong>some c∈Cwith g(c)> h(c) and let c bethe minimal such element.<br />

Notethat, since g and h are strictly increasing and rng g and rng h are<br />

initial segmentswe must have<br />

g(c)= min(I∖rng(g↾↓Cc))<br />

and h(c)=min(J∖rng(h↾↓Bc)).<br />

By choice ofc,we haverng(g↾↓Cc)⊆rng(h↾↓Bc). But, bythe above<br />

equations, th<strong>is</strong> impliesthat g(c)≤ h(c). A contradiction. ◻<br />

In or<strong>de</strong>r tousethetheory of ordinals forproofs about arbitrary sets<br />

oneusually needsto <strong>de</strong>fine awell-or<strong>de</strong>r on a givenset. In generalth<strong>is</strong> <strong>is</strong><br />

only possible if one assumes the Axiom of Choice. Until we introduce<br />

th<strong>is</strong> axiomthe followingtheoremwillserve as astopgap. Oncewe have<br />

<strong>de</strong>fined the cardinality of a set in Section a4.2 it will <strong>tu</strong>rn out that the<br />

ordinalthetheoremtalks about <strong>is</strong> α=∣A∣ + .<br />

�eorem 2.12(Hartogs). For every set Athere ex<strong>is</strong>ts an ordinal α such<br />

thatthereare no injective functions↓α→A.<br />

68


2. Ordinals<br />

Proof. For a contradiction, suppose that there ex<strong>is</strong>ts a set A such that,<br />

for every ordinalα,there <strong>is</strong> an injective function fα∶↓α→A. LetAα∶=<br />

rng fα⊆ A andset<br />

Rα∶={⟨a,b⟩∈ Aα×Aα∣ f −1<br />

α (a)≤ f−1 α (b)}.<br />

By construction, fα∶⟨↓α,≤⟩→⟨Aα,Rα⟩ <strong>is</strong> an <strong>is</strong>omorph<strong>is</strong>m. Hence, by<br />

the <strong>de</strong>finition of an ordinal,we have<br />

S(α)⊆ S(⟨Aα,Rα⟩).<br />

Since Rα⊆ A×A∈℘ 3 (A)⊆℘ 3 (S(A)) it followsthat<br />

⟨Aα,Rα⟩={{Aα},{Aα,Rα}}⊆℘ 4 (S(A)).<br />

We haveshownthat<br />

α⊆S(α)⊆ S(⟨Aα,Rα⟩)⊆℘ 4 (S(A)) , for all α∈ On.<br />

Consequently, On⊆℘ 5 (S(A)),which impliesthat On <strong>is</strong> aset.�<strong>is</strong> contradicts<br />

Lemma2.7. ◻<br />

VonNeumannordinals<br />

We conclu<strong>de</strong>th<strong>is</strong>sectionwith an alternative <strong>de</strong>finition of ordinals.�<strong>is</strong><br />

<strong>de</strong>finition <strong>is</strong>simpler and the resulting ordinals have many niceproperties<br />

such that α=↓α and supX=⋃X. �e only d<strong>is</strong>advantage <strong>is</strong> that<br />

one needs an additional axiom in or<strong>de</strong>r to prove that every well-or<strong>de</strong>r<br />

<strong>is</strong> <strong>is</strong>omorphictosome ordinal. In<strong>tu</strong>itively, we <strong>de</strong>fine avon Neumann ordinalto<br />

bethe set of all smaller ordinals, that <strong>is</strong>, α∶=↓α. Asusual, the<br />

ac<strong>tu</strong>al <strong>de</strong>finition <strong>is</strong> moretechnical andwe havetoverify a�erwardsthat<br />

it hasthe <strong>de</strong>sired effect.<br />

Definition 2.13. Aset α <strong>is</strong> avon Neumann ordinal if it <strong>is</strong>transitive and<br />

linearly or<strong>de</strong>red by the membership relation∈. We <strong>de</strong>note the class of<br />

all von Neumann ordinals by On0 andweset On0∶=⟨On0,∈⟩.<br />

69


a3. Ordinals<br />

Example. �e set[n]={[0],... ,[n−1]} <strong>is</strong> a von Neumann ordinal,<br />

for each n∈N.<br />

Lemma 2.14. Ifα∈ On0 and β∈αthen β∈On0.<br />

Proof. First, notethat β∈α implies β⊆α. Asα<strong>is</strong> linearly or<strong>de</strong>red by∈<br />

ittherefore followsthatso <strong>is</strong> β⊆α.<br />

It remains to prove that β <strong>is</strong> transitive. Suppose that η∈γ∈β. By<br />

transitivity of α,we have η, γ,β∈α.Since α <strong>is</strong> linearly or<strong>de</strong>red by∈we<br />

know thatthe relation∈,restricted to α, <strong>is</strong>transitive. Hence, η∈γand<br />

γ∈β impliesthat η∈β. ◻<br />

Remark. Notethat, for α∈ On0,we have<br />

↓α={β∈On0∣ β∈α}.<br />

Hence, α=↓α and our <strong>de</strong>finition of avon Neumann ordinal coinci<strong>de</strong>s<br />

withthe in<strong>tu</strong>itive one.<br />

Exerc<strong>is</strong>e 2.1. Suppose that α={β0,... ,βn−1} <strong>is</strong> a von Neumann ordinalwith<br />

n


Lemma 2.16. On0 <strong>is</strong> notaset.<br />

2. Ordinals<br />

Proof. On0 <strong>is</strong>transitive andwell-or<strong>de</strong>red by∈. If itwere aset, itwould<br />

be an element of itself. ◻<br />

On0 <strong>is</strong> linearly or<strong>de</strong>red by∈.�e followingsequence of lemmas contains<br />

several character<strong>is</strong>ations of th<strong>is</strong> or<strong>de</strong>ring. In particular, we show<br />

thatthe mapping<br />

ord∶⟨On0,∈⟩→⟨On,


a3. Ordinals<br />

Proof. (1)⇔(2)was already shown in Lemma 2.17.<br />

(1)⇒(3) a∈bimplies S(a)∈ S(b), for arbitrary sets a andb.<br />

(3)⇒(1) If α ∉ β then, by Lemma 2.15, we either have α = β or<br />

β∈α. Consequently, either S(α)= S(β) orS(β)∈ S(α). It followsthat<br />

S(α)∉ S(β).<br />

(2)⇒(4) If α⊆β, the i<strong>de</strong>ntity idα∶ α→α⊆β <strong>is</strong> an <strong>is</strong>omorph<strong>is</strong>m<br />

fromα to an initial segment of β. Hence,α


2. Ordinals<br />

�ereason whythere might be lessvon Neumann ordinals than elements<br />

of On <strong>is</strong> that each von Neumann ordinal <strong>is</strong> contained in a new<br />

stage.�at <strong>is</strong>,we have exactly onevon Neumann ordinal for everystage.<br />

Lemma 2.22. �e function f∶ On0→ H(S)<strong>de</strong>finedby f(α)∶= S(α) <strong>is</strong><br />

an <strong>is</strong>omorph<strong>is</strong>mbetween On0 andtheclass ofallstages.<br />

Proof. By Lemma2.19 it followsthat f <strong>is</strong> injective and increasing. Suppose<br />

that it <strong>is</strong> not surjective. Let S be the minimal stage such that S∉<br />

rng f , andset<br />

X∶={α∈ On0∣ S(α)∈ S}.<br />

Since X ⊆ S, X <strong>is</strong> a set and, hence, a proper initial segment of On0.<br />

�erefore,there <strong>is</strong>some α∈On0 suchthat X=↓α.Since S(β)∈ S, for<br />

all β∈α, it follows that S(α)⊆S. By choice of S, we have S(α)≠ S.<br />

Hence, S(α)∈ S,which impliesthat α∈X=↓α. Contradiction. ◻<br />

Definition 2.23. For α∈ On0,weset Sα∶= S(α).<br />

Remark. In On0 we have finally found the indices to enumerate the<br />

cumulative hierarchy<br />

S0⊂ S1⊂⋯⊂ Sα⊂ Sα+1⊂⋯<br />

�e class of allstages can bewritten inthe form<br />

H(S)={Sα∣ α∈On0} ,<br />

andwe haveS=⋃{Sα∣ α∈ On0}.<br />

Definition 2.24. �erankρ(a) of aseta<strong>is</strong>thevon Neumann ordinalα<br />

suchthat S(a)= Sα.<br />

Remark. (a) For α∈ On0,we have ρ(α)= α.<br />

(b) Notethat<br />

cutA={x∈ A∣ ρ(x)≤ ρ(y) for all y∈A}.<br />

Lemma 2.25. AclassX<strong>is</strong>aset if,and only if,{ρ(x)∣ x∈X}<strong>is</strong>boun<strong>de</strong>d.<br />

Exerc<strong>is</strong>e 2.3. Provethepreceding lemma.<br />

73


a3. Ordinals<br />

3. Inductionand fixedpoints<br />

�e importance of ordinals stems from the fact that they allow proofs<br />

and constructions by induction.�e nexttheorem follows immediately<br />

from�eorem 1.5.<br />

�eorem 3.1(Principle ofTransfinite Induction). Let I⊆ Onbe an initialsegment<br />

of On. If X⊆I<strong>is</strong>aclasssuchthat, forevery α∈I,<br />

then X=I.<br />

↓α⊆X implies α∈X<br />

Usually one applies th<strong>is</strong> theorem in the following way. If one wants<br />

to prove that all ordinals sat<strong>is</strong>fy a certain property φ, it <strong>is</strong> sufficient to<br />

provethat<br />

◆ 0sat<strong>is</strong>fies φ;<br />

◆ if α sat<strong>is</strong>fies φthenso doesα + ;<br />

◆ if δ <strong>is</strong> a limit ordinal and every α


3. Inductionand fixedpoints<br />

If β


a3. Ordinals<br />

which impliesthat<br />

F↾↓α= fβ↾↓α , for all β≥α.<br />

�erefore, it followsthat<br />

F(α)= fα +(α)= H( fα +↾↓α)=H(F↾↓α).<br />

In particular, if F <strong>is</strong> a set then F= fα, for some α. Hence, we have<br />

dom F= dom fα =↓α. Since α∉dom F it follows that fα + does not<br />

ex<strong>is</strong>ts. Hence, H( fα)=H(F) <strong>is</strong> un<strong>de</strong>fined and F∉ dom H. If F <strong>is</strong> a<br />

proper classthenwetrivially have F∉ dom H. ◻<br />

Remark. A�er we have introduced the Axiom of Replacement we can<br />

ac<strong>tu</strong>ally showthat, if H∶S


y<br />

α+0 ∶= α ,<br />

α+β + ∶=(α+β) + ,<br />

3. Inductionand fixedpoints<br />

α+δ ∶=sup{α+β∣β


a3. Ordinals<br />

Remark. (a) Notethat, if A <strong>is</strong> asetthen, bythePrinciple ofTransfinite<br />

Recursion, there ex<strong>is</strong>ts a unique function F∶ On→A sat<strong>is</strong>fying the<br />

above equations provi<strong>de</strong>d we can show that, for every limit δ, the supremum<br />

sup F[↓δ] ex<strong>is</strong>ts. If, furthermore, we can prove that F(β + )≥<br />

F(β), for all β,then it followsthat f <strong>is</strong> inductive.<br />

(b) Every fixed-point induction F <strong>is</strong> continuous, by Lemma 1.13.<br />

Example. (a) �e function f∶ On→On∶ α↦α + <strong>is</strong> inductive. Its fixedpoint<br />

induction over0<strong>is</strong>the i<strong>de</strong>ntity function F∶ On→On∶ α↦α.<br />

(b) Let f∶S→S bethe functionwith f(a)∶=℘(a).�e fixed-point<br />

induction of f over∅<strong>is</strong>the function F∶ On0→Swith<br />

F(α)∶= Sα.<br />

(c)�e graph of addition<br />

A∶={(x,y,z)∈ N 3 ∣ x+y=z}<br />

<strong>is</strong>the least fixed point ofthe function f∶℘(N 3 )→℘(N 3 )with<br />

f(R)∶={(x,0,x)∣ x∈N}<br />

∪{(x,y+ 1,z+ 1)∣(x,y,z)∈ R}.<br />

Its fixed-point induction over∅<strong>is</strong>the function<br />

⎧⎪{(x,y,z)∣<br />

x+y=z ,y


and, generally, we have<br />

F(n)= ⋃k


a3. Ordinals<br />

Proof. F(α) <strong>is</strong> a fixed point of f since f(F(α))= F(α + )= F(α). ◻<br />

�us,we canusethe fixedpoint induction F of f to compute a fixed<br />

pointprovi<strong>de</strong>d F converges.<br />

Lemma 3.8. Let F bethe fixed-point induction ofafunction f. If F(α)=<br />

F(α + )then F(α)= F(β), forall β≥α.<br />

Proof. Weprovethe claim by induction on β. If β=αthenthe claim <strong>is</strong><br />

trivial. Forthesuccessorstep,we have<br />

F(β + )= f(F(β))= f(F(α))= F(α + )= F(α).<br />

Finally, ifδ> α <strong>is</strong> a limit ordinal,then<br />

F(δ)=sup{ F(β)∣ β


3. Inductionand fixedpoints<br />

Definition 3.10. Let f ∶ A→ A be inductive and F ∶ On→A the<br />

corresponding fixed-point induction. �e minimal ordinal α suchthat<br />

F(α)=F(α + ) <strong>is</strong> called the closure ordinal of the induction and the<br />

element F(∞)∶= F(α) <strong>is</strong>the inductive fixedpoint of f over a.<br />

Remark. IfA <strong>is</strong> aset, every inductive function f∶ A→ A has an inductive<br />

fixedpoint.<br />

Example. Let⟨A,R⟩ be a graph.�ewell-foun<strong>de</strong>dpart of R <strong>is</strong>the maximalsubsetB⊆Asuchthat⟨B,R∣B⟩<br />

<strong>is</strong>well-foun<strong>de</strong>d and, for all⟨a,b⟩∈<br />

R with b∈B,we also have a∈B.We can compute B as inductive fixed<br />

point over∅ofthe function<br />

f(X)∶={x∈ A∣ R −1 (x)⊆ X∪{x}}.<br />

Ifwewantto applythe above machineryto compute fixedpoints,we<br />

need methods to show that a given function f <strong>is</strong> inductive. Basically,<br />

there are two conditions a function f has to sat<strong>is</strong>fy. �e sequence obtained<br />

by iterating f hasto be linearly or<strong>de</strong>red and itssupremum must<br />

ex<strong>is</strong>ts.<br />

Definition 3.11. Let A=⟨A,≤⟩ be apartial or<strong>de</strong>r.<br />

(a) A <strong>is</strong> inductively or<strong>de</strong>red if every chain C⊆A that <strong>is</strong> a set has a<br />

supremum.<br />

(b) A function f∶ A→ A <strong>is</strong> inflationary if f(a)≥ a, for all a∈A.<br />

Remark. (a) Every inductively or<strong>de</strong>red set has a least element�since<br />

theset∅<strong>is</strong> linearly or<strong>de</strong>red.<br />

(b) Every completepartial or<strong>de</strong>r <strong>is</strong> inductively or<strong>de</strong>red.<br />

(c)⟨On,≤⟩ <strong>is</strong> inductively or<strong>de</strong>red.<br />

(d) If⟨A,≤⟩ <strong>is</strong> a well-or<strong>de</strong>r then according to Lemma 1.7 all strictly<br />

continuous functions f∶ A→ A are inflationary.<br />

Example. (a)�epartial or<strong>de</strong>r⟨F,⊆⟩where<br />

F∶={X⊆N∣ X <strong>is</strong> finite}<br />

81


a3. Ordinals<br />

<strong>is</strong> not inductively or<strong>de</strong>redsincethe chain<br />

[0]⊂[1]⊂[2]⊂⋅⋅⋅⊂[n]⊂⋯<br />

has noupper bound.<br />

(b) LetV be avector space overthe field K andset<br />

I∶={B⊆V∣ B <strong>is</strong> linearly in<strong>de</strong>pen<strong>de</strong>nt}.<br />

We claimthat⟨I,⊆⟩ <strong>is</strong> inductively or<strong>de</strong>red.<br />

