10.01.2013 Views

A new fast track-fit algorithm based on broken lines - Desy

A new fast track-fit algorithm based on broken lines - Desy

A new fast track-fit algorithm based on broken lines - Desy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Zürich 3rd – 7th October 2005<br />

A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong><br />

Volker Blobel − Universität Hamburg<br />

Abstract<br />

The determinati<strong>on</strong> of the particle momentum in HEP <str<strong>on</strong>g>track</str<strong>on</strong>g>ing chambers requires a <str<strong>on</strong>g>fit</str<strong>on</strong>g> of a parametrizati<strong>on</strong> to the measured points. Various effects can result in<br />

deviati<strong>on</strong>s to the ideal helix curve in the magnetic field of a solenoid, and the <str<strong>on</strong>g>fit</str<strong>on</strong>g> with a pure helix parametrizati<strong>on</strong> is not optimal. One effect is multiple scattering,<br />

which causes a ‘random walk” of the particle and affects especially low-momentum <str<strong>on</strong>g>track</str<strong>on</strong>g>s and very accurate measurements.<br />

A popular method of <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> is the Kalman filter, an <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> known from time-series analysis and signal processing, and with results mathematically<br />

equivalent to global least squares <str<strong>on</strong>g>fit</str<strong>on</strong>g>s. It is recursive, includes measurements <strong>on</strong>e after the other and has an executi<strong>on</strong> time O(n), because large matrices are<br />

avoided.<br />

The proposed method <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> is n<strong>on</strong>-recursive and allows to rec<strong>on</strong>struct the particle trajectory taking into account details of the multiple scattering.<br />

It provides optimal parameters and their covariance matrices at <str<strong>on</strong>g>track</str<strong>on</strong>g> start and end, and optimal values at each measured point al<strong>on</strong>g the trajectory including the<br />

variances. The method is c<strong>on</strong>structed to allow the use of sparse-matrix techniques with a total executi<strong>on</strong> time O(n), and is, under test c<strong>on</strong>diti<strong>on</strong>s, a factor six<br />

<str<strong>on</strong>g>fast</str<strong>on</strong>g>er than the Kalman filter.<br />

1. Track measurement in particle physics experiments<br />

2. Track <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting methods<br />

3. Track-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong><br />

Keys during display: enter = next page; → = next page; ← = previous page; home = first page; end = last page (index, clickable); C-← = back; C-N = goto<br />

page; C-L = full screen (or back); C-+ = zoom in; C-− = zoom out; C-0 = <str<strong>on</strong>g>fit</str<strong>on</strong>g> in window; C-M = zoom to; C-F = find; C-P = print; C-Q = exit.


1. Track measurement in particle physics experiments<br />

e<br />

Run 270530 Event 157876 25/04/2000<br />

e’ p<br />

2 m<br />

K +<br />

π −<br />

π −<br />

5 cm 5 mm<br />

D −<br />

50 cm<br />

e’<br />

Charm event in the H1<br />

detector at HERA with<br />

drift chamber and vertex<br />

detector.<br />

LHC (2007 –): 1000 <str<strong>on</strong>g>track</str<strong>on</strong>g>s<br />

per event, several events<br />

per bunch crossing (bunch<br />

spacing 25 ns)<br />

Fast <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> is<br />

essential.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 2


Track parametrizati<strong>on</strong><br />

Ideal parametrizati<strong>on</strong>: a helix (κ, dca, φ, z0, tan λ) in a homogeneous magnetic field Bz with<br />

xy- or rφ-plane: circle, residual εi of a measured point (xi, yi) from a particle trajectory<br />

εi = 1<br />

2 κ � x 2 i + y 2 i + d 2 �<br />

ca − (1 + κdca) (xi sin φ − yi cos φ) + dca .<br />

sz-plane: straight line, residual εi of a measured point (si, zi)<br />

εi = z0 + (tan λ) · si − zi with si = <str<strong>on</strong>g>track</str<strong>on</strong>g> length in xy<br />

. . . but there are random and n<strong>on</strong>-random perturbati<strong>on</strong>s:<br />

Multiple scattering (msc): Elastic scattering of charged particles in the Coulomb field of the nuclei<br />

in the detector material. The mean of the projected deflecti<strong>on</strong> angle θ after traversing a material<br />

layer is zero and the distributi<strong>on</strong> has a variance of<br />

Multiple scattering deflecti<strong>on</strong>s<br />

will influence all downstream<br />

measurement in a correlated<br />

way, and delimits the momentum<br />

measurement at low mo-<br />

variance V [θ] ∝ t<br />

β 2 p 2 where t = ∆s/X0<br />

menta. si−1 si si+1 si+2<br />

×<br />

yi−1 ± σi−1<br />

Energy loss, Radiati<strong>on</strong> of electr<strong>on</strong>s, Field inhomogeneity, . . .<br />

