18.01.2013 Views

Soil moisture modelling using TWI and satellite imagery in the ... - KTH

Soil moisture modelling using TWI and satellite imagery in the ... - KTH

Soil moisture modelling using TWI and satellite imagery in the ... - KTH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Soil</strong> <strong>moisture</strong> <strong>modell<strong>in</strong>g</strong> <strong>us<strong>in</strong>g</strong> <strong>TWI</strong><br />

<strong>and</strong> <strong>satellite</strong> <strong>imagery</strong> <strong>in</strong> <strong>the</strong><br />

Stockholm region<br />

Jan Haas<br />

Master’s of Science Thesis <strong>in</strong> Geo<strong>in</strong>formatics<br />

TRITA-GIT EX 10-001<br />

School of Architecture <strong>and</strong> <strong>the</strong> Built Environment<br />

Royal Institute of Technology (<strong>KTH</strong>)<br />

100 44 Stockholm, Sweden<br />

March 2010


TRITA-GIT EX 10-001<br />

ISSN 1653-5227<br />

ISRN <strong>KTH</strong>/GIT/EX--10/001-SE


Abstract<br />

<strong>Soil</strong> <strong>moisture</strong> is an important element <strong>in</strong> hydrological l<strong>and</strong>-surface processes as well as l<strong>and</strong>atmosphere<br />

<strong>in</strong>teractions <strong>and</strong> has proven useful <strong>in</strong> numerous agronomical, climatological <strong>and</strong><br />

meteorological studies. S<strong>in</strong>ce hydrological soil <strong>moisture</strong> estimates are usually po<strong>in</strong>t-based<br />

measurements at a specific site <strong>and</strong> time, spatial <strong>and</strong> temporal dynamics of soil <strong>moisture</strong> are difficult<br />

to capture. <strong>Soil</strong> <strong>moisture</strong> retrieval techniques <strong>in</strong> remote sens<strong>in</strong>g present possibilities to overcome<br />

<strong>the</strong> abovementioned limitations by cont<strong>in</strong>uously provid<strong>in</strong>g distributed soil <strong>moisture</strong> data at<br />

different scales <strong>and</strong> vary<strong>in</strong>g temporal resolutions. The ma<strong>in</strong> purpose of this study is to derive<br />

soil <strong>moisture</strong> estimates for <strong>the</strong> Stockholm region by means of two different approaches from a<br />

hydrological <strong>and</strong> a remote sens<strong>in</strong>g po<strong>in</strong>t of view <strong>and</strong> <strong>the</strong> comparison of both methods.<br />

<strong>Soil</strong> <strong>moisture</strong> is both modelled with <strong>the</strong> Topographic Wetness Index (<strong>TWI</strong>) based on digital<br />

elevation data <strong>and</strong> with <strong>the</strong> Temperature‐Vegetation Dryness Index (TVDI) as a representation<br />

of l<strong>and</strong> surface temperature <strong>and</strong> Normalized Difference Vegetation Index (NDVI) ratio.<br />

Correlations of both <strong>in</strong>dex distributions are <strong>in</strong>vestigated. Possible <strong>in</strong>dex dependencies on<br />

vegetation cover <strong>and</strong> underly<strong>in</strong>g soil types are explored. Field measurements of soil <strong>moisture</strong><br />

are related to <strong>the</strong> derived <strong>in</strong>dices.<br />

The results <strong>in</strong>dicate that accord<strong>in</strong>g to a very low Pearson correlation coefficient of 0.023, no<br />

l<strong>in</strong>ear dependency between <strong>the</strong> two <strong>in</strong>dices existed. Index classification <strong>in</strong> low, medium <strong>and</strong> high<br />

value categories did not result <strong>in</strong> higher correlations. Nei<strong>the</strong>r <strong>in</strong>dex distribution is found to be<br />

related to soil types <strong>and</strong> only <strong>the</strong> TVDI correlates alongside changes <strong>in</strong> vegetation cover<br />

distribution. In situ measured values correlate better with TVDIs, although nei<strong>the</strong>r <strong>in</strong>dex is<br />

considered to give superior results <strong>in</strong> <strong>the</strong> area due to low correlation coefficients. The decision<br />

which <strong>in</strong>dex to apply is dependent on available data, <strong>in</strong>tent of usage <strong>and</strong> scale. The <strong>TWI</strong> surface<br />

is considered to be a more suitable soil <strong>moisture</strong> representation for analyses on smaller scales<br />

whereas <strong>the</strong> TVDI should prove more valuable on a larger, regional scale. The lack of correlation<br />

between <strong>the</strong> <strong>in</strong>dices is attributed to <strong>the</strong> fact that <strong>the</strong>y differ greatly <strong>in</strong> <strong>the</strong>ir underly<strong>in</strong>g <strong>the</strong>ories.<br />

However, <strong>the</strong> syn<strong>the</strong>sis of hydrologic <strong>modell<strong>in</strong>g</strong> <strong>and</strong> remote sens<strong>in</strong>g is a promis<strong>in</strong>g field of<br />

research. The establishment of comb<strong>in</strong>ed effective models for soil <strong>moisture</strong> determ<strong>in</strong>ation over<br />

large areas requires more extensive <strong>in</strong> situ measurements <strong>and</strong> methods to fully assess <strong>the</strong><br />

models’ capabilities, limitations <strong>and</strong> value for hydrological predictions.<br />

Keywords: <strong>TWI</strong>, TVDI, soil <strong>moisture</strong><br />

i


Acknowledgement<br />

I would like to express my s<strong>in</strong>cere gratitude to my supervisors Ulla Mörtberg <strong>and</strong> David<br />

Gustafsson, Department of L<strong>and</strong> <strong>and</strong> Water Resources Eng<strong>in</strong>eer<strong>in</strong>g, School of Architecture <strong>and</strong><br />

<strong>the</strong> Built Environment, <strong>KTH</strong> ‐ Royal Institute of Technology for <strong>the</strong>ir cont<strong>in</strong>uous help <strong>and</strong><br />

guidance, data <strong>and</strong> literature provision as well as conduct<strong>in</strong>g fieldwork toge<strong>the</strong>r <strong>and</strong> data post‐<br />

process<strong>in</strong>g.<br />

I also gratefully acknowledge <strong>the</strong> support <strong>and</strong> advice given to me by Dr. Yifang Ban, Head of<br />

Department of Urban Plann<strong>in</strong>g <strong>and</strong> Environment, School of Architecture <strong>and</strong> Built Environment,<br />

<strong>KTH</strong> ‐ Royal Institute of Technology. I would also like to express my gratitude towards Tuong<br />

Thuy Vu, Dorothy Furberg <strong>and</strong> Maria Irene Rangel Luna of <strong>the</strong> same department for <strong>the</strong>ir help,<br />

trust <strong>and</strong> technical support.<br />

Fur<strong>the</strong>rmore I would like to thank Else‐Marie W<strong>in</strong>gqvist from Sveriges Meteorologiska och<br />

Hydrologiska Institut (SMHI) for <strong>the</strong> provision of detailed temperature <strong>and</strong> precipitation data<br />

for several gaug<strong>in</strong>g stations <strong>in</strong> <strong>and</strong> around Stockholm.<br />

ii


Table of Contents<br />

Abstract ................................................................................................................................................................................... i<br />

Acknowledgement ............................................................................................................................................................. ii<br />

Table of Contents ............................................................................................................................................................. iii<br />

List of Tables ....................................................................................................................................................................... vi<br />

List of Figures ................................................................................................................................................................... vii<br />

List of Appendices .......................................................................................................................................................... viii<br />

List of Acronyms ................................................................................................................................................................ ix<br />

1 Introduction ............................................................................................................................................................. 11<br />

2 Background .............................................................................................................................................................. 12<br />

2.1 Topography‐based Hydrological Model (TOPMODEL) ................................................................ 12<br />

2.2 Topographic Wetness Index (<strong>TWI</strong>) ...................................................................................................... 12<br />

2.3 Digital Elevation Data ................................................................................................................................ 13<br />

2.3.1 Gridded data (DEM) .......................................................................................................................... 13<br />

2.3.2 Triangular irregular networks (TIN) ......................................................................................... 14<br />

2.3.3 Contour Data ........................................................................................................................................ 14<br />

2.3.4 DEM resolution ................................................................................................................................... 14<br />

2.3.5 Depression removal <strong>in</strong> DEMs ........................................................................................................ 18<br />

2.4 Flow direction algorithms ........................................................................................................................ 19<br />

2.4.1 S<strong>in</strong>gle Flow Direction (SFD) algorithms ................................................................................... 19<br />

2.4.2 Biflow Direction (BFD) algorithms ............................................................................................. 20<br />

2.4.3 Multiple Flow Direction (MFD) algorithms ............................................................................. 21<br />

2.4.4 Algorithm comparison ..................................................................................................................... 24<br />

2.5 <strong>Soil</strong> <strong>moisture</strong> retrieval <strong>in</strong> remote sens<strong>in</strong>g ......................................................................................... 26<br />

2.5.1 <strong>Soil</strong> <strong>moisture</strong> retrieval techniques .............................................................................................. 27<br />

2.5.2 L<strong>and</strong>sat program ................................................................................................................................ 28<br />

2.5.3 L<strong>and</strong>sat 7 Enhanced Thematic Mapper (ETM+) ................................................................... 29<br />

2.5.4 Normalized Difference Vegetation Index (NDVI) ................................................................. 30<br />

iii


2.5.5 Temperature‐Vegetation Dryness Index (TVDI) ................................................................... 31<br />

3 Study area <strong>and</strong> data description ..................................................................................................................... 35<br />

3.1 Study area ....................................................................................................................................................... 35<br />

3.2 Satellite image ............................................................................................................................................... 35<br />

3.3 Digital Elevation Model ............................................................................................................................. 36<br />

3.4 Contour data .................................................................................................................................................. 37<br />

3.5 L<strong>and</strong> cover data ............................................................................................................................................ 37<br />

3.6 <strong>Soil</strong> data ........................................................................................................................................................... 38<br />

3.7 Precipitation <strong>and</strong> temperature data .................................................................................................... 39<br />

4 Methodology ............................................................................................................................................................ 40<br />

4.1 <strong>TWI</strong> calculation ............................................................................................................................................. 40<br />

4.1.1 DEM preparation ................................................................................................................................ 40<br />

4.1.2 SCA <strong>and</strong> slope grid calculation ...................................................................................................... 40<br />

4.1.3 <strong>TWI</strong> surface generation ................................................................................................................... 41<br />

4.2 TVDI surface generation ........................................................................................................................... 43<br />

4.2.1 Satellite image pre‐process<strong>in</strong>g ..................................................................................................... 43<br />

4.2.2 NDVI surface ........................................................................................................................................ 45<br />

4.2.3 Surface temperature ......................................................................................................................... 47<br />

4.2.4 TVDI surface ......................................................................................................................................... 47<br />

4.3 Surface comparisons .................................................................................................................................. 49<br />

4.4 In situ measurements ................................................................................................................................ 50<br />

5 Results ........................................................................................................................................................................ 52<br />

5.1 <strong>TWI</strong> calculation ............................................................................................................................................. 52<br />

5.1.1 Filled/unfilled/noData <strong>and</strong> filled DEM ..................................................................................... 52<br />

5.1.2 Slope 0/+0.1 ......................................................................................................................................... 53<br />

5.1.3 Slope calculation method ................................................................................................................ 53<br />

5.1.4 <strong>TWI</strong> calculation comparison .......................................................................................................... 54<br />

5.1.5 <strong>TWI</strong>/TVDI correlations .................................................................................................................... 55<br />

5.1.6 <strong>TWI</strong>/TVDI <strong>and</strong> vegetation class correlation ........................................................................... 57<br />

iv


5.1.7 <strong>TWI</strong>/TVDI <strong>and</strong> soil class correlation .......................................................................................... 57<br />

5.1.8 <strong>TWI</strong>/TVDI <strong>and</strong> soil/vegetation class correlation ................................................................. 58<br />

5.2 Correlation coefficients ............................................................................................................................. 59<br />

5.3 Classification <strong>in</strong>to low, medium <strong>and</strong> high categories .................................................................... 62<br />

5.4 Correlation with <strong>in</strong> situ data ................................................................................................................... 62<br />

6 Discussion ................................................................................................................................................................. 64<br />

7 Conclusion ................................................................................................................................................................ 67<br />

References .......................................................................................................................................................................... 68<br />

Appendix ............................................................................................................................................................................. 78<br />

v


List of Tables<br />

Table 1 Technical specifications of L<strong>and</strong>sat missions 1 to 7 ....................................................................... 29<br />

Table 2 Summary of L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> sensor characteristics .................................................... 29<br />

Table 3 L<strong>and</strong>sat 7 ETM+ b<strong>and</strong> characteristics ................................................................................................... 30<br />

Table 4 L<strong>and</strong>sat scene <strong>in</strong>formation ........................................................................................................................ 36<br />

Table 5 L<strong>and</strong> cover classification table ................................................................................................................. 37<br />

Table 6 Vegetation class def<strong>in</strong>ition table ............................................................................................................. 38<br />

Table 7 Summary of soil types <strong>and</strong> distribution ............................................................................................... 38<br />

Table 8 Summary of day mean temperatures <strong>and</strong> precipitation ............................................................... 39<br />

Table 9 DEM surface statistics before <strong>and</strong> after pit removal ....................................................................... 40<br />

Table 10 B<strong>and</strong> constants for radiance calculation from DNs ...................................................................... 46<br />

Table 11 Classes <strong>and</strong> <strong>in</strong>dex surfaces for comb<strong>in</strong>ation .................................................................................... 49<br />

Table 12 Overview of all surface comb<strong>in</strong>ations ................................................................................................ 49<br />

Table 13 Surface classification summary ............................................................................................................ 50<br />

Table 14 <strong>TWI</strong> surface statistics summary ........................................................................................................... 55<br />

Table 15 Correlation between TVDI/<strong>TWI</strong> for vegetation classes .............................................................. 59<br />

Table 16 Correlation between TVDI/<strong>TWI</strong> for soil classes ............................................................................ 59<br />

Table 17 Correlation between TVDI/<strong>TWI</strong> for vegetation <strong>and</strong> soil classes ............................................ 60<br />

Table 18 TVDI <strong>and</strong> <strong>TWI</strong> surface comparison statistics .................................................................................. 62<br />

Table 19 Numerical comparison between ground truth <strong>and</strong> calculated <strong>TWI</strong> <strong>and</strong> TVDI values ... 63<br />

vi


List of Figures<br />

Figure 1 Simplified representation of <strong>the</strong> Ts/NDVI space from Lamb<strong>in</strong> <strong>and</strong> Ehrlich (1996) ........ 33<br />

Figure 2 Ts/NDVI space as TVDI taken from S<strong>and</strong>holt et al. (2002) ......................................................... 34<br />

Figure 3 Geometrically corrected L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> image .......................................................... 36<br />

Figure 4 Flow direction angle def<strong>in</strong>ition <strong>in</strong> <strong>the</strong> D<strong>in</strong>f approach taken from Tarboton (1997) ....... 41<br />

Figure 5 F<strong>in</strong>al <strong>TWI</strong> surface ......................................................................................................................................... 42<br />

Figure 6 Cloud mask ..................................................................................................................................................... 45<br />

Figure 7 Haze mask ....................................................................................................................................................... 45<br />

Figure 8 F<strong>in</strong>al TVDI surface ....................................................................................................................................... 48<br />

Figure 9 In situ data collection site Törnskogen ............................................................................................... 51<br />

Figure 10 Sample po<strong>in</strong>t overview ........................................................................................................................... 51<br />

Figure 11 Unfilled DEM (pits <strong>and</strong> s<strong>in</strong>ks visible) ............................................................................................... 52<br />

Figure 12 Filled DEM (pits <strong>and</strong> s<strong>in</strong>ks removed) ............................................................................................... 52<br />

Figure 13 <strong>TWI</strong> surface without prior pit removal ............................................................................................ 52<br />

Figure 14 Slope for <strong>TWI</strong> calculation <strong>in</strong> degrees ................................................................................................ 54<br />

Figure 15 Slope for <strong>TWI</strong> calculation <strong>in</strong> percent ................................................................................................ 54<br />

Figure 16 Slope calculated <strong>in</strong> TauDEM ................................................................................................................. 54<br />

Figure 17 Scatterplot of <strong>the</strong> complete <strong>TWI</strong> <strong>and</strong> TVDI surfaces with regression l<strong>in</strong>e ........................ 56<br />

Figure 18 Visual comparison between ground truth <strong>and</strong> calculated <strong>TWI</strong> <strong>and</strong> TVDI values ......... 63<br />

vii


List of Appendices<br />

Appendix A Orig<strong>in</strong>al 50 metre resolution DEM as acquired from Lantmäteriet ................................ 78<br />

Appendix B Precipitation over Stockholm <strong>in</strong> mm dur<strong>in</strong>g July 2002 ........................................................ 79<br />

Appendix C Average temperature around Stockholm <strong>in</strong> °C dur<strong>in</strong>g July 2002 ..................................... 80<br />

Appendix D D∞ flow direction grid surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM ............................ 81<br />

Appendix E D∞ slope grid surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM ............................................... 82<br />

Appendix F D∞ contribut<strong>in</strong>g area surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM ............................... 83<br />

Appendix G NDVI surface calculated by L<strong>and</strong>sat 7 ETM+ b<strong>and</strong>s 3 <strong>and</strong> 4 .............................................. 84<br />

Appendix H Temperature <strong>in</strong> °C derived from <strong>the</strong> ETM+ <strong>the</strong>rmal b<strong>and</strong> on August 4th, 2002 ....... 85<br />

Appendix I <strong>TWI</strong> surface calculation variants for 'NoData' ........................................................................... 86<br />

Appendix J <strong>TWI</strong> surface calculation variants for 'unfilled' ........................................................................... 87<br />

Appendix K <strong>TWI</strong> surface calculation variants for 'filled' .............................................................................. 88<br />

Appendix L <strong>TWI</strong>/TVDI scatterplots for vegetation classes 0 to 7 ............................................................. 89<br />

Appendix M <strong>TWI</strong>/TVDI scatterplots for soil classes ....................................................................................... 90<br />

Appendix N <strong>TWI</strong>/TVDI scatterplots for soil class bog <strong>and</strong> vegetation classes 0 to 7 ........................ 91<br />

Appendix O <strong>TWI</strong>/TVDI scatterplots for soil class clay <strong>and</strong> vegetation classes 0 to 7 ....................... 92<br />

Appendix P <strong>TWI</strong>/TVDI scatterplots for soil class rock <strong>and</strong> vegetation classes 0 to 7 ...................... 93<br />

Appendix Q <strong>TWI</strong>/TVDI scatterplots for soil class s<strong>and</strong> <strong>and</strong> vegetation classes 0 to 7 ..................... 94<br />

Appendix R <strong>TWI</strong>/TVDI scatterplots for soil class till <strong>and</strong> vegetation classes 0 to 7 .......................... 95<br />

Appendix S TVDI surface comb<strong>in</strong>ation statistics.............................................................................................. 96<br />

Appendix T <strong>TWI</strong> surface comb<strong>in</strong>ation statistics ............................................................................................... 97<br />

Appendix U <strong>TWI</strong>/TVDI <strong>and</strong> TVDI/<strong>TWI</strong> quantile classification scatterplots ......................................... 98<br />

Appendix V <strong>TWI</strong>/TVDI <strong>and</strong> TVDI/<strong>TWI</strong> natural breaks classification scatterplots ............................ 99<br />

viii


List of Acronyms<br />

ASCII ‐ American St<strong>and</strong>ard Code for Information Interchange<br />

ATCOR ‐ ATmospheric CORrection<br />

BFD ‐ BiFlow Direction<br />

CMP ‐ Common MidPo<strong>in</strong>t<br />

CSV ‐ Comma‐Separated Values<br />

DEMON ‐ Digital Elevation MOdel Networks<br />

DN ‐ Digital Number<br />

EOS ‐ Earth Observation Satellite<br />

ETM ‐ Enhanced Thematic Mapper<br />

FAPAR ‐ Fraction of Absorbed Photosyn<strong>the</strong>tically Active Radiation<br />

FOV ‐ Field‐Of‐View<br />

GA ‐ Genetic Algorithm<br />

GCP ‐ Ground Control Po<strong>in</strong>ts<br />

GLCF ‐ Global L<strong>and</strong> Cover Facility<br />

IRS‐WiFS ‐ Indian Remote Sens<strong>in</strong>g Satellites Wide Field Sensor<br />

LAI ‐ Leaf Area Index<br />

LiDAR ‐ Light Detection And Rang<strong>in</strong>g<br />

MFD ‐ Multiple Flow Direction<br />

MIR ‐ Mid‐InfraRed<br />

MSS ‐ MultiSpectral Scanner<br />

NASA ‐ National Aeronautics <strong>and</strong> Space Adm<strong>in</strong>istration<br />

NOAA ‐ National Oceanic <strong>and</strong> Atmospheric Adm<strong>in</strong>istration<br />

NDVI ‐ Normalized Difference Vegetation Index<br />

NIR ‐ Near InfraRed<br />

PBMR ‐ Push Broom Microwave Radiometer<br />

RBV ‐ Return Beam Vidicon<br />

ix


RMSE ‐ Root‐Mean Square Error<br />

SCA ‐ Specific Catchment Area<br />

SFD ‐ S<strong>in</strong>gle Flow Direction<br />

SGU ‐ Sveriges Geologiska Undersökn<strong>in</strong>g<br />

SMHI ‐ Sveriges Meteorologiska och Hydrologiska Institut<br />

SPOT ‐ Satellite Pour l'Observation de la Terre<br />

SWEREF99 ‐ SWedish REerence Frame 1999<br />

TauDEM ‐ Terra<strong>in</strong> analysis <strong>us<strong>in</strong>g</strong> Digital Elevation Models<br />

TDRSS ‐ Track<strong>in</strong>g <strong>and</strong> Data Relay Satellite System<br />

TFD ‐ Track<strong>in</strong>g Flow Direction<br />

TI ‐ Topographic Index<br />

TIN ‐ Triangulated Irregular Network<br />

TIR ‐ Thermal InfraRed<br />

TOPMODEL ‐ TOPography‐based hydrological MODEL<br />

TVDI ‐ Temperature‐Vegetation Dryness Index<br />

<strong>TWI</strong> ‐ Topographic Wetness Index<br />

USGS ‐ United States Geological Survey<br />

VWC ‐ Vegetation Water Content<br />

WI ‐ Wetness Index<br />

x


1 Introduction<br />

Knowledge about soil <strong>moisture</strong> status <strong>and</strong> <strong>the</strong> processes def<strong>in</strong><strong>in</strong>g <strong>moisture</strong> distribution is, <strong>and</strong><br />

has always been essential <strong>in</strong> many respects. Start<strong>in</strong>g to be of importance with <strong>the</strong> advent of<br />

agriculture <strong>in</strong> human history, <strong>in</strong>formation about soil <strong>moisture</strong> plays nowadays an important role<br />

<strong>in</strong> a much broader field, e. g. hydrology, meteorology <strong>and</strong> climatology, ecology, l<strong>and</strong> surface<br />

<strong>modell<strong>in</strong>g</strong> <strong>and</strong> most recently studies on global environmental changes (Verstraeten et al., 2006;<br />

Kerr et al., 2001; Kerr, 2007 <strong>and</strong> Gruhier et al., 2008). As environmentally related issues<br />

<strong>in</strong>crease, <strong>the</strong> dem<strong>and</strong> for <strong>in</strong>formation on environmental parameters grows simultaneously. To<br />

ga<strong>the</strong>r <strong>and</strong> derive <strong>the</strong>se is <strong>the</strong>refore a crucial task.<br />

The underst<strong>and</strong><strong>in</strong>g of hydrological processes <strong>and</strong> accurate determ<strong>in</strong>ation of soil <strong>moisture</strong> has<br />

been subject of numerous studies <strong>in</strong> <strong>the</strong> field of hydrology. <strong>Soil</strong> <strong>moisture</strong> is usually expressed as<br />

<strong>in</strong>dices <strong>in</strong> hydrological <strong>modell<strong>in</strong>g</strong>. One broadly used <strong>in</strong>dex is <strong>the</strong> Topographic Wetness Index<br />

(<strong>TWI</strong>) orig<strong>in</strong>ally developed by Beven <strong>and</strong> Kirkby (1979). It is based on surround<strong>in</strong>g topography<br />

<strong>and</strong> describes <strong>the</strong> tendency of a po<strong>in</strong>t to become saturated. Air‐ <strong>and</strong> spaceborne soil <strong>moisture</strong><br />

retrieval has been a promis<strong>in</strong>g research field <strong>in</strong> remote sens<strong>in</strong>g s<strong>in</strong>ce <strong>the</strong> early 1970s. Relations<br />

between measured l<strong>and</strong> surface temperature, vegetation <strong>and</strong> soil <strong>moisture</strong> could be found <strong>and</strong><br />

expressed by <strong>the</strong> ‘triangle’ method. The Temperature‐Vegetation Dryness Index (TVDI) by<br />

S<strong>and</strong>holt et al. (2002) is an <strong>in</strong>dex represent<strong>in</strong>g <strong>the</strong> abovementioned relations. Both <strong>in</strong>dices have<br />

shown to be reasonable estimators of surface soil <strong>moisture</strong>, although some questions of validity<br />

rema<strong>in</strong>. However, <strong>the</strong>re seems to be a lack of knowledge about <strong>in</strong>dex correlations <strong>and</strong> if one<br />

particular <strong>in</strong>dex can be considered to give superior results <strong>in</strong> <strong>the</strong> region of <strong>in</strong>terest.<br />

One purpose of this study is to compare both <strong>in</strong>dex distributions to each o<strong>the</strong>r with respect to<br />

different soil types, vary<strong>in</strong>g vegetation cover <strong>and</strong> to explore possible correlations <strong>and</strong><br />

dependencies among <strong>the</strong>se. Fur<strong>the</strong>rmore, <strong>the</strong> results <strong>and</strong> methods are related to <strong>in</strong> situ<br />

measured soil <strong>moisture</strong>. Ano<strong>the</strong>r purpose is to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to current soil <strong>moisture</strong><br />

distribution for <strong>the</strong> region of Stockholm that can be used <strong>in</strong> fur<strong>the</strong>r analyses, research <strong>and</strong> might<br />

help <strong>in</strong> decision mak<strong>in</strong>g <strong>and</strong> future plann<strong>in</strong>g.<br />

11


2 Background<br />

2.1 Topography­based Hydrological Model (TOPMODEL)<br />

The TOPMODEL framework <strong>in</strong>itially proposed by Beven <strong>and</strong> Kirkby (1979) is a compilation of<br />

different concepts for distributed hydrological <strong>modell<strong>in</strong>g</strong>. It is based on <strong>the</strong> two fundamental<br />

assumptions that downslope subsurface flows can be adequately represented by a succession of<br />

steady state water table positions <strong>and</strong> that <strong>the</strong>re is an exponential relationship between local<br />

storage (or water table level) <strong>and</strong> downslope flow rate. Fur<strong>the</strong>rmore it is assumed that <strong>the</strong><br />

hydraulic gradients of <strong>the</strong> saturated zone can be approximated by local surface topographic<br />

slopes �tan β�, thus requir<strong>in</strong>g a detailed analysis of catchment topography (Qu<strong>in</strong>n, 1991 <strong>and</strong><br />

Beven, 2004).<br />

2.2 Topographic Wetness Index (<strong>TWI</strong>)<br />

The <strong>TWI</strong> is a ma<strong>the</strong>matically simple parameterisation of soil <strong>moisture</strong> status that has been<br />

applied <strong>in</strong> numerous studies. The <strong>in</strong>dex is based <strong>and</strong> calculated on slopes <strong>and</strong> depends <strong>the</strong>refore<br />

on digital terra<strong>in</strong> data. The <strong>TWI</strong> is firstly suggested with<strong>in</strong> <strong>the</strong> TOPMODEL framework by Beven<br />

<strong>and</strong> Kirkby (1979) <strong>and</strong> can be calculated as:<br />

����⁄ ��� ��<br />

(1)<br />

where α = <strong>the</strong> cumulative upslope area dra<strong>in</strong><strong>in</strong>g through a po<strong>in</strong>t (per unit contour length)<br />

tan β = <strong>the</strong> slope angle at that po<strong>in</strong>t<br />

The <strong>in</strong>dex describes <strong>the</strong> tendency of water to accumulate at any po<strong>in</strong>t <strong>in</strong> a catchment (<strong>in</strong> terms<br />

of α) <strong>and</strong> <strong>the</strong> tendency for gravitational forces to move that water downslope (expressed <strong>in</strong><br />

terms of tan β as an approximate hydraulic gradient) (Qu<strong>in</strong>n, 1991). Thus, wet areas can arise<br />

ei<strong>the</strong>r from large contribut<strong>in</strong>g dra<strong>in</strong>age areas or from very flat slopes, whereas areas with low<br />