LetC⊆I be a chain.WeshowthatsupC=⋃C. By Corollary a2.3.10,<br />

it <strong>is</strong>sufficienttoprovethat⋃C∈I.<br />

Suppose otherw<strong>is</strong>e. �en⋃C <strong>is</strong> not linearly in<strong>de</strong>pen<strong>de</strong>nt and there<br />

are elements v0,... ,vn∈⋃C and λ0,... , λn∈ K suchthat λi≠ 0, for<br />

all i, and<br />

λ0v0+⋅⋅⋅+ λnvn=0.<br />

For eachvi, fixsome Bi∈ C withvi∈ Bi.SinceC<strong>is</strong> linearly or<strong>de</strong>redso<br />

<strong>is</strong>theset{B0,... ,Bn}.�<strong>is</strong>set <strong>is</strong> finite and,therefore, it has a maximal<br />

element Bk, that <strong>is</strong>, Bi ⊆ Bk, for all i. It follows that v0,... ,vn∈ Bk,<br />

which impliesthat Bk <strong>is</strong> not linearly in<strong>de</strong>pen<strong>de</strong>nt. Contradiction.<br />

Lemma 3.12. Let A=⟨A,≤⟩be inductively or<strong>de</strong>red.<br />

(a) If f∶ A→ A <strong>is</strong> inflationary, f <strong>is</strong> inductive overeveryelementa∈A.<br />

(b) If f∶ A→ A <strong>is</strong> increasing, f <strong>is</strong> inductive overeveryelement awith<br />

f(a)≥ a.<br />

(c) If f∶ A→ A <strong>is</strong>continuous, f <strong>is</strong> inductive overeveryelementawith<br />

f(a)≥ a. Furthermore, ifthe inductive fixed point of f over a ex<strong>is</strong>ts, its<br />

closure ordinal <strong>is</strong>at most ω.<br />

Proof. (a) Bytransfiniterecursion,we construct an increasing function<br />

F ∶ I → A sat<strong>is</strong>fying the equations in Definition 3.6. Let F(0)∶= a.<br />

For the induction step, suppose that F(α) <strong>is</strong> already <strong>de</strong>fined. We set<br />

F(α + ) ∶= f(F(α)). Since f <strong>is</strong> inflationary, it follows that F(α + ) =<br />

f(F(α))≥F(α). Finally, suppose that δ <strong>is</strong> a limit ordinal. If F↾↓δ<br />

82


3. Inductionand fixedpoints<br />

<strong>is</strong> aproper class, we are done. Otherw<strong>is</strong>e, F[↓δ] <strong>is</strong> asetwhich, furthermore,<br />

<strong>is</strong> linearly or<strong>de</strong>red because F↾↓δ <strong>is</strong> increasing. As⟨A,≤⟩ <strong>is</strong> inductively<br />

or<strong>de</strong>red it followsthat F[↓δ] has asupremum andwe canset<br />

F(δ)∶=sup F[↓δ].<br />

(b) Again we <strong>de</strong>fine an increasing function F∶ I→A by transfinite<br />

recursion. Let F(0)∶= a. For the induction step, suppose that F(α) <strong>is</strong><br />

already <strong>de</strong>fined.Weset F(α + )∶= f(F(α)).Toprovethat F(α + )≥ F(α)<br />

we consi<strong>de</strong>r three cases. For α= 0we have F(1)= f(a)≥ a=F(0). If<br />

α=β + <strong>is</strong> a successor, we know by induction hypothes<strong>is</strong> that F(β + )≥<br />

F(β).Since f <strong>is</strong> increasing it followsthat<br />

F(α + )= f(F(β + ))≥ f(F(β))= F(β + )= F(α).<br />

If α <strong>is</strong> a limitthen F(α)=sup F[↓α] and<br />

F(α + )= f(sup F[↓α])≥ f(F(β))= F(β + ) , for all β


a3. Ordinals<br />

(a) f <strong>is</strong> inductive overα.<br />

(b) If F <strong>is</strong> the fixed-point induction of f over α then F(∞) ex<strong>is</strong>ts if,<br />

and only if, the set{f n (α)∣ n


4. Ordinalarithmetic<br />

�esecondtheorem <strong>is</strong> aversion ofthe�eorem of Knaster andTarski<br />

whichshowsthat we can computethe least fixed point of a function f<br />

by a fixed-point induction.<br />

�eorem 3.15. Let⟨A,≤⟩bean inductively or<strong>de</strong>red graphwhereA <strong>is</strong>aset<br />

and let f∶ A→ Abe an increasing function. If the least fixed point of f<br />

ex<strong>is</strong>ts then itcoinci<strong>de</strong>swith its inductive fixedpoint over�.<br />

Proof. Let F∶ On→ A bethe fixed-point induction of f over�.Suppose<br />

thata∶= lfp f ex<strong>is</strong>ts.Weprove by induction onαthat F(α)≤ a.�en it<br />

followsthat F(∞)≤ a andthe minimality of a impliesthat F(∞)= a.<br />

Clearly, F(0)=�≤ a. Forthe inductive step,supposethat F(α)≤ a.<br />

Since f <strong>is</strong> increasing it followsthat<br />

F(α + )= f(F(α))≤ f(a)= a.<br />

Finally, if δ <strong>is</strong> a limit ordinal,the induction hypothes<strong>is</strong> impliesthat<br />

F(δ)=sup{ F(α)∣ α


a3. Ordinals<br />

+ = ⋅ =<br />

andthe or<strong>de</strong>r <strong>is</strong> <strong>de</strong>fined by<br />

Figure 1..Sum andproduct of linear or<strong>de</strong>rs<br />

⟨i,a⟩≤C⟨k,b⟩ : iff i=k=0and a≤A b<br />

or i=k= 1 and a≤B b<br />

or i=0and k= 1.<br />

(b)�eproduct A⋅B<strong>is</strong>the graph⟨C,≤C⟩whereC∶= A×B andthe<br />

or<strong>de</strong>r <strong>is</strong> <strong>de</strong>fined by<br />

⟨a,b⟩≤C⟨a ′ ,b ′ ⟩ : iff b


(c) K (M) ≅⟨[k m ],≤⟩.<br />

4. Ordinalarithmetic<br />

Addition of linear or<strong>de</strong>rs <strong>is</strong> associative andthe empty or<strong>de</strong>r <strong>is</strong> a neutral<br />

element. Belowwe will give an example showing that, in general, it<br />

<strong>is</strong> not commutative.<br />

Lemma4.2. If A, B,and Care linear or<strong>de</strong>rsthen<br />

(A+B)+C≅A+(B+C).<br />

Proof. Let A=⟨A,≤A⟩, B=⟨B,≤B⟩, and C=⟨C,≤C⟩. We can <strong>de</strong>fine a<br />

bijection f∶(A⊍B)⊍C→A⊍(B⊍C) by<br />

f⟨0,⟨0,a⟩⟩∶=⟨0,a⟩ for a∈A ,<br />

f⟨0,⟨1,b⟩⟩∶=⟨1,⟨0,b⟩⟩ forb∈B ,<br />

f⟨1,c⟩∶=⟨1,⟨1,c⟩⟩ for c∈C.<br />

Sinceth<strong>is</strong> bijectionpreservesthe or<strong>de</strong>ring it <strong>is</strong>the <strong>de</strong>sired <strong>is</strong>omorph<strong>is</strong>m.<br />

◻<br />

As we want to <strong>de</strong>fine arithmetic operations on ordinals we have to<br />

showthat, ifwe applythe above operationstowell-or<strong>de</strong>rs,we again obtain<br />

awell-or<strong>de</strong>r.<br />

Lemma 4.3. If A and B are well-or<strong>de</strong>rs then so are A+B, A⋅B, and<br />

A (B) .<br />

Proof. Suppose that A=⟨A,≤A⟩ and B=⟨B,≤B⟩. We will prove the<br />

claim only for C∶= A (B) .�e other operations are le� as an exerc<strong>is</strong>eto<br />

therea<strong>de</strong>r.<br />

Let C=⟨C,≤C⟩. �e relation


a3. Ordinals<br />

that, respectively, f(b0)≠ g(b0) and g(b1)≠ h(b1). By <strong>de</strong>finition, we<br />

have f(b0)


<strong>is</strong> a bijection sincewe have<br />

g(c)= g ′ (c) for all g, g ′ ∈ Z and every c≥b.<br />

4. Ordinalarithmetic<br />

Furthermore, ρ preserves the or<strong>de</strong>ring, that <strong>is</strong>, it <strong>is</strong> an <strong>is</strong>omorph<strong>is</strong>m. It<br />

followsthat ρ −1 (h) <strong>is</strong>the minimal element of Z and of X. ◻<br />

Exerc<strong>is</strong>e 4.2. Show that, if A and B are well-or<strong>de</strong>rs then so are A+B<br />

and A⋅B.<br />

It <strong>is</strong> easy to see that A ≅ A ′ and B ≅ B ′ implies that the sums,<br />

products, andpowers are also <strong>is</strong>omorphic.�erefore,we can <strong>de</strong>finethe<br />

corresponding operations on ordinals bytaking representatives.<br />

Definition 4.4. For α= ord(A) and β=ord(B)we <strong>de</strong>fine<br />

α+β∶= ord(A+B) ,<br />

α⋅β∶= ord(A⋅B) ,<br />

α (β) ∶= ord(A (B) ).<br />

Example. �e following equations can beproved easily bythe lemmas<br />

below.We encouragetherea<strong>de</strong>rto <strong>de</strong>rivethem directly fromthe <strong>de</strong>finitions.<br />

1+1=2 (3+6)ω= 9ω=ω


a3. Ordinals<br />

Ordinaladdition<br />

�e properties of ordinal addition, multiplication, and exponentiation<br />

aresimilarto, but notquitethesame asthose for integers.�e following<br />

sequence of lemmassummar<strong>is</strong>esthem.Westartwith addition.<br />

Lemma 4.5. Let α,β, γ∈On. If β


4. Ordinalarithmetic<br />

For a contradiction suppose that γ


a3. Ordinals<br />

�e next lemmasummar<strong>is</strong>esthe laws of ordinal addition.<br />

Lemma 4.9. Let α,β, γ∈On.<br />

(a) α+(β+γ)=(α+β)+γ.<br />

(b) α+β=α+ γ implies β=γ.<br />

(c) α≤β implies α+ γ≤β+γ.<br />

(d) If X⊆ On <strong>is</strong> nonemptyandboun<strong>de</strong>dthen<br />

α+supX=sup{α+β∣β∈X}.<br />

(e) β≤αif,and only if, α=β+ γ, forsome γ∈ On.<br />

(f) β


4. Ordinalarithmetic<br />

(e) If β


a3. Ordinals<br />

Proof. Fix representatives α= ord(A) and β=ord(B).<br />

(a) follows immediately from the fact that A⋅⟨∅,∅⟩=⟨∅,∅⟩.<br />

(b) �e canonical bijection<br />

given by<br />

A×(B⊍[1])→(A×B)⊍A<br />

⟨a,⟨0,b⟩⟩↦⟨0,⟨a,b⟩⟩ ,<br />

⟨a,⟨1,0⟩⟩↦⟨1,a⟩ ,<br />

induces an <strong>is</strong>omorph<strong>is</strong>m<br />

A⋅(B+⟨[1],≤⟩)→A⋅B+A.<br />

(c) Let X∶={αβ∣β


4. Ordinalarithmetic<br />

We can also show that ordinals allow a limited form of div<strong>is</strong>ion.<br />

Lemma 4.13. For all ordinals α,β∈On with β≠0, there ex<strong>is</strong>t unique<br />

ordinals γand ρα=βγ+ρ,<br />

which impliesthat ρβδ+σ= α.<br />

A contradiction. It followsthat γ <strong>is</strong>unique. Hence,theuniqueness of ρ<br />

follows from Lemma 4.8. ◻<br />

Lemma4.14. α <strong>is</strong>alimit ordinal if,and only if, α=ωβ, forsome β>0.<br />

Proof. (⇒) By Lemma 4.13,we have α=ωβ+n for some β∈On and<br />

n


a3. Ordinals<br />

Lemma4.15. Let α,β, γ∈On.<br />

(a) α(βγ)=(αβ)γ.<br />

(b) α(β+ γ)= αβ+αγ.<br />

(c) If α≠0andαβ=αγ then β= γ.<br />

(d) α≤β implies αγ≤βγ.<br />

(e) If X⊆ On <strong>is</strong> nonemptyandboun<strong>de</strong>dthen<br />

α⋅supX=sup{αβ∣β∈ X}.<br />

Proof. (b)Weprovethe claim by induction on γ. For γ=0,we have<br />

α(β+0)= αβ=αβ+0=αβ+α0.<br />

Forthesuccessorstep,we have<br />

α(β+ γ + )= α(β+γ) +<br />

= α(β+γ)+α<br />

= αβ+αγ+α<br />

= αβ+αγ + .<br />

Finally, if γ <strong>is</strong> a limit ordinalthen<br />

α(β+ γ)= α⋅sup{β+ρ∣ρ


Ordinalexponentiation<br />

4. Ordinalarithmetic<br />

Finally, we consi<strong>de</strong>r ordinal exponentiation. Again, the basic steps are<br />

thesame as for addition and multiplication.<br />

Lemma4.16. Let α,β, γ∈On. Ifα> 1and β


a3. Ordinals<br />

For a contradiction suppose that γ


4. Ordinalarithmetic<br />

Proof. By Corollary 4.18 and Lemma 1.14,there ex<strong>is</strong>ts a greatest ordinal η<br />

suchthat β (η) ≤ α, and, by Lemma 4.13, there ex<strong>is</strong>t ordinals γ and ρ<<br />

β (η) suchthat β (η) γ+ρ=α. If γ= 0,wewould have ρ=α≥β (η) > ρ.<br />

A contradiction. And, if γ≥β,wewould have<br />

α 1thenwe have β


a3. Ordinals<br />

Cantor normal form<br />

We can applythe logarithm to <strong>de</strong>compose every ordinal in a canonical<br />

way.<br />

�eorem 4.21. For all ordinals α,β∈On with β>1, there are unique<br />

finitesequences(γi)iηn−1 , and 0ρ1>... of ordinals which <strong>is</strong> impossible. Consequently,<br />

there <strong>is</strong>some number n suchthat ρn=0 andwe have<br />

α=β (η0) γ0+⋯+β (ηn−1) γn−1. ◻<br />

Definition 4.22. Letαbe an ordinal.�eunique <strong>de</strong>composition<br />

α=ω (η0) γ0+⋯+ω (ηn) γn ,<br />

with η0>⋯>ηn and 0


Proof. Supposethat β=α+ γ, for γ>0.We have<br />

ω (α) + ω (β) = ω (α) + ω (α+γ)<br />

= ω (α) + ω (α) ω (γ)<br />

= ω (α) (1+ ω (γ) )<br />

= ω (α) ω (γ)<br />

4. Ordinalarithmetic<br />

= ω (α+γ) = ω (β) . ◻<br />

Corollary 4.24. Let α,β∈Onbe ordinalswithCantor normal form<br />

α=ω (η0) k0+⋯+ ω (ηm−1) km−1 ,<br />

β=ω (γ0) l0+⋯+ω (γn−1) ln−1.<br />

If i <strong>is</strong>the maximal in<strong>de</strong>xsuchthat ηi≥ γ0 thenwe have<br />

α+β=ω (η0) k0+⋯+ ω (ηi) ki+ ω (γ0) l0+⋯+ω (γn−1) ln−1.<br />

Lemma 4.25. An ordinal α> 0 <strong>is</strong> of the form α=ω (η) , for some η, if,<br />

and only if, β+ γ


a3. Ordinals<br />

If k> 1,weset β∶= ω (η) (k− 1)+ρ0. Inth<strong>is</strong> casewe cansetβ∶= ω (η) andwe<br />

have<br />

β+β=ω (η) + ω (η) > ω (η) +ρ=α.<br />

Again a contradiction. ◻<br />

�e nexttwo lemmasprovi<strong>de</strong>the laws of multiplication and exponentiation<br />

of ordinals in Cantor normal form.<br />

Lemma 4.26. If γ>0,0≤ ρ


Example. Bythe above lemmaswe have<br />

(ω (ω(5) +ω4+2) + ω (5) ) (ω (2) 2+ω+1)<br />

=(ω (ω(5) +ω4+2) + ω (5) ) (ω (2) 2) ⋅(ω (ω (5) +ω4+2) + ω (5) ) (ω) ⋅<br />

⋅(ω (ω(5) +ω4+2) + ω (5) )<br />

4. Ordinalarithmetic<br />

=(ω ((ω(5) +ω4+2)ω (2) ) ) (2) ⋅ ω ((ω (5) +ω4+2)ω) ⋅(ω (ω (5) +ω4+2) + ω (5) )<br />