×<br />

yi ± σi<br />

×<br />

yi+1 ± σi+1<br />

×<br />

yi+2 ± σi+2<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 3


Track example with msc (magenta line is the true particle trajectory)<br />

Circle <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

0.05<br />

0<br />

-0.05<br />

Deviati<strong>on</strong>s from circle <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

-0.1<br />

0 20 40 60 80<br />

→ <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

Large influence of multiple scattering (msc) • for low momenta,<br />

• for high positi<strong>on</strong> measurement accuracy, and<br />

• for dense material (large value of � s/X0).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 4


2. Track <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting methods<br />

Track parameters are obtained by the <str<strong>on</strong>g>fit</str<strong>on</strong>g> of a <str<strong>on</strong>g>track</str<strong>on</strong>g> parametrizati<strong>on</strong> to the n measured <str<strong>on</strong>g>track</str<strong>on</strong>g> hits:<br />

0. Simple least square <str<strong>on</strong>g>fit</str<strong>on</strong>g> with ideal parametrizati<strong>on</strong> <str<strong>on</strong>g>fast</str<strong>on</strong>g>, with a computing time ∝ n<br />

2 ... 3<br />

1. Global <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting methods computing time ∝ n<br />

(either trajectory described by n<strong>on</strong>-diag<strong>on</strong>al n × n covariance matrix (matrix method), or by<br />

including parameters for N scattering planes, large matrix (breakpoint method);<br />

2. The progressive method (P. Billoir 1984) (≈ Kalman filter) computing time ∝ n<br />

<str<strong>on</strong>g>track</str<strong>on</strong>g> is followed by incorporating measurement after measurement, starting from the outer<br />

detector, improving the parameter vector and covariance matrix;<br />

2’. The Kalman filter (and smoothing) computing time ∝ n<br />

the state vector and its covariance matrix are propagated to the next measurement, additi<strong>on</strong>al<br />

error (msc . . . ) introduced as process noise; smoothing in directi<strong>on</strong> opposite to the filter.<br />

3. Broken-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> (“<str<strong>on</strong>g>new</str<strong>on</strong>g>”) computing time ∝ n<br />

Results <strong>on</strong> <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters from 1 to 3 are (almost) identical, and are, at low momentum, (roughly)<br />

up to 30 % better than simple <str<strong>on</strong>g>fit</str<strong>on</strong>g>.<br />

Track <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting is not <strong>on</strong>ly required to obtain the final <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters for physics analysis, but also in<br />

the <str<strong>on</strong>g>track</str<strong>on</strong>g>-finding phase (pattern recogniti<strong>on</strong>). Very many <str<strong>on</strong>g>fit</str<strong>on</strong>g>s of each <str<strong>on</strong>g>track</str<strong>on</strong>g> candidate are necessary to<br />

find the correct hits.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 5


Requirements and computing times<br />

Required results from a <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g>:<br />

A: Optimal <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters at <str<strong>on</strong>g>track</str<strong>on</strong>g>-start (vertex), for physics analysis;<br />

B: Correct covariance matrix for <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters;<br />

C: Overall χ 2 of <str<strong>on</strong>g>track</str<strong>on</strong>g>, for test of quality of pattern recogniti<strong>on</strong>;<br />

D: Optimal <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters at <str<strong>on</strong>g>track</str<strong>on</strong>g>-end, for extrapolati<strong>on</strong> to other detectors;<br />

E: χ 2 of each single hit, for outlier test and improvement of hit selecti<strong>on</strong>.<br />

Time for <strong>on</strong>e <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g> (no magnetic field), in mikrosec<strong>on</strong>ds, <strong>on</strong> standard PC:<br />

Algorithm n = 25 n = 50 n = 100 Remarks:<br />

2-parameter least squares 0.270 0.420 0.720 bad <str<strong>on</strong>g>fit</str<strong>on</strong>g> in case of multiple scattering<br />

Matrix method 150.000 943.000 6731.000 <str<strong>on</strong>g>track</str<strong>on</strong>g>-start parameters: (A, B, C)<br />

Breakpoint method 117.000 556.000 2980.000 full rec<strong>on</strong>structi<strong>on</strong>: (A, B, C, D, E)<br />

