06.01.2013 Views

Alcohol - University of Colorado Boulder

Alcohol - University of Colorado Boulder

Alcohol - University of Colorado Boulder

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Alcohol</strong><br />

Aubrey Fox, Tasha Lalos, Robin Jasmin, Tony<br />

Randazzo, Andrea Sobel, Emily Walter


History and Importance<br />

• Intentionally fermented beverages have<br />

been found in the Neolithic period<br />

(~10,000 B.C.)<br />

• 40 % <strong>of</strong> all college students report<br />

engaging in binge drinking<br />

• ~1,825 die from alcohol related injury<br />

• ~700,000 students are assaulted due to<br />

alcohol use


<strong>Alcohol</strong>ism


<strong>Alcohol</strong>ism<br />

• A chronic and progressive disease that<br />

includes:<br />

o Problems controlling your drinking<br />

o Being preoccupied with alcohol<br />

o Continuing to use alcohol even when it<br />

causes problems<br />

o Physical dependence<br />

o Withdrawal symptoms


• Neurochemical systems reinforce effect<br />

<strong>of</strong> alcohol:<br />

o GABA<br />

Neurochemical Systems<br />

o Opioid Peptide<br />

o Dopamine (DA)<br />

www.wikipedia.org/<br />

o Serotonin<br />

o Glutamate


Ethanol<br />

• Ethanol acts as a positive enforcer<br />

o increases firing in the ventral tegmental<br />

area (VTA)<br />

o elevates extracellular DA concentrations in<br />

the nucleus accumbens (NAc)<br />

• VTA and NAc both function in the reward<br />

pathway<br />

www.wikipedia.org/


Ferrer, E., M.A. Moral, and J. Bozzo. "Antiepileptic Drugs in <strong>Alcohol</strong>ism: An Update." Drugs <strong>of</strong> the Future 32.5 (2007): 429.<br />

Print.


Positive Reinforcement<br />

• A rewarding action that increases the<br />

probability <strong>of</strong> exhibiting a certain<br />

response.<br />

• The positive effects on the reward<br />

system lead to alcoholism<br />

o For example, dopamine and opioid release


Negative Reinforcement<br />

• A behavior is strengthened when<br />

stopping or avoiding a negative<br />

condition.<br />

o Ex: drinking to avoid anxiety/withdrawal<br />

symptoms<br />

• A critical component during the<br />

transition to dependence.<br />

o Increases drinking to avoid withdrawal


Inhibition <strong>of</strong> Dopamine Release<br />

• GABA normally inhibits dopamine release<br />

• <strong>Alcohol</strong> (ethanol) inhibits GABA, thus<br />

increasing dopamine release<br />

• DA release specifically in the Nucleus<br />

Accumbens leads directly to reward<br />

pathway


MOR<br />

• OPRM1 is a gene that encodes MOR<br />

o MOR is an opioid receptor<br />

• DA neurotransmission is modulated by<br />

MOR<br />

Heilig, Markus, David Goldman, Wade Berrettini, and Charles P. O'Brien. "Pharmacogenetic Approach to the Treatment <strong>of</strong> <strong>Alcohol</strong> Addiction." National Center for Biotechnology<br />

Information. U.S. National Library <strong>of</strong> Medicine, n.d. Web. 26 Oct. 2012.


Why is MOR Important?<br />

• A SNP on the OPRM1 gene at position<br />

118A --> 118G has been linked to alcohol<br />

reward<br />

o encodes an asparagine (N) --> aspartate (D)<br />

substitution<br />

www.wikipedia.org/


• 118G SNP<br />

OPRM1 and Mice<br />

o Mice with this SNP had a four fold increase<br />

<strong>of</strong> DA release compared to 118A mice<br />

• 118A to 118G increases alcohol induced<br />

dopamine release in the nucleus<br />

accumbens


MOR Experiment in Human<br />

Males<br />

Heilig, Markus, David Goldman, Wade Berrettini, and Charles P. O'Brien. "Pharmacogenetic Approach to the Treatment <strong>of</strong> <strong>Alcohol</strong> Addiction." National Center for Biotechnology<br />

Information. U.S. National Library <strong>of</strong> Medicine, n.d. Web. 26 Oct. 2012.