=(ω (ω(7) ) ) (2) ⋅ ω (ω (6) ) ⋅(ω (ω (5) +ω4+2) + ω (5) )<br />

= ω (ω(7) 2) ⋅ ω (ω (6) ) ⋅(ω (ω (5) +ω4+2) + ω (5) )<br />

= ω (ω(7) 2+ω (6) ) ⋅(ω (ω (5) +ω4+2) + ω (5) )<br />

= ω (ω(7) 2+ω (6) ) ⋅ ω (ω (5) +ω4+2) + ω (ω (7) 2+ω (6) ) ⋅ ω (5)<br />

= ω (ω(7) 2+ω (6) +ω (5) +ω4+2) + ω (ω (7) 2+ω (6) +5) .<br />

Exerc<strong>is</strong>e 4.5. Computethe cantor normal form of<br />

(ω (ω(2) 7+ω3+4) 3+ ω (ω6+3) 4+ω (4) 3+1) (ω (2) 5+ω7+2)<br />

Remark. We will prove in Lemma a4.5.6 that we can find, for every β,<br />

arbitrarily large ordinals α0,α1,α2 suchthat<br />

α0=β+α0 , α1=βα1 , and α2=β (α2) .<br />

Inparticular,there are ordinals εsuchthat ε=ω (ε) . By εα we <strong>de</strong>notethe<br />

α-th ordinal such that β (εα) = εα, for all β


a3. Ordinals<br />

ordinals are<br />

0, 1, 2, 3, . . .<br />

. . . , ω, ω+1, ω+2, . . .<br />

. . . , ω2, ω2+1, ω2+ 2, . . .<br />

. . . , ω3, . . . , ω4, . . . , ω (2) , . . . , ω (3) , . . .<br />

. . . , ω (ω) , . . . , ω (ω(ω) ) , . . .<br />

. . . , ε0, . . . , ε (ε0)<br />

0 , . . . , ε1, . . . , ε2, . . . , εω, . . .<br />

. . . , ω1, . . . , ω2, . . . , ωω, . . .<br />

�e ordinals ωα will be <strong>de</strong>fined in Section a4.2.<br />

104


a4. Zermelo-Fraenkelsettheory<br />

1. �eAxiom ofChoice<br />

We have seen that induction <strong>is</strong> apowerfultechniquetoprovestatements<br />

and to construct objects. But in or<strong>de</strong>r touseth<strong>is</strong> toolwe have torelate<br />

the sets we are interested in to ordinals. In basic set theory th<strong>is</strong> <strong>is</strong> not<br />

alwayspossible.�erefore,wewill introduce a new axiomwhichstates<br />

that, for everysetA,there <strong>is</strong> awell-or<strong>de</strong>r overA. Before doingso, le<strong>tu</strong>s<br />

present several statements that are equivalent to th<strong>is</strong> axiom. We need<br />

two new notions.<br />

Definition1.1. Aset F⊆℘(A) has finite character if, for all sets x⊆ A,<br />

we have<br />

x∈F iff x0∈ F , for every finitesetx0⊆ x.<br />

Lemma1.2. Suppose that F⊆℘(A) has finitecharacter.<br />

(a) F <strong>is</strong>an initialsegment of℘(A).<br />

(b) If X⊆ F <strong>is</strong> nonemptythen⋂X∈F.<br />

(c) IfC⊆ F <strong>is</strong>achainand⋃C <strong>is</strong>asetthen⋃C∈ F.<br />

Proof. (a) follows immediately from the <strong>de</strong>finition and (b) <strong>is</strong> a consequence<br />

of (a). For (c), let C⊆Fbe a chain such that X∶=⋃C <strong>is</strong> a set.<br />

If X0⊆X <strong>is</strong> finite, there ex<strong>is</strong>ts some element Z∈ C with X0⊆ Z∈F.<br />

Hence,X0∈ F, for all finitesubsetsX0⊆ X.�<strong>is</strong> impliesthatX∈ F. ◻<br />

Lemma1.3. If F has finitecharacterthen⟨F,⊆⟩ <strong>is</strong> inductively or<strong>de</strong>red.<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 105


a4. Zermelo-Fraenkelsettheory<br />

Proof. LetC⊆ F be a linearly or<strong>de</strong>redsubset of F. By Corollary a2.3.10<br />

and Lemma 1.2 (c), it follows thatsupC=⋃C∈ F. ◻<br />

Example. LetV be avector space overthe field K.�eset<br />

F∶={B⊆V∣ B <strong>is</strong> linearly in<strong>de</strong>pen<strong>de</strong>nt}<br />

has finite character.<br />

�esecond notionwe need <strong>is</strong>that of a choice function. In<strong>tu</strong>itively, a<br />

choice function <strong>is</strong> a functionthat, given someset A,selects an element<br />

of A.<br />

Definition 1.4. A function f <strong>is</strong> a choice function if f(a)∈ a, for all<br />

a∈ dom f.<br />

Exerc<strong>is</strong>e1.1. LetI betheset of all open intervals(a,b) ofreal numbers<br />

a,b∈Rwith a


1. �eAxiom ofChoice<br />

Proof. Let f∶℘(A)∖{∅}→A be a choice function. We <strong>de</strong>fine a function<br />

g∶℘(A)→℘(A) by<br />

⎧⎪ A if X=A ,<br />

g(X)∶= ⎨<br />

⎪⎩<br />

X∪{ f(A∖X)} if X≠A.<br />

Since g(X)⊇ X th<strong>is</strong> function <strong>is</strong> inflationary. Furthermore, the partial<br />

or<strong>de</strong>r⟨℘(A),⊆⟩ <strong>is</strong> complete. By �eorem a3.3.14, g has an inductive<br />

fixed point. Since g(X)≠ X, for X≠ A, it follows that th<strong>is</strong> fixed point<br />

<strong>is</strong> A. Let G ∶ On→℘(A) be the fixed-point induction of g over∅<br />

and let α bethe closure ordinal. For every β


a4. Zermelo-Fraenkelsettheory<br />

Proof. (2)⇒(3) If∏i∈I Ai <strong>is</strong> a proper class, it <strong>is</strong> nonempty and we are<br />

done. Hence,we may assumethat it <strong>is</strong> aset.�enA∶=⋃{Ai∣ i∈I}<strong>is</strong><br />

also aset. By(2)there ex<strong>is</strong>ts a choice function f∶℘(A)∖{∅}→ A. Let<br />

g∶I→A bethe function <strong>de</strong>fined by g(i)∶= f(Ai). Since g(i)∈ Ai it<br />

followsthat g∈∏i∈I Ai≠∅.<br />

(3)⇒(4) <strong>is</strong> trivial.<br />

(4)⇒(2) Let I∶=℘(A)∖{∅} and setAX∶= X×{X}, forX∈ I. Since<br />

∏X∈I AX≠∅ there ex<strong>is</strong>ts some element f ∈∏X∈I AX. We can <strong>de</strong>fine<br />

the <strong>de</strong>sired choice function g∶℘(A)∖{∅}→ A by<br />

g(X)= a : iff f(X)=⟨a,X⟩.<br />

(2)⇒(1)wasproved in Lemma 1.6.<br />

(1)⇒(5) Suppose that⟨A,≤⟩ <strong>is</strong> inductively or<strong>de</strong>red, but A has no<br />

maximal element. For every a∈A,we can find someb∈Awith b>a.<br />

By assumption,there ex<strong>is</strong>ts awell-or<strong>de</strong>rRover A. Let f∶ A→ A bethe<br />

functionsuchthat f(a) <strong>is</strong>the R-minimal elementb∈Awith b>a. By<br />

<strong>de</strong>finition, we have f(a)> a, for all a∈A. Hence, f <strong>is</strong> inflationary and,<br />

by�eorem a3.3.14, f has a fixed point a. But f(a)= a contradicts the<br />

<strong>de</strong>finition of f.<br />

(5)⇒(6) Let F be aset of finite character andA∈ F. It <strong>is</strong>sufficientto<br />

provethatthesubset F0∶={X∈ F∣ A⊆ X}<strong>is</strong> inductively or<strong>de</strong>red by⊆.<br />

By Lemma 1.3, we know that⟨F,⊆⟩ <strong>is</strong> inductively or<strong>de</strong>red. Let C be a<br />

chain in F0.�enC⊆F0⊆ F and C <strong>is</strong> also a chain in F. Consequently,<br />

it has a least upper bound B∈F.Since A⊆ X, for all X∈C, it follows<br />

thatA⊆ B,that <strong>is</strong>,B∈ F0 andB <strong>is</strong> alsothe leas<strong>tu</strong>pper bound ofC in F0.<br />

(6)⇒(2) Let A be a set. By Lemma 1.5(a), the set C of choice functions<br />

f with dom f ⊆℘(A)∖{∅} has finite character and, therefore,<br />

there <strong>is</strong> a maximal element f∈ C. By Lemma 1.5(b), it followsthat f <strong>is</strong><br />

the <strong>de</strong>sired choice function.<br />

(1)⇒(7) Fixwell-or<strong>de</strong>rsRandSon,respectively, A andB. By Corollary<br />

a3.1.12, exactly one of the following conditions <strong>is</strong> sat<strong>is</strong>fied:<br />

108<br />

⟨A,R⟩⟨B,S⟩.


1. �eAxiom ofChoice<br />

In the first two cases there ex<strong>is</strong>ts an injection A→ B and in the second<br />

and third case there ex<strong>is</strong>ts an injection B→A in the other direction.<br />

(7)⇒(1) LetA be a set. By �eorem a3.2.12, there ex<strong>is</strong>ts an ordinalα<br />

such that there <strong>is</strong> no injective function↓α→A. Consequently, there<br />

ex<strong>is</strong>ts an injective function f∶ A→↓α.We <strong>de</strong>fine arelation R onA by<br />

R∶={⟨a,b⟩∣ f(a)< f(b)}.<br />

Since f <strong>is</strong> injective andrng f⊆↓α <strong>is</strong>well-or<strong>de</strong>red it followsthatR<strong>is</strong>the<br />

<strong>de</strong>siredwell-or<strong>de</strong>r onA.<br />

(2)⇒(8) Let h∶℘(A)∖{∅}→ A be a choice function.We can <strong>de</strong>fine<br />

g∶B→A by<br />

g(b)∶= h( f −1 (b)).<br />

(8)⇒(4) Let(Ai)i∈I be a family of d<strong>is</strong>joint nonemptysets.We <strong>de</strong>fine<br />

a function f∶⋃{Ai∣ i∈I}→ I by<br />

f(a)= i : iff a∈Ai .<br />

SincetheAi are d<strong>is</strong>joint and nonempty it followsthat f <strong>is</strong>well-<strong>de</strong>fined<br />

and surjective. Hence, there ex<strong>is</strong>ts a function g∶I→⋃{Ai∣ i∈I}<br />

such that f(g(i))= i, for all i∈I. By <strong>de</strong>finition of f , th<strong>is</strong> implies that<br />

g(i)∈ Ai. Hence, g∈∏i∈I Ai≠∅. ◻<br />

Axiom of Choice. Foreveryset Athereex<strong>is</strong>tsawell-or<strong>de</strong>rRoverA.<br />

Lemma 1.8. A le�-narrow partial or<strong>de</strong>r(A,≤) <strong>is</strong> well-foun<strong>de</strong>d if, and<br />

only if,there ex<strong>is</strong>ts no infinitestrictly<strong>de</strong>creasingsequence a0>a1>....<br />

Proof. One directionwas alreadyproved in Lemma a3.1.3. For the other<br />

one, fix a choice function f∶℘(A)∖∅→A. Supposethatthere ex<strong>is</strong>ts<br />

a nonempty set A0⊆ Awithout minimal element. We can <strong>de</strong>fine a <strong>de</strong>scending<br />

chain a0>a1>... by induction. Let a0∶= f(A0) and, for<br />

k>0,set<br />

ak∶= f({b∈A0∣ b


a4. Zermelo-Fraenkelsettheory<br />

Notethat ak <strong>is</strong>well-<strong>de</strong>fined since ak−1 <strong>is</strong> not a minimal element of A0.<br />

◻<br />

Exerc<strong>is</strong>e1.2. We call asetacountable ifthere ex<strong>is</strong>ts a bijection↓ω→a.<br />

Provethat a le�-narrowpartial or<strong>de</strong>r⟨A,≤⟩ <strong>is</strong>well-foun<strong>de</strong>d if, and only<br />

if, every countable nonemptysubset X⊆A has a minimal element.<br />

Exerc<strong>is</strong>e 1.3. Let⟨A,R⟩ be a well-foun<strong>de</strong>d partial or<strong>de</strong>r that <strong>is</strong> a set.<br />

Provethatthere ex<strong>is</strong>ts awell-or<strong>de</strong>r≤onAwith R⊆≤.<br />

�e following variant of the Axiom of Choice (statement (5) in the<br />

abovetheorem) <strong>is</strong> known as‘Zorn’s Lemma’.<br />

Lemma1.9(Kuratowski,Zorn). Every inductively or<strong>de</strong>redpartial or<strong>de</strong>r<br />

hasamaximalelement.<br />

Example. We haveseenthatthesystem of all linearly in<strong>de</strong>pen<strong>de</strong>ntsubsets<br />

of a vector space V <strong>is</strong> inductively or<strong>de</strong>red. It follows that every<br />

vector space contains a maximal linearly in<strong>de</strong>pen<strong>de</strong>nt subset, that <strong>is</strong>, a<br />

bas<strong>is</strong>.<br />

�<strong>is</strong> example can be general<strong>is</strong>ed to a certain kind of closure operators.<br />

Definition1.10. Letcbe a closure operator on A.<br />

(a) c hastheexchangeproperty if<br />

b∈c(X∪{a})∖c(X) implies a∈c(X∪{b}).<br />

(b) Aset I⊆A <strong>is</strong> c-in<strong>de</strong>pen<strong>de</strong>nt if<br />

a∉c(I∖{a}) , for all a∈I.<br />

We call D⊆Ac-<strong>de</strong>pen<strong>de</strong>nt if it <strong>is</strong> not c-in<strong>de</strong>pen<strong>de</strong>nt.<br />

(c) Let X⊆A. Aset I⊆X <strong>is</strong> a c-bas<strong>is</strong> of X if I <strong>is</strong> c-in<strong>de</strong>pen<strong>de</strong>nt and<br />

c(I)= c(X).<br />

110


1. �eAxiom ofChoice<br />

Lemma 1.11. Let c be a closure operator on A and let F⊆℘(A) be the<br />

class of all c-in<strong>de</strong>pen<strong>de</strong>nt sets. If c has finite character then F has finite<br />

character.<br />

Proof. Let I∈Fand I0⊆ I. For every a∈I0,we have<br />

a∉c(I∖{a})⊇ c(I0∖{a}).<br />

Hence, I0 <strong>is</strong>c-in<strong>de</strong>pen<strong>de</strong>nt. Conversely, supposethat I∉F.�enthere<br />

<strong>is</strong>some a∈Iwith<br />

a∈c(I∖{a}).<br />

Since c has finite characterwe can find a finitesubset I0⊆ I∖{a}with<br />

a∈c(I0).�us, I0∪{a} <strong>is</strong> a finitesubset of I that <strong>is</strong> notc-in<strong>de</strong>pen<strong>de</strong>nt.<br />

◻<br />

Before proving the converse let usshow with the help of the Axiom<br />

of Choicethatthere <strong>is</strong> always a c-bas<strong>is</strong>.Westartwith an alternative <strong>de</strong>scription<br />

ofthe exchangeproperty.<br />

Lemma1.12. Letcbeaclosure operator onAwiththeexchangeproperty.<br />

If D⊆A <strong>is</strong>aminimalc-<strong>de</strong>pen<strong>de</strong>ntsetthen<br />

a∈c(D∖{a}) , forall a∈D.<br />

Proof. Let a∈D.Since D <strong>is</strong>c-<strong>de</strong>pen<strong>de</strong>ntthere ex<strong>is</strong>tssome elementb∈<br />

D with b∈c(D∖{b}). Ifb=a thenwe are done. Hence,supposethat<br />

b≠aand let D0∶= D∖{a,b}. By minimality of D we haveb∉c(D0).<br />

Hence,b∈c(D0∪{a})∖c(D0) andthe exchangeproperty impliesthat<br />

a∈c(D0∪{b}). ◻<br />

Proposition1.13. Letcbeaclosure operator onAthat has finitecharacter<br />

andtheexchangeproperty.Everyset X⊆A hasa c-bas<strong>is</strong>.<br />

111


a4. Zermelo-Fraenkelsettheory<br />

Proof. �e family F of all c-in<strong>de</strong>pen<strong>de</strong>ntsubsets of X has finite character.<br />