Kalman backward 20.900 41.300 81.900 <str<strong>on</strong>g>track</str<strong>on</strong>g>-start parameters: (A, B)<br />

Kalman back-/forward approximately ×2 full rec<strong>on</strong>structi<strong>on</strong>: (A, B, C, D, E)<br />

Broken-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> 6.550 12.980 25.200 full rec<strong>on</strong>structi<strong>on</strong>: (A, B, C, D, E)<br />

Track-start parameters from methods in last 5 rows (almost) identical.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 6


3. Track-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong><br />

Is a method possible, which keeps the good properties of the Kalman filter/smoothing and allows to<br />

get the complete soluti<strong>on</strong> in <strong>on</strong>e step?<br />

• Treat the multiple scattering in all detail, which generates necessarily many parameters and<br />

matrices of large dimensi<strong>on</strong>;<br />

• Use a mathematical model which results in equati<strong>on</strong>s with sparse matrices (many elements = 0),<br />

which can be solved quickly.<br />

Simple and <str<strong>on</strong>g>fast</str<strong>on</strong>g> least squares <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g>s, with circle <str<strong>on</strong>g>fit</str<strong>on</strong>g> (Karimäkie) for κ, dca, φ and straight line <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

(z0, tan λ), are d<strong>on</strong>e to prepare the data for a detailed <str<strong>on</strong>g>fit</str<strong>on</strong>g>:<br />

• Momentum already known (from κ, tan λ) with some precisi<strong>on</strong>, allows to calculate multiple<br />

scattering variances;<br />

• Residuals in xy-plane and in sz-plane can be calculated;<br />

• A detailed <str<strong>on</strong>g>fit</str<strong>on</strong>g> follows, which takes into account multiple scattering (and other perturbati<strong>on</strong>s),<br />

applied to the residuals:<br />

(a) <str<strong>on</strong>g>fit</str<strong>on</strong>g> of z-residual versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length s (straight line, no magnetic field);<br />

(b) <str<strong>on</strong>g>fit</str<strong>on</strong>g> of circle residuals versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length s including curvature correcti<strong>on</strong> ∆κ.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 7


(a) Fit of z-residual versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length Multiple scattering<br />

A charged particle traversing a material layer is deflected by many small-angle scatters, mostly due to<br />

Coulomb scattering from nuclei, with variance<br />

V [θ] = θ 2 0 =<br />

� 13.6 MeV<br />

βpc<br />

where t = ∆s/X0<br />

V<br />

� �<br />

θ<br />

=<br />

ψ<br />

� 2<br />

� �<br />

1 1/2<br />

θ<br />

1/2 1/3<br />

2 0<br />

t [1 + 0.038 ln t] 2<br />

ψ<br />

ψ<br />

∆s<br />

∆y<br />

Multiple scattering in a layer of finite thickness<br />

θ = projected angle of deflecti<strong>on</strong>, between directi<strong>on</strong> before and behind layer<br />

ψleft ≡ ψ, ψright ≡ θ − ψ = angles between the line, c<strong>on</strong>necting the two intersecti<strong>on</strong> points,<br />

and the directi<strong>on</strong> before and behind layer<br />

The line, c<strong>on</strong>necting the two intersecti<strong>on</strong> points, can be determined by a measurement. Relevant<br />

for the rec<strong>on</strong>structi<strong>on</strong> of the trajectory are the angles ψleft and ψright, with covariance matrix<br />

V<br />

� ψleft<br />

ψright<br />

�<br />

i<br />

=<br />

� �<br />

1/3 1/6<br />

θ<br />

1/6 1/3<br />

2 0,i<br />

for a homogeneous medium in layer i<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 8<br />

θ


Two phases in the <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> Principles<br />

The particle <str<strong>on</strong>g>track</str<strong>on</strong>g>, given by the dotted<br />

curve, intersects the detector<br />

planes; the intersecti<strong>on</strong> points are<br />

drawn as circles. The result of the<br />

measurement are data points y ± σ,<br />

given by crosses with error bar.<br />

×<br />

yi−1 ± σi−1<br />

×<br />

yi ± σi<br />

si−1 si si+1 si+2<br />

×<br />

yi+1 ± σi+1<br />

×<br />

yi+2 ± σi+2<br />

Instead of using a <str<strong>on</strong>g>track</str<strong>on</strong>g> parametrizati<strong>on</strong> with e.g. intercept and slopes as parameters, the proposed<br />

<str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> method uses two phases in the <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong>.<br />