<strong>in</strong>dex values are drier, result<strong>in</strong>g from ei<strong>the</strong>r steep slopes or small contribut<strong>in</strong>g dra<strong>in</strong>age areas.<br />

TOPMODEL is able to predict both distributed water tables <strong>and</strong> hydrographs. Modification of <strong>the</strong><br />

local water table depth can give an estimate of local soil <strong>moisture</strong> status. Calculated local water<br />

table depths are dependent on <strong>the</strong> value of <strong>the</strong> <strong>in</strong>dex at a po<strong>in</strong>t (Qu<strong>in</strong>n et al., 1995).<br />

12


Statistical distributions <strong>and</strong> spatial patterns of <strong>the</strong> <strong>TWI</strong> vary greatly depend<strong>in</strong>g on calculation<br />

parameters (Qu<strong>in</strong>n et al., 1995). The two most critical issues here are <strong>the</strong> resolution of <strong>the</strong><br />

underly<strong>in</strong>g elevation model <strong>and</strong> <strong>the</strong> choice of <strong>the</strong> appropriate flow rout<strong>in</strong>g algorithm. For<br />

successful <strong>TWI</strong> calculations it is assumed that any problems <strong>in</strong>volved <strong>in</strong> DEM creation, i.e. s<strong>in</strong>k<br />

<strong>and</strong> dam removal are resolved. Qu<strong>in</strong>n et al. (1995) also noted that <strong>the</strong>re is no st<strong>and</strong>ard solution<br />

for calculat<strong>in</strong>g <strong>the</strong> ln�α⁄ tan β� <strong>in</strong>dex but that its parametres need to be optimized accord<strong>in</strong>g to<br />

<strong>the</strong> correspond<strong>in</strong>g catchment.<br />

Limitations <strong>and</strong> issues of validation <strong>and</strong> predictive uncerta<strong>in</strong>ty of <strong>the</strong> concept were <strong>in</strong>vestigated,<br />

detailed analyses of <strong>the</strong> model’s capabilities, underly<strong>in</strong>g <strong>the</strong>ories <strong>and</strong> basic assumptions were<br />

performed <strong>and</strong> improvements were suggested <strong>in</strong> several works (Franch<strong>in</strong>i et al., 1996; Ambroise<br />

et al., 1996; Beven, 1997; Mendic<strong>in</strong>o <strong>and</strong> Sole, 1997; Seibert et al., 1997; Bras<strong>in</strong>gton <strong>and</strong><br />

Richards, 1998; Güntner et al., 1999 <strong>and</strong> Sørensen et al., 2006).<br />

2.3 Digital Elevation Data<br />

Digital elevation data is traditionally represented <strong>in</strong> three forms; gridded data, triangular<br />

irregular networks <strong>and</strong> contour based elevation models. All of <strong>the</strong>m can be used <strong>in</strong> hydrological<br />

<strong>modell<strong>in</strong>g</strong>.<br />

2.3.1 Gridded data (DEM)<br />

Digital elevation models are readily available <strong>and</strong> commonly used as representation of elevation<br />

<strong>in</strong>formation. Grid DEMs store height <strong>in</strong>formation <strong>in</strong> matrix form. Each matrix node of equal<br />

resolution is assigned one particular elevation value. Grid based DEMs are widely used <strong>in</strong><br />

analyses of hydrologic problems but are disadvantageous <strong>in</strong> some respects. They lack e. g. <strong>the</strong><br />

possibility of sufficiently represent<strong>in</strong>g elevation discont<strong>in</strong>uities. Ano<strong>the</strong>r disadvantage is that<br />

mesh resolution affects <strong>the</strong> results <strong>and</strong> computational efficiency. Fur<strong>the</strong>rmore it is stated that<br />

grid spac<strong>in</strong>g needs to be based on <strong>the</strong> roughest terra<strong>in</strong> <strong>in</strong> <strong>the</strong> catchment which results <strong>in</strong><br />

redundancy <strong>in</strong> smoo<strong>the</strong>r areas <strong>and</strong> f<strong>in</strong>ally that <strong>the</strong> computed flow paths tend to zigzag <strong>in</strong>stead of<br />

to follow dra<strong>in</strong>age l<strong>in</strong>es, thus becom<strong>in</strong>g too long. Holmgren (1994) noted that grid based DEMs<br />

were relatively unsuitable for hydrological <strong>modell<strong>in</strong>g</strong> before <strong>the</strong> development of more<br />

sophisticated flow direction algorithms, as runoff could only be modelled <strong>in</strong> a simplified way<br />

(limited to eight discrete directions).<br />

13


2.3.2 Triangular irregular networks (TIN)<br />

The representation of elevation data <strong>in</strong> TINs is based on <strong>the</strong> connection of nodes with stored 3‐<br />

dimensiondal coord<strong>in</strong>ates (x, y <strong>and</strong> z). The nodes are connected with edges to form triangles.<br />

Additional <strong>in</strong>formation such as slope, aspect, surface length <strong>and</strong> area can <strong>the</strong>n be derived for<br />

each of <strong>the</strong> result<strong>in</strong>g triangular facets. The TIN has become a ra<strong>the</strong>r unpopular format <strong>in</strong> recent<br />

years (Holmgren, 1994).<br />

2.3.3 Contour Data<br />

Contours are l<strong>in</strong>es that connect po<strong>in</strong>ts of equal (elevation) values. As <strong>the</strong> spac<strong>in</strong>g between <strong>the</strong><br />

contours widens, height differences become smaller <strong>and</strong> vice versa. Contour data is usually<br />

derived from digitiz<strong>in</strong>g of maps <strong>and</strong> represents height distribution cont<strong>in</strong>uously. Contour based<br />

models are superior to o<strong>the</strong>r forms of elevation data because <strong>the</strong>y explicitly state <strong>in</strong> which<br />

direction <strong>the</strong> runoff flows (always perpendicular to <strong>the</strong> contours) (Holmgren, 1994). Aryal <strong>and</strong><br />

Bates (2008) found that contour DEMs are less sensitive to changes <strong>in</strong> resolution than grid DEMs<br />

<strong>and</strong> provide more consistent estimates of <strong>TWI</strong>s at moderate to high DEM resolutions.<br />

The quality of elevation data used <strong>in</strong> <strong>the</strong> analyses is of great importance. Yet, accord<strong>in</strong>g to Qu<strong>in</strong>n<br />

et al. (1995), Wolock <strong>and</strong> McCabe (1995), Beven (1997) <strong>and</strong> Mendic<strong>in</strong>o <strong>and</strong> Sole (1997), <strong>the</strong>re is<br />

no st<strong>and</strong>ard <strong>and</strong> superior set of digital elevation data as basis for <strong>TWI</strong> calculation.<br />

2.3.4 DEM resolution<br />

Select<strong>in</strong>g <strong>the</strong> optimal spatial resolution is a central issue <strong>in</strong> environmentally related analyses<br />

<strong>in</strong>clud<strong>in</strong>g digital elevation data (Rodhe, 1999; Aryal <strong>and</strong> Bates, 2008). The appropriate<br />

resolution should be chosen accord<strong>in</strong>g to <strong>the</strong> <strong>modell<strong>in</strong>g</strong> goals but is unfortunately often<br />

determ<strong>in</strong>ed by data availability <strong>and</strong> economic aspects. The spatial resolution should always be<br />

modelled to fit <strong>the</strong> scale of <strong>the</strong> area under consideration (Vaze <strong>and</strong> Teng, 2007; Wu et al., 2007).<br />

For example smaller areas with more detailed <strong>in</strong>formation require higher spatial resolutions. If<br />

<strong>the</strong> resolution becomes too low <strong>and</strong> hillslope lengths are comparatively small, no mean<strong>in</strong>gful<br />

<strong>TWI</strong> can be derived (Beven, 1997). Studies show that highest resolutions do not always produce<br />

<strong>the</strong> most accurate prediction model (Wu et al., 2008). The studies of Refsgaard (1997), Molnár<br />

<strong>and</strong> Julien (2000) <strong>and</strong> Vázquez et al. (2002) highlighted <strong>the</strong> variability <strong>in</strong> hydrologic response to<br />

grid size <strong>and</strong> suggested an appropriate resolution as a trade‐off between m<strong>in</strong>imized<br />

computational effort <strong>and</strong> retention of realistic model performance. Endreny <strong>and</strong> Wood (2003)<br />

found that runoff flows differently with vary<strong>in</strong>g spatial resolutions. Many studies found <strong>the</strong> <strong>TWI</strong><br />

14


concept to respond sensitively to grid cell resolution (Wolock <strong>and</strong> Price, 1994; Gallant <strong>and</strong><br />

Hutch<strong>in</strong>son, 1996; Saulnier et al., 1997; Bras<strong>in</strong>gton <strong>and</strong> Richards, 1998; Higy <strong>and</strong> Musy, 2000;<br />

Vivoni et al., 2005; Vaze <strong>and</strong> Teng, 2007; Wu et al., 2007; Wu et al., 2008), even <strong>in</strong> resolutions<br />

higher than 10 m (Hancock, 2005). Ra<strong>the</strong>r coarse data may not represent some important slope<br />

features whereas a too high resolution can <strong>in</strong>troduce unwanted perturbations to flow directions<br />

<strong>and</strong> slope angles. This co<strong>in</strong>cides with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of Wolock <strong>and</strong> Price (1994), Zhang <strong>and</strong><br />

Montgomery (1994), Bruneau et al. (1995) <strong>and</strong> Thieken et al. (1999), who stated that low<br />

resolution DEMs generally show smoo<strong>the</strong>r terra<strong>in</strong>s <strong>and</strong> shorter flow paths by statistics of slopes<br />

<strong>and</strong> topographic <strong>in</strong>dices than high resolution data. Vaze <strong>and</strong> Teng (2007) found that maximum<br />

<strong>and</strong> mean slope values drastically decrease with a decrease <strong>in</strong> DEM resolution. <strong>TWI</strong> distribution<br />

is dependent on <strong>the</strong> degree of spatial resolution of elevation data. The f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> several studies<br />

show that a lower grid cell resolution results <strong>in</strong> higher <strong>TWI</strong> mean values <strong>and</strong> a broader range of<br />

smaller slope percentages (Hutch<strong>in</strong>son <strong>and</strong> Dowl<strong>in</strong>g, 1991; Jenson, 1991; Qu<strong>in</strong>n et al., 1991 <strong>and</strong><br />

1995; Wolock <strong>and</strong> Price, 1994; Zhang <strong>and</strong> Montgomery, 1994; Saulnier et al., 1997; Wolock <strong>and</strong><br />

McGabe, 1995; Wolock <strong>and</strong> McGabe, 2000; Hjerdt et al., 2004; Sørensen <strong>and</strong> Seibert, 2007; Wu et<br />

al., 2007 <strong>and</strong> 2008 <strong>and</strong> Aryal <strong>and</strong> Bates, 2008). Wu et al. (2008) additionally noticed that <strong>the</strong><br />

st<strong>and</strong>ard deviation of plan curvature decreased with <strong>in</strong>creas<strong>in</strong>g DEM cell size.<br />

Not only directly derived elevation attributes are dependent on resolution, but also <strong>the</strong> form of<br />

<strong>the</strong> <strong>in</strong>dex distribution (Iorgulescu <strong>and</strong> Jordan, 1994; Wolock <strong>and</strong> Price, 1994; Zhang <strong>and</strong><br />

Montgomery, 1994; Bruneau et al., 1995; Qu<strong>in</strong>n et al., 1995; Franch<strong>in</strong>i et al., 1996; Saulnier et al.,<br />

1997 <strong>and</strong> Mendic<strong>in</strong>o <strong>and</strong> Sole, 1997). Wolock <strong>and</strong> Price (1994) studied <strong>the</strong> effects of topography<br />

on watershed hydrology. They showed that DEM resolution has an effect on water table depth<br />

prediction, <strong>the</strong> ratio of overl<strong>and</strong> flow to total flow, peak flow <strong>and</strong> variance <strong>and</strong> skew of predicted<br />

stream flows. It was found that predicted mean depths to water tables decreased <strong>and</strong> maximum<br />

daily flow <strong>in</strong>creased with coarser DEMs. Wolock <strong>and</strong> McGabe (2000) compared 100 m <strong>and</strong> 1000<br />

m resolution DEMs <strong>and</strong> found that slopes calculated from 1000 m resolution DEMs are generally<br />

smaller, whereas specific catchment area (SCA) <strong>and</strong> <strong>the</strong> <strong>TWI</strong> are larger compared to 100 m<br />

resolution DEMs. The reasons for <strong>the</strong>se changes are attributed ma<strong>in</strong>ly to terra<strong>in</strong> discretization<br />

effects (divid<strong>in</strong>g <strong>the</strong> terra<strong>in</strong> <strong>in</strong>to a different amount of grid cells than <strong>in</strong>itially present) <strong>and</strong> are<br />

found to be <strong>in</strong>dependent of underly<strong>in</strong>g terra<strong>in</strong> types. Wu et al. (2007) exam<strong>in</strong>ed <strong>the</strong> effects of<br />

elevation data resolution on <strong>the</strong> performance of topography based watershed runoff simulations.<br />

Twelve DEMs of different grid sizes were compared <strong>in</strong> terms of <strong>the</strong>ir <strong>in</strong>fluence upon <strong>TWI</strong><br />

distribution. It was found that <strong>the</strong> total watershed discharge <strong>in</strong>creases cont<strong>in</strong>uously as<br />

resolutions decrease. Sørensen <strong>and</strong> Seibert (2007) also found decreas<strong>in</strong>g variations <strong>in</strong> <strong>TWI</strong><br />

between neighbour<strong>in</strong>g cells with an <strong>in</strong>crease <strong>in</strong> cell size. By <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> resolution, <strong>TWI</strong><br />

distributions turned out to become ra<strong>the</strong>r similar, but quite different patterns were to be<br />

15


expected as well. Bras<strong>in</strong>gton <strong>and</strong> Richards (1998) exam<strong>in</strong>ed frequency distributions of<br />

slope, tan �, upslope contributiong area <strong>and</strong> <strong>TWI</strong> on DEMs with vary<strong>in</strong>g resolutions from 20 m to<br />

500 m. They found a significant distribution dependency on grid size with most prom<strong>in</strong>ent<br />

changes <strong>in</strong> DEM resolutions from 100 m to 200 m. Saulnier et al. (1997) based <strong>the</strong>ir study on<br />

digital terra<strong>in</strong> maps with resolutions rang<strong>in</strong>g from 20 m to 120 m with 20 m <strong>in</strong>crements from<br />

<strong>in</strong>itially digitized 10 m contour l<strong>in</strong>es. Fur<strong>the</strong>r scale dependence <strong>in</strong> <strong>the</strong> calibrated value of <strong>the</strong><br />

saturated conductivity parameter K0 could be identified.<br />

Horizontal Resolution<br />

Different DEM resolutions as basis for calculation of topographic parameters were explored <strong>and</strong><br />

used <strong>in</strong> numerous studies with vary<strong>in</strong>g goals. The resolutions under consideration range from<br />

meter level up to several kilometres.<br />

Murphy et al. (2009) used two different data sets: A 1 m resolution Light Detection And Rang<strong>in</strong>g<br />

(LiDAR) DEM <strong>and</strong> a 10 m conventional photogrammetric DEM. Both DEMs showed good results<br />

<strong>in</strong> comparison to field‐mapped conditions. The LiDAR DEM produced slightly better results.<br />

Warren et al. (2004) compared slopes on different DEM resolutions <strong>and</strong> found <strong>the</strong> highest<br />

resolution of 1 m to be most adequate. Freer et al. (1997) calculated <strong>the</strong> <strong>TWI</strong> for subsurface<br />

storm flow analysis on two small catchments with 1 m <strong>and</strong> 2 m DEM resolutions. Zhang <strong>and</strong><br />

Montgomery (1994) <strong>and</strong> Wu et al. (2008) based <strong>the</strong>ir analyses on 2 m resolution DEMs. Wu <strong>and</strong><br />

Archer (2005) used DEM grids of 4 m resolution <strong>in</strong> <strong>the</strong>ir study. Sulebak et al. (2000) related soil<br />

<strong>moisture</strong> to primary <strong>and</strong> secondary topographic attributes on a 5 m resolution DEM. Sørensen<br />

<strong>and</strong> Seibert (2007) exam<strong>in</strong>ed <strong>the</strong> scale dependency of a decreas<strong>in</strong>g DEM resolution upon <strong>the</strong><br />

<strong>TWI</strong> by resampl<strong>in</strong>g a 5 m resolution LiDAR DEM to 10, 25, <strong>and</strong> 50 m respectively <strong>and</strong> observed<br />

<strong>TWI</strong> values to be considerably sensitive to different grid resolutions whereas <strong>the</strong> estimation of<br />

upslope areas is even more affected than calculated slopes. Thompson et al. (2001) compared<br />

terra<strong>in</strong> attributes <strong>and</strong> quantitative soil‐l<strong>and</strong>scape models on different horizontal resolutions (10<br />

m – 30 m) <strong>and</strong> vertical precisions (0.1 m – 1 m). It could be observed that a decrease <strong>in</strong><br />

horizontal resolution resulted <strong>in</strong> lower slope gradients on steeper slopes, steeper slope<br />

gradients on flatter slopes, narrower ranges <strong>in</strong> curvature, larger SCAs <strong>in</strong> upper l<strong>and</strong>scape<br />

positions <strong>and</strong> lower SCAs <strong>in</strong> lower l<strong>and</strong>scape positions. Z<strong>in</strong>ko et al. (2006) calculated ground<br />

water flow based on a 20 m resolution DEM. Kim et al. (2008) <strong>in</strong>vestigated <strong>the</strong> strength of<br />

correlations between different soil properties <strong>and</strong> found a <strong>TWI</strong> at a 25 m resolution as best. Vaze<br />

<strong>and</strong> Teng (2007) also suggested a grid cell resolution of 25 m or higher (up to 1 m) to capture<br />

<strong>the</strong> scale of surface processes. The resolution is however determ<strong>in</strong>ed by l<strong>and</strong>scape variations.<br />

Tombul (2007) used a 30 m resolution DEM for a comparison of wetness <strong>in</strong>dex (WI) <strong>and</strong><br />

topographic <strong>in</strong>dex (TI). Prasad et al. (2005) explored <strong>the</strong> relationship of hydrologic parameters<br />

16


<strong>and</strong> nutrient loads <strong>us<strong>in</strong>g</strong> a 30 m resolution DEM with moderate success. Garbrecht <strong>and</strong> Martz<br />

(1993) showed that most dra<strong>in</strong>age features can be produced with a 30 m resolution DEM.<br />

Endreny <strong>and</strong> Wood (2003) exam<strong>in</strong>ed <strong>the</strong> spatial congruence of observed <strong>and</strong> DEM‐del<strong>in</strong>eated<br />

overl<strong>and</strong> flow networks with a 30 m resolution DEM. Cai <strong>and</strong> Wang (2006) observed that <strong>the</strong>re<br />

are no significant changes <strong>in</strong> <strong>TWI</strong> values when compar<strong>in</strong>g 30 m <strong>and</strong> 90 m resolution DEMs <strong>in</strong><br />

l<strong>and</strong>scapes with high elevation variation. Kim <strong>and</strong> Jung (2003) found a pixel size threshold<br />

between 30 m <strong>and</strong> 50 m for stable <strong>and</strong> consistent computation of spatial flow distribution<br />

patterns. L<strong>in</strong>eback Gritzner et al. (2001) calculated <strong>the</strong> <strong>TWI</strong> with DYNWET on a 30 m resolution<br />

DEM. <strong>Soil</strong> <strong>moisture</strong> could not be related to l<strong>and</strong>slide risk. The authors suggest that a too coarse<br />

spatial resolution might account for <strong>the</strong> lack of correlation. This would be consistent with <strong>the</strong><br />

f<strong>in</strong>d<strong>in</strong>gs of Zhang <strong>and</strong> Montgomery (1994) stat<strong>in</strong>g that a resolution of 30 to 90 m could be too<br />

large for <strong>modell<strong>in</strong>g</strong> complex topography. Wu et al. (2007) exam<strong>in</strong>ed <strong>the</strong> <strong>in</strong>fluence of DEM<br />

resolution upon <strong>TWI</strong> distributions by means of comparisons between twelve different DEMs<br />

rang<strong>in</strong>g from 30 m to 3 km. Conoscenti et al. (2008) based <strong>the</strong>ir studies on a 40 m resolution<br />

DEM. L<strong>in</strong> et al. (2007) successfully explored <strong>the</strong> relationships of topography <strong>and</strong> spatial<br />

variations <strong>in</strong> groundwater <strong>and</strong> soil morphology <strong>us<strong>in</strong>g</strong> a 40 m resolution DEM. Bruneau et al.<br />

(1995) considered even a resolution as low as 50 m to be sufficient if <strong>the</strong> model calibration is<br />

able to compensate aggregation effects. Qu<strong>in</strong>n et al. (1995) considered grid sizes of 100 m or<br />

more as too coarse for mean<strong>in</strong>gful <strong>TWI</strong> calculations. The depiction of <strong>the</strong> topographic form of<br />

<strong>in</strong>dividual hillslopes required higher resolutions. A direct effect on <strong>the</strong> calculation of<br />

accumulated contribut<strong>in</strong>g areas could be observed for different grid resolutions. Hutch<strong>in</strong>son <strong>and</strong><br />

Dowl<strong>in</strong>g (1991) exam<strong>in</strong>ed a 2.5 km resolution DEM. Ja<strong>in</strong> et al. (1992) conducted <strong>the</strong>ir study on<br />

distributed <strong>modell<strong>in</strong>g</strong> even on a 4 km resolution.<br />

Overall, a 10 m horizontal resolution was found most suitable <strong>in</strong> many studies <strong>and</strong> is <strong>the</strong>refore<br />

suggested (Wolock <strong>and</strong> Price, 1994; Zhang <strong>and</strong> Montgomery, 1994; Irv<strong>in</strong> et al., 1997; Saulnier et<br />

al., 1997; Thieken et al., 1999; Chaplot <strong>and</strong> Walter, 2003 <strong>and</strong> Fei et al., 2007).<br />

Vertical Precision<br />

A sufficiently high vertical precision is needed <strong>in</strong> order to determ<strong>in</strong>e accurate spatial locations of<br />

channel segments <strong>and</strong> thus <strong>the</strong> channel network (Thieken et al., 1999). Chaplot <strong>and</strong> Walter<br />

(2003) used a 0.3 m vertical resolution <strong>and</strong> a 10 m horizontal resolution DEM <strong>in</strong> <strong>the</strong>ir studies<br />

<strong>and</strong> achieved good correlations between <strong>the</strong> soil wetness <strong>and</strong> topographic attributes at all<br />

depths. Nelson <strong>and</strong> Jones (1995) po<strong>in</strong>t out <strong>the</strong> necessity of roundoff error removal <strong>in</strong> low<br />

vertical resolution DEMs before del<strong>in</strong>eation of stream networks <strong>and</strong> bas<strong>in</strong>s of a watershed. They<br />

presented a method of smooth<strong>in</strong>g already rounded digital terra<strong>in</strong> models with <strong>the</strong> effect of<br />

restor<strong>in</strong>g <strong>the</strong> smoothness of <strong>the</strong> natural terra<strong>in</strong> as well as <strong>the</strong> removal of flat regions. The results<br />

17


show that <strong>the</strong>ir algorithm is able to restore <strong>the</strong> natural slope of large flat areas where <strong>the</strong> lack of<br />

elevation can be attributed to roundoff errors <strong>in</strong> <strong>the</strong> elevation data. Different studies show that a<br />

decrease <strong>in</strong> vertical precision does not have any significant <strong>in</strong>fluence on slope gradients or SCAs<br />

(Qu<strong>in</strong>n et al., 1991; Wolock <strong>and</strong> Price, 1994; Zhang <strong>and</strong> Montgomery, 1994 <strong>and</strong> Gyasi‐Agyei et al.,<br />

1995). However, Thompson et al. (2001) identified various po<strong>in</strong>ts with zero slope gradients <strong>and</strong><br />

zero slope curvature alongside a decrease <strong>in</strong> vertical precision. Pan et al. (2004) found that<br />

errors <strong>in</strong> all compared flow direction algorithms <strong>in</strong>crease as <strong>the</strong> vertical resolution decreases.<br />

This suggests calculat<strong>in</strong>g <strong>the</strong> <strong>TWI</strong> on <strong>the</strong> highest vertical resolution possible.<br />

2.3.5 Depression removal <strong>in</strong> DEMs<br />

Digital elevation models often conta<strong>in</strong> unrealistic local depressions that affect calculations of<br />

flow directions <strong>and</strong> flow accumulation. These depressions sometimes reflect <strong>the</strong> real situation<br />

but are often <strong>in</strong>troduced dur<strong>in</strong>g <strong>the</strong> generation of <strong>the</strong> DEM through <strong>in</strong>terpolation errors. Müller‐<br />

Wohlfeil et al. (1996) <strong>and</strong> Irv<strong>in</strong> et al. (1997) emphasized <strong>the</strong> need of gett<strong>in</strong>g rid of DEM<br />

depressions which are described as spurious low spots that are generally relics of <strong>the</strong> DEM<br />

generation. This confirms <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs of O’Callaghan <strong>and</strong> Mark (1984) who stated that pits or<br />

depressions are usually rare topographic features (e. g. natural holes or quarries) or absent <strong>in</strong><br />

most terra<strong>in</strong> types, but not uncommon <strong>in</strong> digital elevation models. They are <strong>the</strong>refore<br />

considered as errors. Nelson <strong>and</strong> Jones (1995) also identified depressions <strong>and</strong> pits as spurious<br />

<strong>and</strong> attribute <strong>the</strong>m to errors <strong>in</strong> elevation data. Beven (1997) also noted <strong>the</strong> common problem of<br />

s<strong>in</strong>ks <strong>in</strong> flow pathway determ<strong>in</strong>ation <strong>in</strong> digital terra<strong>in</strong> analysis. Q<strong>in</strong> et al. (2007) po<strong>in</strong>ted out <strong>the</strong><br />

necessity of DEM pre‐process<strong>in</strong>g for removal of depressions <strong>and</strong> flat areas preced<strong>in</strong>g <strong>TWI</strong><br />

calculation. Present flow direction algorithms need depressionless DEMs as <strong>in</strong>put lest <strong>the</strong> flow<br />

be stopped <strong>in</strong> a s<strong>in</strong>k. O’Callaghan <strong>and</strong> Mark (1984) <strong>in</strong>troduced <strong>the</strong> techniques of elevation<br />

smooth<strong>in</strong>g (reduc<strong>in</strong>g <strong>the</strong> number of artificial pits by a weighted sum of a po<strong>in</strong>t <strong>and</strong> its eight<br />

neighbours) <strong>and</strong> iterative <strong>in</strong>terior pit removal. Elevation smooth<strong>in</strong>g only identifies <strong>and</strong> removes<br />

shallow pits whereas deeper s<strong>in</strong>ks rema<strong>in</strong>. Pit removal <strong>in</strong>volves identify<strong>in</strong>g <strong>the</strong> po<strong>in</strong>t of a bas<strong>in</strong><br />

where water would overflow from <strong>the</strong> pit bas<strong>in</strong>. This po<strong>in</strong>t lies on <strong>the</strong> boundary of <strong>the</strong> pit with<br />

m<strong>in</strong>imum elevation difference to <strong>the</strong> pit. Ano<strong>the</strong>r approach is to fill <strong>the</strong> identified pits, i.e. e. to<br />

match one particularly low elevation value to <strong>the</strong> lowest value of <strong>the</strong> surround<strong>in</strong>g pixels. Jenson<br />

<strong>and</strong> Dom<strong>in</strong>gue (1988) ref<strong>in</strong>ed pit removal implement<strong>in</strong>g neighbourhood techniques <strong>and</strong><br />

iterative spatial techniques. Planchon <strong>and</strong> Darboux (2001) present a new method for fill<strong>in</strong>g<br />

depressions <strong>in</strong> DEMs. This new approach <strong>in</strong>undates <strong>the</strong> whole DEM surface <strong>and</strong> removes <strong>the</strong><br />

excessive water afterwards <strong>in</strong>stead of gradually identify<strong>in</strong>g pits <strong>and</strong> fill<strong>in</strong>g <strong>the</strong>m. The process is<br />

18


simple to implement with low computational complexity. Fur<strong>the</strong>rmore, it is possible to add<br />

slope to <strong>the</strong> filled s<strong>in</strong>ks to overcome <strong>the</strong> limitations of flow direction algorithms <strong>in</strong> flat areas.<br />

2.4 Flow direction algorithms<br />

Flow direction algorithms decide about how flow propagates from one grid cell to o<strong>the</strong>r grid<br />

cells. Thus, <strong>the</strong>y determ<strong>in</strong>e <strong>the</strong> total upslope area enter<strong>in</strong>g one grid cell <strong>and</strong> <strong>the</strong> effective contour<br />

length orthogonal to <strong>the</strong> flow direction. The cumulative upslope area α needed <strong>in</strong> <strong>the</strong> <strong>TWI</strong> can<br />