By the Axiom of Choice, there ex<strong>is</strong>ts a maximal c-in<strong>de</strong>pen<strong>de</strong>ntset<br />

I⊆X.We claimthat c(I)= c(X),that <strong>is</strong>, I <strong>is</strong> a c-bas<strong>is</strong> of X.<br />

Clearly, c(I)⊆ c(X). If X⊆c(I), it followsthat<br />

c(X)⊆ c(c(I))= c(I)<br />

and we are done. Hence, it remains to consi<strong>de</strong>r the case that there <strong>is</strong><br />

some elementa∈X∖c(I).We <strong>de</strong>rive a contradictiontothe maximality<br />

of I byshowingthat I∪{a} <strong>is</strong>c-in<strong>de</strong>pen<strong>de</strong>nt.<br />

Suppose that I∪{a} <strong>is</strong> not c-in<strong>de</strong>pen<strong>de</strong>nt. Since F has finite character<br />

there ex<strong>is</strong>ts a finite c-<strong>de</strong>pen<strong>de</strong>nt subset D⊆I∪{a} with a∈D.<br />

Suppose that D <strong>is</strong> chosen minimal. By Lemma 1.12, it follows that a∈<br />

c(D∖{a})⊆ c(I). A contradiction. ◻<br />

Proposition 1.14. Let c be a closure operator on A with the exchange<br />

property and let F⊆℘(A) be the class of all c-in<strong>de</strong>pen<strong>de</strong>nt sets. �en<br />

c has finitecharacter if,and only if, F has finitecharacter.<br />

Proof. (⇒) has already beenproved in Lemma 1.11.<br />

(⇐) For a contradiction, supposethatthere <strong>is</strong> aset X⊆Asuchthat<br />

Z∶=⋃{c(X0)∣ X0⊆X<strong>is</strong> finite}<br />

<strong>is</strong> apropersubset of c(X). Fixsome element a∈c(X)∖Z. ByProposition<br />

1.13 there ex<strong>is</strong>ts a c-bas<strong>is</strong> I for X. It follows that a∈c(X)= c(I).<br />

Since F has finite character we can find a finite subset I0⊆Isuchthat<br />

I0∪{a} <strong>is</strong> c-<strong>de</strong>pen<strong>de</strong>nt. By Lemma 1.12, it follows that a∈c(I0)⊆Z.<br />

A contradiction. ◻<br />

A more extensive treatment of closure operators with the exchange<br />

propertywill be given inSection f1.1.<br />

112


2. Cardinals<br />

2. Cardinals<br />

�e notion ofthe cardinality of aset <strong>is</strong> avery na<strong>tu</strong>ral one. It <strong>is</strong> based on<br />

thesame i<strong>de</strong>awhich ledtothe <strong>de</strong>finition ofthe or<strong>de</strong>rtype of awell-or<strong>de</strong>r.<br />

But instead ofwell-or<strong>de</strong>rswe consi<strong>de</strong>r justsetswithout anyrelation. Although<br />

concep<strong>tu</strong>allysimplerthan ordinalswe introduce cardinalsquite<br />

late inthe <strong>de</strong>velopment of ourtheorysince most oftheirproperties cannot<br />

beprovedwithoutresortingto ordinals andthe Axiom of Choice.<br />

In<strong>tu</strong>itively,the cardinality of asetA measures itssize,that <strong>is</strong>,the number<br />

of its elements. So, how dowe count the elements of aset?We can<br />

saythat‘A hasα elements’ ifthere ex<strong>is</strong>ts an enumeration ofA of lengthα,<br />

that <strong>is</strong>, a bijection↓α→A. For infinitesets,such an enumeration <strong>is</strong> not<br />

unique.We can findseveralsequences↓α→Awith differentvalues ofα.<br />

To get awell-<strong>de</strong>fined numberwethereforepickthe least one.<br />

Definition 2.1. �ecardinality∣A∣ of a classA <strong>is</strong>the least ordinalαsuch<br />

thatthere ex<strong>is</strong>ts a bijection↓α→A. Ifthere ex<strong>is</strong>ts nosuch ordinalthen<br />

wewrite∣A∣∶=∞. Let Cn∶= rng∣⋅∣⊆On betherange ofth<strong>is</strong> mapping.<br />

(We do not consi<strong>de</strong>r∞to be an element of the range.) We set Cn∶=<br />

⟨Cn,≤⟩.�e elements of Cn are called cardinals.<br />

Remark. Clearly, if∣A∣,∣B∣


a4. Zermelo-Fraenkelsettheory<br />

(2) �ereex<strong>is</strong>tsan injective function A→ B.<br />

(3) �ereex<strong>is</strong>tsansurjective function B→A.<br />

Proof. Set κ∶=∣A∣ and λ∶=∣B∣ and let g∶↓κ→A and h∶↓λ→B be the<br />

corresponding bijections.<br />

(1)⇒(2) Since κ ≤ λ there ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m f ∶ ↓κ → I<br />

between↓κ and an initial segment I⊆↓λ. In particular, f <strong>is</strong> injective.<br />

�e composition h○ f○ g −1 ∶ A→ B <strong>is</strong>the <strong>de</strong>sired injective function.<br />

(2)⇒(1) For a contradiction, suppose that there ex<strong>is</strong>ts an injective<br />

functionA→ B butwe have∣A∣>∣B∣. By(1)⇒(2),the latter impliesthat<br />

there <strong>is</strong> an injective function B→A. Hence, applying �eorem a2.1.12<br />

we find a bijection A→ B. It followsthat∣A∣=∣B∣. Contradiction.<br />

(2)⇒(3) Let f ∶ A→ B be injective. By Lemma a2.1.10 (b), there<br />

ex<strong>is</strong>ts a function g ∶ B → A such that g○ f = idA. Furthermore, it<br />

follows by Lemma a2.1.10(d)that g <strong>is</strong>surjective.<br />

(3)⇒(2) As above, given a surjective function f ∶ B→A we can<br />

apply Lemma a2.1.10(and the Axiom of Choice) to obtain an injective<br />

function g∶A→ Bwith f○ g= idB. ◻<br />

For every cardinal, there <strong>is</strong> a canonical setwithth<strong>is</strong> cardinality.<br />

Lemma 2.4. Forevery cardinal κ∈Cn,we have κ=∣↓κ∣. It followsthat<br />

Cn={α∈On∣∣↓α∣= α}.<br />

Exerc<strong>is</strong>e 2.1. Let α and β be ordinals suchthat∣α∣≤ β≤α.Show that<br />

∣α∣=∣β∣.<br />

Exerc<strong>is</strong>e 2.2. Prove that α∈ Cn, for every ordinal α≤ω. Hint. Show,<br />

by induction on α, that there <strong>is</strong> no surjective function↓α→↓β with<br />

α


2. Cardinals<br />

Proof. By �eorem a2.1.13, there ex<strong>is</strong>ts an injective functionA→℘(A)<br />

but no surjective one. By Lemma 2.3, it follows that∣A∣≤∣℘(A)∣ and<br />

∣℘(A)∣≰∣A∣. ◻<br />

Cn <strong>is</strong> a proper class since it <strong>is</strong> anunboun<strong>de</strong>dsubclass of On.<br />

Lemma 2.6. Cn <strong>is</strong>aproperclass.<br />

Proof. For a contradiction, suppose otherw<strong>is</strong>e. By Lemma a3.2.8, it follows<br />

that there <strong>is</strong> someα∈ Onsuchthat κ∣↓α∣,<br />

which impliesthat λ>α. A contradiction. ◻<br />

Lemma 2.7. On0≤ Cn≤On.<br />

Proof. Since Cn⊆On it followsthat Cn <strong>is</strong> awell-or<strong>de</strong>r.�erefore,there<br />

ex<strong>is</strong>ts an <strong>is</strong>omorph<strong>is</strong>m h∶Cn→I, forsome initial segment I⊆ On.<br />

By �eorem 2.5 we know that the function f ∶ On0 → Cn with<br />

f(α)∶=∣Sα∣ <strong>is</strong> strictly increasing. Consequently, we have On0 ≤ Cn,<br />

by Lemma a3.2.11. ◻<br />

Remark. With the Axiom of Replacement which we will introduce in<br />

Section 5 we can ac<strong>tu</strong>ally prove that⟨On0,∈⟩≅⟨On,


a4. Zermelo-Fraenkelsettheory<br />

Note that, by our <strong>de</strong>finition of a cardinal, we have ωα = ℵα and<br />

ℵ0= ω0= ω. Furthermore,ℵ + α=ℵα+1.Sincewe have <strong>de</strong>fined the operation<br />

κ + differently for cardinals and ordinalswewill useth<strong>is</strong> notation<br />

only for cardinals intheremain<strong>de</strong>r ofth<strong>is</strong> book. Ifwe consi<strong>de</strong>rthesuccessor<br />

of an ordinal α wewillwriteα+ 1.<br />

3. Cardinalarithmetic<br />

Similarly to ordinals we can <strong>de</strong>fine arithmetic operations on cardinals.<br />

Notethat, except for finite cardinals,these operations are different from<br />

the ordinal operations. �erefore,we have chosen differentsymbolsto<br />

<strong>de</strong>notethem.<br />

Definition 3.1. Let κ, λ∈Cn be cardinals. We <strong>de</strong>fine<br />

κ⊕λ∶=∣↓κ⊍↓λ∣ , κ⊗ λ∶=∣↓κ×↓λ∣ , κ λ ∶=∣↓κ ↓λ ∣.<br />

�e following lemmas follows immediately fromthe <strong>de</strong>finition if one<br />

recalls that, for κ∶=∣A∣ and λ∶=∣B∣, there ex<strong>is</strong>t bijections A→↓κ and<br />

B→↓λ.<br />

Lemma 3.2. Let AandBbesets.<br />

∣A⊍B∣=∣A∣⊕∣B∣ , ∣A×B∣=∣A∣⊗∣B∣ , ∣A B ∣=∣A∣ ∣B∣ .<br />

Corollary 3.3. Forallα,β∈On,we have<br />

∣↓(α+β)∣=∣↓α∣⊕∣↓β∣ and ∣↓(αβ)∣=∣↓α∣⊗∣↓β∣.<br />

�e corresponding equation for ordinal exponentiation will be <strong>de</strong>layed<br />

until Lemma 4.4.<br />

Exerc<strong>is</strong>e 3.1. Prove that, if A <strong>is</strong> a set then∣℘(A)∣=2 ∣A∣ . Hint.Take the<br />

obvious bijection℘(A)→2 A .<br />

116<br />

For finite cardinalsthese operations coinci<strong>de</strong>withtheusual ones.


Lemma 3.4. For m, n


a4. Zermelo-Fraenkelsettheory<br />

(e) Ifthere <strong>is</strong> an injective function f∶ B→C,we can <strong>de</strong>fine an injective<br />

function A⊍B→A⊍C by<br />

⟨0,a⟩↦⟨0,a⟩ and ⟨1,b⟩↦⟨1, f(b)⟩.<br />

(f) If κ≥ℵ0= ω then κ=ω+α, for some α∈On. We can <strong>de</strong>fine a<br />

bijection↓ω→↓(ω+1) by0↦ω and n↦n−1, for n>0.�<strong>is</strong> function<br />

can be exten<strong>de</strong>d to a bijection↓ω⊍↓α→↓ω⊍↓α⊍[1]. Conversely, if<br />

κκ. ◻<br />

Lemma 3.6. Let κ, λ, µ∈Cn.<br />

(a)(κ⊗λ)⊗ µ=κ⊗(λ⊗ µ)<br />

(b) κ⊗λ= λ⊗κ<br />

(c) κ⊗0=0, κ⊗ 1=κ, κ⊗2=κ⊕κ.<br />

(d) κ⊗(λ⊕ µ)=(κ⊗ λ)⊕(κ⊗ µ)<br />

(e) λ≤ µ implies κ⊗λ≤κ⊗ µ.<br />

Proof. (a)�ere <strong>is</strong> a canonical bijection(A×B)×C→A×(B×C)with<br />

⟨⟨a,b⟩,c⟩↦⟨a,⟨b,c⟩⟩.<br />

(b)�ere <strong>is</strong> a canonical bijection A×B→B×Awith⟨a,b⟩↦⟨b,a⟩.<br />

(c)A×∅=∅.�ere are canonical bijections<br />

A×{0}→A and A⊍A=[2]×A→ A×[2].<br />

(d)�ere ex<strong>is</strong>ts a bijection A×(B⊍C)→(A×B)⊍(A×C)with<br />

⟨a,⟨0,b⟩⟩↦⟨0,⟨a,b⟩⟩ and ⟨a,⟨1,c⟩⟩↦⟨1,⟨a,c⟩⟩.<br />

(e) Given an injective function f ∶ B→C we <strong>de</strong>fine an injective<br />

function A×B→A×C by⟨a,b⟩↦⟨a, f(b)⟩. ◻<br />

Lemma 3.7. Let κ, λ, µ, ν∈Cn.<br />

118<br />

(a)(κ λ ) µ = κ λ⊗µ<br />

(b)(κ⊗λ) µ = κ µ ⊗ λ µ


(c) κ λ⊕µ = κ λ ⊗ κ µ<br />

(d) κ 0 = 1, κ 1 = κ, κ 2 = κ⊗κ.<br />

(e) If κ≤λand µ≤νthen κ µ ≤ λ ν .<br />

(f) κ


a4. Zermelo-Fraenkelsettheory<br />

β1<br />

9 10 11<br />

4 5<br />

1<br />

0<br />

3<br />

2<br />

8<br />

7<br />

6<br />

β0<br />

15<br />

14<br />

13<br />

12<br />

Figure 1.. Or<strong>de</strong>ring on↓κ×↓κ<br />

Exerc<strong>is</strong>e 3.2. Provethatℵ0⊗ℵ0=ℵ0 byshowingthatthe function<br />

<strong>is</strong> bijective.<br />

↓ω×↓ω→↓ω∶⟨i, k⟩↦ 1 2(i+k)(i+k+ 1)+ k<br />

Westart by computing κ⊗ κ by induction on κ≥ℵ0.<br />

�eorem 3.8. If κ≥ℵ0 then κ⊗ κ=κ.<br />

Proof. We have κ = κ⊗ 1≤κ⊗κ. For the converse, we prove that<br />

κ⊗κ≤ κ by induction on κ.<br />

Notethat,since κ <strong>is</strong> a cardinal we have α


3. Cardinalarithmetic<br />

<strong>is</strong> an initial subset of K. If ω≤α


a4. Zermelo-Fraenkelsettheory<br />

4. Cofinality<br />

Frequently, we will construct objects as the union of an increasing sequenceA0⊆<br />

A1⊆ ... ofsets. Inth<strong>is</strong>sectionwewills<strong>tu</strong>dythe cardinality<br />

ofsuchunions.<br />

Definition 4.1. For asequence(κi)i


4. Cofinality<br />

Since∣(↓α) n ∣≤∣↓α∣⊕ℵ0, for n


a4. Zermelo-Fraenkelsettheory<br />

Definition 4.7. (a) Let⟨A,≤⟩ be a linear or<strong>de</strong>r. AsubsetX⊆A <strong>is</strong>cofinal<br />

inA if, for every a∈A,there <strong>is</strong>some element x∈Xwith a≤x.<br />

We call a function f∶ B→A cofinal ifrng f <strong>is</strong> cofinal inA.<br />

(b) �ecofinality cf α of an ordinal α <strong>is</strong> the minimal ordinal β such<br />

thatthere ex<strong>is</strong>ts a cofinal function f∶↓β→↓α.<br />

Exerc<strong>is</strong>e 4.1. Provethat every linear or<strong>de</strong>r⟨A,≤⟩ contains a cofinalsubset<br />