(1) Rec<strong>on</strong>structi<strong>on</strong> of the trajectory:<br />

The trajectory, represented by the<br />

intersecti<strong>on</strong> points of the trajectory<br />

with the detector planes, is determined<br />

in a least squares <str<strong>on</strong>g>fit</str<strong>on</strong>g>; the<br />

<str<strong>on</strong>g>fit</str<strong>on</strong>g>ted estimates of the intersecti<strong>on</strong><br />

points are denoted by ui.<br />

ui−1<br />

βi−1<br />

ui<br />

βi<br />

ui+1 ui+2<br />

βi+1<br />

si−1 si si+1 si+2<br />

(2) Track parameter determinati<strong>on</strong>: From the <str<strong>on</strong>g>fit</str<strong>on</strong>g>ted ui-values the two <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters intercept<br />

and slope, required for the physics analysis, are determined at both sides of the <str<strong>on</strong>g>track</str<strong>on</strong>g>.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 9


Kink angles<br />

The intersecti<strong>on</strong> points u of the particle <str<strong>on</strong>g>track</str<strong>on</strong>g> with detector planes, drawn as circles, are c<strong>on</strong>nected by<br />

straight <strong>lines</strong>. The kink angles β are the angles between adjacent straight <strong>lines</strong>.<br />

βi = ψright,i−1 − ψleft,i<br />

V [βi] = σ 2 β,i = V [ψright,i−1] + V [ψleft,i]<br />

(multiple scattering)<br />

ui−1<br />

βi−1<br />

ui<br />

βi<br />

ui+1 ui+2<br />

βi+1<br />

si−1 si si+1 si+2<br />

There are (n − 2) kink angles βi, which are linear functi<strong>on</strong>s of the values ui (with fi ≈ 1):<br />

�<br />

βi = fi ·<br />

1<br />

si+1 − si−1<br />

− ui<br />

+ ui+1<br />

1<br />

�<br />

ui−1<br />

si − si−1<br />

(si+1 − si) (si − si−1)<br />

si+1 − si<br />

The values ui are determined by minimizati<strong>on</strong> of the linear least squares expressi<strong>on</strong> (with weight<br />

wi = 1/σ 2 i )<br />

S (u) =<br />

n�<br />

wi (yi − ui) 2 +<br />

i=1<br />

�n−1<br />

with n + (n − 2) terms. Note: wi may be zero or very small (vertex <str<strong>on</strong>g>fit</str<strong>on</strong>g>).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 10<br />

i=2<br />

β 2 i<br />

σ 2 β,i


First phase: “Straight line” trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

The linear least squares expressi<strong>on</strong> S (u) is minimized by the soluti<strong>on</strong> u of the matrix equati<strong>on</strong>:<br />

Cu u = ru with the sparse n-by-n matrix<br />

⎛<br />

d<br />

⎜<br />

⎜x<br />

⎜<br />

⎜x<br />

⎜<br />

Cu = ⎜<br />

⎝<br />

x<br />

d<br />

x<br />

x<br />

x<br />

x<br />

d<br />

x<br />

x<br />

x<br />

x<br />

d<br />

x<br />

x<br />

x<br />

d<br />

x<br />

x<br />

. ..<br />

x<br />

⎞<br />

⎟<br />

⎠<br />

i.e. Cu is a symmetric n-by-n band matrix of bandwidth m = 2. The elements of Cu and ru are<br />

calculated by sums from the measured data.<br />

After a decompositi<strong>on</strong> Cu = LDL T the matrix equati<strong>on</strong> becomes L � DL T u � = r. L is a left unit<br />

triangular matrix and D is diag<strong>on</strong>al; the band structure is kept! The matrix Cu can be stored in a<br />

3-by-n array and the decompositi<strong>on</strong> can be made in-place.<br />

The soluti<strong>on</strong> can be obtained by the following calculati<strong>on</strong>s:<br />

decompose Cu = LDL T<br />

decompositi<strong>on</strong> (6n)<br />

solve Lv = ru for v by forward substituti<strong>on</strong> (2n)<br />

solve L T u = D −1 v for u by backward substituti<strong>on</strong> (3n)<br />

The last column gives the number of dot-instructi<strong>on</strong>s (multiplicati<strong>on</strong>, divisi<strong>on</strong>); the whole computati<strong>on</strong><br />

time is linear in n, i.e O(n) operati<strong>on</strong>s are necessary for the determinati<strong>on</strong> of u.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 11


Sec<strong>on</strong>d phase: Track parameters . . . and elements of the inverse matrix<br />