• Opioid receptor antagonist<br />

• A drug that aims to lessen alcohol<br />

cravings and reward outcomes.<br />

o Helps to "kick" addiction<br />

o Trade names:<br />

§� Revia<br />

§� Depade<br />

§� Vivitrol<br />

Naltrexone<br />

www.wikipedia.org/


Naltrexone Target<br />

• Naltrexone targets the OPRM1 gene<br />

o Naltrexone is more beneficial in treating<br />

alcoholism in those who carry the 118 G SNP<br />

o Patients who are homozygous for 118 A SNP<br />

are not affected


Naltrexone and Monkeys<br />

Heilig, Markus, David Goldman, Wade<br />

Berrettini, and Charles P. O'Brien.<br />

"Pharmacogenetic Approach to the<br />

Treatment <strong>of</strong> <strong>Alcohol</strong> Addiction." National<br />

Center for Biotechnology Information. U.S.<br />

National Library <strong>of</strong> Medicine, n.d. Web. 26<br />

Oct. 2012.<br />

118A<br />

118G


Clinical Observation<br />

• Some people improve dramatically while<br />

other addicts have no visible<br />

improvement<br />

o Found that family history and self reported<br />

cravings are important is predicting these<br />

outcomes


TOLERANCE<br />

Allostasis: stability through change<br />

http://pubs.niaaa.nih.gov/publications/arh314/298-309.htm


What is Tolerance?<br />

• General Overview<br />

• Different Types:<br />

o Behavioral Tolerance<br />

o Intrinsic Tolerance<br />

o Extrinsic Tolerance


Categories <strong>of</strong> Behavioral Tolerance<br />

• Acute Tolerance<br />

o Fastest Effects<br />

• Chronic Tolerance<br />

o Slowest Effects<br />

• Rapid Tolerance<br />

o In the Middle


Mechanisms<br />

• Post translational Modifications<br />

• Interactions with Membrane Lipids<br />

• Interaction with Auxiliary Proteins<br />

• Spatial Organization <strong>of</strong> Membrane<br />

Proteins.


BK Channel<br />

• K+ channel<br />

• Open longer due to alcohol<br />

• Transient<br />

o Closure=acute tolerance


Post-translational Modification<br />

• Proposed Mechanisms<br />

o Phosphorylation<br />

o Triggered by alcohol "directly"<br />

• Acute Tolerance


Changing Lipid Composition<br />

• Lipid Membrane Thickness<br />

o thickness= tolerance<br />

• Cholesterol levels<br />

o membrane cholesterol levels=<br />

tolerance<br />

o Differences between 1st and subsequent<br />

consumptions.<br />

o Chronic Tolerance


Cholesterol


Cholesterol...


Auxiliary Proteins<br />

• Subunit reorganization.<br />

• Subunits which can better endure alcohol<br />

• BK channel<br />

§� beta subunits 1 & 4<br />

o Chronic Tolerance<br />

§� Takes days.<br />

§� However, some have shown rapid onset.


GABAa<br />

• Enhanced function<br />

• Inhibitory


Spatial Organization<br />

• De-clusters BK channels<br />

o decreased sensitivity<br />

o Acute Tolerance


Genetics <strong>of</strong> Tolerance<br />

• Slo gene in Fruit Flies, Worms, Mice<br />

o Slo channel expression is significant<br />

o Different effects on different levels <strong>of</strong> tolerance<br />

Acute, Rapid, and Chronic<br />

• Hangover gene in Fruit Flies and Humans<br />

o <strong>Alcohol</strong> can manipulate the process <strong>of</strong> transcription <strong>of</strong><br />

