16.01.2013 Views

The agnion Heatpipe-Reformer. A Promising Concept for ... - SGC

The agnion Heatpipe-Reformer. A Promising Concept for ... - SGC

The agnion Heatpipe-Reformer. A Promising Concept for ... - SGC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

© <strong>agnion</strong> Technologies GmbH | 2012<br />

<strong>The</strong> <strong>agnion</strong> <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong>.<br />

A <strong>Promising</strong> <strong>Concept</strong> <strong>for</strong> Small Scale<br />

Gasification.<br />

Thomas Kienberger<br />

<strong>agnion</strong> Technologies GmbH<br />

Sperl-Ring 4<br />

D-85276 Hettenshausen<br />

www.<strong>agnion</strong>.de


1. Introduction of the <strong>agnion</strong> <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

<strong>Heatpipe</strong> <strong>Re<strong>for</strong>mer</strong><br />

Plant Basics<br />

Process Integration<br />

2. Experimental Results from the Pfaffenhofen (GER) Pilot Plant<br />

Experimental Data<br />

Operational Availability<br />

3. Operational-data Operational data from the first commercial Plant in Grassau (GER)<br />

4. Summery/ Perspective<br />

© <strong>agnion</strong> Technologies GmbH | 2012


<strong>agnion</strong> – History<br />

� 2000–2004: Research on the core components of the <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

Technology at the Technical University of Munich<br />

� 2006: Bavarian State Minister of Economics awards “Bavarian Energy Award”<br />

� 2007: Foundation of <strong>agnion</strong><br />

� 2008-2010: Development, construction and commissioning of <strong>Heatpipe</strong>-<br />

<strong>Re<strong>for</strong>mer</strong> Pilot Plant at Pfaffenhofen (GER) and testing of the<br />

syngas and power generation<br />

� 2011: Development and Construction of CHP demonstration Plant in<br />

Grassau (GER)<br />

� 2012: New projects in Italy and Germany and Switzerland<br />

� Total Headcount: 50<br />

� Financing: MVP, KPCB, Wellington Partners, Waste Management<br />

© <strong>agnion</strong> Technologies GmbH | 2012 2


<strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong> Technology<br />

� Allothermal gasification processes basically differ by the<br />

solution of the heating process of the fuel particles and<br />

gasification agent<br />

� Solution of the core problem with the <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

Technology is achieved by separation of the steam<br />

gasification and the combustion process in two separate<br />

reactors that are thermally coupled by <strong>Heatpipe</strong>s<br />

� Results in:<br />

� high heating values and<br />

syngas pressures (e.g. 4 bar(g))<br />

� complete fuel conversion, residue combustion<br />

� high operation reliability because of separate control of<br />

combustor and gasifier<br />

� gas quality adequate <strong>for</strong> combination with high<br />

efficient multi port injection gas engine technology<br />

� gas quality adequate <strong>for</strong> SNG/CNG or fuel synthesis<br />

© <strong>agnion</strong> Technologies GmbH | 2012 3<br />

3


Flow Chart of <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

Technology with CHP Application<br />

Biomass<br />

<strong>Re<strong>for</strong>mer</strong><br />

<strong>Heatpipe</strong><br />

heat flux<br />

Combustor<br />

Air<br />

Biomass<br />

<strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

Syngas<br />

Steam<br />

Flue Gas<br />

Cyclone<br />

Char, Ash, RME<br />

Water RME Water<br />

Air<br />

Syngas-<br />

Cooler<br />

Flue Gas<br />

Cooler<br />

Water<br />

Syngas<br />

Filter<br />

Gas<br />

RME- Engine<br />

Scrubber<br />

Particle<br />

Filter<br />

ID Fan<br />

© <strong>agnion</strong> Technologies GmbH | 2012 4 4<br />

Ash<br />

G<br />

El. Power<br />

Stack<br />

Heat<br />

Flue Gas<br />

Steam/<br />

Heat


Pilot Plant Pfaffenhofen<br />

• > 10.000h operation experiance<br />

• 500 kWth Input (Pellets)<br />

• 100-140 kWel Output<br />

• Research facility <strong>for</strong> CHP<br />

application and SNG<br />

synthesis<br />

© <strong>agnion</strong> Technologies GmbH | 2012 5 5


Measurement Program Pfaffenhofen Pilot-Plant<br />

Vol-% Vol-%<br />

Aim of the program<br />

� Understanding fundamental plant behavior<br />

� Find stable operation-points with high coldgas-efficiencies<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Test parameter<br />