<strong>the</strong>n be calculated from <strong>the</strong> relationship:<br />

���⁄ �<br />

(2)<br />

where α = cumulative upslope area<br />

A = total upslope area<br />

L = effective contour length<br />

Hillslope geometry <strong>and</strong> flow partition<strong>in</strong>g greatly affect <strong>the</strong> spatial patterns of <strong>the</strong> <strong>TWI</strong> (Aryal <strong>and</strong><br />

Bates, 2008). The mixture of convex <strong>and</strong> concave features (Kim <strong>and</strong> Lee, 2004) as well as errors<br />

<strong>in</strong> elevation data (Walker <strong>and</strong> Willgoose, 1999) complicate <strong>the</strong> essential choice of <strong>the</strong><br />

appropriate flow direction algorithm, which greatly <strong>in</strong>fluences <strong>the</strong> calculation of upslope<br />

contribut<strong>in</strong>g areas, flow accumulation <strong>and</strong> o<strong>the</strong>r processes, e. g. sediment transport capacity<br />

(Wilson et al., 2007). Fur<strong>the</strong>rmore it is impractical to prefer one specific flow direction<br />

algorithm to ano<strong>the</strong>r. The algorithm should ra<strong>the</strong>r be chosen accord<strong>in</strong>g to <strong>the</strong> underly<strong>in</strong>g<br />

topography. One particularly critical issue related to <strong>the</strong> determ<strong>in</strong>ation of flow paths that has not<br />

been resolved satisfactorily yet is flow direction rout<strong>in</strong>g <strong>in</strong> flat areas with no or only little height<br />

difference. Exist<strong>in</strong>g flow direction algorithms have resolved this problem more or less successful<br />

but it rema<strong>in</strong>s a limitation to most approaches.<br />

2.4.1 S<strong>in</strong>gle Flow Direction (SFD) algorithms<br />

SFD algorithms restrict <strong>the</strong> surface <strong>and</strong> subsurface runoff from a s<strong>in</strong>gle grid cell to only one<br />

o<strong>the</strong>r cell without consider<strong>in</strong>g any o<strong>the</strong>r surround<strong>in</strong>g cells. No flow bifurcation <strong>and</strong> dispersive<br />

flow is possible. Water only flows to <strong>the</strong> cell with <strong>the</strong> highest gradient (<strong>the</strong> steepest slope). SFDs<br />

have been criticized for <strong>the</strong> lack of not be<strong>in</strong>g able to take flow dispersion <strong>in</strong>to account, e. g. by<br />

Aryal <strong>and</strong> Bates (2008). The SFD is fur<strong>the</strong>rmore <strong>in</strong>capable of return<strong>in</strong>g <strong>the</strong> right flow path if <strong>the</strong><br />

19


steepest gradient might co<strong>in</strong>cidentally fall between two of <strong>the</strong> eight card<strong>in</strong>al <strong>and</strong> diagonal<br />

directions (Wolock <strong>and</strong> McCabe, 1995).<br />

D8<br />

The D8 (determ<strong>in</strong>istic eight‐node) algorithm is <strong>the</strong> first method of calculat<strong>in</strong>g flow directions<br />

from one cell to one of its eight neighbours by O’Callaghan <strong>and</strong> Mark (1984). It is ra<strong>the</strong>r simple<br />

<strong>and</strong> does not account for dispersive flow. Because flow is only assigned to <strong>the</strong> surround<strong>in</strong>g cell<br />

with <strong>the</strong> steepest downwardslope gradient, grid bias is <strong>in</strong>troduced (Tarboton, 1997). The D8<br />

method works well <strong>in</strong> valleys but produces many parallel flow l<strong>in</strong>es <strong>and</strong> problems near<br />

catchment boundaries.<br />

Rho8<br />

Fairfield <strong>and</strong> Leymarie (1991) suggested a new method to overcome <strong>the</strong> limitations of <strong>the</strong> D8<br />

algorithm by <strong>in</strong>troduc<strong>in</strong>g a probability distribution proportional to altitude difference (slope)<br />

between <strong>the</strong> centre <strong>and</strong> neighbour<strong>in</strong>g cells. In <strong>the</strong>ir method, parallel flow paths are broken up<br />

<strong>and</strong> a mean flow direction equal to <strong>the</strong> aspect is generated (Wilson et al., 2000). The flow<br />

distribution pattern results <strong>in</strong> more cells with no upslope connections but is uniquely generated<br />

each time. The r<strong>and</strong>omness of <strong>the</strong> probability function has been criticised by Tarboton (1997)<br />

because SCAs are determ<strong>in</strong>istic quantities <strong>and</strong> should <strong>the</strong>refore be calculated <strong>in</strong> a stable,<br />

repeatable way.<br />

2.4.2 Biflow Direction (BFD) algorithms<br />

Two Directional Edge­Centred Rout<strong>in</strong>g<br />

The two directional edge‐centred rout<strong>in</strong>g algorithm (2D‐Lea) by Lea (1992) creates a planar<br />

surface prior to flow direction determ<strong>in</strong>ation. Elevation <strong>in</strong>formation is <strong>in</strong>terpolated <strong>and</strong> stored<br />

on <strong>the</strong> edges of four surround<strong>in</strong>g DEM cells, creat<strong>in</strong>g a plane. Flow is <strong>the</strong>n expressed as a flow<br />

vector follow<strong>in</strong>g <strong>the</strong> route a ball would take when put on <strong>the</strong> centre of a cell on <strong>the</strong> plane. This<br />

method allows flow to be determ<strong>in</strong>ed precisely <strong>and</strong> expressed cont<strong>in</strong>uously with an angle<br />

between 0 <strong>and</strong> 2π. Flow is <strong>the</strong>n directed <strong>and</strong> split towards <strong>the</strong> two cells closest to <strong>the</strong> angle. The<br />

method lacks <strong>the</strong> possibility to disperse flow <strong>in</strong>to more than two card<strong>in</strong>al directions.<br />

Two Directional Block­Centred Rout<strong>in</strong>g<br />

Jensen’s two directional block‐centred rout<strong>in</strong>g algorithm (2D‐Jensen) is based on <strong>the</strong> same<br />

planar concept as <strong>in</strong> 2D‐Lea with <strong>the</strong> difference that not only four but n<strong>in</strong>e cells are used to<br />

determ<strong>in</strong>e <strong>the</strong> plane which is def<strong>in</strong>ed by averag<strong>in</strong>g cell centre values ra<strong>the</strong>r than edges (Jensen,<br />

20


2004). Both <strong>the</strong> SFD <strong>and</strong> BFD algorithms are problematic <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> right flow directions <strong>in</strong><br />

flat areas (Pan et al., 2004).<br />

2.4.3 Multiple Flow Direction (MFD) algorithms<br />

The MFD algorithm was <strong>in</strong>itially proposed by Qu<strong>in</strong>n et al. (1991) to improve <strong>the</strong> representation<br />

of convergence <strong>and</strong> divergence of flow. Unlike <strong>the</strong> SFD <strong>and</strong> BFD algorithms, <strong>the</strong> MFD algorithm<br />

allows dispersive flow from one grid cell proportionately to multiple surround<strong>in</strong>g cells. As <strong>the</strong><br />

D8 algorithm, <strong>the</strong> MFD algorithm is based upon f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> steepest slope to <strong>the</strong> surround<strong>in</strong>g<br />

eight cells. Downward elevation gradients are determ<strong>in</strong>ed for each possible direction <strong>and</strong><br />

multiplied with <strong>the</strong> correspond<strong>in</strong>g contour lengths, respectively. This implies that flow is always<br />

divided proportionally to all surround<strong>in</strong>g cells. Tarboton (1997) noted that this could <strong>in</strong>troduce<br />

unwanted errors because dispersive flow from one pixel is not necessarily directed towards all<br />

pixels <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity with lower elevation.<br />

Qu<strong>in</strong>n et al. (1991) used a slightly different formula for <strong>the</strong> contour length calculation than<br />

Wolock <strong>and</strong> McGabe (1995) who first described <strong>the</strong> implementation of <strong>the</strong> MFD algorithm <strong>in</strong> <strong>the</strong><br />

ARC/INFO framework. Accord<strong>in</strong>g to Wolock <strong>and</strong> McCabe (1995), MFDs tend to give more<br />

realistic‐look<strong>in</strong>g spatial patterns of accumulat<strong>in</strong>g area than s<strong>in</strong>gle‐directional flow algorithms<br />

where flow is expressed <strong>in</strong> dist<strong>in</strong>ct l<strong>in</strong>es. Although <strong>the</strong> MFD algorithms can not overcome <strong>the</strong><br />

limitation of flow determ<strong>in</strong>ation <strong>in</strong> flat areas where slope values become ra<strong>the</strong>r small, <strong>the</strong>y still<br />

provide better results than <strong>the</strong> SFD <strong>and</strong> BFD algorithms (Pan et al., 2004). Kim <strong>and</strong> Lee (2004)<br />

po<strong>in</strong>ted out ano<strong>the</strong>r limitation of <strong>the</strong> <strong>in</strong>itial MFD algorithm. Dispersive flow is only possible<br />

towards eight discrete directions. This drawback has been resolved by <strong>the</strong> concept of a flow tube<br />

network with<strong>in</strong> <strong>the</strong> Digital Elevation Model Networks (DEMON) algorithm by Costa‐Cabral <strong>and</strong><br />

Burges (1994) which enables flow <strong>in</strong> cont<strong>in</strong>uous directions from 0 to2π. Ano<strong>the</strong>r disadvantage<br />

of <strong>the</strong> MFD is flow overdissipation <strong>and</strong> braid<strong>in</strong>g near channel pixels especially <strong>in</strong> convex‐shaped<br />

topography as has been po<strong>in</strong>ted out by Qu<strong>in</strong>n et al. (1995).<br />

FD8<br />

The limitation of D8 algorithm only be<strong>in</strong>g able to direct flow to one of eight surround<strong>in</strong>g cells<br />

has been overcome by <strong>the</strong> FD8 algorithm that allows catchment spread<strong>in</strong>g <strong>and</strong> flow dispersion<br />

to be represented (Moore et al., 1993). The algorithm allows dispersive flow <strong>in</strong> upl<strong>and</strong> areas<br />

(above def<strong>in</strong>ed channels) but uses <strong>the</strong> <strong>in</strong>itial SFD D8 algorithm below channel <strong>in</strong>itiation po<strong>in</strong>ts.<br />

Although <strong>the</strong> problems of parallel flow <strong>and</strong> s<strong>in</strong>gle flow could be resolved, some issues still<br />

rema<strong>in</strong>. Mendic<strong>in</strong>o <strong>and</strong> Sole (1997) noted that <strong>the</strong> FD8 algorithm simulates flow poorly <strong>in</strong><br />

certa<strong>in</strong> topographic conditions (e. g. alluvial pla<strong>in</strong>s). In <strong>the</strong>se areas a pronounced expansion of<br />

21


surface runoff along <strong>the</strong> alluvial pla<strong>in</strong>s occurs <strong>in</strong>stead of a well del<strong>in</strong>eated stream channel<br />

network.<br />

FRho8<br />

As <strong>the</strong> FD8 is for <strong>the</strong> D8 algorithm, <strong>the</strong> FRho8 is an advancement of <strong>the</strong> Rho8 algorithm. FRho8<br />

can be described as <strong>the</strong> comb<strong>in</strong>ation of <strong>the</strong> MFD algorithm by Qu<strong>in</strong>n et al. (1991) <strong>and</strong> <strong>the</strong> SFD<br />

algorithm Rho8. Firstly, <strong>the</strong> algorithm identifies all downslope neighbour<strong>in</strong>g po<strong>in</strong>ts to a channel<br />

<strong>in</strong>itiation po<strong>in</strong>t <strong>and</strong> respectively calculates <strong>the</strong> slope gradients. Secondly, flow is distributed<br />

among <strong>the</strong> surround<strong>in</strong>g cells accord<strong>in</strong>g to <strong>the</strong> Rho8 procedure. The upslope contribut<strong>in</strong>g <strong>and</strong><br />

SCAs are <strong>the</strong>n determ<strong>in</strong>ed <strong>us<strong>in</strong>g</strong> <strong>the</strong> flow width <strong>and</strong> flow accumulation approaches as <strong>in</strong> <strong>the</strong> D8<br />

algorithm. The improvements made result <strong>in</strong> more realistic contribut<strong>in</strong>g areas <strong>and</strong> solve <strong>the</strong><br />

problem of parallel flow paths. Wilson <strong>and</strong> Gallant (1996) noted that <strong>the</strong> flow dispersion<br />

algorithm should best be disabled <strong>in</strong> high contribut<strong>in</strong>g areas, because stream l<strong>in</strong>es are usually<br />

quite well def<strong>in</strong>ed. Accord<strong>in</strong>g to Mendic<strong>in</strong>o <strong>and</strong> Sole (1997), <strong>the</strong> algorithm leads to problems <strong>in</strong><br />

channel network def<strong>in</strong>ition.<br />

MFD­md<br />

Q<strong>in</strong> et al. (2007) developed a modified MFD as proposed by Qu<strong>in</strong>n et al. (1991). The MFD‐md<br />

algorithm is adaptive to local terra<strong>in</strong> conditions <strong>and</strong> uses ���� as a l<strong>in</strong>ear function of maximum<br />

downslope gradient. Thus, <strong>the</strong> flow accumulation can be modelled more reasonably. In<br />

comparison to <strong>the</strong> orig<strong>in</strong>al MFD algorithm, MFD‐md achieves fewer errors <strong>in</strong> <strong>the</strong> calculated<br />

cumulative upslope area α.<br />

The MFD‐md algorithm results <strong>in</strong> smoo<strong>the</strong>r spatial <strong>TWI</strong> distributions which gives a more<br />

realistic state of flow, especially <strong>in</strong> flat areas. Additionally, <strong>TWI</strong> values tend to be slightly smaller<br />

than <strong>the</strong> ones calculated with <strong>the</strong> approach based on Qu<strong>in</strong>n et al. (1991). As o<strong>the</strong>r MFD<br />

algorithms, <strong>the</strong> MDF‐md algorithm still can not get rid of <strong>the</strong> problems occurr<strong>in</strong>g <strong>in</strong> flat areas<br />

where soil <strong>moisture</strong> distribution should be homogeneous. Initial removal of s<strong>in</strong>ks <strong>and</strong> pits is also<br />

necessary.<br />

DEMON<br />

The DEMON algorithm was developed by Costa‐Cabral <strong>and</strong> Burges (1994) <strong>and</strong> is based on <strong>the</strong><br />

planar representation as <strong>in</strong>itially described by Lea (1992). DEMON was created to overcome<br />

exist<strong>in</strong>g restrictions of <strong>the</strong> D8 algorithm. Flow is represented <strong>in</strong> two dimensions <strong>and</strong> directed by<br />

aspect <strong>in</strong> a flow tube network. Flow is generated at each source pixel <strong>and</strong> routed down a stream<br />

tube until a s<strong>in</strong>k is encountered or <strong>the</strong> DEM boundaries are reached. The stream tubes are<br />

constructed from po<strong>in</strong>ts of <strong>in</strong>tersections of l<strong>in</strong>es drawn <strong>in</strong> gradient direction <strong>and</strong> grid cell edges.<br />

22


Contribut<strong>in</strong>g <strong>and</strong> dispersal areas can be determ<strong>in</strong>ed. Ma<strong>in</strong> advantages as po<strong>in</strong>ted out by Costa‐<br />

Cabral <strong>and</strong> Burges (1994) are those of contour based models accord<strong>in</strong>g to Moore et al. (1988).<br />

Fur<strong>the</strong>rmore, DEMON is able to represent vary<strong>in</strong>g flow width over non planar topography <strong>and</strong><br />

can be calculated on rectangular grid DEMs. Additionally, <strong>the</strong> DEMON algorithm represents <strong>the</strong><br />

hillslope aspect better than <strong>the</strong> D8 algorithm. Curved flow paths are also represented <strong>in</strong> contrast<br />

to <strong>the</strong> D8 algorithm (Costa‐Cabral <strong>and</strong> Burges, 1994). Ano<strong>the</strong>r advantage as po<strong>in</strong>ted out by<br />

Wilson <strong>and</strong> Gallant (1996) is that DEMON shows <strong>the</strong> differences between convergent <strong>and</strong><br />

divergent areas more accurately than <strong>the</strong> FD8 <strong>and</strong> FRho8 algorithms. However, <strong>the</strong> DEMON<br />

algorithm has problems with unwanted <strong>in</strong>dentations <strong>in</strong> isol<strong>in</strong>es which occur by <strong>the</strong><br />

approximation of conical surfaces by a mosaic of planes. These could only be resolved by a non‐<br />

planar surface fitt<strong>in</strong>g. However, this would yield large computational expenses <strong>and</strong> a high risk of<br />

error <strong>in</strong>troduction <strong>and</strong> is <strong>the</strong>refore unsuitable. This limitation could be fixed by <strong>the</strong> D1 algorithm<br />

by Tarboton (1997) who found <strong>the</strong> DEMON algorithm not work<strong>in</strong>g correctly <strong>in</strong> flat areas <strong>and</strong><br />

when exceptions <strong>in</strong> data sets occur.<br />

D∞<br />

The D∞ algorithm was <strong>in</strong>vented by Tarboton (1997). It is based on <strong>the</strong> concept of MFD<br />

algorithms but <strong>in</strong>corporates <strong>the</strong> idea of a block‐centred surface fitt<strong>in</strong>g scheme as <strong>the</strong> 2‐D Lea, 2‐<br />

D Jensen <strong>and</strong> DEMON algorithms. The new approach of flow dispersion is based on <strong>the</strong><br />

calculation of a s<strong>in</strong>gle angle between 0 <strong>and</strong> 2π be<strong>in</strong>g <strong>the</strong> steepest downward slope on <strong>the</strong> eight<br />

triangular facets centered at each pixel. Then, upslope area is determ<strong>in</strong>ed by divid<strong>in</strong>g <strong>the</strong> flow<br />

between two downslope pixels accord<strong>in</strong>g to how close this flow direction is to <strong>the</strong> direct angle to<br />

<strong>the</strong> downslope pixel. Flow <strong>in</strong> flat areas is treated as proposed by Garbrecht <strong>and</strong> Martz (1997).<br />

The algorithm is considered advantageous because of its abilities to m<strong>in</strong>imise unrealistic<br />

dispersion <strong>in</strong> <strong>the</strong> calculation of <strong>the</strong> cumulative upslope area α <strong>and</strong> to h<strong>and</strong>le ridges, pits <strong>and</strong> flat<br />

areas <strong>in</strong> natural catchments.<br />

Track<strong>in</strong>g Flow Direction (TFD) algorithm<br />

The TFD algorithm was created by Pan et al. (2004) to overcome <strong>the</strong> limitations of <strong>TWI</strong><br />

calculation <strong>in</strong> flat areas. It treats m<strong>in</strong>imum slope values as <strong>in</strong> Wolock <strong>and</strong> McGabe (1995) while<br />

<strong>the</strong> flow direction is determ<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> ARC/INFO flow direction module. The TFD<br />

algorithm is found to give superior results <strong>in</strong> flat areas <strong>in</strong> comparison to <strong>the</strong> o<strong>the</strong>r flow direction<br />

algorithms.<br />

Spatially distributed flow apportion<strong>in</strong>g algorithm (SDFAA)<br />

Kim <strong>and</strong> Lee (2004) propose a new <strong>in</strong>tegrated flow determ<strong>in</strong>ation algorithm. A spatially vary<strong>in</strong>g<br />

flow apportion<strong>in</strong>g factor is <strong>in</strong>troduced <strong>in</strong> order to distribute <strong>the</strong> contribut<strong>in</strong>g area from upslope<br />

23


cells to downslope cells. An iterative process of parameter optimization <strong>us<strong>in</strong>g</strong> a Genetic<br />

Algorithm (GA) is implemented.<br />

The SDFAA was found advantageous to exist<strong>in</strong>g approaches. A field example showed less<br />

overdissipation problems near channel cells, a robust parameter determ<strong>in</strong>ation <strong>and</strong> <strong>the</strong><br />

connectivity feature of river cells. However, <strong>and</strong> <strong>in</strong> contrast to o<strong>the</strong>r algorithms, <strong>the</strong> SDFAA<br />

requires <strong>the</strong> channel location as an additional <strong>in</strong>put. Similar to o<strong>the</strong>r flow direction models, <strong>the</strong><br />

removal of depressions <strong>and</strong> flat areas <strong>in</strong> elevation data is necessary prior to algorithm<br />

application. The SDFAA fur<strong>the</strong>r resolves valley bottom overdissipation problems of <strong>the</strong> MFD <strong>and</strong><br />

provides a more flexible allowance of flow distribution to downslope cells. Fur<strong>the</strong>rmore it<br />

reduces some problems concern<strong>in</strong>g flow determ<strong>in</strong>ation <strong>in</strong> complicated field topography.<br />

However, <strong>the</strong> application of <strong>the</strong> spatially distributed flow apportion<strong>in</strong>g algorithm to o<strong>the</strong>r<br />

watersheds still needs to be <strong>in</strong>vestigated (Kim <strong>and</strong> Lee, 2004).<br />

2.4.4 Algorithm comparison<br />

Wolock <strong>and</strong> McCabe (1995) found that mean <strong>TWI</strong> values <strong>in</strong>crease <strong>and</strong> that smoo<strong>the</strong>r <strong>TWI</strong><br />

patterns across <strong>the</strong> DEM surface result when <strong>us<strong>in</strong>g</strong> MFD algorithms <strong>in</strong> comparison to SFD<br />

algorithms. Desmet <strong>and</strong> Govers (1996) exam<strong>in</strong>ed <strong>the</strong> <strong>in</strong>fluence of different flow rout<strong>in</strong>g<br />

algorithms on upslope contribut<strong>in</strong>g areas which are considerably smoo<strong>the</strong>r for multiple flow<br />

algorithms <strong>and</strong> <strong>the</strong> prediction of ephemeral gullies. The latter could be modelled more<br />

accurately with multiple flow models because s<strong>in</strong>gle flow rout<strong>in</strong>g algorithms are highly sensitive<br />

to small errors <strong>in</strong> elevation data. On <strong>the</strong> whole, Desmet <strong>and</strong> Govers (1996) found <strong>the</strong> D8 <strong>and</strong> 2D‐<br />

Lea algorithms superior for <strong>the</strong>y visually seem to correlate better with <strong>the</strong> ma<strong>in</strong> dra<strong>in</strong>age l<strong>in</strong>es.<br />

Mendic<strong>in</strong>o <strong>and</strong> Sole (1997) noted that <strong>the</strong> D8 <strong>and</strong> Rho8 procedures, although conceptually<br />

different, produce similar distribution functions of <strong>the</strong> TI. The FRho8 <strong>and</strong> DEMON procedures<br />

were additionally identified to behave similarly as <strong>the</strong> Rho8 algorithm. For this reason it is<br />

suggested to calculate flow directions with a mixed procedure, based on <strong>the</strong> method of Qu<strong>in</strong>n et<br />

al. (1995).<br />

Gallant <strong>and</strong> Wilson (1996) stated that <strong>the</strong> FD8 <strong>and</strong> FRho8 algorithms are superior to <strong>the</strong> D8<br />

algorithm because <strong>the</strong>y result <strong>in</strong> more realistic distributions of contribut<strong>in</strong>g areas <strong>in</strong> upslope<br />

areas <strong>and</strong> <strong>the</strong>ir ability to resolve <strong>the</strong> problem of parallel unrealistic flow paths.<br />

The DEMON <strong>and</strong> 2D‐Lea algorithms have <strong>the</strong> advantage that <strong>the</strong>y are able to determ<strong>in</strong>e flow<br />

directions precisely <strong>and</strong> that <strong>the</strong>y are determ<strong>in</strong>istic. Errors may however be <strong>in</strong>troduced <strong>in</strong><br />

creat<strong>in</strong>g <strong>the</strong> plane through grid cells (Tarboton, 1997). Flow accord<strong>in</strong>g to MFD as proposed by<br />

24


Qu<strong>in</strong>n et al. (1991) follows <strong>the</strong> topographic slope but <strong>in</strong>troduces significant dispersion. Tests on<br />

<strong>the</strong> basis of <strong>the</strong> evaluation of test statistics <strong>and</strong> exam<strong>in</strong>ation of <strong>in</strong>fluence <strong>and</strong> dependence maps<br />

on DEMs with different resolutions show that <strong>the</strong> D∞ algorithm performs better than D8, 2D‐<br />

Lea <strong>and</strong> MFD as proposed by Qu<strong>in</strong>n et al. (1991) <strong>in</strong> terms of upslope area calculation. Tarboton<br />

(1997) found <strong>the</strong> D∞ <strong>and</strong> DEMON algorithms to generally work best. They both produce<br />

smallest errors <strong>in</strong> <strong>the</strong> comparison of calculated <strong>and</strong> <strong>the</strong>oretical upslope. The D∞ algorithm<br />

additionally overcomes <strong>the</strong> problems of loops <strong>and</strong> <strong>in</strong>consistencies of <strong>the</strong> DEMON <strong>and</strong> o<strong>the</strong>r<br />

plane‐fitt<strong>in</strong>g models.<br />

Wilson et al. (2000) exam<strong>in</strong>ed <strong>the</strong> effects of DEM source, grid resolution <strong>and</strong> choice of flow<br />

direction rout<strong>in</strong>g algorithms on five topographic attributes. SFD algorithms result <strong>in</strong> more cells<br />

with ra<strong>the</strong>r small upslope contribut<strong>in</strong>g areas. FRho8 <strong>and</strong> DEMON agreed best with each o<strong>the</strong>r <strong>in</strong><br />

surface comparison.<br />

Accord<strong>in</strong>g to Zhou <strong>and</strong> Liu (2002) <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite flow direction algorithm proposed by Tarboton<br />

(1997) achieves better dra<strong>in</strong>age configurations than o<strong>the</strong>r algorithms when <strong>us<strong>in</strong>g</strong> rasterized<br />

topographic data to calculate catchment areas.<br />

Endreny <strong>and</strong> Wood (2003) explored <strong>the</strong> congruence which is expla<strong>in</strong>ed as <strong>the</strong> overlap between<br />

field‐sketched flow path networks observed dur<strong>in</strong>g a storm <strong>and</strong> <strong>the</strong> calculated <strong>moisture</strong> <strong>in</strong>dices<br />

of observed <strong>and</strong> DEM‐del<strong>in</strong>eated overl<strong>and</strong> flow networks on a 30 m horizontal resolution DEM.<br />

Five common flow direction algorithms were compared <strong>in</strong> terms of <strong>the</strong>ir spatial congruence. The<br />

D8 <strong>and</strong> MFD algorithms were assigned <strong>the</strong> lowest congruence rat<strong>in</strong>gs whereas <strong>the</strong> 2D‐Lea <strong>and</strong><br />

D∞ algorithms, which direct flow to a maximum of two neighbours, produced <strong>the</strong> highest<br />

congruence rat<strong>in</strong>gs. The modifications to <strong>the</strong> D8 <strong>and</strong> MFD methods allow<strong>in</strong>g limited dispersive<br />

flow could <strong>in</strong>crease congruence. Dispersive flow to two or three surround<strong>in</strong>g cells is suggested<br />

as an optimum.<br />

Pan et al. (2004) evaluated <strong>the</strong> performance of six different float<strong>in</strong>g algorithms (comb<strong>in</strong>ations of<br />

flow direction <strong>and</strong> slope algorithms) by Root‐Mean‐Square Error (RSME) comparison on three<br />

different idealized hillslopes (planar, convergent <strong>and</strong> divergent (concave <strong>and</strong> convex)) <strong>and</strong> two<br />

comb<strong>in</strong>ations of vertical <strong>and</strong> horizontal terra<strong>in</strong> data resolutions, respectively. Among <strong>the</strong> tested<br />

algorithms, <strong>the</strong> MFD algorithm was found to be most accurate <strong>in</strong> all exam<strong>in</strong>ed cases, followed by<br />

<strong>the</strong> BFD <strong>and</strong> SFD algorithms which especially produced significant errors when contour l<strong>in</strong>es<br />

were not parallel to one of <strong>the</strong> eight card<strong>in</strong>al flow directions. In all cases it could be observed<br />

that <strong>TWI</strong> errors decreased with an <strong>in</strong>creas<strong>in</strong>g vertical resolution <strong>in</strong>dependent on <strong>the</strong> underly<strong>in</strong>g<br />

flow direction algorithm. The differences <strong>in</strong> algorithm‐based determ<strong>in</strong>ation of contour lengths<br />

did not greatly affect <strong>the</strong> results. Additionally it could be found that <strong>the</strong> RMSE of <strong>the</strong> calculated<br />