genes involved in the creation <strong>of</strong> tolerance<br />

o SNPs <strong>of</strong> Hangover genes in humans were directly<br />

correlated to alcohol dependence<br />

o In conclusion, there are many different types <strong>of</strong> genes<br />

and pathways involved in the development <strong>of</strong> alcohol<br />

tolerance


Putting it all together<br />

• Acute, Rapid, Chronic Functional Categories<br />

o Underlying molecular borders are fuzzy<br />

• Central Nervous System Adapts to <strong>Alcohol</strong><br />

o Continual compensation from the body to<br />

different alcohol levels<br />

§� Stimulated simultaneously<br />

• Potential Therapeutic Targets for <strong>Alcohol</strong>ism<br />

o Membrane lipids, regulatory RNA molecules,<br />

channel protein subunits


Physical Effects <strong>of</strong><br />

<strong>Alcohol</strong> in the Brain


Effects on Specific Lobes<br />

• <strong>Alcohol</strong> affects the brain in a front to back manner<br />

• Frontal Lobe<br />

• Parietal Lobe<br />

• Temporal Lobe<br />

• Occipital Lobe<br />

• Cerebellum<br />

• Brain Stem


Brain Shrinkage?!<br />

• Neurodegeneration with prolonged<br />

alcohol use<br />

o Chronic exposure <strong>of</strong> alcohol results in<br />

pr<strong>of</strong>ound changes in:<br />

§� morphology<br />

§� growth<br />

§� survival <strong>of</strong> neurons.<br />

• <strong>Alcohol</strong>ics- substantial reduction in the<br />

volumes <strong>of</strong> the prefrontal cortex and<br />

cerebellum


Physical Brain changes<br />

• Prefrontal/Orbit<strong>of</strong>rontal cortices:<br />

o deficits = faulty motivational circuits<br />

leading to alcohol seeking behavior<br />

• <strong>Alcohol</strong> dependent humans have been<br />

found to have smaller amygdalae than<br />

non-dependent humans.<br />

http://pubs.niaaa.nih.gov/publications/arh313/185-195.htm


Row a) Control subject<br />

Row b) <strong>Alcohol</strong>ic subject<br />

http://drugtoxicology.wikispaces.com/Nervous+System+Damage


Decrease in Acetylcholine<br />

Systems<br />

• Slowed muscle use, lowered attention,<br />

lowered sensory perception<br />

o Pons Thalamus Cortex<br />

• Diminished effects in plasticity, learning<br />

and memory


Increase in GABA Levels<br />

• Slowed functions all throughout brain<br />

o GABA is the 'stop' neurotransmitter<br />

o Increases Dopamine


The Hangover<br />

The Not Fun Part


Hangover (not so) Fun Facts<br />

• <strong>Alcohol</strong> dehydrates you<br />

• Lowers your blood sugar<br />

• Disturbs your sleep and circadian rhythm


<strong>Alcohol</strong> Dehydrates You<br />

• Consumption increases urine production<br />

by inhibiting release <strong>of</strong> vasopressin in the<br />

pituitary gland<br />

o prevents kidneys from reabsorbing water<br />

• Sweating, vomiting, diarrhea also<br />

common with alcohol consumption<br />

o major dehydration


<strong>Alcohol</strong> Lowers Your Blood<br />

Sugar<br />

• Metabolism <strong>of</strong> alcohol leads to buildup <strong>of</strong><br />

Lactic Acid (the same thing that makes your<br />

muscles sore after a workout!)<br />

o Lactic Acid inhibits Glucose production<br />

o Less Glucose = less energy for the brain = more<br />

hangover symptoms<br />

• Diabetics are especially susceptible to<br />

hangovers for this reason<br />

• "Cure"?: Eat while drinking to balance out<br />

the glycemic levels in your body


<strong>Alcohol</strong> Disturbs Your Sleep<br />

• Disruption <strong>of</strong> normal circadian rhythm<br />

o Abnormal change in body temperatures<br />

o Disruption in hormone secretion that is<br />

normal in circadian rhythms<br />

§� Growth Hormones that help with wake cycles,<br />

bone growth and protein synthesis<br />

o Disruption <strong>of</strong> rise and fall <strong>of</strong> Cortisol levels,<br />