� <strong>Re<strong>for</strong>mer</strong> temperature: 820°C-840°C<br />

� <strong>Re<strong>for</strong>mer</strong> pressure: 4 bar(abs.)<br />

� <strong>Re<strong>for</strong>mer</strong> fuel input: 77-122 kg/h<br />

� Steam excess ratio sigma: 2,4-3,6 [-]<br />

� Char inventory of the re<strong>for</strong>mer bed: 49-62<br />

Vol-%<br />

H2 CO2 CO CH4 N2<br />

70 80 90 100 110 120 130<br />

<strong>Re<strong>for</strong>mer</strong> fuel input [kg/h]<br />

© <strong>agnion</strong> Technologies GmbH | 2012 6 6


Cold gas efficiency<br />

Cold Gas Efficiency<br />

80%<br />

75%<br />

70%<br />

65%<br />

60%<br />

55%<br />

50%<br />

45%<br />

40%<br />

0% 20% 40% 60% 80% 100%<br />

Char conversion [m-%]<br />

� Char-conversion is a highly sensitive<br />

parameter <strong>for</strong> the cold-gas-efficiency<br />

� Dependent on residence-time and<br />

temperature<br />

30%<br />

450 500 550 600<br />

Total fuel input [kW]<br />

© <strong>agnion</strong> Technologies GmbH | 2012 7<br />

Cold gas efficiency<br />

� Higher fuel input capacity � lower<br />

resident-times � less char conversion<br />

� Higher temperature � higher char<br />

conversion<br />

80%<br />

75%<br />

70%<br />

65%<br />

60%<br />

55%<br />

50%<br />

45%<br />

40%<br />

35%<br />

Operation points which<br />

tend to higher<br />

temperatures<br />

7


SPA Tar Analysis of Transient and Stationary Conditions<br />

Total tar concentration excluding BTX on dry<br />

basis [mg/Nm³]<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Engine Relevant Tar Concentration -> total tar excluding BTX<br />

be<strong>for</strong>e and after scrubber<br />

scrubber solvent<br />

in phaseequilibrium<br />

� Tar-reduction depends on the solvents phase-equilibrium<br />

� Higher tar loads lead to higher Bio-Diesel consumption<br />

be<strong>for</strong>e<br />

after scrubber<br />

re<strong>for</strong>mer operation and char<br />

inventory of the re<strong>for</strong>mer bed<br />

stabilized<br />

© <strong>agnion</strong> Technologies GmbH | 2012 8


Tar Species from SPA-Analysis<br />

Tar species concentration in dry syngas<br />

[mg/Nm³]<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Indan<br />

Indene<br />

Naphthalene<br />

be<strong>for</strong>e and after scrubber solvent in<br />

phase equilibrium<br />

2-Methylnaphthalene<br />

1-Methylnaphthalene<br />

Biphenyl<br />

Acenaphthylene<br />

Acenaphthene<br />

9<br />

© <strong>agnion</strong> Technologies GmbH | 2012 9<br />

Fluorene<br />

Phenanthrene<br />

Anthracene<br />

Fluorantene<br />

Pyrene<br />

Phenol<br />

be<strong>for</strong>e scrubber<br />

after scrubber<br />

o-Cresol<br />

m-Cresol<br />

p-Cresol


Correlation of Tar Concentration and Steam Ratio<br />

Total Tar incl. BTX [g/Nm³]<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

2,0 2,5 3,0 3,5 4,0<br />

s – steam excess ratio [-]<br />

� Main parameter <strong>for</strong> influencing the tar-content: Steam excess ratio s<br />

© <strong>agnion</strong> Technologies GmbH | 2012 10<br />

10


Measurement Program - Summary<br />

Vol-% Vol-%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Summery of the measurement Program<br />

� Syngas Output: 140-390 kW<br />

� Cold gas efficiency: 50-70% � Depends highly on char conversion<br />

� Dry syngas LHV: 10-11 MJ/Nm³<br />

� Tar-content 2 – 4 g/Nm³ (ex BTX)<br />

� Most important: Identification of a stable operation point with a high<br />

cold-gas efficiency<br />

H2 CO2 CO CH4 N2<br />

70 80 90 100 110 120 130<br />

<strong>Re<strong>for</strong>mer</strong> fuel input [kg/h]<br />

© <strong>agnion</strong> Technologies GmbH | 2012 11 11


Operational Availability<br />

Aim of the availability program<br />

� Show the technical fitness of the <strong>agnion</strong>-<br />

<strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong><br />

Hours of operation per day<br />

24<br />

21<br />

18<br />

15<br />

12<br />

9<br />

6<br />

3<br />

0<br />

Test parameter<br />

Brennkammer combustor <strong>Re<strong>for</strong>mer</strong> Gasmotor Gas-Engine<br />