X⊆ Asuchthat⟨X,≤⟩ <strong>is</strong>well-or<strong>de</strong>red.<br />

Lemma 4.8. Let⟨A,≤⟩ be a linear or<strong>de</strong>r. If X <strong>is</strong> cofinal in A and Y <strong>is</strong><br />

cofinal in X then Y <strong>is</strong>cofinal in A.<br />

We can restate the <strong>de</strong>finition of the cofinality in a moreuseful form<br />

as follows.<br />

Lemma4.9. If(αi)i


Proof. �e function g∶↓β→↓α with<br />

g(γ)=max{ f(γ), sup{ g(η)+1∣η h(γ)}.<br />

�<strong>is</strong> function <strong>is</strong> cofinal since, given η


a4. Zermelo-Fraenkelsettheory<br />

Example. ω andℵ1 areregularwhileℵω <strong>is</strong>singular.<br />

�e next lemma indicatesthatthe notion of cofinality <strong>is</strong> mainly interesting<br />

for cardinals.<br />

Lemma4.15. Everyregular ordinal <strong>is</strong>acardinal.<br />

Proof. Let α ∈ On∖Cn be an ordinal that <strong>is</strong> not a cardinal and set<br />

κ∶=∣α∣


4. Cofinality<br />

Cardinal exponentiation <strong>is</strong> the least un<strong>de</strong>rstood operation of those<br />

introducedso far.�ere are many openquestionsthattheusual axioms<br />

of set theory are not strong enough to answer. For example, we do not<br />

knowwhatthevalue of2 ℵ0 <strong>is</strong>. Given an arbitrary mo<strong>de</strong>l ofsettheorywe<br />

can construct a new mo<strong>de</strong>lwhere2 ℵ0 =ℵ1, butwe can also find mo<strong>de</strong>ls<br />

where2 ℵ0 equalsℵ2 orℵ3.<br />

Intheremain<strong>de</strong>r of th<strong>is</strong>section wepresentsome elementary results<br />

thatcan beproved.�e notion of cofinality appears atseveralplaces in<br />

these proofs. First, let us compute the cardinality of all stages Sα, by a<br />

simple induction.<br />

Definition 4.19. We <strong>de</strong>finethe cardinalℶα(κ)(‘bethalpha’), forα∈On<br />

and κ∈ Cn,recursively by<br />

ℶ0(κ)∶= κ ,<br />

ℶα+1(κ)∶=2 ℶα(κ) ,<br />

and ℶδ(κ)∶=sup{ℶα(κ)∣ α κ.<br />

127


a4. Zermelo-Fraenkelsettheory<br />

Proof. Fix a cofinal function f∶↓λ→↓κ. By�eorem 4.6,we have<br />

κ λ =∣(↓κ) ↓λ ∣=∣∏↓κ∣>∣⊍ ↓ f(α)∣≥∣↓κ∣= κ.<br />

α


(c) If λ


a4. Zermelo-Fraenkelsettheory<br />

Hence, κ=ℶδ. Sinceℶδ= κ>ℵ0 we have δ> 0. To show that δ <strong>is</strong><br />

a limit suppose that δ=α+1. �enℶα < κ impliesℶδ = 2 ℶα < κ.<br />

Contradiction. ◻<br />

We conclu<strong>de</strong> th<strong>is</strong> section with some results about sets of sequences<br />

in<strong>de</strong>xed by ordinals. Aswewillsee inSection b2.1,such aset formsthe<br />

domain of atree. Recall that asequence in<strong>de</strong>xed by an ordinal α <strong>is</strong> just<br />

a function↓α→A.<br />

Definition 4.29. IfA <strong>is</strong> aset and α∈ On,we <strong>de</strong>fine<br />

A α ∶= A ↓α<br />

and A


5. �eAxiom ofReplacement<br />

Lemma4.33. If κ <strong>is</strong>an infiniteregularcardinalthen κ


a4. Zermelo-Fraenkelsettheory<br />

�eorem5.2. �e followingstatements areequivalent:<br />

(1) If F <strong>is</strong>afunctionandA⊆dom F <strong>is</strong>asetthen F[A] <strong>is</strong>alsoaset.<br />

(2) If F <strong>is</strong>afunctionand dom F <strong>is</strong>asetthenso <strong>is</strong> rng F.<br />

(3) A function F <strong>is</strong>aset if,and only if, dom F <strong>is</strong>aset.<br />

(4) �ere ex<strong>is</strong>ts no bijection F∶a→B between a set a and a proper<br />

classB.<br />

(5) AclassA <strong>is</strong>aset if,and only if,∣A∣


5. �eAxiom ofReplacement<br />

(4)⇒(2) Let F∶A→ B be a function where A= dom F <strong>is</strong> aset. Let<br />

B0∶= rng F. Since the function F∶a→B0 <strong>is</strong> surjective there ex<strong>is</strong>ts<br />

a function G∶B0→a such that F○ G= idB0. Let A0∶= rng G. �e<br />

restriction F∶ A0→ B0 <strong>is</strong> a bijection. Since A0⊆ A <strong>is</strong> a set so <strong>is</strong> B0=<br />

rng F. ◻<br />

Axiom of Replacement. If F <strong>is</strong>afunction and dom F <strong>is</strong>aset then so <strong>is</strong><br />

rng F.<br />

Le<strong>tu</strong>s finallyprovetheresultsweprom<strong>is</strong>ed intheprecedingsections.<br />

First,upto <strong>is</strong>omorph<strong>is</strong>m, On <strong>is</strong>the onlywell-or<strong>de</strong>rthat <strong>is</strong> aproper class.<br />

Lemma 5.3. Let A=⟨A,≤A⟩and B=⟨B,≤B⟩bewell-or<strong>de</strong>rs. IfAandB<br />

areproperclassesthen A≅B.<br />

Proof. Suppose that A≇B. By �eorem a3.1.11, there either ex<strong>is</strong>ts an<br />

<strong>is</strong>omorph<strong>is</strong>m f ∶ A→↓b, for some b∈B, or some <strong>is</strong>omorph<strong>is</strong>m g∶<br />

↓a→B, for somea∈A. By symmetry,we may assumew.l.o.g.the latter.<br />

↓a <strong>is</strong> asetsince≤A <strong>is</strong> le�-narrow. Hence, bythe Axiom ofReplacement,<br />

B= g[↓a] <strong>is</strong> also aset. Contradiction. ◻<br />

It follows that it does not matter which of the two <strong>de</strong>finitions of an<br />

ordinalwe adopt.<br />

Corollary 5.4. On0≅ Cn≅On.<br />

Finally, we state the general form of the Principle of Transfinite Recursion.<br />

�eorem 5.5 (Principle of Transfinite Recursion). If H∶A


a4. Zermelo-Fraenkelsettheory<br />

Lemma 5.6. Every strictly continuous function f∶ On→On has arbitrarily<br />

large fixed points.<br />

Proof. For every α∈Onwe have to find a fixed point γ≥α. If F <strong>is</strong> the<br />

fixed-point induction of f over α then F[↓ω] ex<strong>is</strong>ts. By Lemma a3.3.13<br />

it follows that γ∶= F(∞)= F(ω)≥ α <strong>is</strong> a fixed point of f . ◻<br />

Corollary 5.7. �erearearbitrarily largecardinals κ suchthat cf κ=ℵ0<br />

an<strong>de</strong>itherℵκ= κ orℶκ= κ.<br />

Proof. �e functions f∶ α↦ℵα and g∶α↦ℶα arestrictly continuous.<br />

Furthermore, they are <strong>de</strong>fined by transfinite recursion. �erefore, �eorem<br />

5.5 implies that their domain <strong>is</strong> all of On. By Lemma a3.3.13 and<br />

Lemma 5.6, it follows that f and g have arbitrarily large inductive fixed<br />

points κ, andthese fixedpoints are ofthe form<br />

κ=sup{ f n (α)∣n


6. Conclusion<br />

ex<strong>is</strong>tence of certain sets. Infinity and Replacement ensure that the cumulative<br />

hierarchy <strong>is</strong> long enough. �ere are as many stages as there<br />

are ordinals. �e Axioms of Separation and Choice on the other hand<br />

makethe hierarchywi<strong>de</strong> by ensuringthatthepower-set operationyields<br />

enoughsubsets. Inparticular, every <strong>de</strong>finablesubset ex<strong>is</strong>ts and on every<br />

setthere ex<strong>is</strong>ts awell-or<strong>de</strong>ring.<br />

Finally, let us note that the usual <strong>de</strong>finition of ZFC <strong>is</strong> based on a different<br />

axiomat<strong>is</strong>ation wherethe Axiom of Creation <strong>is</strong>replaced by four<br />

other axioms and the Axiom of Infinity <strong>is</strong> stated in a slightly different<br />

way. Nevertheless,we are justified in callingthe abovetheory ZFCsince<br />

thetwovariants are equivalent: every mo<strong>de</strong>lsat<strong>is</strong>fying one ofthe axiom<br />

systems alsosat<strong>is</strong>fiesthe other one, andviceversa.<br />

135


a4. Zermelo-Fraenkelsettheory<br />

136


Litera<strong>tu</strong>re<br />

Settheory<br />

M. D.Potter,Sets.An Introduction, OxfordUniversityPress 1990.<br />

A. Lévy,BasicSet�eory,Springer 1979, Dover2002.<br />

K. Kunen,Set�eory. An Introductionto In<strong>de</strong>pen<strong>de</strong>nceProofs, North-Holland<br />

1983.<br />

T. J. Jech,Set�eory, 3rd ed., Springer 2003.<br />

Algebra<br />

P. M. Cohn,UniversalAlgebra,2nd ed.,Springer 1981.<br />

P. M. Cohn,BasicAlgebra,Springer2003.<br />

S. Lang,Algebra, 3rd ed., Springer 2002.<br />

S. MacLane,Categories fortheWorking Mathematician, 2nd ed., Springer 1998.<br />

Topologyand latticetheory<br />

R. Engelking, GeneralTopology, 2nd ed., Hel<strong>de</strong>rmann 1989.<br />

C.-A. Faure, A. Frölicher, Mo<strong>de</strong>rnProjective Geometry, Kluwer2000.<br />

G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. M<strong>is</strong>love, and D.S.Scott,<br />

Continuous LatticesandDomains, CambridgeUniversityPress,2003.<br />

Mo<strong>de</strong>ltheory<br />

D. Marker, Mo<strong>de</strong>l�eory:An Introduction, Springer 2002.<br />

K. Tent and M.Ziegler,ACourse in Mo<strong>de</strong>l�eory, CambridgeUniversityPress<br />

2012.<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 1007


Litera<strong>tu</strong>re<br />

W. Hodges, Mo<strong>de</strong>l�eory, CambridgeUniversityPress 1993.<br />

B.Poizat,ACourse in Mo<strong>de</strong>l�eory,Springer2000.<br />

C. C. Chang and H. J. Ke<strong>is</strong>ler, Mo<strong>de</strong>l�eory, 3rd ed., North-Holland 1990.<br />

General mo<strong>de</strong>ltheory<br />

J. Barw<strong>is</strong>e and S. Feferman, eds., Mo<strong>de</strong>l-�eoretic Logics, Springer 1985.<br />

J. T. Baldwin,Categoricity, AMS 2010.<br />

R. Diaconescu, Insti<strong>tu</strong>tion-in<strong>de</strong>pen<strong>de</strong>nt Mo<strong>de</strong>l�eory, Birkhäuser2008.<br />

H.-D. Ebbinghaus and J. Flum, Finite Mo<strong>de</strong>l�eory,Springer 1995.<br />

J. Adámek and J.Rosický, LocallyPresentableandAccessibleCategories,<br />

CambridgeUniversityPress 1994.<br />

Stabilitytheory<br />

S. Buechler,EssentialStability�eory, Springer 1996.<br />

E. Casanovas,Simple�eoriesand Hyperimaginaries, CambridgeUniversity<br />

Press2011.<br />

A.Pillay, GeometricStability�eory, OxfordSciencePublications 1996.<br />

F. O.Wagner,Simple�eories, Kluwer Aca<strong>de</strong>micPubl<strong>is</strong>hers2000.<br />

S.Shelah,Classification�eory,2nd ed., North-Holland 1990.<br />

1008


SymbolIn<strong>de</strong>x<br />

Chaptera1<br />

S universe ofsets, 5<br />

a∈b membership, 5<br />

a⊆b subset, 5<br />

HF hereditary finitesets,7<br />

⋂A intersection, 11<br />

A∩B intersection, 11<br />

A∖B difference, 11<br />

acc(A) accumulation, 12<br />

fnd(A) foun<strong>de</strong>dpart, 13<br />

⋃A union,21<br />

A∪B union,21<br />

℘(A) powerset,21<br />

cutA cut of A,22<br />

Chaptera2<br />

⟨a0,... ,an−1⟩ <strong>tu</strong>ple,27<br />

A×B cartesianproduct,27<br />

dom f domain of f ,28<br />

rng f range of f ,29<br />

f(a) image of a un<strong>de</strong>r f ,29<br />

f∶ A→B function,29<br />

B A set of all functions<br />

f∶ A→ B,29<br />

idA i<strong>de</strong>ntity function, 30<br />

S○R composition of relations,<br />

30<br />

g○ f composition of functions,<br />

30<br />

R −1 inverse ofR, 30<br />

R −1 (a) inverse image, 30<br />

R∣C restriction, 30<br />

R↾C le� restriction, 31<br />

R[C] image ofC, 31<br />

(ai)i∈I sequence, 37<br />

∏i Ai<br />

pri product, 37<br />

projection, 37<br />

ā sequence, 38<br />

⊍i Ai d<strong>is</strong>join<strong>tu</strong>nion, 38<br />

A⊍B d<strong>is</strong>join<strong>tu</strong>nion, 38<br />

ini insertion map, 39<br />

⇓X initial segment, 41<br />

⇑X final segment, 41<br />

↓X initial segment, 41<br />

↑X final segment, 41<br />

[a,b] closed interval, 41<br />

(a,b) open interval, 41<br />

maxX greatest element, 42<br />

minX minimal element, 42<br />

supX supremum, 42<br />

inf X infimum, 42<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 1009


Symbol In<strong>de</strong>x<br />

A≅B <strong>is</strong>omorph<strong>is</strong>m, 44<br />

fix f fixedpoints, 48<br />

lfp f least fixedpoint, 48<br />

gfp f greatest fixedpoint, 48<br />

[a]∼ equivalence class, 54<br />

A/∼ set of∼-classes, 54<br />

TC(R) transitive closure, 55<br />

Chaptera3<br />

a + successor, 59<br />

ord(A) or<strong>de</strong>rtype,64<br />

On class of ordinals,64<br />

On0 von Neumann ordinals,69<br />

ρ(a) rank,73<br />

A


Emb(Σ) category of embeddings,<br />

153<br />

Set∗<br />

category of pointed sets,<br />

153<br />

Set 2 category of pairs, 153<br />

Cat ∗ dual category, 155<br />

F≅G na<strong>tu</strong>ral <strong>is</strong>omorph<strong>is</strong>m, 158<br />