25


topographic <strong>in</strong>dices compared to <strong>in</strong>itial slopes <strong>and</strong> contour lengths <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g<br />

slope values. The TFD worked best <strong>in</strong> flat areas where <strong>the</strong> SFD <strong>and</strong> BFD have problems resolv<strong>in</strong>g<br />

<strong>the</strong> right flow direction. S<strong>in</strong>ce <strong>the</strong> MFD algorithm calculates dispersive flow it propagates to a<br />

broader region than <strong>the</strong> SFD <strong>and</strong> BFD algorithms.<br />

Güntner et al. (2004) recommended an <strong>in</strong>termediate approach between SFDs <strong>and</strong> MFDs.<br />

Results from different studies (Wolock <strong>and</strong> McCabe, 1995; Desmet <strong>and</strong> Govers, 1996; Tarboton,<br />

1997; Wilson et al., 2000 <strong>and</strong> Endreny <strong>and</strong> Wood, 2003) show that exist<strong>in</strong>g algorithms behave<br />

differently accord<strong>in</strong>g to <strong>the</strong> underly<strong>in</strong>g l<strong>and</strong>scape (e. g. planar, conical, hilly <strong>and</strong> steep or flat).<br />

The current state of research is not yet able to recommend a specific flow rout<strong>in</strong>g model suitable<br />

for all of <strong>the</strong> vary<strong>in</strong>g l<strong>and</strong>forms. Wilson et al. (2007) compared <strong>the</strong> performance of several flow<br />

direction algorithms on a 10 m resolution DEM across six different fuzzy‐def<strong>in</strong>ed l<strong>and</strong>scape<br />

classes <strong>and</strong> tested <strong>the</strong> hypo<strong>the</strong>ses that <strong>the</strong> performance of five flow rout<strong>in</strong>g algorithms does not<br />

change with <strong>the</strong> flow descend<strong>in</strong>g from steeper to flatter terra<strong>in</strong> (1) <strong>and</strong> that <strong>the</strong> performance of<br />

those algorithms does not vary across different fuzzy‐classified l<strong>and</strong>scapes (2). The lowest mean<br />

SCA occurred on hilltops <strong>and</strong> ridgel<strong>in</strong>es becom<strong>in</strong>g higher as <strong>the</strong> terra<strong>in</strong> became flatter. Overall,<br />

l<strong>and</strong>scape can be divided <strong>in</strong>to two groups (high elevation <strong>and</strong> low elevation) based on <strong>the</strong> SCA<br />

calculation results. All <strong>in</strong> all, <strong>the</strong> results of <strong>the</strong> comparison show which flow rout<strong>in</strong>g algorithms<br />

give similar or different results <strong>and</strong> where differences lie, but <strong>the</strong>y can not <strong>in</strong>dicate which<br />

algorithm works best for what l<strong>and</strong>scape type <strong>in</strong> regard of measured soil <strong>moisture</strong> or hydrologic<br />

<strong>the</strong>ory. All <strong>in</strong> all, <strong>the</strong> results suggest that <strong>the</strong> D∞, MFD, <strong>and</strong> DEMON algorithm performed better<br />

than <strong>the</strong> D8 <strong>and</strong> Rho8 algorithms.<br />

Sørensen et al. (2006) compared <strong>TWI</strong>s calculated with different modifications <strong>and</strong> evaluated<br />

<strong>the</strong>m <strong>in</strong> terms of <strong>the</strong>ir correlations with five soil <strong>moisture</strong> related parameters. Upslope area,<br />

creek cell representation <strong>and</strong> slope were determ<strong>in</strong>ed accord<strong>in</strong>g to different <strong>the</strong>ories. Although<br />

correlations could be observed, no <strong>TWI</strong> comb<strong>in</strong>ation was found superior for all measured<br />

variables. It is <strong>the</strong>refore assumed that <strong>the</strong> best method varies <strong>and</strong> is site specific.<br />

2.5 <strong>Soil</strong> <strong>moisture</strong> retrieval <strong>in</strong> remote sens<strong>in</strong>g<br />

With readily available high resolution <strong>and</strong> consistent, long‐term remote sens<strong>in</strong>g records <strong>and</strong><br />

progress <strong>in</strong> digital image process<strong>in</strong>g techniques as well as <strong>the</strong> tendency towards macro scale<br />

<strong>modell<strong>in</strong>g</strong>, <strong>the</strong> comb<strong>in</strong>ation of remote sens<strong>in</strong>g <strong>and</strong> hydrological <strong>modell<strong>in</strong>g</strong> becomes more <strong>and</strong><br />

more promis<strong>in</strong>g. Remote sens<strong>in</strong>g can provide large scale distributed data sets where ground<br />

based measurements are unavailable. However, <strong>the</strong> determ<strong>in</strong>ation of small scale hydrologic<br />

26


features is not sufficient. Determ<strong>in</strong>ation of fluxes <strong>and</strong> parameterization of hydrologic processes,<br />

e. g. evaporation, <strong>in</strong>filtration, runoff or dra<strong>in</strong>age still require detailed hydrological models<br />

(Dubayah et al., 1995). There have already been some attempts to comb<strong>in</strong>e remote sens<strong>in</strong>g <strong>and</strong><br />

hydrologic <strong>modell<strong>in</strong>g</strong> (Milly <strong>and</strong> Kabala, 1985; Houser et al., 1998; Bauer et al. 2006). L<strong>in</strong> et al.<br />

(1994) compared remotely sensed <strong>and</strong> simulated moil <strong>moisture</strong> over a heterogeneous<br />

watershed <strong>and</strong> found both techniques to be consistent with ground measurements. Kite <strong>and</strong><br />

Pietroniro (1996) presented a comprehensive overview of remote sens<strong>in</strong>g applications <strong>in</strong><br />

hydrologic <strong>modell<strong>in</strong>g</strong>.<br />

2.5.1 <strong>Soil</strong> <strong>moisture</strong> retrieval techniques<br />

<strong>Soil</strong> <strong>moisture</strong> retrieval with remote sens<strong>in</strong>g techniques can be achieved <strong>in</strong> all regions of <strong>the</strong><br />

electromagnetic spectrum. Comprehensive comparisons between different retrieval techniques<br />

can be found <strong>in</strong> Bryant et al. (2003) <strong>and</strong> Moran et al. (2004). Engman <strong>and</strong> Gurney (1991) present<br />

an overview of soil <strong>moisture</strong> retrieval techniques <strong>and</strong> analyse <strong>the</strong>ir capabilities, advantages <strong>and</strong><br />

disadvantages. The follow<strong>in</strong>g methods mentioned have been successfully used to model soil<br />

<strong>moisture</strong> <strong>and</strong> are briefly described:<br />

Gamma radiation techniques<br />

The detection of soil <strong>moisture</strong> is based on <strong>the</strong> different natural gamma radiation flux emitted<br />

from dry <strong>and</strong> wet soils <strong>and</strong> captured by airborne sensors at a height of 100 m to 200 m, because<br />

<strong>the</strong> atmosphere attenuates <strong>the</strong> radiation flux. Background soil <strong>moisture</strong> <strong>and</strong> gamma count rate<br />

need to be obta<strong>in</strong>ed by antecedent calibration flights as additional parameters.<br />

Hyperspectal techniques<br />

Reflected solar radiation is measured. <strong>Soil</strong> <strong>moisture</strong> can be estimated by unequal albedos (wet<br />

soils have lower albedos than dry soils). Many confound<strong>in</strong>g factors such as surface roughness,<br />

angle of <strong>in</strong>cidence, vegetation cover <strong>and</strong> soil colour <strong>and</strong> texture complicate <strong>moisture</strong><br />

determ<strong>in</strong>ation.<br />

Thermal techniques<br />

Thermal techniques make use of <strong>the</strong> relation of diurnal surface temperature change <strong>and</strong> soil<br />

<strong>moisture</strong>. Surface temperature is primarily dependent on <strong>the</strong>rmal <strong>in</strong>ertia of soil, which <strong>in</strong> turn is<br />

related to <strong>the</strong>rmal conductivity <strong>and</strong> heat capacity. With <strong>in</strong>creas<strong>in</strong>g soil <strong>moisture</strong>, both <strong>the</strong><br />

<strong>the</strong>rmal conductivity <strong>and</strong> heat capacity rise. Us<strong>in</strong>g <strong>the</strong>rmal techniques requires anterior<br />

knowledge of <strong>the</strong> soil type, is limited to bare, unvegetated soils <strong>and</strong> retrieves soil <strong>moisture</strong> only<br />

27


<strong>in</strong> <strong>the</strong> top five centimetres of <strong>the</strong> soil layer. Pratt <strong>and</strong> Ellyet (1979) give fur<strong>the</strong>r <strong>in</strong>formation on<br />

<strong>the</strong>rmal techniques.<br />

Microwave techniques<br />

Microwave techniques can be separated <strong>in</strong>to active <strong>and</strong> passive techniques. Passive systems<br />

measure emission <strong>in</strong>tensity from soil surfaces with a radiometer at longer wavelengths (more<br />

than five centimetres). Active systems measure backscattered radar waves <strong>and</strong> directly relate<br />

<strong>the</strong>m to soil <strong>moisture</strong>. Both techniques have different advantages but make use of <strong>the</strong> same<br />

pr<strong>in</strong>ciple ‐ <strong>the</strong> dielectric properties of soils. These vary greatly with chang<strong>in</strong>g <strong>moisture</strong><br />

conditions. For wet soils, <strong>the</strong> dielectric constant is considerably higher than for dry soils. For<br />

passive systems, an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> dielectric constant would result <strong>in</strong> a decreased emissivity<br />

whereas active systems would measure higher radar backscatter. The dielectric properties of<br />

soils are def<strong>in</strong>ed through soil texture. The dielectric constant changes accord<strong>in</strong>g to soil<br />

composition (e. g. <strong>the</strong> relative amount of s<strong>and</strong>, silt or clay). <strong>Soil</strong> composition must <strong>the</strong>refore be<br />

known to be able to accurately determ<strong>in</strong>e soil <strong>moisture</strong>. Microwave remote sens<strong>in</strong>g is unaffected<br />

by cloud cover but vegetation canopies attenuate microwave reflectance. For a more<br />

comprehensive review of microwave techniques for soil <strong>moisture</strong> retrieval beg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

early 1970s, <strong>the</strong> works of Schmugge (1978), Schmugge (1983), Wang et al. (1983), Fung <strong>and</strong><br />

Eom (1985), Jackson <strong>and</strong> Schmugge (1989), Kostov (1993), Engman <strong>and</strong> Chauhan (1995), Njoku<br />

<strong>and</strong> En<strong>the</strong>kabi (1996), Schmugge (1998), Schmugge et al. (2002) <strong>and</strong> Wagner et al. (2007) are<br />

recommended.<br />

2.5.2 L<strong>and</strong>sat program<br />

The National Aeronautics <strong>and</strong> Space Association’s (NASA) L<strong>and</strong>sat program started with <strong>the</strong><br />

launch of <strong>the</strong> <strong>satellite</strong> L<strong>and</strong>sat 1, <strong>the</strong> world’s first Earth Observation Satellite (EOS) <strong>in</strong> 1972. The<br />

program consists of a series of <strong>satellite</strong>s that photographically capture <strong>and</strong> monitor <strong>the</strong> earth’s<br />

surface with <strong>the</strong> <strong>in</strong>tention of study<strong>in</strong>g <strong>the</strong> planet as a global environmental system. Currently,<br />

<strong>the</strong> two L<strong>and</strong>sat missions 5 <strong>and</strong> 7 are circl<strong>in</strong>g <strong>the</strong> globe, collect<strong>in</strong>g <strong>and</strong> deliver<strong>in</strong>g cont<strong>in</strong>uous<br />

high resolution multispectral data of earth from space. L<strong>and</strong>sat <strong>imagery</strong> has been broadly used<br />

both <strong>in</strong> science <strong>and</strong> public to study <strong>and</strong> analyse global processes at moderate spatial resolutions.<br />

L<strong>and</strong>sat <strong>satellite</strong>s carry multiple remote sensors <strong>and</strong> data relay systems along with altitude‐<br />

control <strong>and</strong> orbit‐adjust subsystems, power supply <strong>and</strong> receivers for ground station comm<strong>and</strong>s<br />

<strong>and</strong> transmitters to send <strong>the</strong> data to ground receiv<strong>in</strong>g stations.<br />

28


The follow<strong>in</strong>g table provides an overview of all L<strong>and</strong>sat missions <strong>and</strong> <strong>the</strong>ir technical<br />

specifications:<br />

System Activity I(s) Resolution (m) Communication A R D<br />

L<strong>and</strong>sat 1 1972‐1978 RBV/MSS 80/80 D. d. with recorders 917 18 15<br />

L<strong>and</strong>sat 2 1975‐1982 RBV/MSS 80/80 D. d. with recorders 917 18 15<br />

L<strong>and</strong>sat 3 1978‐1983 RBV/MSS 40/80 D. d. with recorders 917 18 15<br />

L<strong>and</strong>sat 4 1982‐1993 MSS/TM 80/30 D. d. TDRSS 705 16 85<br />

L<strong>and</strong>sat 5 s<strong>in</strong>ce 1984 MSS/TM 80/30 D. d. TDRSS 705 16 85<br />

L<strong>and</strong>sat 6 1993 ETM 15 (pan)/30(ms) D. d. with recorders 705 16 85<br />

L<strong>and</strong>sat 7 s<strong>in</strong>ce 1999 ETM+ 15 (pan)/30(ms) D. d. with recorders 705 16 150<br />

I = Instrument(s)<br />

A = Altitude <strong>in</strong> kilometres<br />

R = Revision rate <strong>in</strong> days<br />

D = Data rate <strong>in</strong> Mpbs<br />

RBV = Return Beam Vidicon<br />

MSS = MultiSpectral Scanner<br />

TM = Thematic Mapper<br />

ETM = Enhanced Thematic Mapper<br />

pan = panchromatic<br />

ms = multispectral<br />

D. d. = Direct downl<strong>in</strong>k<br />

TDRSS = Track<strong>in</strong>g <strong>and</strong> Data Relay Satellite System<br />

Table 1 Technical specifications of L<strong>and</strong>sat missions 1 to 7<br />

2.5.3 L<strong>and</strong>sat 7 Enhanced Thematic Mapper (ETM+)<br />

L<strong>and</strong>sat 7 is <strong>the</strong> latest NASA <strong>satellite</strong> that was launched <strong>in</strong> 1999. It is <strong>the</strong> only L<strong>and</strong>sat <strong>satellite</strong> to<br />

carry <strong>the</strong> ETM+ <strong>in</strong>strument, a passive sensor that measures solar radiation reflected or emitted<br />

by <strong>the</strong> earth's surface. The <strong>in</strong>strument records data on eight b<strong>and</strong>s with wavelengths of 0.45 µm<br />

to 12.5 µm. In addition to b<strong>and</strong>s of visible <strong>and</strong> <strong>in</strong>frared wavelengths, <strong>the</strong> <strong>in</strong>strument <strong>in</strong>cludes a<br />

high resolution panchromatic <strong>and</strong> a <strong>the</strong>rmal b<strong>and</strong>. The <strong>satellite</strong> provides global coverage<br />

between latitudes of 81 degrees north <strong>and</strong> 81 degrees south.<br />

The follow<strong>in</strong>g table summarizes L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> sensor characteristics:<br />

Launch date 15 th of April, 1999 (V<strong>and</strong>enberg Air Force Base, California)<br />

Spatial resolution 15 to 90 metres<br />

Orbit 705 +/‐ 5 kilometres (at <strong>the</strong> equator) sun‐synchronous<br />

Orbit <strong>in</strong>cl<strong>in</strong>ation 98.2 +/‐ 0.15<br />

Orbit period 98.9 m<strong>in</strong>utes<br />

Swath width 183 kilometres<br />

Ground<strong>in</strong>g track repeat cycle 16 days (233 orbits)<br />

Table 2 Summary of L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> sensor characteristics<br />

29


The ETM+ sensor records data on eight b<strong>and</strong>s with different spectral ranges, whose<br />

characteristics are depicted <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

B<strong>and</strong> Spectral range (µm) Ground resolution (m) Description<br />

1 0.45 ‐ 0.52 30/28.5 blue‐green<br />

2 0.52 ‐ 0.60 30/28.5 green<br />

3 0.63 ‐ 0.69 30/28.5 red<br />

4 0.76 ‐ 0.90 30/28.5 near‐<strong>in</strong>frared (NIR)<br />

5 1.55 ‐ 1.75 30/28.5 mid‐<strong>in</strong>frared (MIR)<br />

6 10.4 ‐ 12.5 60/57 <strong>the</strong>rmal <strong>in</strong>frared (TIR)<br />

7 2.08 ‐ 2.35 30/28.5 mid‐<strong>in</strong>frared (MIR)<br />

panchromatic 0.50 ‐ 0.90 15/14.25 black/white<br />

Table 3 L<strong>and</strong>sat 7 ETM+ b<strong>and</strong> characteristics<br />

The spectral b<strong>and</strong>s used <strong>in</strong> this study for <strong>in</strong>dex calculations are briefly described as follows:<br />

B<strong>and</strong> 3: 0.63 µm ­ 0.69 µm (red)<br />

B<strong>and</strong> 3 absorbs chlorophyll of green vegetation <strong>and</strong> is <strong>the</strong>refore often analysed <strong>in</strong> vegetation<br />

discrim<strong>in</strong>ation. In addition, it was found useful <strong>in</strong> soil‐boundary <strong>and</strong> geological boundary<br />

mapp<strong>in</strong>g. Atmospheric <strong>in</strong>fluences are reduced but not avoided.<br />

B<strong>and</strong> 4: 0.76 µm ­ 0.90 µm (NIR)<br />

B<strong>and</strong> 4 especially responds to vegetation biomass (appear<strong>in</strong>g bright) because vegetation reflects<br />

approximately half of <strong>the</strong> <strong>in</strong>cident near‐<strong>in</strong>frared radiant flux. It is <strong>the</strong>refore of use for vegetation<br />

type identification <strong>and</strong> vegetation monitor<strong>in</strong>g. Fur<strong>the</strong>rmore it has proven valuable <strong>in</strong> soil<br />

<strong>moisture</strong> mapp<strong>in</strong>g, water body discrim<strong>in</strong>ation <strong>and</strong> <strong>in</strong> emphasiz<strong>in</strong>g soil‐crop contrasts.<br />

B<strong>and</strong> 6: 10.4 µm ­ 12.5 µm (TIR)<br />

The TIR b<strong>and</strong> measures <strong>the</strong> amount of emitted <strong>in</strong>frared radiant flux (heat). The apparent<br />

temperature is a function of <strong>the</strong> emissivity <strong>and</strong> true (k<strong>in</strong>etic) temperatures of surface objects.<br />

B<strong>and</strong> 6 is used <strong>in</strong> locat<strong>in</strong>g geo<strong>the</strong>rmal activity, volcanic monitor<strong>in</strong>g, <strong>the</strong>rmal <strong>in</strong>ertia mapp<strong>in</strong>g, soil<br />

<strong>moisture</strong> studies, vegetation classification, vegetation stress analysis <strong>and</strong> cloud differentiation.<br />

Moreover, b<strong>and</strong> 6 is able to capture unique <strong>in</strong>formation on topographic aspect differences <strong>in</strong><br />

mounta<strong>in</strong>ous regions.<br />

2.5.4 Normalized Difference Vegetation Index (NDVI)<br />

The NDVI was developed by Rouse et al. (1973) <strong>and</strong> is one of <strong>the</strong> most commonly used<br />

vegetation <strong>in</strong>dices. The underly<strong>in</strong>g pr<strong>in</strong>ciple of <strong>the</strong> <strong>in</strong>dex is <strong>the</strong> fact that chlorophyll pigments <strong>in</strong><br />

vigorous vegetation absorb <strong>the</strong> radiation <strong>in</strong> visible red wavelengths. The reflectance behaves<br />

<strong>in</strong>versely to <strong>the</strong> absorption. The more chlorophyll that is present <strong>in</strong> plant leaves, <strong>the</strong> fewer<br />

waves are reflected. Near‐<strong>in</strong>frared radiation is however scattered by <strong>in</strong>ternal leaf structures <strong>and</strong><br />

30


<strong>the</strong>n ei<strong>the</strong>r reflected or transmitted, allow<strong>in</strong>g multiple layers of leaves to <strong>in</strong>fluence <strong>the</strong> overall<br />

reflectance. The ratio of difference <strong>and</strong> sum of reflectance with<strong>in</strong> both wavelength boundaries<br />

received by a spaceborne <strong>satellite</strong> sensor is expression of vegetation health <strong>and</strong> vegetation<br />

density. The NDVI also differentiates between green vegetation <strong>and</strong> soil background <strong>and</strong> is<br />

useful for l<strong>and</strong> cover classification (Yilmaz et al., 2008). It can additionally be used to derive<br />

fur<strong>the</strong>r vegetation <strong>in</strong>dices, e. g. Leaf Area Index (LAI), Vegetation Water Content (VWC) or <strong>the</strong><br />

Fraction of Absorbed Photosyn<strong>the</strong>tically Active Radiation (FAPAR). The <strong>in</strong>dex is calculated as:<br />

���� � r ��� � r ���<br />

r ��� � r ���<br />

where r NIR = near‐<strong>in</strong>frared reflectance<br />

r ��� = visible red reflectance<br />

Ratio values range from ‐1 to +1. Positive values close to 1 denote healthy green vegetation<br />

whereas negative values describe clouds or o<strong>the</strong>r areas with no vegetation cover such as water<br />

bodies, snow‐covered areas or rocks <strong>and</strong> bare soils. Low values around 0 represent sparsely<br />

vegetated areas, aged <strong>and</strong> dead vegetation.<br />

The usefulness of <strong>the</strong> NDVI for soil <strong>moisture</strong> retrieval has been <strong>in</strong>vestigated <strong>and</strong> proven <strong>in</strong><br />

numerous studies (Price, 1990; Jackson et al., 2004; Walthall et al., 2004; Wang et al., 2004;<br />

Wang et al., 2007 <strong>and</strong> Yilmaz et al., 2008).<br />

2.5.5 Temperature­Vegetation Dryness Index (TVDI)<br />

The strong correlation of remotely sensed surface temperature as measured by TIR emissions<br />

<strong>and</strong> NDVI has been shown to be related to surface soil <strong>moisture</strong> <strong>in</strong> numerous studies (Goward<br />

<strong>and</strong> Hope, 1989; Nemani et al., 1992; Goetz, 1997; S<strong>and</strong>holt et al., 2002; Wang et al., 2004 <strong>and</strong><br />

2005; Zeng et al., 2004; Zhan et al., 2004; Naira et al., 2007; Wang et al., 2007; Yue et al., 2007<br />

<strong>and</strong> Zhang et al., 2007).<br />

Additionally to <strong>the</strong> direct estimation of soil <strong>moisture</strong> status, <strong>the</strong> relationship has been shown to<br />

be of value <strong>in</strong> deriv<strong>in</strong>g fur<strong>the</strong>r <strong>in</strong>formation: Nemani <strong>and</strong> Runn<strong>in</strong>g (1989) <strong>and</strong> Price (1990) first<br />

made use of <strong>the</strong> temperature/vegetation relationship to estimate evapotranspiration. Moran et<br />

al. (1994) used <strong>the</strong> relationship to estimate crop water deficit. Nemani <strong>and</strong> Runn<strong>in</strong>g (1997)<br />

successfully utilized <strong>the</strong> Ts/NDVI space for l<strong>and</strong> cover characterization. Gillies <strong>and</strong> Carlson (1995)<br />

developed a method based on <strong>the</strong> relationship of NDVI <strong>and</strong> surface temperature to <strong>in</strong>fer<br />

31<br />

(3)


estimates of fractional vegetation cover <strong>and</strong> regional patterns of surface <strong>moisture</strong> availability<br />

which could verified later by Gillies et al. (1997).<br />

Several <strong>in</strong>vestigations concern<strong>in</strong>g <strong>the</strong> validity of <strong>the</strong> relationship were made <strong>and</strong> modifications<br />

to improve soil <strong>moisture</strong> estimates were tested (Carlson et al., 1995; Roy, 1997; Goward et al.,<br />

2002; Claps <strong>and</strong> Laguardia, 2004; Kimura, 2006; Carlson, 2007 <strong>and</strong> Hassan et al., 2007).<br />

The approach of a simplified l<strong>and</strong> surface dryness <strong>in</strong>dex, often referred to as <strong>the</strong> ‘triangle’<br />

method as proposed by S<strong>and</strong>holt et al. (2002) was chosen <strong>in</strong> this study. It is an <strong>in</strong>terpretation of<br />

<strong>the</strong> Ts/NDVI space <strong>in</strong> terms of surface soil <strong>moisture</strong> status <strong>and</strong> is based on <strong>the</strong> assumption that<br />

remotely sensed surface temperatures are related to vegetation canopy cover. The emitted heat<br />

flux from <strong>the</strong> vegetated surface is lower than from bare soil because of a higher <strong>the</strong>rmal <strong>in</strong>ertia<br />

<strong>in</strong> vegetation <strong>and</strong> stomatal transpiration control. Thus, remotely sensed surface temperatures<br />

vary as a function of both <strong>the</strong>rmal <strong>in</strong>ertia <strong>and</strong> <strong>moisture</strong> availability of green vegetation. The<br />

different response of surface temperature <strong>and</strong> vegetation to water stress <strong>in</strong> comb<strong>in</strong>ation can be<br />

related to surface <strong>moisture</strong> conditions. Chlorophyll concentration <strong>and</strong> thus reflectance <strong>in</strong> green<br />

vegetation responds only weakly to immediate water stress, whereas surface temperatures of<br />

unvegetated terra<strong>in</strong>s quickly respond to chang<strong>in</strong>g <strong>moisture</strong> conditions. S<strong>and</strong>holt et al. (2002)<br />

identify <strong>the</strong> factors relevant for <strong>the</strong> location of <strong>the</strong> pixel <strong>in</strong> <strong>the</strong> Ts/NDVI space as<br />

evapotranspiration, fractional vegetation cover, <strong>the</strong>rmal properties of <strong>the</strong> surface, net radiation,<br />

atmospheric forc<strong>in</strong>g <strong>and</strong> surface roughness <strong>and</strong> some additional <strong>in</strong>teract<strong>in</strong>g factors.<br />

The Ts/NDVI values plotted aga<strong>in</strong>st each o<strong>the</strong>r ideally result <strong>in</strong> a triangular shape whose edges<br />

represent ei<strong>the</strong>r dry (limited water availability <strong>and</strong> low evapotranspiration) or moist (unlimited<br />

water availability <strong>and</strong> maximum evapotranspiration) conditions. The follow<strong>in</strong>g simplified figure<br />

taken from Lamb<strong>in</strong> <strong>and</strong> Ehrlich (1996) clarifies this relationship:<br />

32


Figure 1 Simplified representation of <strong>the</strong> Ts/NDVI space from Lamb<strong>in</strong> <strong>and</strong> Ehrlich (1996)<br />

The TVDI can be calculated with <strong>the</strong> follow<strong>in</strong>g formula:<br />

���� � �� � �����⁄ ������������� (5)<br />

where T S = observed surface temperature <strong>in</strong> ±C<br />

T S���<br />

= m<strong>in</strong>imum surface temperature <strong>in</strong> <strong>the</strong> triangle<br />

a, b = parameters def<strong>in</strong><strong>in</strong>g <strong>the</strong> dry edge of <strong>the</strong> triangle<br />

NDVI = observed Normalized Difference Vegetation Index<br />

The parameters a <strong>and</strong> b are estimated as a l<strong>in</strong>ear fit to data with <strong>the</strong> follow<strong>in</strong>g formula:<br />

� ����<br />

� � � ����� (6)<br />

where T S��� = maximum surface temperature observation for a given NDVI<br />

A more comprehensive underst<strong>and</strong><strong>in</strong>g of how <strong>the</strong> parameters are related to each o<strong>the</strong>r can be<br />

obta<strong>in</strong>ed <strong>in</strong> S<strong>and</strong>holt et al. (2002) <strong>and</strong> observed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g figure:<br />

33


Figure 2 Ts/NDVI space as TVDI taken from S<strong>and</strong>holt et al. (2002)<br />