which are paired with metabolism and<br />

stress responses


Withdrawal Causes<br />

Compensation in the Body<br />

• In order to balance <strong>Alcohol</strong>'s sedative<br />

effects,<br />

o Decreased sensitivity <strong>of</strong> GABA receptors<br />

o Increased sensitivity <strong>of</strong> Glu receptors<br />

• After removal <strong>of</strong> alcohol, body remains<br />

in 'overdrive' for some time


Its Not Just <strong>Alcohol</strong><br />

That Causes Your<br />

Hangover


Congeners<br />

• Contribute to taste, smell, appearance<br />

• Evidence that alcohol with less congeners<br />

(more pure - gin/vodka) are less likely to<br />

produce hangover effects<br />

• <strong>Alcohol</strong> with more congeners (like whiskey,<br />

brandy, and red wine) are more likely to<br />

produce alcohol effects


• Is metabolized the<br />

same way as<br />

ethanol, but its<br />

metabolites are<br />

much more toxic:<br />

Formaldehyde and<br />

Formic Acid<br />

Methanol (CH4O)<br />

• Brandys and Whiskeys<br />

contain much more<br />

methanol


Work Cited<br />

Crowley JJ, Treistman SN, Dopico AM. Cholesterol antagonizes ethanol potentiation <strong>of</strong> human brain BKCa channels reconstituted<br />

i nto phospholipid bilayers. Mol Pharmacol. 2003: 64: 365-372.<br />

Ferrer, E., M.A. Moral, and J. Bozzo. "Antiepileptic Drugs in <strong>Alcohol</strong>ism: An Update." Drugs <strong>of</strong> the Future 32.5 (2007): 429.<br />

Print.<br />

Heilig, Markus, David Goldman, Wade Berrettini, and Charles P. O'Brien. "Pharmacogenetic Approach to the Treatment <strong>of</strong><br />

<strong>Alcohol</strong> Addiction." National Center for Biotechnology Information. U.S. National Library <strong>of</strong> Medicine, n.d. Web. 26 Oct.<br />

2012. http://www.ncbi.nlm.nih.gov/pubmed/22011682.<br />

Piertrzykowski, Andrzej, and Steven Treistman. "The Molecular Basis <strong>of</strong> Tolerance." <strong>University</strong> <strong>of</strong> Massachusetts, n.d. Web. 7<br />

March 2008. http://pubs.niaaa.nih.gov/publications/arh314/298-309.htm<br />

Weiss, Friedbert, and Linda J. Porrino. "The Journal <strong>of</strong> Neuroscience Society for Neuroscience." Behavioral Neurobiology <strong>of</strong><br />

<strong>Alcohol</strong> Addiction: Recent Advances and Challenges. The Journal <strong>of</strong> Neuroscience, n.d. Web. 26 Oct. 2012. http://<br />

www.jneurosci.org/content/22/9/3332.full.<br />

GABA. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/GABA.<br />

Dopamine. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/Dopamine.<br />

Serotonin. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/Serotonin.<br />

Ethanol. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/Ethanol.<br />

Asparagine. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/Asparagine.<br />

Aspartate. Digital image. Wikipedia. N.p., n.d. Web. http://en.wikipedia.org/wiki/Aspartate.


•<br />

"<strong>Alcohol</strong><br />

• Yoshimoto,<br />

•<br />

Swift,<br />

• Boileau,<br />

Dekker,<br />

Works Cited<br />

and Health." <strong>Alcohol</strong> and Health. (2012): n. page. Web. 30 Oct. 2012. .<br />

K, W.J. McBride, L Lumeng, and T.K. Li. "<strong>Alcohol</strong>." <strong>Alcohol</strong>. 9.1 (1992): 17-22. Web. 30 Oct. 2012.<br />

Robert, and Dena Davidson. "<strong>Alcohol</strong> Health & Research World." <strong>Alcohol</strong> Health & Research World. 22.1<br />

(1998): 54-60. Web. 30 Oct. 2012. .<br />

Isabelle, Jean-Marc Assaad, et al. "Synapse."Synapse. 49.4 (2003): 226-231. Web. 30 Oct. 2012.<br />

Anothony. "What are the effects <strong>of</strong> alcohol on the brain? ." Scientific American. Scientific American, 26<br />

1999. Web. 30 Oct 2012. .


Interactive Question!<br />

What are some hangover myths that you<br />

can debunk from what you've learned<br />

today about hangovers and alcohol use?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!