Cong(A) set of congruencerelations,<br />

161<br />

Cong(A) congruence lattice, 161<br />

A/∼ quotient, 165<br />

Chapterb2<br />

∣x∣ length of asequence, 173<br />

x⋅y concatenation, 173<br />

⪯ prefix or<strong>de</strong>r, 173<br />

≤lex lexicographic or<strong>de</strong>r, 173<br />

∣v∣ level of avertex, 176<br />

frk(v) foundationrank, 178<br />

a⊓b infimum, 181<br />

a⊔b supremum, 181<br />

a ∗ complement, 184<br />

L op dual lattice, 190<br />

cl↓(X) i<strong>de</strong>al generated by X, 190<br />

cl↑(X) filter generated by X, 190<br />

B2<br />

two-element boolean<br />

algebra, 195<br />

ht(a) height of a,200<br />

rkP(a) partitionrank,204<br />

<strong>de</strong>g P (a) partition <strong>de</strong>gree,208<br />

Chapterb3<br />

Symbol In<strong>de</strong>x<br />

T[Σ,X] finiteΣ-terms,213<br />

tv subterm atv,214<br />

free(t) freevariables,217<br />

t A [β] value of t,217<br />

T[Σ,X] term algebra,218<br />

t[x/s] substi<strong>tu</strong>tion,220<br />

SigVar category ofsigna<strong>tu</strong>res and<br />

variables,221<br />

Sig category ofsigna<strong>tu</strong>res,222<br />

Var category ofvariables,222<br />

Term category ofterms,222<br />

A∣µ µ-reduct of A, 223<br />

Str[Σ] class ofΣ-struc<strong>tu</strong>res, 223<br />

Str[Σ,X] class of allΣ-struc<strong>tu</strong>res<br />

withvariable<br />

assignments, 223<br />

StrVar category of struc<strong>tu</strong>res and<br />

assignments, 223<br />

Str category of struc<strong>tu</strong>res, 223<br />

∏i A i direct product,225<br />

⟦φ⟧ set of indices,227<br />

ā∼u ¯ b filter equivalence,227<br />

u∣J restriction of uto J,228<br />

∏i A i /u reducedproduct,228<br />

A u ultrapower,229<br />

lim<br />

�→ D direct limit, 237<br />

⋃i A i union of a chain,241<br />

lim<br />

←� D inverse limit,241<br />

Chapterb4<br />

cl(A) closure of A,245<br />

int(A) interior of A,245<br />

1011


Symbol In<strong>de</strong>x<br />

∂A boundary of A,245<br />

rkCB(x/A) Cantor-Bendixsonrank,<br />

267<br />

spec(L) spectrum of L,272<br />

⟨x⟩ basic closedset,272<br />

clop(S) algebra of clopensubsets,<br />

276<br />

Chapterb5<br />

Aut M automorph<strong>is</strong>m group,288<br />

G/U set of cosets,288<br />

G/N factor group,290<br />

Sym Ω symmetric group,291<br />

ga action of g on a,292<br />

Gā orbit of ā,292<br />

G(X) pointw<strong>is</strong>estabil<strong>is</strong>er,293<br />

setw<strong>is</strong>e stabil<strong>is</strong>er, 293<br />

G{X}<br />

dclG(U) G-<strong>de</strong>finitional closure,297<br />

aclG(U) G-algebraic closure,297<br />

⟨ā↦ ¯ b⟩ basic openset ofthe group<br />

topology,298<br />

<strong>de</strong>gp <strong>de</strong>gree, 302<br />

Idl(R) lattice of i<strong>de</strong>als, 303<br />

R/a quotient of aring, 305<br />

Ker h kernel, 305<br />

spec(R) spectrum, 306<br />

⊕i Mi directsum, 309<br />

M (I) direct power, 309<br />

dim V dimension, 312<br />

FF(R) field of fractions, 314<br />

K(ā) subfield generated by ā, 317<br />

p[x] polynomial function, 319<br />

Aut(L/K)automorph<strong>is</strong>ms over K,<br />

326<br />

1012<br />

∣a∣ absolutevalue, 329<br />

Chapterc1<br />

ZL[K,X] Zar<strong>is</strong>ki logic, 345<br />

⊧ sat<strong>is</strong>faction relation, 346<br />

BL(B) boolean logic, 346<br />

FOκℵ0[Σ,X] infinitary first-or<strong>de</strong>r<br />

logic, 347<br />

¬φ negation, 347<br />

⋀Φ conjunction, 347<br />

⋁Φ d<strong>is</strong>junction, 347<br />

∃xφ ex<strong>is</strong>tential quantifier, 347<br />

∀xφ universalquantifier, 347<br />

FO[Σ,X] first-or<strong>de</strong>r logic, 347<br />

A⊧φ[β] sat<strong>is</strong>faction, 348<br />

true true, 349<br />

false false, 349<br />

φ∨ψ d<strong>is</strong>junction, 349<br />

φ∧ψ conjunction, 349<br />

φ→ψ implication, 349<br />

φ↔ψ equivalence, 349<br />

free(φ) freevariables, 352<br />

qr(φ) quantifierrank, 355<br />

ModL(Φ) class of mo<strong>de</strong>ls, 356<br />

Φ⊧φ entailment, 362<br />

≡ logical equivalence, 362<br />

Φ ⊧ closureun<strong>de</strong>r entailment,<br />

362<br />

�L(J) L-theory, 363<br />

≡L L-equivalence, 364<br />

dnf(φ) d<strong>is</strong>junctive normal form,<br />

369<br />

cnf(φ) conjunctive normal form,<br />

369


nnf(φ) negation normal form, 371<br />

Logi$ category of logics, 380<br />

∃ λ xφ cardinality quantifier, 383<br />

FOκℵ0(wo) FOwithwell-or<strong>de</strong>ring<br />

quantifier, 383<br />

W well-or<strong>de</strong>ring quantifier,<br />

383<br />

QK Lindström quantifier, 384<br />

SOκℵ0[Σ,Ξ] second-or<strong>de</strong>r logic, 385<br />

MSOκℵ0[Σ,Ξ] monadic<br />

second-or<strong>de</strong>r logic, 385<br />

PO category of partial or<strong>de</strong>rs,<br />

390<br />

Lb Lin<strong>de</strong>nbaum functor, 390<br />

¬φ negation, 391<br />

φ∨ψ d<strong>is</strong>junction, 391<br />

φ∧ψ conjunction, 392<br />

L∣Φ restriction toΦ, 393<br />

L/Φ local<strong>is</strong>ation toΦ, 393<br />

⊧Φ consequence moduloΦ,<br />

393<br />

≡Φ equivalence moduloΦ, 393<br />

Chapterc2<br />

EmbL(Σ) category of L-embeddings,<br />

395<br />

QFκℵ0 [Σ,X] quantifier-free<br />

formulae, 396<br />

∃∆ ex<strong>is</strong>tential closure of∆, 396<br />

∀∆ universal closure of ∆, 396<br />

∃κℵ0 ex<strong>is</strong>tential formulae, 396<br />

∀κℵ0 universal formulae, 396<br />

∃ + κℵ0 positive ex<strong>is</strong>tential<br />

formulae, 396<br />

Symbol In<strong>de</strong>x<br />

⪯∆ ∆-extension, 400<br />

⪯ elementary extension, 400<br />

Φ ⊧ ∆ ∆-consequences ofΦ, 422<br />

≤∆ preservation of<br />

∆-formulae, 422<br />

Chapterc3<br />

S(L) set oftypes, 427<br />

⟨Φ⟩ types containingΦ, 427<br />

tpL (ā/M)L-type of ā, 428<br />

S ¯s L(T) typespace for atheory, 428<br />

S ¯s L(U) typespace overU, 428<br />

S(L) typespace, 433<br />

f(p) conjugate of p, 443<br />

S∆(L) S(L∣∆)with topology<br />

induced from S(L), 456<br />

⟨Φ⟩∆ closedset in S∆(L), 456<br />

p∣∆ restrictionto∆, 459<br />

tp∆ (ā/U)∆-type of ā, 459<br />

Chapterc4<br />

≡α α-equivalence, 473<br />

≡∞ ∞-equivalence, 473<br />

pIso κ (A, B) partial <strong>is</strong>omorph<strong>is</strong>ms,<br />

474<br />

ā↦ ¯ b map ai↦ bi, 474<br />

∅ the empty function, 474<br />

Iα(A, B) back-and-forthsystem, 475<br />

I∞(A, B) limit ofthesystem, 477<br />

≅α α-<strong>is</strong>omorphic, 477<br />

≅∞ ∞-<strong>is</strong>omorphic, 477<br />

m=k n equalityupto k, 480<br />

1013


Symbol In<strong>de</strong>x<br />

φ α A,ā<br />

Hintikka formula, 482<br />

EFα(A,ā, B, ¯ b)<br />

Ehrenfeucht-Fraïssé<br />

game, 485<br />

EF κ ∞(A,ā, B, ¯ b)<br />

Ehrenfeucht-Fraïssé<br />

game, 485<br />

I κ FO(A, B)partial FO-maps ofsize κ,<br />

494<br />

⊑ κ <strong>is</strong>o ∞κ-simulation, 495<br />

≅ κ <strong>is</strong>o ∞κ-<strong>is</strong>omorphic, 495<br />

A⊑ κ 0 B I κ 0(A, B)∶A⊑ κ <strong>is</strong>o B, 495<br />

A≡ κ 0 B I κ 0(A, B)∶A≡ κ <strong>is</strong>o B, 495<br />

A⊑ κ FO B I κ FO(A, B)∶A⊑ κ <strong>is</strong>o B, 495<br />

A≡ κ FO B I κ FO(A, B)∶A≡ κ <strong>is</strong>o B, 495<br />

A⊑ κ ∞ B I κ ∞(A, B)∶ A⊑ κ <strong>is</strong>o B, 495<br />

A≡ κ ∞ B I κ ∞(A, B)∶ A≡ κ <strong>is</strong>o B, 495<br />

G(A) Gaifman graph, 501<br />

Chapterc5<br />

L≤ L ′ L ′ <strong>is</strong> as expressive as L, 509<br />

(a) algebraic, 510<br />

(b) boolean closed, 510<br />

(b+) positive boolean closed,<br />

510<br />

(c) compactness, 510<br />

(cc) countable compactness,<br />

510<br />

(fop) finite occurrenceproperty,<br />

510<br />

(kp) Karpproperty, 510<br />

(lsp) Löwenheim-Skolem<br />

property, 510<br />

(rel) closedun<strong>de</strong>r<br />

1014<br />

relativ<strong>is</strong>ations, 510<br />

(sub) closedun<strong>de</strong>rsubsti<strong>tu</strong>tions,<br />

510<br />

(<strong>tu</strong>p) Tarskiunionproperty, 510<br />

hnκ(L) Hanf number, 514<br />

lnκ(L) Löwenheim number, 514<br />

wnκ(L) well-or<strong>de</strong>ring number, 514<br />

occ(L) occurrence number, 514<br />

prΓ (K) Γ-projection, 532<br />

PCκ(L,Σ) projective L-classes, 533<br />

L0≤ κ pc L1 projective reduction, 533<br />

RPCκ(L,Σ) relativ<strong>is</strong>ed projective<br />

L-classes, 537<br />

L0≤ κ rpc L1 relativ<strong>is</strong>ed projective<br />

reduction, 537<br />

∆(L) interpolation closure, 545<br />

ifp f inductive fixedpoint, 554<br />

lim inf f leastpartial fixedpoint, 554<br />

limsup f greatestpartial fixedpoint,<br />

554<br />

fφ function <strong>de</strong>fined byφ, 561<br />

FOκℵ0(LFP) least fixed-point logic,<br />

561<br />

FOκℵ0(IFP) inflationary fixed-point<br />

logic, 562<br />

FOκℵ0(PFP) partial fixed-point<br />

logic, 562<br />

⊲φ stage compar<strong>is</strong>on, 572<br />

Chapterd1<br />

tor(G) torsionsubgroup,603<br />

a/n div<strong>is</strong>or, 604<br />

DAG theory of div<strong>is</strong>ible<br />

torsion-free abelian


groups,604<br />

ODAG theory of or<strong>de</strong>red div<strong>is</strong>ible<br />

abelian groups,604<br />

div(G) div<strong>is</strong>ible closure,605<br />

F field axioms,608<br />

ACF theory of algebraically<br />

closed fields,608<br />

RCF theory ofreal closed fields,<br />

609<br />

Chapterd2<br />

(


Symbol In<strong>de</strong>x<br />

Chapter e3<br />

Subκ(A) substruc<strong>tu</strong>res of A,759<br />

atp(ā) atomictype,765<br />

ηpq extension axiom,765<br />

T[K] extension axioms forK,<br />

766<br />

Tran[Σ] randomtheory,766<br />

κn(φ) number of mo<strong>de</strong>ls,768<br />

Pr n<br />

M[M⊧φ] <strong>de</strong>nsity of mo<strong>de</strong>ls,768<br />

Chapter e4<br />

increasing κ-<strong>tu</strong>ples,773<br />

κ→(µ) ν<br />

λ partition theorem, 773<br />

pf(η,ζ) prefix ofζ of length∣η∣, 778<br />

T∗(κ


(mon) Monotonicity, 928<br />

(nor) Normality, 928<br />

(lrf) Le�Reflexivity, 928<br />

(ltr) Le�Transitivity, 928<br />

(fin) Finite Character, 929<br />

(sym) Symmetry, 929<br />

(rbm) Right Base Monotonicity,<br />

929<br />

(srb) StrongRight Boun<strong>de</strong>dness,<br />

929<br />

cl √ closure operation<br />

associatedwith √ , 934<br />

(inv) Invariance, 941<br />

(sfin) Strong Finite Character,<br />

941<br />

(ext) Extension, 941<br />

(lbd) Le� Boun<strong>de</strong>dness, 941<br />

(rbd) Right Boun<strong>de</strong>dness, 941<br />

lb( √ ) le� boun<strong>de</strong>dness cardinal<br />

of √ , 941<br />

rb( √ ) right boun<strong>de</strong>dness<br />

cardinal of √ , 941<br />

A df√ U B <strong>de</strong>finable over, 943<br />

Symbol In<strong>de</strong>x<br />

A at√ U B <strong>is</strong>olated over, 943<br />

A s√<br />

U B non-splitting over, 943<br />

A u√<br />

U B finitely sat<strong>is</strong>fiable, 948<br />

Av(u/B) average type of u, 948<br />

√<br />

∗<br />

forking relation to √ , 953<br />

A i√<br />

U B globally invariant over, 956<br />

Chapter f3<br />

A d√<br />

U B non-dividing, 965<br />

A f√<br />

U B non-forking, 965<br />

(ind) In<strong>de</strong>pen<strong>de</strong>nce �eorem,<br />

992<br />

ā∼ ls U ¯ b ind<strong>is</strong>cernible sequence<br />

startingwith ā, ¯ b,... ,<br />

993<br />

ā≡ ls U ¯ b Lascar strong type<br />

equivalence, 993<br />

1017


Symbol In<strong>de</strong>x<br />

1018


In<strong>de</strong>x<br />

abelian group,287<br />

abstract elementary class, 839<br />

abstract in<strong>de</strong>pen<strong>de</strong>nce relation, 928<br />

accumulation, 12<br />

accumulationpoint,266<br />

action,292<br />

acyclic, 420<br />

addition of cardinals, 116<br />

addition of ordinals, 89<br />

adjoint functors,220<br />

affine geometry, 881<br />

aleph, 115<br />

algebraic, 139, 712<br />

Aut-algebraic,712<br />

G-algebraic,297<br />

algebraic class, 840<br />

algebraic closure,297,712<br />

algebraic closure operator, 51<br />

algebraic diagram, 401<br />

algebraic elements, 322<br />

algebraic field extensions, 322<br />

algebraic logic, 389<br />

algebraic prime mo<strong>de</strong>l, 592<br />

algebraically closed, 712<br />

algebraically closed field, 322, 608<br />

algebraically in<strong>de</strong>pen<strong>de</strong>nt, 321<br />

almost strongly minimal theory, 900<br />

amalgamation class, 849<br />

amalgamation property, 760, 848<br />

amalgamation square, 549<br />

Amalgamation�eorem, 422<br />

ant<strong>is</strong>ymmetric, 40<br />

arity,28,29, 139<br />

associative, 31<br />

asynchronousproduct,651<br />

atom, 347<br />

atom of a lattice, 200<br />

atomic, 200<br />

atomic diagram, 401<br />

atomic struc<strong>tu</strong>re,721<br />

atomictype,765<br />

atomless,200<br />

automorph<strong>is</strong>m, 146<br />

automorph<strong>is</strong>m group,288<br />

averagetype,791<br />

averagetype of an<br />

Ehrenfeucht-Mostowski<br />

functor, 830<br />

average type of an ind<strong>is</strong>cernible<br />

system, 797<br />

average type of anultrafilter, 948<br />

Axiom of Choice, 109, 360<br />

Axiom of Creation, 19, 360<br />

Axiom of Extensionality, 5, 360<br />

logic, algebra & geometry2012-08-08 — ©achim blumensath 1019


In<strong>de</strong>x<br />

Axiom of Infinity, 24, 360<br />

Axiom of Replacement, 133, 360<br />

Axiom of Separation, 10, 360<br />

axiom system, 356<br />

axiomat<strong>is</strong>able, 356<br />

axiomat<strong>is</strong>e, 356<br />

back-and-forth property, 474<br />

back-and-forth system, 474<br />

Baire, property of —, 265<br />

ball, 244<br />

base, closed —, 246<br />

base, open —, 246<br />

basic Horn formula,634<br />

bas<strong>is</strong>, 110, 878, 881<br />

beth, 127<br />

Beth property, 544, 717<br />

bi<strong>de</strong>finable, 751<br />

biinterpretable, 757<br />

bijective, 31<br />

boolean algebra, 184, 357, 392<br />

boolean closed, 392<br />

boolean lattice, 184<br />

boolean logic, 346, 364<br />

boundvariable, 352<br />

boundary,245,656<br />

κ-boun<strong>de</strong>d, 494<br />

boun<strong>de</strong>d in<strong>de</strong>pen<strong>de</strong>ncerelation, 941<br />