34


3 Study area <strong>and</strong> data description<br />

3.1 Study area<br />

The analysis is performed around Vallentuna municipality, Stockholms län. The area under<br />

consideration reaches from D<strong>and</strong>eryd municipality <strong>in</strong> <strong>the</strong> south up to Arl<strong>and</strong>a airport <strong>in</strong> <strong>the</strong><br />

north <strong>and</strong> covers approximately 800 km2 of predom<strong>in</strong>ately clay, till, s<strong>and</strong> <strong>and</strong> rock soil as well as<br />

bogs <strong>and</strong> fens. The area shows only little elevation differences <strong>and</strong> is mostly covered by open<br />

fields <strong>and</strong> pasture, coniferous forest <strong>and</strong> built‐up areas. Lakes or branches of <strong>the</strong> Baltic Sea make<br />

up about 10 percent of <strong>the</strong> area. Be<strong>in</strong>g close to Stockholm, <strong>the</strong> capital <strong>and</strong> political <strong>and</strong><br />

economical centre of Sweden, <strong>the</strong> region is of significance for a large part of <strong>the</strong> Swedish<br />

population. The population of Stockholm was 825.000 people <strong>in</strong> autumn 2009 <strong>and</strong> is expected to<br />

grow steadily over <strong>the</strong> next decades reach<strong>in</strong>g one million residents <strong>in</strong> 2030. By <strong>the</strong>n, <strong>the</strong><br />

Stockholm‐Mälaren region is estimated to have risen up to 3.5 million <strong>in</strong>habitants. This <strong>in</strong>crease<br />

requires detailed <strong>in</strong>formation on all aspects of <strong>the</strong> region for future plann<strong>in</strong>g.<br />

3.2 Satellite image<br />

The L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> image used <strong>in</strong> <strong>the</strong> analysis dates from August, 4th, 2002. All b<strong>and</strong>s<br />

were acquired onl<strong>in</strong>e from <strong>the</strong> Global L<strong>and</strong> Cover Facility (GLCF)<br />

(http://www.l<strong>and</strong>cover.org/data/gls/) <strong>and</strong> composed <strong>in</strong> PCI Geomatica 9.1. The <strong>satellite</strong> image<br />

was applied <strong>the</strong> Swedish Reference Frame 1999 (SWEREF99) reference system. Figure 3 below<br />

shows <strong>the</strong> <strong>satellite</strong> image after b<strong>and</strong> composition <strong>and</strong> geometric correction:<br />

35


Figure 3 Geometrically corrected L<strong>and</strong>sat 7 ETM+ <strong>satellite</strong> image<br />

The follow<strong>in</strong>g table depicts fur<strong>the</strong>r L<strong>and</strong>sat scene <strong>in</strong>formation:<br />

Author NASA L<strong>and</strong>sat Program<br />

Publication date 2004<br />

Collection name L<strong>and</strong>sat ETM+ 30m scene<br />

Process<strong>in</strong>g level L1G<br />

Image name L7CPF20020701_20020930_02<br />

Publisher United States Geological Survey (USGS)<br />

Publisher location Sioux Falls, South Dakota<br />

Product coverage date 2002‐08‐04<br />

Table 4 L<strong>and</strong>sat scene <strong>in</strong>formation<br />

3.3 Digital Elevation Model<br />

A 50 x 50 metre horizontal resolution DEM with a 0.1 metre vertical precision <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g<br />

SWEREF99 reference system was obta<strong>in</strong>ed from Lantmäteriet, <strong>the</strong> Swedish mapp<strong>in</strong>g, cadastral<br />

<strong>and</strong> l<strong>and</strong> registration authority. Elevation ranges from 0.1 m to 102.3 m with an average<br />

elevation of 16.9 m above sea level. The DEM <strong>in</strong> its orig<strong>in</strong>al form is presented <strong>in</strong> Appendix A.<br />

36


3.4 Contour data<br />

A vector data set of 5 m <strong>in</strong>terval contour l<strong>in</strong>es <strong>and</strong> 3 m <strong>and</strong> 6 m bathymetry contours <strong>in</strong> <strong>the</strong> RT90<br />

2.5 gon coord<strong>in</strong>ate system was reprojected to <strong>the</strong> SWEREF99 reference system <strong>and</strong> used <strong>in</strong> <strong>the</strong><br />

geometric correction process of <strong>the</strong> <strong>satellite</strong> image.<br />

3.5 L<strong>and</strong> cover data<br />

L<strong>and</strong> cover data was also acquired <strong>in</strong> form of <strong>the</strong> ‘marktäcke’ raster file from Lantmäteriet <strong>in</strong> 25<br />

x 25 m resolution with <strong>the</strong> SWEREF99 reference system (later resampled to 28.5 m).<br />

Information on l<strong>and</strong> cover is necessary <strong>in</strong> order to relate soil <strong>moisture</strong> status to vegetation<br />

distribution. L<strong>and</strong> cover classes as <strong>in</strong>itially present <strong>in</strong> <strong>the</strong> file were reclassified accord<strong>in</strong>g to <strong>the</strong><br />

amount of vegetation <strong>in</strong>herent <strong>in</strong> each l<strong>and</strong> cover class, respectively. The less green vegetation is<br />

present, <strong>the</strong> lower <strong>the</strong> vegetation class. The reclassification results are listed <strong>in</strong> table 5 below:<br />

L<strong>and</strong> cover class description Newly assigned vegetation class<br />

Urban areas 0<br />

District larger than 200 <strong>in</strong>habitants <strong>and</strong> less green areas 0<br />

District larger than 200 <strong>in</strong>habitants <strong>and</strong> more green areas 0<br />

Solitary houses <strong>and</strong> courtyards 0<br />

Industrial, commercial <strong>and</strong> public areas 0<br />

Gravel <strong>and</strong> s<strong>and</strong> deposits 0<br />

L<strong>and</strong>fills 0<br />

Lakes <strong>and</strong> dams with open water surface 0<br />

Lakes <strong>and</strong> dams with vegetation 0<br />

Urban green areas 1<br />

Sport fields 1<br />

Ski slopes 1<br />

Parks (not urban) 1<br />

Fields 2<br />

Pasture 3<br />

Clear‐cut areas 3<br />

Deciduous forest nei<strong>the</strong>r upon bog nor rock 4<br />

Deciduous forest upon bog 4<br />

Coniferous forest upon lichen soil 5<br />

Coniferous forest not upon lichen soil 7‐15 m 5<br />

Coniferous forest not upon lichen soil >15 m 5<br />

Coniferous forest upon bog 5<br />

Coniferous forest upon rock 5<br />

Mixed forest nei<strong>the</strong>r upon bog nor rock 6<br />

Mixed forest upon rock 6<br />

Young forest 6<br />

Wet bog 7<br />

O<strong>the</strong>r bog 7<br />

Table 5 L<strong>and</strong> cover classification table<br />

37


The vegetation class def<strong>in</strong>ition is summarized <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

3.6 <strong>Soil</strong> data<br />

Vegetation class description Vegetation class<br />

Built‐up <strong>and</strong> water 0<br />

Short grass 1<br />

Pasture 2<br />

Field 3<br />

Deciduous forest 4<br />

Coniferous forest 5<br />

Mixed forest 6<br />

Mire 7<br />

Table 6 Vegetation class def<strong>in</strong>ition table<br />

A soil map from <strong>the</strong> region of <strong>in</strong>terest was <strong>in</strong>tegrated <strong>in</strong> <strong>the</strong> study. The data was issued by <strong>the</strong><br />

Sveriges Geologiska Undersökn<strong>in</strong>g (SGU) <strong>in</strong> <strong>the</strong> RT90 2.5 gon reference system <strong>and</strong> changed to<br />

<strong>the</strong> SWEREF99 reference system. <strong>Soil</strong> <strong>moisture</strong> status should not only be related to vegetation,<br />

but also to <strong>the</strong> underly<strong>in</strong>g soil type. In order to explore <strong>the</strong> <strong>in</strong>fluences of vegetation <strong>and</strong> soil type<br />

on soil <strong>moisture</strong> as calculated by <strong>the</strong> <strong>TWI</strong> <strong>and</strong> TVDI, soil type distribution is needed. The<br />

follow<strong>in</strong>g table shows <strong>the</strong> summarized soils <strong>and</strong> <strong>the</strong>ir distribution:<br />

<strong>Soil</strong> type Pixels Area (km²) Percentage<br />

Bog 7380 4.6 0.58<br />

Fen 32829 20.5 2.58<br />

Detritus mud 4333 2.7 0.34<br />

Alluvial sediment, clay ‐ coarse silt 253 0.2 0.02<br />

Mud – clay 42821 26.8 3.36<br />

Clay 423808 264.9 33.27<br />

S<strong>and</strong> 54075 33.8 4.25<br />

Gravel 4675 2.9 0.37<br />

Cobbles 293 0.2 0.02<br />

Esker 10475 6.5 0.82<br />

Water 134905 84.3 10.59<br />

Till 349754 218.6 27.46<br />

L<strong>and</strong> fill (artificial/unknown) 130 0.1 0.01<br />

Rock 207958 130.0 16.33<br />

∑ 1273689 796.1 100.00<br />

Table 7 Summary of soil types <strong>and</strong> distribution<br />

Index distribution was <strong>in</strong>vestigated on <strong>the</strong> five predom<strong>in</strong>ant soil types clay, till, rock, s<strong>and</strong> <strong>and</strong><br />

bog/fen, which constitute about 95% of all soils present <strong>in</strong> <strong>the</strong> map (water bodies <strong>in</strong>cluded).<br />

38


3.7 Precipitation <strong>and</strong> temperature data<br />

Precipitation <strong>and</strong> temperature data for July 2002 were obta<strong>in</strong>ed from SMHI for several stations<br />

around <strong>the</strong> area under consideration. The data was used to identify wea<strong>the</strong>r conditions dur<strong>in</strong>g<br />

four weeks anteced<strong>in</strong>g <strong>satellite</strong> image acquisition. The <strong>in</strong> situ measurements were scheduled<br />

accord<strong>in</strong>g to match<strong>in</strong>g wea<strong>the</strong>r conditions. O<strong>the</strong>rwise, soil <strong>moisture</strong> status from field<br />

measurements <strong>and</strong> <strong>the</strong> ones derived from <strong>the</strong> <strong>satellite</strong> image would be <strong>in</strong>comparable.<br />

Temperatures range from monthly averages of 17.6 ±C to 19.2 ±C. The overall average<br />

temperature is 18.3 ±C. Precipitation greatly varies from 67.4 mm/month to 178.8 mm/month.<br />

Average precipitation over <strong>the</strong> whole area is 105.3 mm/month <strong>and</strong> total precipitation measured<br />

at all stations sums up to 1264.10 mm/month. Table 8 below summarizes temperature <strong>and</strong><br />

precipitation data for all relevant wea<strong>the</strong>r stations:<br />

Station Day mean temperature (°C) Total precipitation (mm)<br />

Adelsö 18.3 126.5<br />

Gnesta no data 175.8<br />

Gustavsberg no data 74.6<br />

Husarö 18.3 69.6<br />

Rimbo no data 75<br />

Skjörby no data 123.5<br />

Stavsnäs 18.3 no data<br />

Stockholm 19.2 113.8<br />

Svanberga 17.8 78.8<br />

Södertälje 18.3 178.8<br />

Tull<strong>in</strong>ge 17.6 101.5<br />

Ultuna 18.5 78.8<br />

Vallentuna no data 67.4<br />

Average 18.3 105.3<br />

Table 8 Summary of day mean temperatures <strong>and</strong> precipitation<br />

The surfaces were generated <strong>in</strong> ArcGIS 9.3 by <strong>in</strong>terpolat<strong>in</strong>g station data <strong>us<strong>in</strong>g</strong> <strong>the</strong> spl<strong>in</strong>e method.<br />

Precipitation <strong>and</strong> temperature distribution maps are presented <strong>in</strong> Appendix B <strong>and</strong> C.<br />

39


4 Methodology<br />

For <strong>the</strong> objective of pixel by pixel soil <strong>moisture</strong> surface <strong>in</strong>dex comparison, data synchronisation<br />

is needed. This implies match<strong>in</strong>g <strong>the</strong> spatial resolution, surface extent <strong>and</strong> reference system of<br />

all data sets, which was done <strong>in</strong> ArcGIS 9.3 <strong>and</strong> PCI Geomatica 9.1.<br />

4.1 <strong>TWI</strong> calculation<br />

4.1.1 DEM preparation<br />

The DEM was resampled to a higher resolution to match <strong>the</strong> <strong>satellite</strong> image resolution (28.5 m).<br />

The average elevation <strong>in</strong>creased to 26 m above sea level when reduc<strong>in</strong>g <strong>the</strong> size by match<strong>in</strong>g <strong>the</strong><br />

DEM boundaries to <strong>the</strong> smallest data set <strong>in</strong> <strong>the</strong> study, <strong>the</strong> soil map. The DEM is basis for <strong>TWI</strong><br />

calculation <strong>and</strong> <strong>the</strong>refore requires <strong>the</strong> removal of spurious s<strong>in</strong>ks <strong>and</strong> pits, as mentioned earlier.<br />

This was done with <strong>the</strong> FILL function <strong>in</strong> ArcGIS 9.3. The follow<strong>in</strong>g table shows DEM statistics<br />

before <strong>and</strong> after pit removal:<br />

DEM type M<strong>in</strong> Max Mean St<strong>and</strong>ard deviation<br />

unfilled 0.10 102.30 26.01 19.65<br />

filled 0.10 102.30 26.30 16.61<br />

Table 9 DEM surface statistics before <strong>and</strong> after pit removal<br />

4.1.2 SCA <strong>and</strong> slope grid calculation<br />

SCA <strong>and</strong> slope grid were determ<strong>in</strong>ed with <strong>the</strong> Terra<strong>in</strong> analysis <strong>us<strong>in</strong>g</strong> Digital Elevation Models<br />

(TauDEM) software version 3.1 <strong>in</strong> ArcGIS 9.3. The D∞ flow direction approach was chosen. The<br />

relevant functions <strong>in</strong> <strong>the</strong> Basic Grid Analysis menu require <strong>the</strong> pit filled elevation grid as <strong>in</strong>put.<br />

The ‘D<strong>in</strong>f flow directions’ function generates both a flow direction surface <strong>and</strong> slope grid as a<br />

first step. Flow direction is assigned to one or two neighbours based upon <strong>the</strong> steepest<br />

downslope gradient on a triangular facet <strong>and</strong> expressed as a cont<strong>in</strong>uous angle from 0 to2π, as<br />

<strong>the</strong> follow<strong>in</strong>g figure clarifies:<br />

40


Figure 4 Flow direction angle def<strong>in</strong>ition <strong>in</strong> <strong>the</strong> D<strong>in</strong>f approach taken from Tarboton (1997)<br />

Slope was calculated from <strong>the</strong> tangent of <strong>the</strong> slope angle. If no positive slope angles are present,<br />

<strong>the</strong> flow determ<strong>in</strong>ation method for flat areas after Garbrecht <strong>and</strong> Martz (1997) was used. This<br />

method <strong>in</strong>cludes two <strong>in</strong>dependent slope gradients ‐ one gradient away from higher terra<strong>in</strong> <strong>and</strong><br />

<strong>the</strong> o<strong>the</strong>r towards lower terra<strong>in</strong>. The l<strong>in</strong>ear comb<strong>in</strong>ation of both gradients is sufficient to identify<br />

<strong>the</strong> dra<strong>in</strong>age pattern (Garbrecht <strong>and</strong> Martz, 1997).<br />

From <strong>the</strong> pit filled DEM, a flow direction grid (Appendix D) along with <strong>the</strong> slope grid (Appendix<br />

E) were generated. SCA was <strong>the</strong>n recursively calculated from <strong>the</strong> flow direction grid.<br />

Contribution at each cell <strong>in</strong>creases with <strong>the</strong> amount of upslope cells from which flow is<br />

proportioned to <strong>the</strong> cell. After <strong>the</strong> identification of all contribut<strong>in</strong>g cells, SCA is calculated as <strong>the</strong><br />

amount of contribut<strong>in</strong>g cells multiplied by grid cell size (Appendix F).<br />

4.1.3 <strong>TWI</strong> surface generation<br />

With <strong>the</strong> SCA surface <strong>and</strong> slope grid, <strong>the</strong> <strong>TWI</strong> surface could be calculated for each pixel with<br />

formula (1). This was done <strong>in</strong> ArcGIS 9.3 <strong>us<strong>in</strong>g</strong> <strong>the</strong> ArcModelBuilder. The arctangent of <strong>the</strong> slope<br />

was calculated <strong>and</strong> <strong>the</strong>n multiplied with <strong>the</strong> SCA. The <strong>TWI</strong> is expressed as <strong>the</strong> product’s natural<br />

logarithm. The f<strong>in</strong>al <strong>TWI</strong> surface is presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g figure:<br />

41


Figure 5 F<strong>in</strong>al <strong>TWI</strong> surface<br />

<strong>TWI</strong> surface generation was performed with vary<strong>in</strong>g sett<strong>in</strong>gs to f<strong>in</strong>d <strong>the</strong> most realistic <strong>in</strong>dex<br />

distribution <strong>and</strong> to study <strong>the</strong> differences <strong>in</strong> <strong>in</strong>dex values. Three unequal slope calculation<br />

42


methods were tested (slope calculated <strong>in</strong> ArcGIS <strong>in</strong> both degrees <strong>and</strong> percent <strong>and</strong> slope as<br />

calculated with TauDEM). The effect of a slight slope <strong>in</strong>crease by 0.1 for all slope calculation<br />

methods on <strong>the</strong> <strong>in</strong>dex was <strong>in</strong>vestigated to overcome <strong>the</strong> algorithm’s limitation of flat areas.<br />

Additionally, <strong>the</strong> effect of variations <strong>in</strong> <strong>the</strong> underly<strong>in</strong>g DEM upon <strong>the</strong> <strong>TWI</strong> was explored. DEMs<br />

before <strong>and</strong> after pit removal <strong>and</strong> with removed water bodies were tested. These comb<strong>in</strong>ations<br />

resulted <strong>in</strong> twelve different <strong>TWI</strong> surfaces which are discussed <strong>in</strong> <strong>the</strong> results section.<br />

4.2 TVDI surface generation<br />

The TVDI surface requires surface temperature <strong>and</strong> NVDI as <strong>in</strong>put. Before <strong>the</strong>y can be derived,<br />

<strong>satellite</strong> image pre‐process<strong>in</strong>g, geometric <strong>and</strong> atmospheric correction need to be performed. All<br />

necessary steps <strong>and</strong> relevant <strong>in</strong>termediate results are described <strong>in</strong> process<strong>in</strong>g order <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g sections.<br />

4.2.1 Satellite image pre­process<strong>in</strong>g<br />

All image pre‐process<strong>in</strong>g was performed <strong>in</strong> PCI Geomatica Focus 9.1. The image was<br />

downloaded <strong>in</strong> s<strong>in</strong>gle b<strong>and</strong>s that needed to be comb<strong>in</strong>ed first. The b<strong>and</strong> files were unzipped <strong>and</strong><br />

converted to .pix files. Format options <strong>in</strong> <strong>the</strong> ‘Import to PCDISK‘ function were set as ‘B<strong>and</strong><br />

Interleaved’, <strong>the</strong> overview options are set to ‘Nearest neighbor downsampl<strong>in</strong>g’.<br />

In order to perform an atmospheric correction <strong>and</strong> to calculate <strong>the</strong> Ts/NDVI ratio, all b<strong>and</strong>s need<br />

to be applied <strong>the</strong> same spatial resolution. Therefore, <strong>the</strong> <strong>the</strong>rmal b<strong>and</strong>s (ETM+ 6.1 <strong>and</strong> ETM+ 6.2)<br />

were reprojected with <strong>the</strong> PCI Geomatica ‘Reprojection’ function to match <strong>the</strong> resolution of <strong>the</strong><br />

o<strong>the</strong>r b<strong>and</strong>s (from 57 m to 28.5 m). The reprojection bounds <strong>and</strong> were kept. The resampl<strong>in</strong>g<br />

method was set to nearest with an exact transform order <strong>and</strong> a sampl<strong>in</strong>g <strong>in</strong>terval of 1.<br />

Each b<strong>and</strong> was <strong>in</strong>vestigated <strong>in</strong> terms of r<strong>and</strong>om bad pixels (shot noise), l<strong>in</strong>e start problems <strong>and</strong><br />

(partial) l<strong>in</strong>e or column drop‐outs <strong>and</strong> strip<strong>in</strong>g. No l<strong>in</strong>e start problems <strong>and</strong> (partial) l<strong>in</strong>e or<br />

column drop‐outs <strong>and</strong> strip<strong>in</strong>g could be identified. B<strong>and</strong>s one to seven (exclud<strong>in</strong>g <strong>the</strong><br />

panchromatic b<strong>and</strong>) were <strong>the</strong>n transferred <strong>in</strong>to one file with <strong>the</strong> ‘Transfer layers’ function.<br />

To precisely match <strong>the</strong> extents <strong>and</strong> boundaries of all surfaces, <strong>the</strong> <strong>TWI</strong> surface as generated <strong>in</strong><br />

ArcGIS 9.3 was added as an additional b<strong>and</strong> to <strong>the</strong> file after atmospheric <strong>and</strong> geometric<br />

correction. The already exist<strong>in</strong>g b<strong>and</strong>s were clipped to <strong>the</strong> extent of <strong>the</strong> <strong>TWI</strong> surface.<br />

43


Geometric correction<br />

A geometric correction of <strong>the</strong> image was performed to correct potential spatial distortions <strong>in</strong> <strong>the</strong><br />

image <strong>us<strong>in</strong>g</strong> <strong>the</strong> Geomatica OrthoEng<strong>in</strong>e. Exactly match<strong>in</strong>g <strong>the</strong> image b<strong>and</strong>s to <strong>the</strong> <strong>TWI</strong> surface is<br />

crucial for a pixel to pixel comparison.<br />

The first order polynomial math <strong>modell<strong>in</strong>g</strong> method was chosen <strong>and</strong> <strong>the</strong> projection parameters<br />

were def<strong>in</strong>ed to match <strong>the</strong> SWEREF99 system. Eight Ground Control Po<strong>in</strong>ts (GCP) were manually<br />

collected. A geocoded vector data set of 5 metre <strong>in</strong>terval contour l<strong>in</strong>es was used as ground<br />

control source. An overall RMSE of 0.58 image pixels could be achieved (RMSE of 0.33 <strong>in</strong> X <strong>and</strong><br />

0.48 <strong>in</strong> Y direction).<br />

After GCP collection, <strong>the</strong> ETM+ image was corrected with all b<strong>and</strong>s. A sampl<strong>in</strong>g <strong>in</strong>terval of four<br />

was chosen <strong>and</strong> resampl<strong>in</strong>g method set to nearest.<br />

Atmospheric correction<br />

When extract<strong>in</strong>g biophysical parameters from vegetation such as biomass, chlorophyll, leaf area,<br />

percent canopy closure <strong>and</strong> o<strong>the</strong>r <strong>in</strong>dices, atmospheric correction of <strong>the</strong> <strong>satellite</strong> image is<br />

needed. Atmospheric <strong>in</strong>fluences are significant to <strong>the</strong> NDVI <strong>and</strong> can contribute up to more than<br />

50 percent over sparse vegetation cover (Jensen, 2004). Absolute radiometric correction of<br />

atmospheric attenuation turns <strong>the</strong> digital brightness values recorded by a remote sens<strong>in</strong>g<br />

system <strong>in</strong>to scaled surface reflectance values (Du et al., 2002). An atmospherically corrected<br />

TVDI surface is necessary for comparison with <strong>the</strong> <strong>TWI</strong>, which is free from atmospheric<br />

<strong>in</strong>fluence.<br />

There are two modules <strong>in</strong> PCI Geomatica to perform atmospheric corrections: ATCOR2 is used<br />

for correct<strong>in</strong>g <strong>satellite</strong> <strong>imagery</strong> over flat terra<strong>in</strong> <strong>and</strong> ATCOR3 for rugged terra<strong>in</strong>. Both modules<br />

work with a database of atmospheric correction functions <strong>and</strong> have been developed ma<strong>in</strong>ly for<br />

<strong>satellite</strong> sensors with a small swath angle such as L<strong>and</strong>sat <strong>and</strong> Satellite Pour l'Observation de la<br />

Terre (SPOT), but some wide Field‐Of‐View (FOV) sensors such as Indian Remote Sens<strong>in</strong>g<br />

Satellites Wide Field Sensor (IRS‐WiFS) are also supported. S<strong>in</strong>ce <strong>the</strong> area shows only little relief,<br />

an absolute radiometric correction of atmospheric attenuation with <strong>the</strong> ATCOR2 module was<br />

chosen. Elevation was set to <strong>the</strong> mean elevation of <strong>the</strong> area (26.01 m). Sensor type, pixel size <strong>and</strong><br />

date were chosen accord<strong>in</strong>g to <strong>the</strong> image attributes. The ‘etm_st<strong>and</strong>art1’ calibration file of PCI<br />

Geomatica was used. Atmospheric def<strong>in</strong>ition area was set to rural <strong>and</strong> <strong>the</strong> condition to mid‐<br />

latitude summer. Correction parameters were specified accord<strong>in</strong>g to <strong>the</strong> <strong>satellite</strong> image<br />

metadata file (sun elevation at 45.4 decimal degrees). Visibility <strong>and</strong> adjacency were kept to 30<br />

km <strong>and</strong> 1 km, respectively. The blue‐green, red, near‐<strong>in</strong>frared <strong>and</strong> <strong>the</strong>rmal b<strong>and</strong> (1, 3, 4 <strong>and</strong> 6)<br />

44


were corrected. Additionally, haze <strong>and</strong> clouds were removed from <strong>the</strong> image. Haze <strong>and</strong> cloud<br />

masks were def<strong>in</strong>ed automatically with a large area haze mask <strong>and</strong> <strong>the</strong> correction mode for th<strong>in</strong><br />

to medium haze. In <strong>the</strong> advanced options sett<strong>in</strong>gs of <strong>the</strong> haze <strong>and</strong> cloud def<strong>in</strong>ition panel, <strong>the</strong><br />

average surface temperature was set to 18.91 °C. This value is <strong>the</strong> average temperature<br />

calculated from wea<strong>the</strong>r stations located <strong>in</strong> <strong>the</strong> area (Stockholm <strong>and</strong> Adelsö) on <strong>satellite</strong> image<br />

acquisition date. Emissivity was kept as a constant of 0.98. Visibility data was automatically<br />

calculated. The cloud <strong>and</strong> haze masks are shown <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g figures 6 <strong>and</strong> 7:<br />

Figure 6 Cloud mask Figure 7 Haze mask<br />

4.2.2 NDVI surface<br />

After <strong>satellite</strong> image pre‐process<strong>in</strong>g, geometric <strong>and</strong> atmospheric correction, <strong>the</strong> NDVI could be<br />

calculated. Image pixels <strong>in</strong> Geomatica are scaled as Digital Numbers (DN) from 1 to 255 <strong>and</strong> do<br />

not represent real spectral reflectance as measured by <strong>the</strong> sensor. These values however need to<br />

be obta<strong>in</strong>ed first <strong>in</strong> order to calculate spectral <strong>in</strong>dices. First, radiance was calculated from <strong>the</strong><br />

DNs. From radiance, reflectance could be calculated. B<strong>and</strong>s 3 <strong>and</strong> 4 were exported to American<br />

St<strong>and</strong>ard Code for Information Interchange (ASCII) files. The header was removed <strong>and</strong> <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g absolute values were imported <strong>in</strong>to Microsoft Excel, where all calculations were<br />

performed. The radiance values were derived <strong>us<strong>in</strong>g</strong> <strong>the</strong> follow<strong>in</strong>g formula:<br />

� l �<br />

� ���l � � ���l<br />

���� ��� � ���� ���<br />

� ����� � ���� ��� � � � ���l (7)<br />

where L l = <strong>the</strong> spectral radiance at <strong>the</strong> sensor’s aperture <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2<br />

45


L ���l = <strong>the</strong> spectral radiance scaled to ���� ��� <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2<br />

L m<strong>in</strong>l = <strong>the</strong> spectral radiance scaled to ���� ��� <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2<br />

QCAL = <strong>the</strong> quantized calibrated pixel value <strong>in</strong> DNs<br />

QCAL m<strong>in</strong> = <strong>the</strong> m<strong>in</strong>imum quantized calibrated pixel value<br />

QCAL max = <strong>the</strong> maximum quantized calibrated pixel value<br />

The values for <strong>the</strong> three b<strong>and</strong>s needed for NDVI <strong>and</strong> surface temperature calculation, are<br />

respectively specified <strong>in</strong> <strong>the</strong> L<strong>and</strong>sat 7 science data user’s h<strong>and</strong>book (Irish, 2000) or can be<br />

taken from <strong>the</strong> <strong>satellite</strong> image metadata file <strong>and</strong> are presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

Values B<strong>and</strong> 3 (high ga<strong>in</strong>) B<strong>and</strong> 4 (low ga<strong>in</strong>) B<strong>and</strong> 6.2 (high ga<strong>in</strong>)<br />

QCAL ��� 255 255 255<br />

QCAL ��� 1 1 1<br />

L ���l ‐5.0 ‐5.1 3.2<br />

L ���l 152.9 241.1 12.65<br />

ESUN � 1533 1039 ‐<br />

Table 10 B<strong>and</strong> constants for radiance calculation from DNs<br />

The NDVI is based upon surface reflectance. Therefore, <strong>the</strong> calculated radiance needed to be<br />

fur<strong>the</strong>r converted <strong>in</strong>to spectral reflectance values accord<strong>in</strong>g to <strong>the</strong> formula:<br />