Brennkammer <strong>Re<strong>for</strong>mer</strong> Gasmotor<br />

Christmas Holyday<br />

In times of planed<br />

re<strong>for</strong>mer shut-downs, the<br />

combustor is running.<br />

� 1200 h dedicated <strong>for</strong> determining the<br />

operational availability of the plant<br />

� Constant operation parameters (optimized<br />

operation point developed in the<br />

measurement program)<br />

End of the program<br />

combustor is still running.<br />

© <strong>agnion</strong> Technologies GmbH | 2012 12


Hours of operation per day<br />

24<br />

16<br />

Operational Availability: <strong>Re<strong>for</strong>mer</strong><br />

8<br />

0<br />

� Hour of operation in availability test: 1481 h<br />

� Planed shut-down: 579 h<br />

� failure: 76 h<br />

� availability: 95,1 %<br />

Betrieb Operation Störung Failure Stillstand Planed shut-down<br />

Failures<br />

� Frozen sensors<br />

� Blocking in the feeding system<br />

� Wear in the char refeeder<br />

© <strong>agnion</strong> Technologies GmbH | 2012 13


H ours of operation per day<br />

Operational Availability: Gas-Engine<br />

24<br />

16<br />

8<br />

0<br />

� Hour of operation in availability test: 1197 h<br />

� Planed shut-down: 792 h<br />

� failure: 96 h<br />

� availability: 92,6 %<br />

Betrieb Operation Störung Failure Stillstand Planed shut-down<br />

Failures<br />

� Knock-control system<br />

� Hörbiger-Valves untight<br />

© <strong>agnion</strong> Technologies GmbH | 2012 14


Commercial Demonstration Plant Grassau<br />

� Location: Grassau (Germany)<br />

� Partner: Biomassehof Achental<br />

� Subsidies: BMU<br />

� 1.3 MW therm 400kW el 600kW Heat<br />

� Fuel: Start-up with pellets then<br />

change to wood-chips<br />

� Official inauguration: May 2012<br />

� Hours of operation re<strong>for</strong>mer:<br />

approx. 1200h<br />

� Hours of operation gas-engine:<br />

approx. 1000h<br />

© <strong>agnion</strong> Technologies GmbH | 2012 15 15


Operational Experience Grassau<br />

Operation with Wood-Pellets<br />

� Plant Start-Up with<br />

„NawaRo“-Wood-Pellets<br />

� With Pellets, plantspecifications<br />

can be reached.<br />

� High Carbon-Conversion and<br />

thus high cold-gas-efficiency<br />

� Gas-composition and gaspressure<br />

ideal <strong>for</strong> the <strong>agnion</strong>engine<br />

concept.<br />

Since 3 months operation with<br />

wood-chips<br />

� At the moment: Data analysis.<br />

Operational data available<br />

soon…<br />

Results:<br />

- Black: mass balance<br />

- Red: Simulation<br />

Data Amount Unit<br />

Fuel Heat-Pipe <strong>Re<strong>for</strong>mer</strong> 181,3 kg/h<br />

Fuel Burning Chamber 30 kg/h<br />

H2 percentage (dry) 36,5 Vol%<br />

CO percentage (dry) 16 Vol%<br />

CO2 percentage (dry) 24,5 Vol%<br />

CH4 percentage (dry) 10,3 Vol%<br />

Data Amount Unit<br />

Syngas base results Syngas wet 343 346 kg/h<br />

Syngas<br />

composition (wet,<br />

molar fraction)<br />

Syngas dry 225 237 kg/h<br />

L. heating value (wet<br />

basis)<br />

1,9 2,1 kWh/kg<br />

Syngas power 633 711 kW<br />

H2 22,4 25,0 vol%<br />

CO 9,8 10,9 vol%<br />

CO 2 15,0 14,0 vol%<br />

CH 4 6,3 6,7 vol%<br />

N 2 7,8 8,4 vol%<br />

H 2O 38,4 35,0 vol%<br />

© <strong>agnion</strong> Technologies GmbH | 2012 16


Outlook: Test of Fuel-Mixtures<br />

� By mixing wood-chips and various<br />

residues, the fuels chemical behavior<br />

can be adjusted on the needs of<br />

the fluidized bed.<br />

� Compacting and homogenizing<br />

the fuel leads to proper physical<br />

behavior<br />

� Various Mixtures (20 mm Pellets, WC 20%)<br />

Matrix: Wood Chips WC 20%<br />

Residues<br />

• Green-Waste<br />

• Cap-Wood-Residue<br />

• Landscape conservation material<br />

� Lab-Test show promise. Tests in<br />

Grassau will follow soon.<br />

© <strong>agnion</strong> Technologies GmbH | 2012 17<br />

Residue<br />

80 / 20<br />

60 / 40 30 / 70<br />

Wood<br />

Chips


Summary<br />

� By optimizing the char conversion, the <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong> shows cold gas<br />

efficiencies of 70%.<br />

� <strong>The</strong> <strong>agnion</strong> <strong>Heatpipe</strong>-<strong>Re<strong>for</strong>mer</strong> reaches an availability of more the 90% under<br />

commercial conditions.<br />

� <strong>The</strong> commercial plant in Grassau runs in wood-chips operation; the calculated<br />

specifications can be reached.<br />

� At the moment we work on expanding our fuel-band. Residues-Wood-Mixtures<br />

seem to be a solution.<br />

Thanks <strong>for</strong> you kind attantion<br />

© <strong>agnion</strong> Technologies GmbH | 2012 page 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!