Correcti<strong>on</strong>s ∆z0 and ∆ (tan λ) are calculated from the two first u-values u1 and u2 amd added to the<br />

initial approximati<strong>on</strong>s �z0 and � (tan λ):<br />

⎛ ⎞ ⎛<br />

�z0 + u1<br />

z0<br />

⎝ ⎠ ⎜<br />

= ⎝<br />

(tan λ) (tan �λ)<br />

+ u2<br />

⎞<br />

⎟<br />

−<br />

⎠<br />

u1<br />

s2 − s1<br />

It is possible to calculate those elements of the inverse matrix Z = C −1<br />

u , which are in the band<br />

of the original matrix, in a computati<strong>on</strong> time linear in n ∗ ), using the decompositi<strong>on</strong> LDL T . For a<br />

bandwidth of m = 2 these are 6n operati<strong>on</strong>s, with restricti<strong>on</strong>s |i − k| ≤ m and |j − k| ≤ m<br />

for i = n . . . 1 : Zii = D −1<br />

ii −<br />

�i+2<br />

k=i+1<br />

Zik Lki<br />

Zij = −<br />

j+2 �<br />

k=j+1<br />

Zik Lkj<br />

j = i + 1, i + 2<br />

Starting with Znn, a sequence of computati<strong>on</strong> can be performed by calculating elements of Z in reverse<br />

order; when calculating Zij all required elements of Z are already calculated.<br />

By error propagati<strong>on</strong> the covariance matrix of the <str<strong>on</strong>g>track</str<strong>on</strong>g> parameters is calculated from the elements of<br />

V u ≡ Z.<br />

∗ ) K. Takahashi, J. Fagan and M. Chin, “Formati<strong>on</strong> of a sparse bus impedance matrix and its applicati<strong>on</strong>s to short circuit study”, Proceedings<br />

8th PICA C<strong>on</strong>ference (1973), Minneapolis, Minnesota<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 12


(b) Fit of circle residuals versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

In additi<strong>on</strong> to the parameters in case (a) now a curvature correcti<strong>on</strong> ∆κ has to be determined. The<br />

mean value of the ”kink angle” βi, as defined before (a), is now different from zero, due to the magnetic<br />

deflecti<strong>on</strong>.<br />

This magnetic deflecti<strong>on</strong> is taken into account by the re-definiti<strong>on</strong><br />

�<br />

βi ≈ fi ·<br />

1<br />

si+1 − si−1<br />

− ui<br />

+ ui+1<br />

1<br />

ui−1<br />

si − si−1<br />

(si+1 − si) (si − si−1)<br />

(ai is the distance between the points i and i + 1)<br />

with E [βi] = 0 and this has to be used in the functi<strong>on</strong> S<br />

S (u, ∆κ) =<br />

n� (yi − ui) 2<br />

+<br />

i=1<br />

σ 2 i<br />

si+1 − si<br />

�n−1<br />

which has to be minimized with respect to the values ui and ∆κ.<br />

i=2<br />

β 2 i<br />

σ 2 β,i<br />

�<br />

+ 1<br />

2 (ai−1 + ai) · ∆κ<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 13


First phase: “Curved line” trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

The case of the additi<strong>on</strong>al parameter ∆κ is <strong>on</strong>ly slightly more complicated. The linear least squares<br />

expressi<strong>on</strong> S (u, ∆κ) is minimized by the soluti<strong>on</strong> of the matrix equati<strong>on</strong>:<br />

⎛<br />

Cκ c<br />

⎜<br />

⎝<br />

T<br />

⎞ ⎛ ⎞<br />

∆κ<br />

⎟ ⎜ ⎟<br />

⎟ ⎜ ⎟<br />

c Cu ⎠ ⎝ u ⎠ =<br />

⎛<br />

⎞<br />

Cκ c c c c c c c · · ·<br />

⎜<br />

⎛ ⎞<br />

⎜<br />

c d x x<br />

⎟<br />

⎜<br />

rκ<br />

⎜<br />

c x d x x<br />

⎟<br />

⎜ ⎟<br />

⎜<br />

⎜ ⎟<br />

⎜<br />

c x x d x x<br />

⎟<br />

⎝ru⎠<br />

with matrix ⎜<br />

c x x d x x ⎟<br />

⎜<br />

c x x d x x ⎟<br />

⎜<br />

.<br />

⎝ c<br />

.. ⎟<br />

⎠<br />

i.e. the matrix is a bordered band matrix.<br />

Soluti<strong>on</strong>: Cu = LDL T<br />

.<br />

decompositi<strong>on</strong> (6n)<br />

Cuz = c soluti<strong>on</strong> for z (5n)<br />

Bκ = � Cκ − c T z �−1 �<br />

∆κ = Bκ rκ − z<br />

variance of curvature (n + 1)<br />

T �<br />

ru curvature (n + 1)<br />

Cu�u = ru soluti<strong>on</strong> for �u (5n)<br />

u = �u − z∆κ smoothed coordinates (n)<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 14