� � �<br />

�·� �·� �<br />

���� � ·��� ��<br />

where ρ �= unitless planetary reflectance<br />

L � = spectral radiance at <strong>the</strong> sensor’s aperture<br />

d = Earth‐sun distance <strong>in</strong> astronomical units (216th day of year = 1.0145779)<br />

ESUN λ = mean solar exoatmospheric irradiances <strong>in</strong> watts per µm <strong>and</strong> m 2<br />

θ � = solar zenith angle <strong>in</strong> degrees<br />

The earth‐sun distance was obta<strong>in</strong>ed from a Microsoft Excel table published <strong>in</strong> <strong>the</strong> L<strong>and</strong>sat 7<br />

science data user’s h<strong>and</strong>book (Irish, 2000). The solar zenith angle was calculated with <strong>the</strong> Solar<br />

Position Calculator provided by <strong>the</strong> National Oceanic <strong>and</strong> Atmospheric Adm<strong>in</strong>istration (NOAA)<br />

Surface Radiation Research Branch.<br />

From reflectance values, <strong>the</strong> NDVI could be calculated <strong>us<strong>in</strong>g</strong> equation (3). The f<strong>in</strong>al NDVI surface<br />

is shown <strong>in</strong> Appendix G.<br />

46<br />

(8)


4.2.3 Surface temperature<br />

Surface temperature was calculated from <strong>the</strong> <strong>satellite</strong> image’s <strong>the</strong>rmal b<strong>and</strong> <strong>in</strong> high ga<strong>in</strong> mode<br />

(b<strong>and</strong> 6.2). Similar to <strong>the</strong> previous NDVI calculation, surface temperature can not be determ<strong>in</strong>ed<br />

directly from <strong>the</strong> <strong>the</strong>rmal b<strong>and</strong>s DNs. The recorded brightness values needed to be converted to<br />

spectral radiances first with <strong>the</strong> same formula (7). Surface temperature could <strong>the</strong>n be obta<strong>in</strong>ed<br />

from radiance values with <strong>the</strong> follow<strong>in</strong>g formula:<br />

��<br />

��<br />

�� � ��<br />

� l � �� (9)<br />

where T = effective temperature <strong>in</strong> Kelv<strong>in</strong><br />

K2 = calibration constant 2 <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2 (1282.71)<br />

K1 = calibration constant 1 <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2 (666.09)<br />

L l = spectral radiance at <strong>the</strong> sensor’s aperture <strong>in</strong> watts per steradian, µm <strong>and</strong> m 2<br />

The result<strong>in</strong>g surface was <strong>the</strong>n transformed from Kelv<strong>in</strong> to degree Celsius (°C). By explor<strong>in</strong>g <strong>the</strong><br />

frequency distribution of temperature values, very few extremely high <strong>and</strong> low values could be<br />

detected, identified as outliers <strong>and</strong> changed to <strong>the</strong> next realistic higher or lower value. Maximum<br />

<strong>and</strong> m<strong>in</strong>imum values <strong>the</strong>n range from 8°C over <strong>the</strong> Baltic Sea to up to 40°C over densely built‐up<br />

areas with an average temperature of 21°C. The temperature surface is shown <strong>in</strong> Appendix H.<br />

4.2.4 TVDI surface<br />

Both <strong>the</strong> NDVI <strong>and</strong> <strong>the</strong> temperature surfaces were rounded to three decimals <strong>and</strong> exported to<br />

two Comma‐Separated Value (CSV) files, respectively. They were plotted aga<strong>in</strong>st each o<strong>the</strong>r <strong>in</strong><br />

Matlab to identify <strong>the</strong> regression l<strong>in</strong>es def<strong>in</strong><strong>in</strong>g <strong>the</strong> upper <strong>and</strong> lower edges of <strong>the</strong> triangle.<br />

M<strong>in</strong>imum <strong>and</strong> maximum temperature values for given NDVIs can thus be calculated as follows:<br />

� ���� � 13.452 � 8.046 � ���� (10)<br />

� ���� � 51.955 � 36.450 � ���� (11)<br />

With <strong>the</strong> m<strong>in</strong>imum <strong>and</strong> maximum values <strong>and</strong> <strong>the</strong> parameters a �51.955� <strong>and</strong> b �36.450� known,<br />

<strong>the</strong> TVDI could be calculated accord<strong>in</strong>g to formula (5) <strong>in</strong> Microsoft Excel. The calculated TVDI<br />

values were <strong>the</strong>n exported as ASCII file for surface generation <strong>in</strong> ArcGIS <strong>and</strong> as CSV file for<br />

correlation analyses <strong>in</strong> Matlab. The f<strong>in</strong>al TVDI surface is shown <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g figure:<br />

47


Figure 8 F<strong>in</strong>al TVDI surface<br />

48


4.3 Surface comparisons<br />

In order to explore <strong>the</strong> statistical relationship between <strong>TWI</strong> <strong>and</strong> TVDI <strong>and</strong> to <strong>in</strong>vestigate possible<br />

dependencies on o<strong>the</strong>r factors, <strong>the</strong> two surfaces were reclassified. Pixels of both <strong>TWI</strong> <strong>and</strong> TVDI<br />

surfaces with different underly<strong>in</strong>g soil types <strong>and</strong> vegetation classes were identified <strong>and</strong><br />

respectively extracted <strong>in</strong>to separate surfaces. Five predom<strong>in</strong>at<strong>in</strong>g soil classes (bog <strong>and</strong> fen, clay,<br />

rock, s<strong>and</strong> <strong>and</strong> till) <strong>and</strong> eight dist<strong>in</strong>ct vegetation classes (0‐7, higher values denote stronger<br />

vegetated areas) were used for reclassification. All result<strong>in</strong>g surfaces were converted <strong>in</strong>to CSV<br />

files <strong>and</strong> imported <strong>in</strong>to Matlab. Table 11 below shows an overview of all 13 unique classes <strong>and</strong><br />

<strong>the</strong> two <strong>in</strong>dex surfaces:<br />

<strong>Soil</strong> class Vegetation class Index surface one Index surface two<br />

Bog <strong>and</strong> fen 0 <strong>TWI</strong> TVDI<br />

Clay 1<br />

Rock 2<br />

S<strong>and</strong> 3<br />

Till 4<br />

5<br />

6<br />

7<br />

Table 11 Classes <strong>and</strong> <strong>in</strong>dex surfaces for comb<strong>in</strong>ation<br />

For each <strong>in</strong>dex surface, those pixels were extracted that belong to vegetation class 0 to 7 <strong>and</strong> to<br />

one of <strong>the</strong> five soil types. All result<strong>in</strong>g comb<strong>in</strong>ed surfaces are shown <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:<br />

Comb<strong>in</strong>ations Number of surfaces<br />

<strong>Soil</strong> <strong>and</strong> <strong>TWI</strong> 5 � 1 = 5<br />

<strong>Soil</strong> <strong>and</strong> TVDI 5 � 1 = 5<br />

<strong>Soil</strong> <strong>and</strong> vegetation <strong>and</strong> <strong>TWI</strong> 5 � 8 � 1 = 40<br />

<strong>Soil</strong> <strong>and</strong> vegetation <strong>and</strong> TVDI 5 � 8 � 1 = 40<br />

Vegetation <strong>and</strong> <strong>TWI</strong> 8 � 1 = 8<br />

Vegetation <strong>and</strong> TVDI 8 � 1 = 8<br />

Table 12 Overview of all surface comb<strong>in</strong>ations<br />

M<strong>in</strong>imum, maximum, mean, st<strong>and</strong>ard deviation, amount of pixels <strong>and</strong> area percentage were<br />

calculated for each surface comb<strong>in</strong>ation, respectively. Pearson pairwise correlation coefficients<br />

were calculated for each surface comparison between <strong>TWI</strong> <strong>and</strong> TVDI for equal class<br />

comb<strong>in</strong>ations.<br />

Additionally, <strong>the</strong> <strong>TWI</strong> <strong>and</strong> TVDI surfaces were both classified <strong>in</strong>to <strong>the</strong> three categories of low,<br />

medium <strong>and</strong> high values to detect fur<strong>the</strong>r correlations. There is no optimum classification<br />

method <strong>and</strong> optimum number of classes for compar<strong>in</strong>g <strong>the</strong> two surfaces because of <strong>the</strong>ir<br />

unequal value distribution. Therefore, two classification methods were tested (natural breaks<br />

classification <strong>and</strong> quantile classification). The natural breaks classification after Jenks distributes<br />

values <strong>in</strong>to classes accord<strong>in</strong>g to <strong>the</strong>ir natural breaks. This however means that values classified<br />

49


y a natural break <strong>in</strong> one surface do not belong to a natural break <strong>in</strong> <strong>the</strong> o<strong>the</strong>r surface. The<br />

quantile classification however assigns an equal amount of values to each class. This is most<br />

suitable for l<strong>in</strong>early distributed data. One surface was classified for each of <strong>the</strong> three categories<br />

with <strong>the</strong> two different classification methods. The correspond<strong>in</strong>g surface was <strong>the</strong>n created by<br />

identify<strong>in</strong>g <strong>and</strong> match<strong>in</strong>g <strong>the</strong> cells of <strong>the</strong> <strong>in</strong>itially classified surface. The follow<strong>in</strong>g table shows <strong>the</strong><br />

classification summary:<br />

Surface type Classification method Category M<strong>in</strong> Max<br />

TVDI quantile low 0 0.187891<br />

TVDI quantile medium 0.187891 0.269103<br />

TVDI quantile high 0.269103 1<br />

TVDI natural breaks low 0 0.249766<br />

TVDI natural breaks medium 0.249766 0.427656<br />

TVDI natural breaks high 0.427656 1<br />

<strong>TWI</strong> quantile low 0 2.882193<br />

<strong>TWI</strong> quantile medium 2.882193 5.572232<br />

<strong>TWI</strong> quantile high 5.572232 12,5215<br />

<strong>TWI</strong> natural breaks low 0 1.761344<br />

<strong>TWI</strong> natural breaks medium 1.761344 3.240865<br />

<strong>TWI</strong> natural breaks high 3.240865 12.5215<br />

Table 13 Surface classification summary<br />

Quantile <strong>and</strong> natural breaks classification result <strong>in</strong> different category boundaries as can be seen<br />

from <strong>the</strong> table above. For TVDI values, quantile classification breaks lie considerably lower than<br />

for <strong>the</strong> natural breaks classification. The reverse can be observed for <strong>TWI</strong> values. The natural<br />

breaks classification results <strong>in</strong> narrower classes. This dissimilarity between <strong>the</strong> surfaces<br />

demonstrates a natural difference <strong>in</strong> value distribution, e. g. two thirds of TVDI values lie<br />

approximately only with<strong>in</strong> <strong>the</strong> first quarter of <strong>the</strong> range (0.27), whereas two thirds of <strong>TWI</strong><br />

values lie roughly with<strong>in</strong> half of <strong>the</strong> range (5.57).<br />

4.4 In situ measurements<br />

In order to compare <strong>the</strong> results obta<strong>in</strong>ed from <strong>the</strong> TVDI <strong>and</strong> <strong>TWI</strong> surfaces, soil <strong>moisture</strong> ground<br />

truth values were ga<strong>the</strong>red <strong>in</strong> situ with ground‐penetrat<strong>in</strong>g radar (GPR) at ten selected sites of<br />

vary<strong>in</strong>g soil types <strong>and</strong> different TVDI <strong>and</strong> <strong>TWI</strong> <strong>in</strong>dices. <strong>Soil</strong> <strong>moisture</strong> <strong>in</strong> <strong>the</strong> surface layer of <strong>the</strong><br />

soil to a depth of approximately 50 cm was derived from <strong>the</strong> dielectric constant of <strong>the</strong> soil <strong>us<strong>in</strong>g</strong><br />

<strong>the</strong> empirical Topp equation (Topp et al., 1980). The dielectric constant of <strong>the</strong> soil was measured<br />

by means of <strong>the</strong> common‐midpo<strong>in</strong>t method. Two GPR antennas, 800 MHz (Malå Geoscience)<br />

were used to make small scale common‐midpo<strong>in</strong>t measurements with a maximum antenna<br />

separation of about 2 m. The CMP data were analysed <strong>us<strong>in</strong>g</strong> <strong>the</strong> software Reflex W<strong>in</strong> 4.5<br />

(S<strong>and</strong>meier software, Germany). The follow<strong>in</strong>g maps show <strong>the</strong> location of measurements taken<br />

<strong>in</strong> Törnskogen, approximately 20 km north of Stockholm:<br />

50


Figure 9 In situ data collection site Törnskogen Figure 10 Sample po<strong>in</strong>t overview<br />

<strong>Soil</strong> <strong>moisture</strong> <strong>in</strong> volume fraction was determ<strong>in</strong>ed by calculat<strong>in</strong>g <strong>the</strong> arithmetic mean of <strong>the</strong><br />

measured <strong>moisture</strong> values for each sample po<strong>in</strong>t. The amount of measurements taken per po<strong>in</strong>t<br />

varies between two <strong>and</strong> three. The sample po<strong>in</strong>ts were determ<strong>in</strong>ed <strong>in</strong> advance of <strong>the</strong> actual<br />

collection. The <strong>TWI</strong> surface was classified <strong>in</strong>to three categories: low, medium <strong>and</strong> high values. A<br />

map of five soil types (bog/fen, clay, rock, s<strong>and</strong> <strong>and</strong> till) was additionally created. Three<br />

locations for each comb<strong>in</strong>ation of <strong>TWI</strong> <strong>and</strong> soil class could be identified <strong>in</strong> <strong>the</strong> sample area. It<br />

was not possible to measure soil <strong>moisture</strong> for all 36 po<strong>in</strong>ts due to unsuitable wea<strong>the</strong>r conditions.<br />

51


5 Results<br />

5.1 <strong>TWI</strong> calculation<br />

Results of <strong>the</strong> <strong>TWI</strong> calculation with vary<strong>in</strong>g sett<strong>in</strong>gs as previously described are shown <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g paragraphs.<br />

5.1.1 Filled/unfilled/noData <strong>and</strong> filled DEM<br />

<strong>TWI</strong>s that were calculated based on <strong>the</strong> unfilled DEM clearly show a lot of wrongly calculated<br />

cells with no data values spread all over <strong>the</strong> area. This leads to <strong>the</strong> conclusion <strong>and</strong> confirms <strong>the</strong><br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> o<strong>the</strong>r studies that a pit filled DEM has to be used <strong>in</strong> any case. The two follow<strong>in</strong>g<br />

figures show excerpts from <strong>the</strong> DEM with <strong>and</strong> without s<strong>in</strong>k removal prior to <strong>TWI</strong> calculation:<br />

Figure 11 Unfilled DEM (pits <strong>and</strong> s<strong>in</strong>ks visible)<br />

Figure 13 <strong>TWI</strong> surface without prior pit removal<br />

52<br />

Figure 12 Filled DEM (pits <strong>and</strong> s<strong>in</strong>ks removed)


An excerpt of <strong>the</strong> <strong>TWI</strong> surface based on a DEM without antecedent s<strong>in</strong>k removal is shown <strong>in</strong> <strong>the</strong><br />

figure above. The white cell aggregations (mostly four quadratically arranged cells) are s<strong>in</strong>ks<br />

with no data values.<br />

The algorithm used <strong>in</strong> TauDEM can not dist<strong>in</strong>guish whe<strong>the</strong>r larger flat areas with slope values of<br />

0 should be water bodies or belong to <strong>the</strong> l<strong>and</strong> surface. To ensure <strong>the</strong>se areas to be correctly<br />

processed, all water bodies present were taken out of <strong>the</strong> <strong>in</strong>dex calculation. These were<br />

identified accord<strong>in</strong>g to <strong>the</strong> ‘marktäcke’ data from Lantmäteriet. The raster was added <strong>in</strong> ArcMap<br />

<strong>and</strong> clipped to shape. It was <strong>the</strong>n reclassified, assign<strong>in</strong>g ‘1’ to all o<strong>the</strong>r values <strong>and</strong> ‘noData’ to<br />

water bodies. The mask was <strong>the</strong>n multiplied with <strong>the</strong> filled DEM, assign<strong>in</strong>g all water bodies an<br />

elevation of ‘noData’. To omit calculat<strong>in</strong>g <strong>TWI</strong> values for water bodies, it is suggested to use <strong>the</strong><br />

data set where water bodies are excluded.<br />

5.1.2 Slope 0/+0.1<br />

The removal of water bodies does not solve <strong>the</strong> problem that zero <strong>TWI</strong> values are calculated for<br />

large flat l<strong>and</strong> covered areas with 0 slope values <strong>in</strong> <strong>the</strong> DEM. These areas should obviously be<br />

assigned positive <strong>TWI</strong> values, s<strong>in</strong>ce water tends to eventually flow towards <strong>the</strong>m from higher<br />

slopes. To overcome this problem, a very slight artificial slope of 0.1 was added to every cell <strong>in</strong><br />

<strong>the</strong> DEM. This resulted <strong>in</strong> successfully calculat<strong>in</strong>g <strong>TWI</strong> values for all cells (exclud<strong>in</strong>g ‘noData’<br />

cells). The results show that this leads to higher m<strong>in</strong>imum values, a higher mean <strong>and</strong> smaller<br />

st<strong>and</strong>ard deviation. Maximum values are not affected.<br />

5.1.3 Slope calculation method<br />

<strong>TWI</strong>s based on slope <strong>in</strong> percent <strong>and</strong> degrees are higher than <strong>the</strong> ones based on TauDEM<br />

calculated slope, which give better <strong>TWI</strong> results <strong>in</strong> flat areas. Nei<strong>the</strong>r visual <strong>in</strong>terpretation nor<br />

statistical analysis show significant differences <strong>in</strong> <strong>TWI</strong> distribution based on slope or degrees.<br />

53


The follow<strong>in</strong>g three figures show <strong>the</strong> slopes used as basis for <strong>TWI</strong> calculation:<br />

Figure 14 Slope for <strong>TWI</strong> calculation <strong>in</strong> percent<br />

Figure 16 Slope calculated <strong>in</strong> TauDEM<br />

5.1.4 <strong>TWI</strong> calculation comparison<br />

<strong>TWI</strong> surface generation results with different sett<strong>in</strong>gs (filled/unfilled/noData <strong>and</strong> filled DEM,<br />

slope <strong>in</strong>crease +0/+0.1, <strong>and</strong> slope calculation method <strong>in</strong> degrees/percent/TauDEM) are<br />

presented <strong>in</strong> Appendix I‐K. The follow<strong>in</strong>g table presents a statistical summary of <strong>the</strong> different<br />

<strong>TWI</strong> surface variations:<br />

54<br />

Figure 15 Slope for <strong>TWI</strong> calculation <strong>in</strong> degrees


DEM type Slope Slope calculation method M<strong>in</strong> Max Mean St<strong>and</strong>ard deviation<br />

filled/noData +0 degrees 0 14.62 4.39 1.95<br />

filled/noData +0 percent 0 14.72 4.54 1.96<br />

filled/noData +0 TauDEM 0 11.54 1.25 1.29<br />

filled/noData +0.1 degrees 1.04 14.63 4.66 1.68<br />

filled/noData +0.1 percent 1.04 17.72 4.80 1.68<br />

filled/noData +0.1 TauDEM 1.04 12.52 2.84 1.57<br />

Unfilled +0 degrees 0 14.32 3.94 2.13<br />

Unfilled +0 percent 0 14.37 4.07 2.17<br />

Unfilled +0 TauDEM 0 9.21 1.16 1.23<br />

Unfilled +0.1 degrees 1.04 14.32 4.45 1.58<br />

Unfilled +0.1 percent 1.04 14.37 4.57 1.59<br />

Unfilled +0.1 TauDEM 1.04 11.98 2.79 1.40<br />

Filled +0 degrees 0 16.68 3.70 2.42<br />

Filled +0 percent 0 16.75 3.83 2.46<br />

Filled +0 TauDEM 0 14.20 1.05 1.28<br />

Filled +0.1 degrees 1.04 16.68 4.50 1.85<br />

Filled +0.1 percent 1.04 16.75 4.61 1.86<br />

Filled +0.1 TauDEM 1.04 14.67 2.97 1.75<br />

Table 14 <strong>TWI</strong> surface statistics summary<br />

Flat l<strong>and</strong> surface areas could be discrim<strong>in</strong>ated from water bodies by remov<strong>in</strong>g <strong>the</strong>se from <strong>the</strong><br />

DEM. On flat areas, flow could be determ<strong>in</strong>ed when a slight artificial slope was added. For <strong>the</strong>se<br />

reasons <strong>and</strong> <strong>the</strong> fact that a DEM without s<strong>in</strong>ks is needed as data <strong>in</strong>put, <strong>the</strong> <strong>in</strong> table 14 highlighted<br />

<strong>TWI</strong> calculation method is considered to be <strong>the</strong> most suitable one. This surface was eventually<br />

compared to <strong>the</strong> TVDI surface.<br />

5.1.5 <strong>TWI</strong>/TVDI correlations<br />

When attempt<strong>in</strong>g to correlate both surfaces, <strong>the</strong> ‘noData’ values of removed water bodies<br />

(designated as ‘‐9999’) <strong>in</strong> <strong>the</strong> <strong>TWI</strong> surface distort <strong>the</strong> scatterplot. Therefore, those values <strong>and</strong> <strong>the</strong><br />

correspond<strong>in</strong>g ones <strong>in</strong> <strong>the</strong> TVDI surface needed to be removed.<br />

The two f<strong>in</strong>al <strong>TWI</strong> <strong>and</strong> TVDI surfaces were converted to CSV files, read <strong>in</strong> Matlab <strong>and</strong> compared<br />

to each o<strong>the</strong>r. The result<strong>in</strong>g scatterplot is shown <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g figure:<br />

55


dry <strong>TWI</strong> wet<br />

Scatterplot <strong>TWI</strong>/TVDI<br />

wet TVDI dry<br />

Figure 17 Scatterplot of <strong>the</strong> complete <strong>TWI</strong> <strong>and</strong> TVDI surfaces with regression l<strong>in</strong>e<br />

The triangular shape of <strong>the</strong> scatterplot suggests a correlation of <strong>the</strong> two soil <strong>moisture</strong> <strong>in</strong>dices.<br />

High <strong>TWI</strong> values describe <strong>the</strong> tendency of soil to get saturated after ra<strong>in</strong>fall, whereas low values<br />

denote drier areas where no water accumulates, e. g. hilltops or ridges. Lower TVDI values on<br />

<strong>the</strong> o<strong>the</strong>r h<strong>and</strong> express wet areas <strong>and</strong> high values dry ones. Several observations can be made<br />

from <strong>the</strong> shape of <strong>the</strong> triangle. One observation is that with an <strong>in</strong>crease <strong>in</strong> TVDI values, <strong>the</strong><br />

correspond<strong>in</strong>g <strong>TWI</strong> values decrease along <strong>the</strong> blue l<strong>in</strong>e <strong>in</strong> <strong>the</strong> figure above (estimated regression<br />

l<strong>in</strong>e). If this assumption is true, <strong>the</strong> <strong>TWI</strong> can be used as a predictor of <strong>the</strong> TVDI <strong>and</strong> vice versa<br />

along <strong>the</strong> diagonal. Consider<strong>in</strong>g <strong>the</strong> left upper peak of <strong>the</strong> triangle, it seems that most po<strong>in</strong>ts with<br />

a high <strong>TWI</strong> are also wet accord<strong>in</strong>g to a low TVDI. When consider<strong>in</strong>g maximum TVDI values, only<br />

very few po<strong>in</strong>ts <strong>in</strong>dicate a high <strong>TWI</strong> (both <strong>in</strong>dex values represent dry soil).<br />

However, <strong>the</strong>se relations do not hold true <strong>in</strong> <strong>the</strong> lower part of <strong>the</strong> triangle where values are<br />

evenly distributed. Numerous po<strong>in</strong>ts be<strong>in</strong>g denoted as wet by <strong>the</strong> TVDI vary greatly <strong>in</strong> <strong>the</strong> <strong>TWI</strong><br />

<strong>in</strong>dex distribution. Additionally, very wet areas accord<strong>in</strong>g to <strong>the</strong> TVDI surface (between 0 <strong>and</strong><br />

0.1) are contrarily assigned a ra<strong>the</strong>r dry status <strong>in</strong> <strong>the</strong> <strong>TWI</strong> surface.<br />

56


Ano<strong>the</strong>r observation that can be made from <strong>the</strong> scatterplot concerns <strong>the</strong> maximum <strong>and</strong><br />

m<strong>in</strong>imum TVDI values. It seems that a lot of cells have ei<strong>the</strong>r <strong>the</strong> exact value 0 or 1. This happens,<br />

because few po<strong>in</strong>ts marg<strong>in</strong>ally exceeded <strong>the</strong> limits for TVDIs (rang<strong>in</strong>g from zero to one) due to<br />

errors <strong>and</strong> noise <strong>in</strong> <strong>the</strong> <strong>in</strong>itial <strong>satellite</strong> image derived <strong>the</strong>rmal <strong>and</strong> NDVI surfaces. Values<br />

exceed<strong>in</strong>g one have been set to one <strong>and</strong> values that fall below zero have been set to zero,<br />

respectively. All <strong>in</strong> all, 11145 cells out of 3450482 (0.3%) were changed (734 below zero <strong>and</strong><br />

10411 above one). The Pearson pairwise correlation coefficient for <strong>the</strong> <strong>TWI</strong>/TVDI surface is<br />

0.023 with a p‐value of 0.00283, <strong>in</strong>dicat<strong>in</strong>g a low but statistically significant correlation.<br />

The comparison of all <strong>the</strong> comb<strong>in</strong>ed <strong>TWI</strong> <strong>and</strong> TVDI surfaces with <strong>the</strong> soil <strong>and</strong> vegetation surfaces<br />

is described <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g sections <strong>and</strong> <strong>the</strong> correspond<strong>in</strong>g scatterplots are shown <strong>in</strong> Appendix<br />

L to R.<br />

5.1.6 <strong>TWI</strong>/TVDI <strong>and</strong> vegetation class correlation<br />

The first observation that can be made is that <strong>the</strong> triangular shape is still visible <strong>in</strong> all<br />

correlations but narrows as <strong>the</strong> amount of cells decreases with each vegetation class <strong>in</strong>crement.<br />

The values concentrate <strong>in</strong> <strong>the</strong> lower left corner of <strong>the</strong> triangle.<br />

It also becomes apparent that <strong>the</strong> classification <strong>in</strong>to <strong>the</strong> eight vegetation classes correlates with<br />

<strong>the</strong> TVDI distribution. The higher <strong>the</strong> vegetation class, <strong>the</strong> lower TVDI values which <strong>in</strong>dicates a<br />

moister soil. This clearly validates <strong>the</strong> TVDI as a predictor of soil <strong>moisture</strong> s<strong>in</strong>ce a sufficient<br />

amount of available water results <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> growth <strong>and</strong> biomass. The right edge of <strong>the</strong><br />

triangle (expressed through <strong>the</strong> blue diagonal shown <strong>in</strong> Figure 17) becomes gradually steeper as<br />

TVDI values decrease. This means that more cells with low <strong>TWI</strong> values disappear with an<br />

<strong>in</strong>crease <strong>in</strong> vegetation class than cells with high values, as it should be. Similar to <strong>the</strong> <strong>in</strong>itial<br />

comparison of <strong>the</strong> complete surfaces, areas denoted as moist by <strong>the</strong> TVDI still vary greatly <strong>in</strong><br />

<strong>TWI</strong> distribution.<br />

5.1.7 <strong>TWI</strong>/TVDI <strong>and</strong> soil class correlation<br />

There does not seem to be a significant variation <strong>in</strong> <strong>the</strong> triangular shape of <strong>the</strong> scatterplots for<br />

different soil types. Therefore it can be reasoned that <strong>the</strong> correlation between <strong>TWI</strong> <strong>and</strong> TVDI as<br />

<strong>the</strong> <strong>in</strong>dices it selves are <strong>in</strong>dependent on <strong>the</strong> underly<strong>in</strong>g soil type. The only visible difference is<br />

<strong>the</strong> amount of cells. Clay <strong>and</strong> till are predom<strong>in</strong>ant, whereas bog <strong>and</strong> fen show least occurrences.<br />

57


5.1.8 <strong>TWI</strong>/TVDI <strong>and</strong> soil/vegetation class correlation<br />

