06.01.2013 Views

Attosecond Control and Measurement: Lightwave Electronics

Attosecond Control and Measurement: Lightwave Electronics

Attosecond Control and Measurement: Lightwave Electronics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1 . 3 AT T O S E C O N D A N D H I G H - F I E L D O H Y S I C S D I V I S I O N<br />

Pushing the frontiers of femtosecond technology (continued)<br />

Project coordinators: A. Apolonskiy, R. Kienberger, S. Karsch, L. Veisz<br />

Project Objectives Team<br />

Scaling femtosecond<br />

tech-nology towards<br />

multi-kW intra-cavity<br />

average power levels <strong>and</strong><br />

development of MHzrate<br />

XUV sources with<br />

milliwatt-scale average<br />

power<br />

Generation, measurement<br />

<strong>and</strong> applications of few-fs<br />

sub-relativistic electron<br />

bunches<br />

Millijoule-energy femtosecond laser pulses inside<br />

solid-state femtosecond laser oscillators <strong>and</strong> passive<br />

build-up cavities for intracavity<br />

production of UV/VUV/XUV/SXR light<br />

Several-10-keV, few-electron-bunches produced at<br />

MHz repetition rates in synchrony with MHz-rate,<br />

microjoule-energy few-cycle laser pulses for scaling<br />

time-resolved electron diffraction towards the 1femtosecond<br />

frontier<br />

lightwave electronics: attosecond control <strong>and</strong> metrology<br />

Project coordinators: R. Kienberger, U. Kleineberg, M. Kling<br />

Projects Objectives Team<br />

Chirped multilayer metallic<br />

mirrors<br />

<strong>Attosecond</strong> pulse<br />

generation from atomic<br />

harmonics<br />

Design, manufacturing & characterization of<br />

broadb<strong>and</strong> mirrors for attosecond XUV/SXR pulse<br />

technology (10 eV – 1000 eV)<br />

Scaling towards microjoule pulse energies or higher<br />

(several hundred to thous<strong>and</strong> electronvolt) photon<br />

energies by using LWS-10 <strong>and</strong> LWS-N1/LWS-M1<br />

as a driver, respectively, <strong>and</strong> exploiting quasi-phase<br />

matching schemes<br />

154 Max-Planck-Institut für Quantenoptik • Progress Report 2007/2008<br />

J. Rauschenberger (PL)<br />

R. Graf<br />

J. Pupeza<br />

A. Sugita<br />

C. Teisset<br />

A. Apolonskiy<br />

External collaborators:<br />

T. Udem & T. Hänsch (MPQ)<br />

D. Hoffmann (Aachen)<br />

A. Tünnermann (Jena)<br />

E. Fill (PL: Technology)<br />

P. Baum (PL: Applications)<br />

M. Centurion<br />

P. Reckenthäler<br />

L. Veisz<br />

A. Apolonskiy<br />

External collaborators:<br />

V. Tarnetsky (Novosibirsk)<br />

A. Zewail (Pasadena)<br />

U. Kleineberg (PL)<br />

M. Hofstetter<br />

J. Lin<br />

External collaborators:<br />

A. L. Aquila<br />

E. M. Gullikson &<br />

D. T. Attwood (Berkeley)<br />

G. Marcus (PL: LWS-10, M1)<br />

A. Cavalieri (PL: LWS-N1)<br />

D. Herrmann<br />

M. Hofstetter<br />

U. Kleineberg<br />

V. Yakovlev (theory)<br />

L. Veisz<br />

R. Kienberger<br />

External collaborators:<br />

D. Charalambidis (Heraklion)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!