boun<strong>de</strong>d lattice, 181<br />

boun<strong>de</strong>d linear or<strong>de</strong>r, 479<br />

boun<strong>de</strong>d logic, 514<br />

boun<strong>de</strong>dness, 941<br />

box,656<br />

branch, 175<br />

branching <strong>de</strong>gree, 177<br />

Cantor d<strong>is</strong>continuum,253, 434<br />

1020<br />

Cantor normal form, 100<br />

Cantor-Bendixson rank, 267, 279<br />

cardinal, 113<br />

cardinal addition, 116<br />

cardinal exponentiation, 116, 127<br />

cardinal multiplication, 116<br />

cardinality, 113<br />

cardinality quantifier, 384<br />

cartesian product,27<br />

categorical,743<br />

category, 152<br />

¯δ-cell, 671<br />

cell <strong>de</strong>composition, 673<br />

Cell Decomposition �eorem, 674<br />

chain, 42<br />

L-chain, 403<br />

chain of struc<strong>tu</strong>res,241<br />

chaintopology,252<br />

chain-boun<strong>de</strong>d formula, 993<br />

Chang’s reduction, 432<br />

character, 105<br />

character<strong>is</strong>tic, 609<br />

character<strong>is</strong>tic of a field, 316<br />

choice function, 106<br />

Choice, Axiom of —, 109, 360<br />

class, 9, 54<br />

clopen set, 243<br />

=-closed, 413<br />

closed base, 246<br />

closed function,248<br />

closed interval,655<br />

closedset, 51, 53, 243<br />

closedsubbase,246<br />

closedunboun<strong>de</strong>d, 558<br />

closedun<strong>de</strong>rrelativ<strong>is</strong>ations, 510<br />

closedun<strong>de</strong>rsubsti<strong>tu</strong>tions, 510<br />

closure operator, 51, 110


closure ordinal, 81<br />

closurespace, 53<br />

closureun<strong>de</strong>rreverseultrapowers,<br />

633<br />

closure,topological —,245<br />

cocone,242<br />

codirected, 232<br />

coefficient, 302<br />

cofinal, 124<br />

cofinality, 124<br />

Coinci<strong>de</strong>nce Lemma, 217<br />

commutative,287<br />

commutativering, 300<br />

commuting diagram, 154<br />

comorph<strong>is</strong>m of logics, 380<br />

compact, 254, 509<br />

compact, countably —, 509<br />

Compactness�eorem, 416, 431<br />

compactness theorem, 618<br />

compatible, 375<br />

complement, 184<br />

complete, 364<br />

κ-complete, 494<br />

complete partial or<strong>de</strong>r, 43, 50, 53<br />

complete type, 427<br />

composition, 30<br />

concatenation, 173<br />

condition of filters, 621<br />

cone, 238<br />

congruencerelation, 161<br />

conjugacy class,293<br />

conjugation,293<br />

conjunction, 347, 391<br />

conjunctive normal form, 369<br />

connected, <strong>de</strong>finably —, 659<br />

consequence, 362, 390, 422<br />

In<strong>de</strong>x<br />

cons<strong>is</strong>tence of filterswith conditions,<br />

621<br />

cons<strong>is</strong>tent, 356<br />

constant, 29, 139<br />

constructedset,735<br />

construction,735<br />

continuous, 46, 134, 248<br />

contradictory formulae, 524<br />

contravariant, 157<br />

coset,288<br />

countable, 110, 115<br />

countably compact, 509<br />

covariant, 157<br />

cover,254<br />

Creation, Axiom of —, 19, 360<br />

cumulative hierarchy, 18<br />

cut,22<br />

<strong>de</strong>ciding a condition,621<br />

<strong>de</strong>finable,712<br />

Aut-<strong>de</strong>finable,712<br />

G-<strong>de</strong>finable,297<br />

<strong>de</strong>finable expansion, 375<br />

<strong>de</strong>finable struc<strong>tu</strong>re,751<br />

<strong>de</strong>finabletype, 466, 943<br />

<strong>de</strong>finablewith parameters, 657<br />

<strong>de</strong>finably connected, 659<br />

<strong>de</strong>fining a set, 349<br />

<strong>de</strong>finition of a type, 465<br />

<strong>de</strong>finitional closed, 712<br />

<strong>de</strong>finitional closure,297,712<br />

<strong>de</strong>gree of apolynomial, 302<br />

<strong>de</strong>nse class, 1001<br />

<strong>de</strong>nse linear or<strong>de</strong>r, 496<br />

κ-<strong>de</strong>nse linear or<strong>de</strong>r, 496<br />

<strong>de</strong>nse or<strong>de</strong>r, 357<br />

<strong>de</strong>nse set, 263<br />

1021


In<strong>de</strong>x<br />

<strong>de</strong>nse sets in directed or<strong>de</strong>rs, 233<br />

<strong>de</strong>pen<strong>de</strong>nce relation, 875<br />

<strong>de</strong>pen<strong>de</strong>nt, 875<br />

<strong>de</strong>pen<strong>de</strong>nt set, 110<br />

<strong>de</strong>rivation, 301<br />

diagram, 236, 241<br />

L-diagram, 401<br />

Diagram Lemma, 401, 530<br />

difference, 11<br />

dimension, 881<br />

dimension function, 882<br />

dimension of a cell,671<br />

dimension of avectorspace, 312<br />

direct limit, 237<br />

direct power, 309<br />

direct product,225<br />

directsum of modules, 309<br />

directed, 232<br />

directed diagram, 236<br />

d<strong>is</strong>continuum,253<br />

d<strong>is</strong>crete linear or<strong>de</strong>r, 479<br />

d<strong>is</strong>crete topology, 244<br />

d<strong>is</strong>integrated matroid, 888<br />

d<strong>is</strong>join<strong>tu</strong>nion, 38<br />

d<strong>is</strong>junction, 347, 391<br />

d<strong>is</strong>junctive normal form, 369<br />

d<strong>is</strong>tributive, 184<br />

dividing, 965<br />

dividing chain, 977<br />

dividing κ-tree, 985<br />

div<strong>is</strong>ible closure,605<br />

div<strong>is</strong>ible group,604<br />

domain,28, 141<br />

dual category, 155<br />

dual lattice, 190<br />

Ehrenfeucht-Fraïssé game, 485, 488<br />

1022<br />

Ehrenfeucht-Mostowski functor, 830,<br />

846<br />

Ehrenfeucht-Mostowski mo<strong>de</strong>l, 830<br />

element of a set, 5<br />

elementary diagram, 401<br />

elementary embedding, 395, 400<br />

elementary extension, 400<br />

elementary map, 395<br />

elementarysubstruc<strong>tu</strong>re, 400<br />

eliminationset, 588<br />

embedding, 44, 146, 237, 396<br />

∆-embedding, 395<br />

K-embedding, 839<br />

elementary —, 395<br />

embedding of a tree into a lattice, 206<br />

embedding of logics, 380<br />

embedding of permutation groups,<br />

752<br />

embedding, elementary —, 400<br />

endomorph<strong>is</strong>mring, 307<br />

entailment, 362, 390<br />

epimorph<strong>is</strong>m, 155<br />

equivalence class, 54<br />

equivalence of categories, 158<br />

equivalencerelation, 54, 357<br />

L-equivalent, 364<br />

α-equivalent, 473, 488<br />

equivalent formulae, 362<br />

Erdős-Rado theorem, 776<br />

Eukli<strong>de</strong>an norm,243<br />

even, 770<br />

exchange property, 110<br />

ex<strong>is</strong>tential, 396<br />

ex<strong>is</strong>tential closure, 597<br />

ex<strong>is</strong>tentialquantifier, 347<br />

ex<strong>is</strong>tentially closed, 597<br />

expansion, 145, 842


expansion, <strong>de</strong>finable —, 375<br />

explicit <strong>de</strong>finition, 544<br />

exponentiation of cardinals, 116, 127<br />

exponentiation of ordinals, 89<br />

extension, 142, 941<br />

∆-extension, 400<br />

extension axiom, 765<br />

extension of fields, 317<br />

extension, elementary —, 400<br />

Extensionality, Axiom of —, 5, 360<br />

factor<strong>is</strong>ation, 165<br />

Factor<strong>is</strong>ation Lemma, 148<br />

family, 37<br />

field, 300, 359, 400, 608<br />

field extension, 317<br />

field of a relation, 29<br />

field of fractions, 314<br />

field, real —, 329<br />

field, real closed —, 332<br />

filter, 189, 193, 430<br />

final segment, 41<br />

κ-finitary set of partial <strong>is</strong>omorph<strong>is</strong>ms,<br />

494<br />

finite, 115<br />

finite character, 51, 105, 929<br />

finite character, strong —, 941<br />

finite intersection property, 197<br />

finite occurrenceproperty, 509<br />

finite, being — over aset,674<br />

finitely axiomat<strong>is</strong>able, 356<br />

finitely branching, 177<br />

finitely generated, 144<br />

finitely sat<strong>is</strong>fiable type, 948<br />

first-or<strong>de</strong>r interpretation, 348, 377<br />

first-or<strong>de</strong>r logic, 347<br />

fixed point, 48, 81, 134, 553<br />

fixed-point induction,77<br />

fixed-pointrank, 572<br />

follow, 362<br />

forcing, 621<br />

forgetful functor, 157,220<br />

forking chain, 977<br />

forkingrelation, 941<br />

formalpowerseries, 301<br />

formula, 346<br />

foundationrank, 178<br />

foun<strong>de</strong>d, 13<br />

Fraïssé limit, 764<br />

free algebra, 218<br />

free extension of types, 942<br />

√<br />

-free extension of types, 942<br />

free mo<strong>de</strong>l, 639<br />

free struc<strong>tu</strong>res,648<br />

freevariables,217, 352<br />

function,29<br />

functional,29, 139<br />

functor, 157<br />

In<strong>de</strong>x<br />

Gaifman graph, 501<br />

Gaifman,�eorem of —, 507<br />

Galo<strong>is</strong>sa<strong>tu</strong>ratedstruc<strong>tu</strong>re, 855<br />

Galo<strong>is</strong>stable, 855<br />

Galo<strong>is</strong>type, 841<br />

game,79<br />

general<strong>is</strong>edproduct,650<br />

κ-generated, 239, 759, 809<br />

generatedsubstruc<strong>tu</strong>re, 144<br />

generated, finitely —, 144<br />

generating, 41<br />

generating an i<strong>de</strong>al, 304<br />

generator, 144, 639<br />

geometric dimension function, 882<br />

geometric in<strong>de</strong>pen<strong>de</strong>ncerelation, 929<br />

1023


In<strong>de</strong>x<br />

geometry, 881<br />

graduatedtheory, 596,681<br />

graph, 39<br />

greatest element, 41<br />

greatest fixed point, 553<br />

greatest lower bound, 42<br />

greatestpartial fixedpoint, 554<br />

group, 34, 287, 358<br />

group action,292<br />

group, or<strong>de</strong>red —,604<br />

guard, 349<br />

Hanf number, 514, 534, 847<br />

Hanf’s �eorem, 502<br />

Hausdorffspace,253<br />

height, 176<br />

height in a lattice, 200<br />

Henkin property, 724<br />

Henkin set, 724<br />

Herbrand mo<strong>de</strong>l, 412, 724<br />

hereditary, 12<br />

κ-hereditary, 760, 809<br />

hereditary finite, 7<br />

Hintikka formula, 482, 483<br />

Hintikka set, 414, 724, 725<br />

h<strong>is</strong>tory, 15<br />

homeomorph<strong>is</strong>m, 248<br />

homogeneous,685,773<br />

≈-homogeneous,779<br />

κ-homogeneous, 500,685<br />

homogeneous matroid, 888<br />

homomorphic image, 147,643<br />

homomorph<strong>is</strong>m, 146, 396<br />

Homomorph<strong>is</strong>m �eorem, 168<br />

homotopic interpretations, 756<br />

Horn formula,634<br />

1024<br />

i<strong>de</strong>al, 189, 193, 303<br />

i<strong>de</strong>ntity, 153<br />

image, 31<br />

implication, 349<br />

implicit <strong>de</strong>finition, 544<br />

inclusion morph<strong>is</strong>m, 393<br />

incons<strong>is</strong>tent, 356<br />

k-incons<strong>is</strong>tent, 965<br />

increasing, 44<br />

in<strong>de</strong>pen<strong>de</strong>nce property, 799<br />

in<strong>de</strong>pen<strong>de</strong>nce relation, 928<br />

in<strong>de</strong>pen<strong>de</strong>nce relation of a matroid,<br />

927<br />

In<strong>de</strong>pen<strong>de</strong>nce �eorem, 992<br />

in<strong>de</strong>pen<strong>de</strong>nt, 875<br />

in<strong>de</strong>pen<strong>de</strong>nt set, 110, 881<br />

in<strong>de</strong>x of asubgroup,288<br />

ind<strong>is</strong>cerniblesequence,789<br />

ind<strong>is</strong>cerniblesystem,796<br />

inducedsubstruc<strong>tu</strong>re, 142<br />

inductive,77<br />

inductive fixedpoint, 81, 553, 554<br />

inductively or<strong>de</strong>red, 81, 105<br />

infimum, 42, 181<br />

infinitary first-or<strong>de</strong>r logic, 347<br />

infinitary second-or<strong>de</strong>r logic, 385<br />

infinite, 115<br />

Infinity, Axiom of —, 24, 360<br />

inflationary, 81<br />

inflationary fixed-point logic, 562<br />

initial object, 156<br />

initial segment, 41<br />

injective, 31<br />

κ-injective struc<strong>tu</strong>re, 852<br />

innervertex, 175<br />

insertion, 39<br />

inspired by, 797


integral domain, 314, 611<br />

interior, 245, 656<br />

interpolant, 549<br />

interpolation closure, 545<br />

interpolationproperty, 543<br />

∆-interpolation property, 543<br />

interpretation, 346, 348, 377<br />

intersection, 11<br />

interval, 655<br />

invariance, 941<br />

invariant class, 1001<br />

invariant type, 956<br />

inverse, 30, 155<br />

inverse diagram, 241<br />

inverse limit, 241<br />

inverse reduct, 819<br />

irreduciblepolynomial, 320<br />

irreflexive, 40<br />

<strong>is</strong>olated point, 266<br />

<strong>is</strong>olated type, 721, 943<br />

<strong>is</strong>omorphic, 44<br />

α-<strong>is</strong>omorphic, 477, 488<br />

<strong>is</strong>omorphic copy, 643<br />

<strong>is</strong>omorph<strong>is</strong>m, 44, 146, 155, 158, 396<br />

<strong>is</strong>omorph<strong>is</strong>m, partial —, 473<br />

joint embedding property, 760, 849<br />

Jónsson class, 849<br />

Karp property, 509<br />

kernel, 148<br />

kernel of a ring homomorph<strong>is</strong>m, 305<br />

label, 213<br />

largesubsets,720<br />

Lascarstrongtype, 993<br />

lattice, 181, 357, 392<br />

leaf, 175<br />

least element, 41<br />

least fixed point, 553<br />

least fixed-point logic, 561<br />

least partial fixed point, 554<br />

leas<strong>tu</strong>pper bound, 42<br />

le� boun<strong>de</strong>d, 941<br />

le� i<strong>de</strong>al, 303<br />

le� reflexivity, 928<br />

le� restriction, 31<br />

le� transitivity, 928<br />

le�-narrow, 57<br />

length, 173<br />

level, 176<br />

level embedding function,779<br />

levels of a<strong>tu</strong>ple,779<br />

lexicographic or<strong>de</strong>r, 173, 869<br />

li�ing functions, 551<br />

limit, 59<br />

limitstage, 19<br />

Lin<strong>de</strong>nbaum algebra, 390<br />

Lin<strong>de</strong>nbaum functor, 390<br />

Lindström quantifier, 384<br />

linear in<strong>de</strong>pen<strong>de</strong>nce, 309<br />

linear matroid, 881<br />

linear or<strong>de</strong>r, 40<br />

linear representation, 585<br />

literal, 347<br />

local, 504<br />

local enumeration,670<br />

κ-local functor, 809<br />

local<strong>is</strong>ation morph<strong>is</strong>m, 393<br />

local<strong>is</strong>ation of a logic, 393<br />

locally compact, 254<br />

locally finite matroid, 888<br />

locally modular matroid, 888<br />

logic, 346<br />

In<strong>de</strong>x<br />

1025


In<strong>de</strong>x<br />

logical system, 387<br />

Łoś’ theorem, 615<br />

Łoś-Tarski �eorem, 584<br />

Löwenheim number, 514, 534, 537, 839<br />

Löwenheim-Skolem property, 509<br />

Löwenheim-Skolem-Tarski �eorem,<br />

421<br />

lower bound, 42<br />

lower fixed-point induction, 554<br />

map,29<br />

∆-map, 395<br />

map, elementary —, 395<br />

mapping, 29<br />

matroid, 880<br />

maximal element, 41<br />

maximal i<strong>de</strong>al, 314<br />

maximal i<strong>de</strong>al/filter, 189<br />

meagre, 264<br />

membership relation, 5<br />

minimal, 13, 57<br />

minimal element, 41<br />

minimal polynomial, 323<br />

minimal rank and <strong>de</strong>gree, 208<br />

minimal set, 893<br />

mo<strong>de</strong>l, 346<br />

mo<strong>de</strong>l companion, 597<br />

mo<strong>de</strong>l of a presentation, 639<br />

mo<strong>de</strong>l-complete, 597<br />

κ-mo<strong>de</strong>l-homogeneousstruc<strong>tu</strong>re, 852<br />

modular, 184<br />

modular lattice,200<br />

modular law,202,203<br />

modular matroid, 888<br />

modularity, 938<br />

module, 306<br />

monadic second-or<strong>de</strong>r logic, 385<br />

1026<br />

monoid, 31, 175, 287<br />

monomorph<strong>is</strong>m, 155<br />

monotone, 656<br />

monotonicity, 928<br />

monster mo<strong>de</strong>l, 720<br />

Morley <strong>de</strong>gree, 920<br />

Morley rank, 917<br />

Morley sequence, 958<br />

Morley-free extension of atype, 920<br />

morph<strong>is</strong>m, 152<br />

morph<strong>is</strong>m of logics, 380<br />

morph<strong>is</strong>m of matroids, 888<br />

morph<strong>is</strong>m of permutation groups,751<br />

multiplication of cardinals, 116<br />

multiplication of ordinals, 89<br />

na<strong>tu</strong>ral <strong>is</strong>omorph<strong>is</strong>m, 158<br />