<strong>TWI</strong>/TVDI correlation for bogs <strong>and</strong> fens<br />

In all scatterplots except <strong>the</strong> one for vegetation class 0, <strong>the</strong> characteristic triangular shape is<br />

visible. Po<strong>in</strong>ts accumulate with<strong>in</strong> <strong>TWI</strong> value boundaries of one <strong>and</strong> five <strong>and</strong> vary greatly from 0.1<br />

to 1 on <strong>the</strong> TVDI axis. A correlation is least observable. Po<strong>in</strong>t quantity decreases with higher<br />

vegetation classes. TVDI values also decrease cont<strong>in</strong>uously with a higher vegetation class. More<br />

dist<strong>in</strong>ct shapes should become apparent as vegetation classes <strong>in</strong>crease because all areas <strong>in</strong> <strong>the</strong><br />

soil map identified as bogs <strong>and</strong> fens naturally should also belong to a high vegetation class.<br />

Therefore not many cells with a low vegetation class are expected to be denoted as bogs <strong>and</strong><br />

fens.<br />

<strong>TWI</strong>/TVDI correlation for clay soils<br />

The scatterplots all show <strong>the</strong> well‐known triangular shape, although it is least visible for<br />

vegetation classes zero <strong>and</strong> seven. There are by far most pixels (42%) on clay soils <strong>in</strong> vegetation<br />

class two followed by pixels <strong>in</strong> class zero (18%) <strong>and</strong> three (14%) <strong>in</strong>dicat<strong>in</strong>g that clayey soils<br />

tend to be covered by vegetation of lower classes, mostly fields <strong>and</strong> meadows. One difference<br />

that can be observed is that <strong>the</strong>re are more cells with higher <strong>TWI</strong> values than 10 <strong>in</strong> comparison<br />

to o<strong>the</strong>r soil types. One simple reason for this might be that most of all po<strong>in</strong>ts identified (40%)<br />

lie on clay soil which means a higher chance that high values fall unto that class. Ano<strong>the</strong>r reason<br />

might be that water tends to accumulate ra<strong>the</strong>r <strong>the</strong>re than on o<strong>the</strong>r soils or that clay seems to be<br />

<strong>the</strong> predom<strong>in</strong>ant soil type <strong>in</strong> <strong>the</strong> lowest parts of <strong>the</strong> watershed or underneath streams where<br />

highest <strong>TWI</strong>s are expected.<br />

<strong>TWI</strong>/TVDI correlation for rock soils<br />

As <strong>in</strong> <strong>the</strong> correlation on clay soils, <strong>the</strong> triangle is dist<strong>in</strong>guishable for all vegetation classes except<br />

for <strong>the</strong> highest one. There, only very few cells (0.1%) could be identified. They are simply not<br />

enough values to form a visible triangle. The correlation plots are similar to <strong>the</strong> ones for <strong>the</strong><br />

o<strong>the</strong>r soils. One observation is that nearly half of all po<strong>in</strong>ts (47%) fall <strong>in</strong>to vegetation class five.<br />

All o<strong>the</strong>r soil types except till have considerably less cells <strong>in</strong> that class.<br />

<strong>TWI</strong>/TVDI correlation for s<strong>and</strong> soils<br />

Similar to <strong>the</strong> scatterplots with <strong>the</strong> o<strong>the</strong>r underly<strong>in</strong>g soil types, <strong>the</strong> triangular shape is visible but<br />

less clear. The right edge is more difficult to def<strong>in</strong>e. The comb<strong>in</strong>ation surface of s<strong>and</strong> <strong>and</strong><br />

vegetation class seven is undef<strong>in</strong>ed. Only 41 cells of that unique comb<strong>in</strong>ation could be identified<br />

which is least of all possible comb<strong>in</strong>ations between soil <strong>and</strong> vegetation <strong>and</strong> constitutes only 0.1<br />

58


percent of all areas on s<strong>and</strong>y soil. S<strong>and</strong>y soils are second rarest <strong>in</strong> <strong>the</strong> region <strong>and</strong> are<br />

predom<strong>in</strong>antly covered by vegetation of lower classes (vegetation class five to seven cover only<br />

26%).<br />

<strong>TWI</strong>/TVDI correlation for till soils<br />

The correlations on till soil mostly resemble <strong>the</strong> correlations on rock soil. Most cells could be<br />

identified <strong>in</strong> vegetation class five (39%) followed by vegetation class zero (19%) <strong>and</strong> three<br />

(14%). Similar to correlations on o<strong>the</strong>r soils, <strong>the</strong> triangular shape is least visible for <strong>the</strong> lowest<br />

<strong>and</strong> highest vegetation class, respectively.<br />

5.2 Correlation coefficients<br />

The follow<strong>in</strong>g tables show correlation results for all <strong>TWI</strong> <strong>and</strong> TVDI comb<strong>in</strong>ations. Surface<br />

statistics of all compared surfaces are presented <strong>in</strong> Appendix S <strong>and</strong> T.<br />

Surface comb<strong>in</strong>ation Pearson pairwise correlation coefficient p­value<br />

TVDI/<strong>TWI</strong> for vegetation class 0 ‐0.038


Surface comb<strong>in</strong>ation Pearson pairwise<br />

correlation coefficient<br />

p­value<br />

TVDI/<strong>TWI</strong> for soil class bog <strong>and</strong> vegetation class 0 ‐0.022 0.178<br />

TVDI/<strong>TWI</strong> for soil class bog <strong>and</strong> vegetation class 1 0.062 0.0147<br />

TVDI/<strong>TWI</strong> for soil class bog <strong>and</strong> vegetation class 2 0.063


<strong>the</strong> triangle but a large amount lies scattered outside it, especially towards higher TVDI values<br />

with slightly decreas<strong>in</strong>g <strong>TWI</strong> values. Large variations <strong>in</strong> <strong>TWI</strong> values are expected s<strong>in</strong>ce <strong>the</strong>y are<br />

only based on slopes <strong>and</strong> <strong>in</strong>dependent on l<strong>and</strong> cover. As vegetation class zero denotes built‐up<br />

areas, high TVDI values imply<strong>in</strong>g less vegetation are also expected. Consider<strong>in</strong>g all <strong>the</strong> comb<strong>in</strong>ed<br />

surfaces, it becomes apparent that most po<strong>in</strong>ts accumulate <strong>in</strong> <strong>the</strong> lower left corner of <strong>the</strong> triangle.<br />

This also show <strong>the</strong> means of <strong>the</strong> surfaces, which are 2.84 for <strong>the</strong> <strong>TWI</strong> surface <strong>and</strong> 0.26 for <strong>the</strong><br />

TVDI surface, respectively. This <strong>in</strong>dicates that most po<strong>in</strong>ts that are identified as moist by <strong>the</strong><br />

TVDI are <strong>in</strong>dicated ra<strong>the</strong>r dry by <strong>the</strong> <strong>TWI</strong> <strong>in</strong> respect to <strong>the</strong> range of both <strong>in</strong>dices.<br />

Ano<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g aspect of <strong>the</strong> statistics concerns <strong>the</strong> distribution of cells <strong>in</strong> respect to<br />

vegetation <strong>and</strong> soil classes. Cells on <strong>the</strong> lowest vegetation class constitute a considerable<br />

percentage <strong>in</strong> all classes (13% to 32%, average 18%). Most cells lie on <strong>the</strong> predom<strong>in</strong>ant soil type<br />

clay (40%). Ma<strong>in</strong> vegetation class is five (27%). O<strong>the</strong>r vegetation classes are ra<strong>the</strong>r equally<br />

distributed. Vegetation class five is mostly found on till <strong>and</strong> rock <strong>and</strong> least on clay soils. The<br />

highest vegetation class is nearly only found <strong>in</strong> bogs <strong>and</strong> fens <strong>and</strong> constitutes only about 1<br />

percent of vegetation classes. Most cells are found to lie on clay soils <strong>in</strong> vegetation class 2.<br />

TVDI<br />

Mean <strong>and</strong> maximum values for each unique TVDI comb<strong>in</strong>ation decrease with an <strong>in</strong>crease <strong>in</strong><br />

vegetation class accord<strong>in</strong>g to TVDI <strong>the</strong>ory. As <strong>the</strong>re are a lot of m<strong>in</strong>imum values <strong>in</strong> all classes, no<br />

change with variation of soil type <strong>and</strong> vegetation class can be observed. The highest four<br />

vegetation classes (4 to 7) have similarly low values. The biggest difference <strong>in</strong> means <strong>and</strong><br />

maximum values can be observed <strong>in</strong> <strong>the</strong> transition from vegetation class 3 (pasture, grassl<strong>and</strong>s<br />

<strong>and</strong> meadows) to 4 (deciduous forest). This becomes especially apparent when explor<strong>in</strong>g <strong>the</strong><br />

comb<strong>in</strong>ation of TVDI <strong>and</strong> vegetation only (TVDI0 to TVDI7). Fur<strong>the</strong>rmore <strong>the</strong>re seems to be a<br />

correlation of vegetation class <strong>and</strong> st<strong>and</strong>ard deviations. The st<strong>and</strong>ard deviations decrease as<br />

vegetation <strong>in</strong>creases. It can <strong>the</strong>refore be reasoned, that most cells with high vegetation are also<br />

denoted as wet <strong>and</strong> least cells <strong>in</strong>correctly denoted as dry. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, high st<strong>and</strong>ard<br />

deviations <strong>in</strong> lower vegetation classes mean that a number of cells identified as dry by <strong>the</strong> TVDI<br />

varies <strong>in</strong> vegetation class.<br />

<strong>TWI</strong><br />

M<strong>in</strong>imum values are equal for each surface comb<strong>in</strong>ation due to <strong>the</strong> calculation method.<br />

M<strong>in</strong>imum values denote po<strong>in</strong>ts with no tendency to accumulate water. Maximum values vary<br />

marg<strong>in</strong>ally with an average of 11.87. Maximum <strong>TWI</strong> values are highest on clay soil (12.52) <strong>and</strong><br />

lowest on s<strong>and</strong> soil (10.46). They do not change with<strong>in</strong> different vegetation classes. Highest<br />

mean values can be observed for soil classes bog <strong>and</strong> fen (3.13) <strong>and</strong> clay (3.10), lowest on rock<br />

61


(2.45). Very high st<strong>and</strong>ard deviations expla<strong>in</strong> that values deviate greatly from <strong>the</strong> mean. All<br />

comb<strong>in</strong>ations of surfaces are statistically spoken comparatively similar which makes it difficult<br />

to discover variations <strong>in</strong> value distributions <strong>and</strong> patterns that soil types or vegetation classes<br />

can account for.<br />

5.3 Classification <strong>in</strong>to low, medium <strong>and</strong> high categories<br />

The <strong>TWI</strong>/TVDI <strong>and</strong> TVDI/<strong>TWI</strong> scatterplots for quantile <strong>and</strong> natural breaks classifications are<br />

shown <strong>in</strong> Appendix U <strong>and</strong> V. The follow<strong>in</strong>g table summarizes correlation statistics.<br />

Surface Pearson pairwise Norm of<br />

Regression l<strong>in</strong>e p­value<br />

correlation coefficient residuals<br />

TVDI quantile l ‐0.057 794.90 � � �6.17 � � � 3.82


significant result. It is important to note that wea<strong>the</strong>r conditions (dry) at <strong>the</strong> time <strong>and</strong> three<br />

weeks before <strong>the</strong> samples were collected are similar to <strong>the</strong> ones of <strong>the</strong> <strong>satellite</strong> image acquisition<br />

date. Measurements for <strong>the</strong> soil type <strong>and</strong> <strong>TWI</strong> class comb<strong>in</strong>ations ‘low clay’, ‘medium bog’ <strong>and</strong><br />

‘medium clay i’ could be carried out before ra<strong>in</strong> set <strong>in</strong>. The o<strong>the</strong>r samples might be affected by<br />

ra<strong>in</strong>fall, although it is unclear to what extent. Some of <strong>the</strong> measurements were conducted <strong>in</strong><br />

open field whereas o<strong>the</strong>rs took place under canopies. The follow<strong>in</strong>g table shows <strong>the</strong> measured<br />

soil <strong>moisture</strong> for all po<strong>in</strong>ts with underly<strong>in</strong>g pixel values of <strong>the</strong> <strong>TWI</strong> <strong>and</strong> TVDI surfaces,<br />

respectively.<br />

Po<strong>in</strong>t description # samples Average volume fraction (m³/m³) <strong>TWI</strong> TVDI<br />

low clay 2 0.185 4.8052 0.15<br />

low fen 3 0.188 1.4625 0.18<br />

low till 3 0.374 4.6549 0.19<br />

medium bog 3 0.670 2.036 0.17<br />

medium clay i 3 0.247 1.8015 0.16<br />

medium clay ii 2 0.277 1.9055 0.15<br />

medium till i 3 0.136 2.0794 0.15<br />

medium till ii 3 0.200 2.4293 0.16<br />

high clay 3 0.398 6.1129 0.14<br />

Table 19 Numerical comparison between ground truth <strong>and</strong> calculated <strong>TWI</strong> <strong>and</strong> TVDI values<br />

Figure 18 Visual comparison between ground truth <strong>and</strong> calculated <strong>TWI</strong> <strong>and</strong> TVDI values<br />

63


6 Discussion<br />

The purpose of this study was to estimate soil <strong>moisture</strong> status around Stockholm based on two<br />

different approaches <strong>and</strong> to compare <strong>the</strong> results. <strong>Soil</strong> <strong>moisture</strong> distribution could be modelled<br />

with <strong>the</strong> <strong>in</strong> hydrology commonly used <strong>TWI</strong> <strong>and</strong> <strong>the</strong> remotely sensed TVDI. Index distribution<br />

dependence on both soil type <strong>and</strong> vegetation cover was <strong>in</strong>vestigated. The results <strong>in</strong>dicate that no<br />

l<strong>in</strong>ear dependency between <strong>the</strong> two <strong>in</strong>dices exists (Pearson correlation coefficient 0.023, p‐value<br />

0.00283). Index classification <strong>in</strong> low, medium <strong>and</strong> high value categories did not result <strong>in</strong> higher<br />

correlations. Although Seibert et al. (2007) found <strong>the</strong> <strong>TWI</strong> related to soil properties, nei<strong>the</strong>r<br />

<strong>in</strong>dex distribution is found to be dependent on <strong>the</strong> underly<strong>in</strong>g soil type. It should be noted that<br />

<strong>the</strong> bog/fen class is not a soil class. Bogs <strong>and</strong> fens are different <strong>and</strong> should not have been merged<br />

<strong>in</strong>to one class although both can be summarized as wetl<strong>and</strong>s. No connection between <strong>TWI</strong><br />

distribution <strong>and</strong> vegetation cover could be detected. TVDI values however change with<br />

vegetation distribution. Areas <strong>in</strong>dicated as wet by <strong>the</strong> TVDI are also assigned a higher vegetation<br />

class accord<strong>in</strong>g to <strong>in</strong>dex <strong>the</strong>ory. In situ measured soil <strong>moisture</strong> did not agree well with ei<strong>the</strong>r<br />

<strong>in</strong>dex. However, <strong>the</strong> amount of measured values was too small to achieve statistically significant<br />

results. This weak accordance <strong>and</strong> <strong>the</strong> lack of correlation between <strong>the</strong> <strong>in</strong>dices raise questions of<br />

<strong>in</strong>dex validity, suitability <strong>and</strong> comparability. Here it should also be mentioned that <strong>the</strong> results<br />

are largely dependent on <strong>the</strong> actual data that were used. Higher resolutions <strong>and</strong> fur<strong>the</strong>r varitions<br />

<strong>in</strong> <strong>TWI</strong> calculation might produce different results. The <strong>TWI</strong> model <strong>in</strong> fact was a good predictor<br />

for dry areas accord<strong>in</strong>g to high TVDI <strong>and</strong> low <strong>TWI</strong> values, but failed much more <strong>in</strong> mid <strong>and</strong> wet<br />

areas. It can be reasoned that areas with small upslope areas are correctly identified as dry, but<br />

that po<strong>in</strong>ts with larger upslope areas are more often wrongly classified.<br />

There rest degrees of uncerta<strong>in</strong>ty if <strong>the</strong> <strong>TWI</strong> is able to represent soil <strong>moisture</strong> sufficiently<br />

accurate. Although often successfully applied, different studies compared <strong>TWI</strong>s with distributed<br />

field measurements <strong>and</strong> often found weak correlations (Burt <strong>and</strong> Butcher, 1985; Iorgulescu <strong>and</strong><br />

Jordan, 1994; Thompson <strong>and</strong> Moore, 1996; Seibert et al., 1997 <strong>and</strong> Murphy et al., 2008).<br />

Iorgulescu <strong>and</strong> Jordan (1994) suggested topography be<strong>in</strong>g a relevant factor but not sufficient <strong>in</strong><br />

determ<strong>in</strong>ation of saturated areas. <strong>Soil</strong> <strong>and</strong> geological factors needed to be <strong>in</strong>corporated as well.<br />

Beven (1997) questions <strong>the</strong> reliability of <strong>the</strong> TOPMODEL concept. Accord<strong>in</strong>g to his f<strong>in</strong>d<strong>in</strong>gs it<br />

only sometimes produces reasonable results. The reasons for this are attributed to <strong>the</strong> facts that<br />

<strong>the</strong> <strong>in</strong>dex greatly simplifies catchment dynamics <strong>and</strong> that its underly<strong>in</strong>g <strong>the</strong>ory is ra<strong>the</strong>r<br />

restrictive. Güntner et al. (1999) as well as o<strong>the</strong>rs emphasize <strong>the</strong> need of validation methods for<br />

hydrological models or spatially distributed simulations. Their multi‐criterial validation of<br />

TOPMODEL identified limitations of <strong>the</strong> TOPMODEL concept <strong>in</strong> comparison to <strong>the</strong> real situation.<br />

64


Sulebak et al. (2000) also concluded that <strong>the</strong> predictive power of <strong>the</strong> <strong>TWI</strong> is still unclear <strong>and</strong> has<br />

yet to be fully assessed. Güntner et al. (2004) tried to validate TOPMODEL with various<br />

modifications <strong>in</strong> respect to saturated areas. Although improvements could partially be achieved<br />

with <strong>the</strong> modified <strong>in</strong>dex, <strong>the</strong> question to what extent <strong>the</strong> <strong>TWI</strong> is able to correctly reflect <strong>the</strong><br />

distribution of saturated areas still rema<strong>in</strong>s. Murphy et al. (2009) identified limitations to <strong>the</strong><br />

concept as over‐dependence on convergent flow, dispersive flow <strong>in</strong> lower l<strong>and</strong>scape positions<br />

<strong>and</strong> <strong>the</strong> failure to account for local downslope topography effects <strong>and</strong> hydrologic conditions.<br />

A central issue <strong>in</strong> <strong>TWI</strong> calculation is DEM resolution. As stated earlier, a 10 m spatial resolution<br />

is recommended to obta<strong>in</strong> <strong>TWI</strong> values that represent soil <strong>moisture</strong> status most accurately.<br />

Therefore, <strong>TWI</strong>s are expected to correlate better with <strong>the</strong> actual soil <strong>moisture</strong> when calculated<br />

on a higher resolution DEM. However, no correlation improvement with TVDI values is expected<br />

due to differences <strong>in</strong> underly<strong>in</strong>g <strong>in</strong>dex <strong>the</strong>ories. As <strong>the</strong> <strong>TWI</strong>’s crucial criterion for surface soil<br />

<strong>moisture</strong> status is slope, <strong>the</strong> TVDI is solely based upon surface temperature <strong>and</strong> vegetation cover.<br />

These <strong>in</strong>itial factors st<strong>and</strong> only <strong>in</strong> little relation to each o<strong>the</strong>r. Especially when consider<strong>in</strong>g scale<br />

differences. Large forest areas, e. g. vary little <strong>in</strong> surface temperature <strong>and</strong> NDVI but might be<br />

spread over rugged terra<strong>in</strong> with high variations <strong>in</strong> slope <strong>and</strong> relief, where water availability<br />

differs greatly. Vegetation over large areas is less def<strong>in</strong>ed by local slope variations than by<br />

climate (especially temperature <strong>and</strong> precipitation). The <strong>TWI</strong> might <strong>the</strong>refore be ra<strong>the</strong>r suitable<br />

for small scale analyses limited to s<strong>in</strong>gle catchments than to large scale determ<strong>in</strong>ation of soil<br />

<strong>moisture</strong>. The TVDI on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong> would be of little use to determ<strong>in</strong>e where exactly water<br />

would accumulate with<strong>in</strong> a catchment. Not only <strong>the</strong> <strong>TWI</strong>, but also <strong>the</strong> TVDI concept lacks<br />

complete validation. Carlson et al. (1995) compared soil water contents derived with <strong>the</strong><br />

‘triangle’ method (similar concept as for <strong>the</strong> TVDI) <strong>and</strong> with <strong>the</strong> Push Broom Microwave<br />

Radiometer (PBMR) to <strong>in</strong> situ ground measurements <strong>and</strong> found weak correlations. Similar to <strong>the</strong><br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this study a full range <strong>in</strong> surface soil <strong>moisture</strong> availability was present over vary<strong>in</strong>g<br />

vegetation cover. <strong>Soil</strong> water content was also found to greatly vary at different depths. Spatial<br />

variations of surface soil water content were greater for <strong>the</strong> ‘triangle’ method. Fur<strong>the</strong>rmore, it is<br />

argued that <strong>the</strong> triangular shape of <strong>the</strong> distribution seemed to be dependent on <strong>the</strong> amount of<br />

pixels <strong>and</strong> not on <strong>the</strong> resolution. The comb<strong>in</strong>ed microwave <strong>and</strong> triangle methods gave better<br />

results than one method alone. In <strong>the</strong> study it was reasoned that to fully validate <strong>the</strong> triangle<br />

method, fur<strong>the</strong>r research would be needed.<br />

65


Nei<strong>the</strong>r of <strong>the</strong> <strong>in</strong>dices was able to accurately represent soil <strong>moisture</strong> status with respect to <strong>the</strong><br />

measured soil water content. The reason might be that simply too few measurements could be<br />

conducted, which also might be affected by ra<strong>in</strong>fall to some unknown extent. To ga<strong>in</strong> fur<strong>the</strong>r<br />

<strong>in</strong>sight <strong>in</strong>to <strong>the</strong> correlations between soil <strong>moisture</strong>, vegetation cover, underly<strong>in</strong>g soil type <strong>and</strong><br />

both <strong>in</strong>dices, extensive soil <strong>moisture</strong> measurements would be a valuable contribution.<br />

66


7 Conclusion<br />

The study exam<strong>in</strong>ed two completely different methods of surface soil <strong>moisture</strong> estimation. <strong>Soil</strong><br />

<strong>moisture</strong> was derived <strong>and</strong> expressed by two <strong>in</strong>dices. Topographic Wetness Index (<strong>TWI</strong>) <strong>and</strong><br />

Temperature‐Vegetation Dryness Index (TVDI) were calculated for an area of approximately<br />

800 km2 north of Stockholm, Sweden. The two approaches, one from a hydrological <strong>modell<strong>in</strong>g</strong><br />

po<strong>in</strong>t of view <strong>and</strong> <strong>the</strong> o<strong>the</strong>r <strong>in</strong> <strong>the</strong> remote sens<strong>in</strong>g field of soil <strong>moisture</strong> retrieval <strong>us<strong>in</strong>g</strong> <strong>satellite</strong><br />

<strong>imagery</strong> were compared to each o<strong>the</strong>r. In situ soil <strong>moisture</strong> measurements were taken <strong>and</strong><br />

related to <strong>the</strong> derived <strong>moisture</strong> <strong>in</strong>dices. Index dependencies on vegetation cover <strong>and</strong> soil type<br />

were <strong>in</strong>vestigated. No significant correlation between <strong>the</strong> two <strong>in</strong>dices could be detected. Index<br />

distribution was found to be <strong>in</strong>dependent on different soil types <strong>and</strong> only <strong>the</strong> TVDI seems to be<br />

related to vegetation cover. Both <strong>in</strong>dices showed only weak correlations with <strong>in</strong> situ measured<br />

soil <strong>moisture</strong>. Larger sample size could result <strong>in</strong> statistically significant results. Extensive soil<br />

<strong>moisture</strong> measurements <strong>in</strong> <strong>the</strong> area would greatly contribute to result <strong>in</strong>terpretation. However,<br />

<strong>the</strong> fact that both <strong>in</strong>dices correlate considerably better with <strong>in</strong> situ measured soil <strong>moisture</strong> than<br />

with <strong>the</strong>mselves suggests that both methods can be used to model soil <strong>moisture</strong> <strong>in</strong> this area for<br />

different purposes <strong>and</strong> possibly also complete each o<strong>the</strong>r. At <strong>the</strong> same time it can be reasoned<br />

that <strong>the</strong> underly<strong>in</strong>g <strong>in</strong>dex <strong>the</strong>ories fundamentally differ. The <strong>TWI</strong> calculated only with elevation<br />

<strong>in</strong>formation <strong>and</strong> <strong>the</strong> TVDI mak<strong>in</strong>g use of <strong>the</strong> l<strong>and</strong> surface temperature <strong>and</strong> vegetation<br />

distribution relation have no common basis which <strong>the</strong> lack of correlation clearly expresses. The<br />

question of which <strong>in</strong>dex gives <strong>the</strong> better results or is superior can not be answered. The choice of<br />

which <strong>in</strong>dex to use should be dependent on <strong>the</strong> <strong>in</strong>tention of usage <strong>and</strong> reference scale. The<br />

results of this study hopefully contribute to ongo<strong>in</strong>g actual research about <strong>in</strong>tegrat<strong>in</strong>g remotely<br />

sensed soil <strong>moisture</strong> <strong>in</strong>to hydrological <strong>modell<strong>in</strong>g</strong>. As a result, two soil <strong>moisture</strong> <strong>in</strong>dex surfaces<br />

were generated that can be used for fur<strong>the</strong>r analyses, research purposes <strong>in</strong> hydrology <strong>and</strong><br />

remote sens<strong>in</strong>g, decision mak<strong>in</strong>g or for any o<strong>the</strong>r purpose. The <strong>TWI</strong> surface is considered a more<br />

suitable soil <strong>moisture</strong> representation for analyses on smaller scales or for s<strong>in</strong>gle catchments<br />

whereas <strong>the</strong> TVDI should prove more valuable on a larger, regional scale. However, <strong>the</strong> syn<strong>the</strong>sis<br />

of hydrologic <strong>modell<strong>in</strong>g</strong> <strong>and</strong> remote sens<strong>in</strong>g is a promis<strong>in</strong>g field of research. The establishment<br />

of comb<strong>in</strong>ed effective models for soil <strong>moisture</strong> determ<strong>in</strong>ation over large areas requires more<br />

extensive <strong>in</strong> situ measurements <strong>and</strong> methods to fully assess <strong>the</strong> models’ capabilities, limitations<br />

<strong>and</strong> value for hydrological predictions.<br />

67


References<br />

Ambroise, B., Beven, K. <strong>and</strong> Freer, J., 1996. Toward a generalization of <strong>the</strong> TOPMODEL concepts:<br />

Topographic <strong>in</strong>dices of hydrological similarity. Water Resources Research 32:2135‐2145.<br />

Bauer, P., Gumbricht, T. <strong>and</strong> K<strong>in</strong>zelbach, W., 2006. A regional coupled surface<br />

water/groundwater model of <strong>the</strong> Okavango Delta, Botswana. Water Resources Research 42:<br />

W04403.<br />

Beven, K. <strong>and</strong> Kirkby, M., 1979. A physically based, variable contribut<strong>in</strong>g area model of bas<strong>in</strong><br />

hydrology. Hydrological Sciences Bullet<strong>in</strong> 24:43‐69.<br />

Beven, K., 1997. TOPMODEL: a critique. Hydrological Processes 11:1069‐1085.<br />

Beven, K., 2004. Ra<strong>in</strong>fall‐Runoff Modell<strong>in</strong>g: The Primer, Wiley, 188‐192.<br />

Bras<strong>in</strong>gton, J. <strong>and</strong> Richards, K., 1998. Interactions between model predictions, parameters <strong>and</strong><br />

DTM scales for TOPMODEL. Computers & Geosciences 24:299‐314.<br />

Bruneau, P., Gascuel‐Odoux, C., Rob<strong>in</strong>, P., Merot, P. <strong>and</strong> Beven, K., 1995. Sensitivity to space <strong>and</strong><br />

time resolution of a hydrological model <strong>us<strong>in</strong>g</strong> digital elevation data. Hydrological Processes 9:69‐<br />

82.<br />

Bryant, R., Thoma, D., Moran, M., Holifield, C., Goodrich, D., Keefer, T., Paige, G., Williams, D. <strong>and</strong><br />

Skirv<strong>in</strong>, S., 2003. Evaluation of hyperspectral, <strong>in</strong>frared temperature <strong>and</strong> radar measurements for<br />

monitor<strong>in</strong>g surface soil <strong>moisture</strong>. In Proceed<strong>in</strong>gs of <strong>the</strong> First Interagency Conference on Research<br />