Sec<strong>on</strong>d phase: Track parameters<br />

The curvature correcti<strong>on</strong> ∆κ is already calculated; the correcti<strong>on</strong>s for positi<strong>on</strong> and directi<strong>on</strong> are<br />

calculated, as before, from u1 and u2, with covariance matrix by error propagati<strong>on</strong>.<br />

The complete inverse matrix of the bordered band matrix is written here,<br />

⎛<br />

⎜<br />

⎝<br />

Cκ<br />

c T<br />

c Cu<br />

⎞<br />

⎟<br />

⎠<br />

−1<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

Bκ<br />

−zBκ<br />

although <strong>on</strong>ly few elements are required, e.g. the element<br />

Vu,12 = � C −1�<br />

u<br />

12 + Bκ · z1 z2<br />

−Bκz T<br />

C −1<br />

u + zBκz T<br />

Note: The matrices Cκ and Bκ are in this applicati<strong>on</strong> scalars (<strong>on</strong>ly <strong>on</strong>e comm<strong>on</strong> parameter). They become 2-by-2<br />

matrices, if two comm<strong>on</strong> parameters are determined, e.g. ∆κ and ∆T0 (drift chamber time zero). The above formulas<br />

remain valid.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 15<br />

⎞<br />

⎟<br />

⎠ ,


Broken-line <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g> result Momentum 200 MeV/c<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

Blue line and yellow band is <str<strong>on</strong>g>fit</str<strong>on</strong>g> ±1σ<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

The <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> result is given as blue <strong>broken</strong>-line with a ±1 standard deviati<strong>on</strong> yellow band, with<br />

extrapolati<strong>on</strong> to the vertex at s = 0 (weight in <str<strong>on</strong>g>fit</str<strong>on</strong>g> was w1 = 0). ← back<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 16


Accuracy vs momentum Lutz detector<br />

Thick red and thick blue <strong>lines</strong>: error from histogram <str<strong>on</strong>g>fit</str<strong>on</strong>g> (red) and calculated error (blue) for<br />

<strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g>, with improvements by 37 % (momentum), by 31 % (dca) and 17 % (φ) at lowest<br />

momentum.<br />

Thin dotted <strong>lines</strong>: error from histogram <str<strong>on</strong>g>fit</str<strong>on</strong>g> (red) and calculated error (blue) for simple LS <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

0.1<br />

0.01<br />

Curvature (relative error)<br />

0.001<br />

0.1 1 10 100<br />

momentum [GeV/c]<br />

0.01<br />

0.001<br />

Distance of closest approach<br />

0.1 1 10 100<br />

momentum [GeV/c]<br />

→ calculated errors are realistic for whole momentum range!<br />

G. Lutz, Optimum <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting in the presence of multiple scattering, NIMA 273 (1988) 349 – 361<br />

0.001<br />

1E-4<br />

Phi - azimuthal angle<br />

0.1 1 10 100<br />

momentum [GeV/c]<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 17


Summary . . . <strong>on</strong> <strong>broken</strong>-line <str<strong>on</strong>g>algorithm</str<strong>on</strong>g><br />

Improved accuracy with correct covariance matrix: Improvement of the <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong><br />

precisi<strong>on</strong> for <str<strong>on</strong>g>track</str<strong>on</strong>g>s of low momentum in a dense detector, for high<br />

positi<strong>on</strong> measurement accuracy. Extensi<strong>on</strong> to include energy loss (deterministic)<br />

for heavy particles, and magnetic-field inhomogenities are possible.<br />

Full informati<strong>on</strong>: The <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> gives the full informati<strong>on</strong> <strong>on</strong> every measured point<br />

<strong>on</strong> a trajectory:<br />

<str<strong>on</strong>g>fit</str<strong>on</strong>g>ted value with propagated error, pull of positi<strong>on</strong> and kink angle<br />

and this informati<strong>on</strong> can be used already during <str<strong>on</strong>g>track</str<strong>on</strong>g> finding, to remove bad hits<br />

or to cut the trajectory, and to adjust material assumpti<strong>on</strong>.<br />