na<strong>tu</strong>raltransformation, 158<br />

negation, 347, 391<br />

negation normal form, 371<br />

negative occurrence, 561<br />

neighbourhood,243<br />

neutral element, 31<br />

no<strong>de</strong>, 175<br />

normalsubgroup,289<br />

normality, 928<br />

nowhere <strong>de</strong>nse,264<br />

o-minimal,658, 802<br />

object, 152<br />

occurrence number, 514<br />

oligomorphic,292,743<br />

omitting a type, 428<br />

omitting types, 432<br />

open base, 246<br />

open cover, 254<br />

open <strong>de</strong>nse or<strong>de</strong>r, 357


open interval, 655<br />

open set, 243<br />

opensubbase,247<br />

orbit,292<br />

or<strong>de</strong>r, 356<br />

or<strong>de</strong>r property, 463<br />

or<strong>de</strong>r topology, 251, 656<br />

or<strong>de</strong>r type, 64, 789<br />

or<strong>de</strong>rable ring, 329<br />

or<strong>de</strong>red group,604<br />

or<strong>de</strong>redpair,27<br />

or<strong>de</strong>redring, 329<br />

ordinal, 64<br />

ordinal addition, 89<br />

ordinal exponentiation, 89<br />

ordinal multiplication, 89<br />

ordinal,von Neumann —,69<br />

package,737<br />

pair, 27<br />

parameter-<strong>de</strong>finable, 657<br />

partial fixed point, 554<br />

partial fixed-point logic, 562<br />

partial function,29<br />

partial <strong>is</strong>omorph<strong>is</strong>m, 473<br />

partial <strong>is</strong>omorph<strong>is</strong>m modulo a filter,<br />

626<br />

partial or<strong>de</strong>r, 40, 356<br />

partial or<strong>de</strong>r, strict —, 40<br />

partition, 55, 204<br />

partition <strong>de</strong>gree, 208<br />

partition rank, 204<br />

partitioning a relation, 674<br />

path, 175<br />

Peano Axioms, 386<br />

pinning down, 514<br />

point, 243<br />

In<strong>de</strong>x<br />

polynomial, 302<br />

polynomial function, 319<br />

polynomial ring, 302<br />

positive ex<strong>is</strong>tential, 396<br />

positive occurrence, 561<br />

positiveprimitive,634<br />

power set, 21<br />

predicate, 28<br />

predicate logic, 346<br />

prefix, 173<br />

prefix or<strong>de</strong>r, 173<br />

preforking relation, 941<br />

prelattice, 193<br />

prenex normal form, 371<br />

preor<strong>de</strong>r, 192, 390<br />

presentation, 639<br />

preservation by a function, 395<br />

preservation in products,634<br />

preservation insubstruc<strong>tu</strong>res, 398<br />

preservation inunions of chains, 399<br />

preserving fixed points, 551<br />

prime field, 316<br />

prime i<strong>de</strong>al, 194, 306<br />

prime mo<strong>de</strong>l, 734<br />

prime mo<strong>de</strong>l, algebraic, 592<br />

primitive formula, 597<br />

principal i<strong>de</strong>al/filter, 189<br />

Principle ofTransfiniteRecursion,75,<br />

133<br />

product,27, 37, 643<br />

product of categories, 156<br />

product of linear or<strong>de</strong>rs, 86<br />

producttopology,259<br />

product, direct —,225<br />

product, general<strong>is</strong>ed —,650<br />

product,reduced —,228<br />

product,subdirect —,226<br />

1027


In<strong>de</strong>x<br />

projection, 37, 532<br />

projective class, 532<br />

projective geometry, 887<br />

projectively reducible, 533<br />

projectively κ-sa<strong>tu</strong>rated,702<br />

proper, 189<br />

property of Baire,265<br />

pseudo-elementary, 533<br />

pseudo-sa<strong>tu</strong>rated,705<br />

quantifier elimination, 588,610<br />

quantifierrank, 355<br />

quantifier-free, 355<br />

quantifier-free formula, 396<br />

quasivariety,643<br />

quotient, 165<br />

Rado graph,766<br />

Ramsey’stheorem,774<br />

random graph,766<br />

randomtheory,766<br />

range,29<br />

rank,73, 178<br />

∆-rank, 917<br />

rank, foundation –, 178<br />

real closed field, 332, 609<br />

real closure of a field, 332<br />

real field, 329<br />

real<strong>is</strong>ing a type, 428<br />

reducedproduct,228,643<br />

reduct, 145<br />

µ-reduct, 223<br />

reflexive, 40<br />

regular, 125<br />

regular filter,617<br />

regular logic, 510<br />

relation,28<br />

1028<br />

relational, 139<br />

relationalvariant of a struc<strong>tu</strong>re, 821<br />

relativ<strong>is</strong>ation, 376, 510<br />

relativ<strong>is</strong>ed projective class, 537<br />

relativ<strong>is</strong>ed projectively reducible, 537<br />

relativ<strong>is</strong>ed quantifiers, 349<br />

relativ<strong>is</strong>ed reduct, 537<br />

Replacement, Axiom of —, 133, 360<br />

replica functor, 823<br />

restriction, 30<br />

restriction of a filter, 228<br />

restriction of a Galo<strong>is</strong> type, 859<br />

restriction of a logic, 393<br />

restriction of a type, 459<br />

retract of a logic, 446<br />

retraction of logics, 446<br />

reverseultrapower,633<br />

right base monotonicity, 929<br />

right boun<strong>de</strong>d, 941<br />

ring, 300, 359<br />

ring, or<strong>de</strong>rable —, 329<br />

ring, or<strong>de</strong>red —, 329<br />

root, 175<br />

root of a polynomial, 319<br />

Ryll-Nardzewski �eorem, 743<br />

sat<strong>is</strong>faction, 346<br />

sat<strong>is</strong>faction relation, 346, 348<br />

sat<strong>is</strong>fiable, 356<br />

sa<strong>tu</strong>rated,691<br />

κ-sa<strong>tu</strong>rated, 565,691<br />

κ-sa<strong>tu</strong>rated,projectively —,702<br />

Scott height, 483<br />

Scott sentence, 483<br />

second-or<strong>de</strong>r logic, 385<br />

segment, 41<br />

semantics functor, 387


semantics of first-or<strong>de</strong>r logic, 348<br />

semi-strict homomorph<strong>is</strong>m, 146<br />

semilattice, 181<br />

sentence, 352<br />

separated formulae, 524<br />

Separation, Axiom of —, 10, 360<br />

sequence, 37<br />

signa<strong>tu</strong>re, 139, 141, 221, 222<br />

simple struc<strong>tu</strong>re, 315<br />

simple theory, 975<br />

simply closed, 592<br />

singular, 125<br />

skew embedding, 786<br />

skew field, 300<br />

Skolem axiom, 406<br />

Skolem expansion, 843<br />

Skolem function, 406<br />

Skolemtheory, 406<br />

Skolem<strong>is</strong>ation, 406<br />

smallsubsets,720<br />

sort, 141<br />

spanning, 878<br />

special mo<strong>de</strong>l,705<br />

specification of a dividing chain, 977<br />

specification of a dividing κ-tree, 985<br />

specification of a forking chain, 977<br />

spectrum,272, 431, 434<br />

spectrum of aring, 306<br />

spine, 825<br />

stabil<strong>is</strong>er, 293<br />

κ-stable, 463<br />

stage, 15, 77<br />

stage compar<strong>is</strong>on relation, 572<br />

Stone space, 276, 431, 434<br />

strict homomorph<strong>is</strong>m, 146<br />

strict Horn formula,634<br />

strict∆-map, 395<br />

strict or<strong>de</strong>r property, 804<br />

strict partial or<strong>de</strong>r, 40<br />

strictly increasing, 44<br />

strictly monotone, 656<br />

strong γ-chain, 861<br />

strong γ-limit, 861<br />

strong finite character, 941<br />

strong limit cardinal, 705<br />

strong right boun<strong>de</strong>dness, 929<br />

strongly homogeneous,685<br />

strongly κ-homogeneous,685<br />

strongly local functor, 825<br />

strongly minimalset, 893<br />

strongly minimal theory, 900, 990<br />

struc<strong>tu</strong>re, 139, 141, 223<br />

subbase, closed —,246<br />

subbase, open —,247<br />

subcategory, 156<br />

subcover,254<br />

subdirectproduct,226<br />

subdirectly irreducible,226<br />

subfield, 316<br />

subformula, 352<br />

subset, 5<br />

subspacetopology,248<br />

subspace, closure —,248<br />

substi<strong>tu</strong>tion,220, 367, 510<br />

substruc<strong>tu</strong>re, 142,643, 759, 809<br />

∆-substruc<strong>tu</strong>re, 400<br />

K-substruc<strong>tu</strong>re, 840<br />

substruc<strong>tu</strong>re, elementary —, 400<br />

substruc<strong>tu</strong>re, generated —, 144<br />

substruc<strong>tu</strong>re, induced —, 142<br />

subterm,214<br />

subtree, 176<br />

successor, 59, 175<br />

successorstage, 19<br />

In<strong>de</strong>x<br />

1029


In<strong>de</strong>x<br />

sum of linear or<strong>de</strong>rs, 85<br />

superset, 5<br />

supremum, 42, 181<br />

surjective, 31<br />

symbol, 139<br />

symmetric, 40<br />

symmetric group,291<br />

symmetric in<strong>de</strong>pen<strong>de</strong>ncerelation,<br />

929<br />

syntax functor, 387<br />

Tarskiunionproperty, 510<br />

tautology, 356<br />

term, 213<br />

term algebra, 218<br />

term domain, 213<br />

term,value of a —,217<br />

term-reduced, 368<br />

terminal object, 156<br />

L-theory, 363<br />

theory of a functor, 815<br />

topological closure,245,656<br />

topological closure operator, 51,245<br />

topological group,298<br />

topologicalspace,243<br />

topology, 243<br />

topology of the type space, 433<br />

torsion element, 603<br />

torsion-free, 603<br />

total or<strong>de</strong>r, 40<br />

totally d<strong>is</strong>connected, 253<br />

totally ind<strong>is</strong>cernible sequence,790<br />

transcen<strong>de</strong>nce bas<strong>is</strong>, 322<br />

transcen<strong>de</strong>nce <strong>de</strong>gree, 322<br />

transcen<strong>de</strong>ntal elements, 322<br />

transcen<strong>de</strong>ntal field extensions, 322<br />

transfinite recursion,75, 133<br />

1030<br />

transitive, 12, 40<br />

transitive action, 292<br />

transitive closure, 55<br />

transitive <strong>de</strong>pen<strong>de</strong>ncerelation, 875<br />

transitivity, le� —, 928<br />

tree, 175<br />

treeproperty, 984<br />

tree-ind<strong>is</strong>cernible,797<br />

trivial filter, 189<br />

trivial i<strong>de</strong>al, 189<br />

trivialtopology,244<br />

<strong>tu</strong>ple,28<br />

Tychonoff,�eorem of —,261<br />

type, 459<br />

L-type, 427<br />

Ξ-type,702<br />

α-type, 428<br />

¯s-type, 428<br />

type of a function, 141<br />

type of arelation, 141<br />

typespace, 433<br />

type topology, 433<br />

type, average —, 791<br />

type, average — of an ind<strong>is</strong>cernible<br />

system, 797<br />

type, complete —, 427<br />

type, Lascar strong —, 993<br />

types of <strong>de</strong>nse linear or<strong>de</strong>rs, 429<br />

ultrafilter, 194, 430<br />

ultrahomogeneous,761<br />

ultrapower,229<br />

ultraproduct,229,695<br />

unboun<strong>de</strong>d class, 847<br />

uncountable, 115<br />

uniform dividing chain, 978<br />

uniform dividing κ-tree, 985


uniform forking chain, 978<br />

uniformly finite, being — over aset,<br />

674<br />

union,21<br />

union of a chain,241, 403, 586<br />

unit of aring, 314<br />

universal, 396<br />

κ-universal, 691,760<br />

universalquantifier, 347<br />

universalstruc<strong>tu</strong>re, 852<br />

universe, 139, 141<br />

unsat<strong>is</strong>fiable, 356<br />

unstable, 463<br />

upper bound, 42<br />

upper fixed-point induction, 554<br />

valid, 356<br />

value of aterm,217<br />

variable,222<br />

variablesymbols, 347<br />

variables, free —, 217, 352<br />

variety, 643<br />

Vaughtianpair, 901<br />

vectorspace, 306<br />

vertex, 175<br />

von Neumann ordinal,69<br />

In<strong>de</strong>x<br />

weak γ-chain, 861<br />

weak γ-limit, 861<br />

weak homomorphic image, 147,643<br />

weakly regular logic, 510<br />

well-foun<strong>de</strong>d, 13, 57, 81, 109<br />

well-or<strong>de</strong>r, 57, 109, 133, 494<br />

well-or<strong>de</strong>ring number, 514, 534<br />

well-or<strong>de</strong>ring quantifier, 383, 384<br />

winning strategy, 486<br />

word construction, 816, 821<br />

Zar<strong>is</strong>ki logic, 345<br />

Zar<strong>is</strong>ki topology, 244<br />

zero-dimensional, 253<br />

zero-div<strong>is</strong>or, 314<br />

Zero-One Law, 770<br />

ZFC, 359<br />

Zorn’s Lemma, 110<br />

1031


1032<br />

�e Roman and Frak<strong>tu</strong>r alphabets<br />

A a A a N n N n<br />

B b B b O o O o<br />

C c C $ P p P p<br />

D d D d Q q Q q<br />

E e E e R r R r<br />

F f F f S s S s +<br />

G g G g T t T t<br />

H h H h U u U u<br />

I i J i V v V v<br />

J j J j W w W w<br />

K k K k X x X x<br />

L l L l Y y Y y<br />

M m M m Z z Z z<br />

�e Greek alphabet<br />

A α alpha N ν nu<br />

B β beta Ξ ξ xi<br />

Γ γ gamma O o omicron<br />

∆ δ <strong>de</strong>lta Π π pi<br />

E ε epsilon P ρ rho<br />

Z ζ zeta Σ σ sigma<br />

H η eta T τ tau<br />

Θ ϑ theta Υ υ upsilon<br />

I ι iota Φ ϕ phi<br />

K κ kappa X χ chi<br />

Λ λ lambda Ψ ψ psi<br />

M µ mu Ω ω omega

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!