Outlier down-weighting: Outliers can be recognized; repeated <str<strong>on</strong>g>fit</str<strong>on</strong>g> with down-weighted<br />

hits d<strong>on</strong>e in reduced time.<br />

Broken-line <str<strong>on</strong>g>fit</str<strong>on</strong>g>s: New <str<strong>on</strong>g>algorithm</str<strong>on</strong>g>, <str<strong>on</strong>g>fast</str<strong>on</strong>g>er by factor ≈ 6 in comparis<strong>on</strong> to Kalman filter<br />

(under test c<strong>on</strong>diti<strong>on</strong>s), with <str<strong>on</strong>g>fit</str<strong>on</strong>g> in <strong>on</strong>e step (no initial values, no iterati<strong>on</strong>, no<br />

recursi<strong>on</strong>, no directi<strong>on</strong> backward or forward) in time O(n).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 18


Backup slides<br />

• 200 MeV/c <str<strong>on</strong>g>track</str<strong>on</strong>g> with multiple scattering<br />

• . . . with <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

• χ 2 - and P -values<br />

• Pulls of positi<strong>on</strong> measurement<br />

• Pulls of kink angle measurement<br />

• Outlier examples<br />

• A large-angle scatter<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 19


Track with multiple scattering 200 MeV/c<br />

0.05<br />

0<br />

-0.05<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

Magenta line is the true particle trajectory, with large kink angles in beam pipe, chamber walls etc.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 20


. . . with <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> residual vs. <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0.05<br />

0<br />

-0.05<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

The <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> result is given as a ±1 standard deviati<strong>on</strong> band, with extrapolati<strong>on</strong> to the vertex<br />

at s = 0 (weight in <str<strong>on</strong>g>fit</str<strong>on</strong>g> was w1 = 0).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 21


χ 2 - and P -values Goodness-of-<str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

with n <str<strong>on</strong>g>fit</str<strong>on</strong>g>ted parameters.<br />

1500<br />

1000<br />

500<br />

χ 2 (n−2) ≡ S(u)min = χ 2 (n measurements) + χ 2 (n − 2 kink angles)<br />

0<br />

0 0.5 1<br />

P-value distributi<strong>on</strong><br />

Number of degrees of freedom = n − 2<br />

1000<br />

500<br />

0<br />

0 0.5 1<br />

P-value distributi<strong>on</strong><br />

P -value distributi<strong>on</strong> for the momenta of 0.5 GeV/c (left, mean value of χ 2 = 99.2) and 10 GeV/c<br />

(right, mean value of χ 2 = 97.4) are shown from the trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g><br />

for a modified H1 c<strong>on</strong>figurati<strong>on</strong> (2 CST hits plus 98 drift chamber hits) in a vertex <str<strong>on</strong>g>fit</str<strong>on</strong>g> with a standard<br />

deviati<strong>on</strong> of 30 µm.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 22


Pulls of positi<strong>on</strong> measurement<br />

The pull of the positi<strong>on</strong> measurement is defined as the difference of the measured and <str<strong>on</strong>g>fit</str<strong>on</strong>g>ted positi<strong>on</strong>,<br />

divided by the standard deviati<strong>on</strong> of the difference:<br />

E 03<br />

400<br />

200<br />

m = -0.03E-03 +- 0.32E-03<br />

py,i =<br />

s = 1.0002 +- 0.24E-03<br />

0<br />

-4 -2 0 2 4<br />

Pull of positi<strong>on</strong> measurement<br />

yi − ui<br />

� σ 2 i − (V u) ii<br />

E 03<br />

400<br />

200<br />

m = -0.02E-03 +- 0.32E-03<br />

s = 0.9959 +- 0.24E-03<br />

0<br />

-4 -2 0 2 4<br />

Pull of positi<strong>on</strong> measurement<br />

The pulls follow the expected N(0, 1) distributi<strong>on</strong> for a momentum of 0.5 GeV/c (left) and for a<br />

momentum of 10 GeV/c (right) (H1 detector c<strong>on</strong>figurati<strong>on</strong> with 2 CST and 56 CJC hits).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 23


Pulls of kink angle measurement<br />

The pull of the kink angle is defined as the difference of the expected (zero) and <str<strong>on</strong>g>fit</str<strong>on</strong>g>ted angle, divided<br />

by the standard deviati<strong>on</strong> of the difference:<br />

pβ,i =<br />

βi<br />

�<br />

σ 2 β,i − (V β) ii<br />

where V β is calculated by error propagati<strong>on</strong> from the covariance matrix V u.<br />

E 03<br />

400<br />

200<br />

m = 0.8E-03 +- 0.36E-03<br />

s = 1.1244 +- 0.27E-03<br />

0<br />

-4 -2 0 2 4<br />

Pull of kink angle<br />

E 03<br />

200<br />

1E5<br />

,<br />

m = 0.00151 +- 0.32E-03<br />

s = 1.0007 +- 0.24E-03<br />

0<br />

-4 -2 0 2 4<br />

Pull of kink angle<br />

The pulls follow almost the expected N(0, 1) distributi<strong>on</strong> for a momentum of 0.5 GeV/c (left) and for<br />

a momentum of 10 GeV/c (right).<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 24


Outlier example 1 200 MeV/c, 6σ outlier<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 25


Outlier example 2 1 GeV/c, 6σ outlier<br />

0.1<br />

0.05<br />

0<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 26


Outlier example 3 200 MeV/c, 6σ outlier<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 27


Outlier example 4 200 MeV/c, 6σ outlier<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

R-phi projecti<strong>on</strong>: residual vs <str<strong>on</strong>g>track</str<strong>on</strong>g> length<br />

0 20 40 60 80<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 28


A large-angle scatter<br />

A 1 GeV/c <str<strong>on</strong>g>track</str<strong>on</strong>g> with an artificial 1 ◦ kink around s = 42 cm:<br />

0.4<br />

0.2<br />

0<br />

20 40 60<br />

The kink angle is much larger than the rms multiple scattering angle, expected for 1 GeV/c.<br />

The overall χ 2 of the trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g> (blue curve) is large.<br />

V. Blobel – University of Hamburg A <str<strong>on</strong>g>new</str<strong>on</strong>g> <str<strong>on</strong>g>fast</str<strong>on</strong>g> <str<strong>on</strong>g>track</str<strong>on</strong>g>-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g> <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> page 29


C<strong>on</strong>tents<br />

1. Track measurement in particle physics experiments<br />

2<br />

Track parametrizati<strong>on</strong> . . . . . . . . . . . . . . . 3<br />

Track example with msc . . . . . . . . . . . . . . 4<br />

2. Track <str<strong>on</strong>g>fit</str<strong>on</strong>g>ting methods 5<br />

Requirements and computing times . . . . . . . . 6<br />

3. Track-<str<strong>on</strong>g>fit</str<strong>on</strong>g> <str<strong>on</strong>g>algorithm</str<strong>on</strong>g>s <str<strong>on</strong>g>based</str<strong>on</strong>g> <strong>on</strong> <strong>broken</strong> <strong>lines</strong> 7<br />

(a) Fit of z-residual versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length . . . . . 8<br />

Two phases in the <str<strong>on</strong>g>track</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> . . . . . . 9<br />

Kink angles . . . . . . . . . . . . . . . . . . . . . 10<br />

First phase: “Straight line” trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g> . . . . 11<br />

Sec<strong>on</strong>d phase: Track parameters . . . . . . . . . 12<br />

(b) Fit of circle residuals versus <str<strong>on</strong>g>track</str<strong>on</strong>g> length . . . 13<br />

First phase: “Curved line” trajectory <str<strong>on</strong>g>fit</str<strong>on</strong>g> . . . . . 14<br />

Sec<strong>on</strong>d phase: Track parameters . . . . . . . . . 15<br />

Broken-line <str<strong>on</strong>g>track</str<strong>on</strong>g> <str<strong>on</strong>g>fit</str<strong>on</strong>g> result . . . . . . . . . . . . . 16<br />

Accuracy vs momentum . . . . . . . . . . . . . . 17<br />

Summary 18<br />

Backup slides 19<br />

Track with multiple scattering . . . . . . . . . . 20<br />

. . . with <strong>broken</strong>-line <str<strong>on</strong>g>fit</str<strong>on</strong>g> . . . . . . . . . . . . . . . 21<br />

χ 2 - and P -values . . . . . . . . . . . . . . . . . . 22<br />

Pulls of positi<strong>on</strong> measurement . . . . . . . . . . . 23<br />

Pulls of kink angle measurement . . . . . . . . . 24<br />

Outlier example 1 . . . . . . . . . . . . . . . . . 25<br />

Outlier example 2 . . . . . . . . . . . . . . . . . 26<br />

Outlier example 3 . . . . . . . . . . . . . . . . . 27<br />

Outlier example 4 . . . . . . . . . . . . . . . . . 28<br />

A large-angle scatter . . . . . . . . . . . . . . . . 29<br />

Table of c<strong>on</strong>tents 30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!