<strong>in</strong> <strong>the</strong> Watersheds, 27 th ‐30 th October 2003, Benson, Ariz. USDAARS, Beltsville, 528‐533.<br />

Burt, T. <strong>and</strong> Butcher, D., 1985. Topographic controls of soil <strong>moisture</strong> distribution. Journal of <strong>Soil</strong><br />

Science 36:469‐486.<br />

Cai, X. <strong>and</strong> Wang, D., 2006. Spatial autocorrelation of topographic <strong>in</strong>dex <strong>in</strong> catchments. Journal of<br />

Hydrology 328:581‐591.<br />

Carlson, T., Gillies, R. <strong>and</strong> Schmugge, T., 1995. An <strong>in</strong>terpretation of methodologies for <strong>in</strong>direct<br />

measurement of soil water content. Agricultural <strong>and</strong> Forest Meteorology 77:191‐205.<br />

Carlson, T., 2007. An overview of <strong>the</strong> ‘triangle method’ for estimat<strong>in</strong>g surface evapotranspiration<br />

<strong>and</strong> soil <strong>moisture</strong> from <strong>satellite</strong> <strong>imagery</strong>. Sensors 7:1612‐1629.<br />

Chaplot, V. <strong>and</strong> Walter, C., 2003. Subsurface topography to enhance <strong>the</strong> prediction of <strong>the</strong> spatial<br />

distribution of soil wetness. Hydrological Processes 17:2567‐2580.<br />

Claps, P. <strong>and</strong> Laguardia, G., 2004. Assess<strong>in</strong>g spatial variability of soil water content through<br />

<strong>the</strong>rmal <strong>in</strong>ertia <strong>and</strong> NDVI. In Remote Sens<strong>in</strong>g for Agriculture, Ecosystems, <strong>and</strong> Hydrology V. Owe<br />

M., D’Urso G., Moreno, J. <strong>and</strong> Calera, A. (eds). Proceed<strong>in</strong>gs of SPIE 5232:378‐387, SPIE,<br />

Bell<strong>in</strong>gham, WA.<br />

Conoscenti, C., Di Maggio, C. <strong>and</strong> Rotigliano, E., 2008. GIS analysis to assess l<strong>and</strong>slide<br />

susceptibility <strong>in</strong> a fluvial bas<strong>in</strong> of NW Sicily (Italy). Geomorphology 94:325‐339.<br />

Costa‐Cabral, M. <strong>and</strong> Burges, S., 1994. Digital elevation model networks (DEMON): A model of<br />

flow over hillslopes for computation of contribut<strong>in</strong>g <strong>and</strong> dispersal areas. Water Resources<br />

Research 30:1681‐1692.<br />

68


Desmet, P. <strong>and</strong> Govers, G., 1996. Comparison of rout<strong>in</strong>g algorithms for digital elevation models<br />

<strong>and</strong> <strong>the</strong>ir implications for predict<strong>in</strong>g ephemeral gullies. International Journal of Geographical<br />

Information Systems 10:311‐331.<br />

Du, Y., Teillet, P. <strong>and</strong> Cihlar, J., 2002. Radiometric normalization of multi‐temporal high‐<br />

resolution <strong>satellite</strong> images with quality control for l<strong>and</strong> cover change detection. Remote Sens<strong>in</strong>g<br />

of Environment 82:82‐123.<br />

Dubayah, R., Wood, E. <strong>and</strong> Lettenmaier, D., 1995. Comb<strong>in</strong><strong>in</strong>g hydrological <strong>modell<strong>in</strong>g</strong> <strong>and</strong> remote<br />

sens<strong>in</strong>g for large scale water <strong>and</strong> energy balance studies. Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g<br />

Symposium, 1995. IGARSS '95. 'Quantitative Remote Sens<strong>in</strong>g for Science <strong>and</strong> Applications', 1:751‐<br />

753.<br />

Endreny, T. <strong>and</strong> Wood, E., 2003. Maximiz<strong>in</strong>g spatial congruence of observed <strong>and</strong> DEM‐del<strong>in</strong>eated<br />

overl<strong>and</strong> flow networks. International Journal of Geographical Information Science 17:699‐713.<br />

Engman, E. <strong>and</strong> Gurney, R., 1991. Remote sens<strong>in</strong>g <strong>in</strong> hydrology. Chapter 7:127‐154, Chapman <strong>and</strong><br />

Hall, London.<br />

Engman, E. <strong>and</strong> Chauhan, N., 1995. Status of microwave soil <strong>moisture</strong> measurements with<br />

remote sens<strong>in</strong>g. Remote Sens<strong>in</strong>g of Environment 51:189‐198.<br />

Fairfield, J. <strong>and</strong> Leymarie, P., 1991. Dra<strong>in</strong>age networks from grid digital elevation models. Water<br />

Resources Research 27:709‐717.<br />

Fei, S., Schibig, J. <strong>and</strong> Vance, M., 2007. Spatial habitat <strong>modell<strong>in</strong>g</strong> of American chestnut at<br />

Mammoth Cave National Park. Forest Ecology <strong>and</strong> Management 252:201‐207.<br />

Franch<strong>in</strong>i, M., Wendl<strong>in</strong>g, J., Obled, C. <strong>and</strong> Tod<strong>in</strong>i, E., 1996. Physical <strong>in</strong>terpretation <strong>and</strong> sensitivity<br />

analysis of <strong>the</strong> TOPMODEL. Journal of Hydrology 175:293‐338.<br />

Freer, J., McDonnell, J., Beven, K., Brammer, D., Burns, D., Hooper, R. <strong>and</strong> Kendal, C., 1997.<br />

Topographic controls on subsurface storm flow at <strong>the</strong> hillslope scale for two hydrologically<br />

dist<strong>in</strong>ct small catchments. Hydrological Processes 11:1347‐1352.<br />

Fung, A. <strong>and</strong> Eom, H. 1985. A comparison between active <strong>and</strong> passive sens<strong>in</strong>g of soil <strong>moisture</strong><br />

from vegetated terra<strong>in</strong>s. IEEE Transactions on Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g GE‐23:768‐775.<br />

Gallant, J. <strong>and</strong> Hutch<strong>in</strong>son, M., 1996. Towards an underst<strong>and</strong><strong>in</strong>g of l<strong>and</strong>scape scale <strong>and</strong> structure.<br />

In Proceed<strong>in</strong>gs, Third International Conference/Workshop on Integrat<strong>in</strong>g GIS <strong>and</strong> Environmental<br />

Modell<strong>in</strong>g, Santa Fe, NM, 21‐26.<br />

Gallant, J. <strong>and</strong> Wilson, J., 1996. TAPES‐G: A grid based terra<strong>in</strong> analysis program for <strong>the</strong><br />

environmental sciences. Computers & Geosciences 22:713‐722.<br />

Garbrecht, J. <strong>and</strong> Martz, L., 1993. Case application of <strong>the</strong> automated extraction of dra<strong>in</strong>age<br />

network <strong>and</strong> subwatershed characteristics from digital elevation models by DEDNM, In Proc.<br />

Syrup. Geographic Information Systems <strong>in</strong> Water Resources: American Water Resources<br />

Association, Mobile, Alabama, 221‐230 <strong>and</strong> 606‐607.<br />

Garbrecht, J. <strong>and</strong> Martz, L., 1997. The assignment of dra<strong>in</strong>age direction over flat surfaces <strong>in</strong><br />

raster digital elevation models. Journal of Hydrology 193:204‐213.<br />

69


Gillies, R. <strong>and</strong> Carlson, T., 1995. Thermal remote sens<strong>in</strong>g of surface soil water content with<br />

partial vegetation cover for <strong>in</strong>corporation <strong>in</strong>to climate models. Journal of Applied Meteorology<br />

34:745‐756.<br />

Gillies, R., Carlson, T., Cui, J., Kustas, W. <strong>and</strong> Humes, K., 1997. A verification of <strong>the</strong> ‘triangle’<br />

method for obta<strong>in</strong><strong>in</strong>g surface soil water content <strong>and</strong> energy fluxes from remote measurements<br />

of <strong>the</strong> Normalized Difference Vegetation Index (NDVI) <strong>and</strong> surface radiant temperature.<br />

International Journal of Remote Sens<strong>in</strong>g 18:3145‐3166.<br />

Goetz, S., 1997. Multi‐sensor analysis of NDVI, surface temperature <strong>and</strong> biophysical variables at a<br />

mixed grassl<strong>and</strong> site. International Journal of Remote Sens<strong>in</strong>g 18:71‐94.<br />

Goward, S. <strong>and</strong> Hope, A., 1989. Evapotranspiration from comb<strong>in</strong>ed reflected solar <strong>and</strong> emitted<br />

terrestrial radiation: Prelim<strong>in</strong>ary FIFE results from AVHRR data. Advances <strong>in</strong> Space Research<br />

9:239‐249.<br />

Goward, S., Xue, Y. <strong>and</strong> Czajkowski, K., 2002. Evaluat<strong>in</strong>g l<strong>and</strong> surface <strong>moisture</strong> conditions from<br />

<strong>the</strong> remotely sensed temperature/vegetation <strong>in</strong>dex measurements. An exploration with <strong>the</strong><br />

simplified simple biosphere model. Remote Sens<strong>in</strong>g of Environment 79:225‐242.<br />

Gruhier, C., de Rosnay, P., Kerr, Y., Moug<strong>in</strong>, E., Ceschia, E., Calvet, J.‐C. <strong>and</strong> Richaume, P., 2008.<br />

Evaluation of AMSR‐E soil <strong>moisture</strong> product based on ground measurements over temperate<br />

<strong>and</strong> semi‐arid regions. Geophysical Research Letters 35: L10405.<br />

Güntner, A., Uhlenbrook, S., Seibert, J. <strong>and</strong> Leibundgut, C., 1999. Multi‐criterial validation of<br />

TOPMODEL <strong>in</strong> a mounta<strong>in</strong>ous catchment. Hydrological Processes 13:1603‐1620.<br />

Güntner, A., Seibert, J. <strong>and</strong> Uhlenbrook, S., 2004. Modell<strong>in</strong>g spatial patterns of saturated areas: An<br />

evaluation of different terra<strong>in</strong> <strong>in</strong>dices. Water Resources Research 40, W05114.<br />

Gyasi‐Agyei, Y., Willgoose, G. <strong>and</strong> de Troch, F., 1995. Effects of vertical resolution <strong>and</strong> map scale<br />

of digital elevation models on geomorphological parameters used <strong>in</strong> hydrology. In Scale Issues <strong>in</strong><br />

Hydrological Modell<strong>in</strong>g. Kalma, J. <strong>and</strong> Sivapalan, M., (eds). John Wiley <strong>and</strong> Sons, New York, 121‐<br />

140.<br />

Hancock, G., 2005. The use of digital elevation models <strong>in</strong> <strong>the</strong> identification <strong>and</strong> characterization<br />

of catchments over different grid scales. Hydrological Processes 19:1727‐1749.<br />

Hassan, Q., Bourque, C., Meng, F.‐R., <strong>and</strong> Cox, R., 2007. A wetness <strong>in</strong>dex <strong>us<strong>in</strong>g</strong> terra<strong>in</strong>‐corrected<br />

surface temperature <strong>and</strong> Normalized Difference Vegetation Index derived from st<strong>and</strong>ard MODIS<br />

products: An evaluation of its use <strong>in</strong> a humid forest‐dom<strong>in</strong>ated region of eastern Canada. Sensors<br />

7:2028‐2048.<br />

Higy, C. <strong>and</strong> Musy, A., 2000. Digital terra<strong>in</strong> analysis of <strong>the</strong> Haute‐Mentue catchment <strong>and</strong> scale<br />

effect for hydrological <strong>modell<strong>in</strong>g</strong> with TOPMODEL. Hydrology <strong>and</strong> Earth System Sciences 4:225‐<br />

237.<br />

Hjerdt, K., McDonnell, J., Seibert, J. <strong>and</strong> Rodhe, A., 2004. A new topographic <strong>in</strong>dex to quantify<br />

downslope controls on local dra<strong>in</strong>age. Water Resources Research 40, W05602,<br />

doi:10.1029/2004WR003130.<br />

Holmgren, P., 1994. Multiple flow direction algorithms for runoff <strong>modell<strong>in</strong>g</strong> <strong>in</strong> grid based<br />

elevation models: an empirical evaluation. Hydrological Processes 8:327‐334.<br />

70


Houser, P., Shuttleworth, W., Famiglietti, J., Gupta, H., Syed, K. <strong>and</strong> Goodrich, D., 1998. Integration<br />

of soil <strong>moisture</strong> remote sens<strong>in</strong>g <strong>and</strong> hydrologic <strong>modell<strong>in</strong>g</strong> <strong>us<strong>in</strong>g</strong> data assimilation. Water<br />

Resources Research 34:3405‐3420.<br />

Hutch<strong>in</strong>son, M. <strong>and</strong> Dowl<strong>in</strong>g, T., 1991. A cont<strong>in</strong>ental hydrological assessment of a new grid‐<br />

based digital elevation model of Australia. Hydrological Processes 5:45‐58.<br />

Iorgulescu, I. <strong>and</strong> Jordan, J.‐P., 1994. Validation of TOPMODEL on a small Swiss catchment.<br />

Journal of Hydrology 159:255‐273.<br />

Irish, R., 2000. L<strong>and</strong>sat 7 science data user's h<strong>and</strong>book. NASA/Goddard Space Flight Center,<br />

Greenbelt, MD.<br />

Irv<strong>in</strong>, B., Ventura, S. <strong>and</strong> Slater, B., 1997. Fuzzy <strong>and</strong> isodata classification of l<strong>and</strong>form elements<br />

from digital terra<strong>in</strong> data <strong>in</strong> Pleasant Valley, Wiscons<strong>in</strong>. Geoderma 77:137‐154.<br />

Jackson, T. <strong>and</strong> Schmugge, T., 1989. Passive microwave remote sens<strong>in</strong>g system for soil <strong>moisture</strong>:<br />

some support<strong>in</strong>g research. IEEE Transactions on Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g 27:225‐235.<br />

Jackson, T., Chen, D., Cosh, M., Li, F., Anderson, M., Walthall, C., Doriaswamy, P. <strong>and</strong> Hunt, E., 2004.<br />

Vegetation water content mapp<strong>in</strong>g <strong>us<strong>in</strong>g</strong> L<strong>and</strong>sat data derived Normalized Difference Vegetation<br />

Index for corn <strong>and</strong> soybeans. Remote Sens<strong>in</strong>g of Environment 91:475‐482.<br />

Ja<strong>in</strong>, S., Storm, B., Bathurst, J., Refsgaard, J. <strong>and</strong> S<strong>in</strong>gh, R., 1992. Application of <strong>the</strong> SHE to<br />

catchments <strong>in</strong> India, Part 2. Field experiments <strong>and</strong> simulation studies with <strong>the</strong> SHE on <strong>the</strong> Kolar<br />

subcatchment of <strong>the</strong> Narmada River. Journal of Hydrology 140:25‐47.<br />

Jensen, J., 2004. Introductory Digital Image Process<strong>in</strong>g: A Remote Sens<strong>in</strong>g Perspective. 3 rd edition,<br />

Prentice Hall, Upper Saddle River, New Jersey.<br />

Jenson, S. <strong>and</strong> Dom<strong>in</strong>gue, J., 1988. Extract<strong>in</strong>g topographic structure from digital elevation data<br />

for geographic <strong>in</strong>formation system analysis. Photogrammetric Eng<strong>in</strong>eer<strong>in</strong>g & Remote Sens<strong>in</strong>g<br />

54:1593‐1600.<br />

Jenson, S., 1991. Applications of hydrologic <strong>in</strong>formation automatically extracted from digital<br />

elevation models. Hydrological Processes 5:31‐44.<br />

Kerr, Y., Waldteufel, P., Wigneron, J.‐P., Mart<strong>in</strong>uzzi, J.‐M., Font, J. <strong>and</strong> Berger, M., 2001. <strong>Soil</strong><br />

<strong>moisture</strong> retrieval from space: The soil <strong>moisture</strong> <strong>and</strong> ocean sal<strong>in</strong>ity (SMOS) mission. IEEE<br />

Transactions on Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g 39:1729‐1735.<br />

Kerr, Y., 2007. <strong>Soil</strong> <strong>moisture</strong> from space: Where are we? Hydrogeology Journal 15:117‐120.<br />

Kim, S. <strong>and</strong> Jung, S., 2003. Digital terra<strong>in</strong> analysis of <strong>the</strong> dynamic wetness pattern on <strong>the</strong><br />

Sulmachun watershed. Diffuse Pollution Conference, Dubl<strong>in</strong> 2003, 10AGIS.<br />

Kim, S. <strong>and</strong> Lee, H., 2004. A digital elevation analysis: a spatially distributed flow apportion<strong>in</strong>g<br />

algorithm. Hydrological Processes 18:1777‐1794.<br />

Kim, D., Yu, K. <strong>and</strong> Park, S., 2008. Identification <strong>and</strong> visualization of complex spatial pattern of<br />

coastal dune soil properties <strong>us<strong>in</strong>g</strong> GIS‐based terra<strong>in</strong> analysis <strong>and</strong> geostatistics. Journal of Coastal<br />

Research 24:50‐60.<br />

Kimura, R., 2006. Estimation of <strong>moisture</strong> availability over <strong>the</strong> Liudaogou river bas<strong>in</strong> of <strong>the</strong> Loess<br />

Plateau <strong>us<strong>in</strong>g</strong> new <strong>in</strong>dices with surface temperature. Journal of Arid Environments 70:237‐252.<br />

71


Kite, G. <strong>and</strong> Pietroniro, A., 1996. Remote sens<strong>in</strong>g applications <strong>in</strong> hydrological <strong>modell<strong>in</strong>g</strong>.<br />

Hydrological Sciences 41:563‐591.<br />

Kostov, K., 1993. Passive microwave remote sens<strong>in</strong>g of soil <strong>moisture</strong> – experimental <strong>and</strong><br />

<strong>modell<strong>in</strong>g</strong> results. Advances <strong>in</strong> Space Research 13:105‐114.<br />

Lamb<strong>in</strong>, E. <strong>and</strong> Ehrlich, D., 1996. The surface temperature‐vegetation <strong>in</strong>dex space for l<strong>and</strong> cover<br />

<strong>and</strong> l<strong>and</strong>‐cover change analysis. International Journal of Remote Sens<strong>in</strong>g 17:463‐487.<br />

Lea, N., 1992. An aspect driven k<strong>in</strong>ematic rout<strong>in</strong>g algorithm. In Overl<strong>and</strong> Flow: Hydraulics <strong>and</strong><br />

Erosion Mechanics. Parsons, A. <strong>and</strong> Abrahams, A. (eds). Chapman <strong>and</strong> Hall, London.<br />

L<strong>in</strong>, D.‐S., Wood, E., Troch, P., Manc<strong>in</strong>i, M. <strong>and</strong> Jackson, T., 1994. Comparisons of remotely sensed<br />

<strong>and</strong> model‐simulated soil <strong>moisture</strong> over a heterogeneous watershed. Remote Sens<strong>in</strong>g of<br />

Environment 48:159‐171.<br />

L<strong>in</strong>, Y.‐S., L<strong>in</strong>, Y.‐W., Wang, Y., Chen, Y.‐G., Hsu, M.‐L., Chiang, S.‐H. <strong>and</strong> Chen, Z.‐S., 2007.<br />

Relationships between topography <strong>and</strong> spatial variations <strong>in</strong> groundwater <strong>and</strong> soil morphology<br />

with<strong>in</strong> <strong>the</strong> Taoyuan‐Hukou Tablel<strong>and</strong>, Northwestern Taiwan. Geomorphology 90:36‐54.<br />

L<strong>in</strong>eback Gritzner, M., Marcus, W., Asp<strong>in</strong>all R. <strong>and</strong> Custer, S., 2001. Assess<strong>in</strong>g l<strong>and</strong>slide potential<br />

<strong>us<strong>in</strong>g</strong> GIS, soil wetness <strong>modell<strong>in</strong>g</strong> <strong>and</strong> topographic attributes, Payette River, Idaho.<br />

Geomorphology 37: 149‐165.<br />

Mendic<strong>in</strong>o, G. <strong>and</strong> Sole, A., 1997. The <strong>in</strong>formation content <strong>the</strong>ory for <strong>the</strong> estimation of <strong>the</strong><br />

topographic <strong>in</strong>dex distribution used <strong>in</strong> TOPMODEL. Hydrological Processes 11:1099‐1114.<br />

Milly, P. <strong>and</strong> Kabala, Z., 1985. Integrated model<strong>in</strong>g <strong>and</strong> remote sens<strong>in</strong>g of soil <strong>moisture</strong>.<br />

Hydrologic Applications of Space Technology. In Proceed<strong>in</strong>gs of <strong>the</strong> Cocoa Beach Workshop,<br />

Florida, August 1985. IAHS Publication no. 160.<br />

Molnár, D. <strong>and</strong> Julien, P., 2000. Grid‐size effects on surface runoff <strong>modell<strong>in</strong>g</strong>. Journal of<br />

Hydrologic Eng<strong>in</strong>eer<strong>in</strong>g 5:8‐16.<br />

Moore, I., O’Loughl<strong>in</strong>, E. <strong>and</strong> Burch, G., 1988. A contour‐based topographic model for<br />

hydrological <strong>and</strong> ecological applications. Earth Surface Processes <strong>and</strong> L<strong>and</strong>forms 13:305‐320.<br />

Moore, I., Turner, A., Wilson, J., Jenson, S. <strong>and</strong> B<strong>and</strong>, L. 1993. GIS <strong>and</strong> l<strong>and</strong> – surface – subsurface<br />

process model<strong>in</strong>g. In Environmental Model<strong>in</strong>g with GIS. Goodchild, M., Parks, B. <strong>and</strong> Steyaert, L.<br />

(eds). Oxford University Press, 196‐230.<br />

Moran, M., Clarke, T., Inoue, Y. <strong>and</strong> Vidal, A., 1994. Estimat<strong>in</strong>g crop water deficit <strong>us<strong>in</strong>g</strong> <strong>the</strong><br />

relation between surface‐air temperature <strong>and</strong> spectral vegetation <strong>in</strong>dex. Remote Sens<strong>in</strong>g of<br />

Environment 49:246‐263.<br />

Moran, M., Peters‐Lidard, C., Watts, J. <strong>and</strong> McElroy, S., 2004. Estimat<strong>in</strong>g soil <strong>moisture</strong> at <strong>the</strong><br />

watershed scale with <strong>satellite</strong>‐based radar <strong>and</strong> l<strong>and</strong> surface models. Canadian Journal of Remote<br />

Sens<strong>in</strong>g 30:805‐826.<br />

Murphy, P., Ogilvie, J. Meng, F.‐R. <strong>and</strong> Arp, P., 2008. Stream network <strong>modell<strong>in</strong>g</strong> <strong>us<strong>in</strong>g</strong> LiDAR <strong>and</strong><br />

photogrammetric digital elevation models: a comparison <strong>and</strong> field verification. Hydrological<br />

Processes 22:1747‐1754.<br />

Murphy, P., Ogilvie, J. <strong>and</strong> Arp, P., 2009. Topographic <strong>modell<strong>in</strong>g</strong> of soil <strong>moisture</strong> conditions: a<br />

comparison <strong>and</strong> verification of two models. European Journal of <strong>Soil</strong> Science 60:94‐109.<br />

72


Müller‐Wohlfeil, D.‐I., Lahmer, W., Krysanova, V., Becker, A., 1996. Topography‐based<br />

hydrological <strong>modell<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> Elbe dra<strong>in</strong>age bas<strong>in</strong>. In Proceed<strong>in</strong>gs, Third International<br />

Conference/Workshop on Integrat<strong>in</strong>g GIS <strong>and</strong> Environmental Modell<strong>in</strong>g, Santa Fe, NM, 21‐26,<br />

January 1996. National Center for Geographic Information <strong>and</strong> Analysis, CD: Santa Barbara, CA.<br />

Naira, C., Robert, L., Ramata, M. <strong>and</strong> Marouane, T., 2007. Surface soil <strong>moisture</strong> status over <strong>the</strong><br />

Mackenzie River Bas<strong>in</strong> <strong>us<strong>in</strong>g</strong> a temperature/vegetation <strong>in</strong>dex. Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g<br />

Symposium, IGARSS 2007. IEEE International 1846‐1848.<br />

Nelson, E. <strong>and</strong> Jones, N., 1995. Reduc<strong>in</strong>g elevation roundoff errors <strong>in</strong> digital elevation models.<br />

Journal of Hydrology 169:37‐49.<br />

Nemani, R. <strong>and</strong> Runn<strong>in</strong>g, S., 1989. Estimation of regional surface resistance to<br />

evapotranspiration from NDVI <strong>and</strong> <strong>the</strong>rmal‐IR AVHRR data. Journal of Applied Meteorology<br />

28:276‐284.<br />

Nemani, R., Pierce, L., Runn<strong>in</strong>g, S. <strong>and</strong> Goward, S., 1992. Develop<strong>in</strong>g <strong>satellite</strong>‐derived estimates of<br />

surface <strong>moisture</strong> status. Journal of Applied Meteorology 32:548‐557.<br />

Nemani, R. <strong>and</strong> Runn<strong>in</strong>g, S., 1997. L<strong>and</strong> cover characterization <strong>us<strong>in</strong>g</strong> multitemporal red, near‐IR,<br />

<strong>and</strong> <strong>the</strong>rmal‐IR data from NOAA/AVHRR. Ecological Applications 7:79‐90.<br />

Njoku, E. <strong>and</strong> Entekhabi, D., 1996. Passive microwave remote sens<strong>in</strong>g of soil <strong>moisture</strong>. Journal of<br />

Hydrology 184:101‐129.<br />

O’Callaghan, J. <strong>and</strong> Mark, D., 1984. The extraction of dra<strong>in</strong>age networks from digital elevation<br />

data. Computer Vision, Graphics, <strong>and</strong> Image Process<strong>in</strong>g 28:323‐344.<br />

Pan, F., Peters‐Lidard, C., Sale, M. <strong>and</strong> K<strong>in</strong>g, A., 2004. A comparison of geographical <strong>in</strong>formation<br />

systems–based algorithms for comput<strong>in</strong>g <strong>the</strong> TOPMODEL topographic <strong>in</strong>dex. Water Resources<br />

Research 40, W06303.<br />

Planchon, O. <strong>and</strong> Darboux, F., 2001. A fast, simple <strong>and</strong> versatile algorithm to fill <strong>the</strong> depressions<br />

of digital elevation models. Catena 46:159‐176.<br />

Prasad, V., Ortiz, A., St<strong>in</strong>ner, B., McCartney, D., Parker, J., Hudg<strong>in</strong>s, D., Hoy, C. <strong>and</strong> Moore, R., 2005.<br />

Explor<strong>in</strong>g <strong>the</strong> relationship between hydrologic parameters <strong>and</strong> nutrient loads <strong>us<strong>in</strong>g</strong> digital<br />

elevation model <strong>and</strong> GIS ‐ A case study from Sugarcreek Headwaters, Ohio, U.S.A.. Environmental<br />

Monitor<strong>in</strong>g <strong>and</strong> Assessment 110:141‐169.<br />

Pratt, D. <strong>and</strong> Ellyett, C., 1979. The <strong>the</strong>rmal <strong>in</strong>ertia approach to mapp<strong>in</strong>g of soil <strong>moisture</strong> <strong>and</strong><br />

geology. Remote Sens<strong>in</strong>g of Environment 8:151‐168.<br />

Price, J., 1990. Us<strong>in</strong>g spatial context <strong>in</strong> <strong>satellite</strong> data to <strong>in</strong>fer regional scale evapotranspiration.<br />

IEEE Transactions on Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g 28:940‐948.<br />

Q<strong>in</strong>, C., Zhu, A.‐X., Yang, L., Lia, B. <strong>and</strong> Peia, T., 2007. Topographic wetness <strong>in</strong>dex computed <strong>us<strong>in</strong>g</strong><br />

multiple flow direction algorithm <strong>and</strong> local maximum downslope gradient. 7th International<br />

Workshop Geographical Information System, Beij<strong>in</strong>g, Ch<strong>in</strong>a.<br />

Qu<strong>in</strong>n, P., Beven, K., Chevallier, P. <strong>and</strong> Planchon, O., 1991. The prediction of hillslope flow paths<br />

for distributed hydrological <strong>modell<strong>in</strong>g</strong> <strong>us<strong>in</strong>g</strong> digital terra<strong>in</strong> models. Hydrological Processes 5:59‐<br />

79.<br />

73


Qu<strong>in</strong>n, P., Beven, K. <strong>and</strong> Culf, A., 1995. The <strong>in</strong>troduction of macroscale hydrological complexity<br />

<strong>in</strong>to l<strong>and</strong> surface‐atmosphere transfer models <strong>and</strong> <strong>the</strong> effect on planetary boundary layer<br />

development. Journal of Hydrology 166:421‐444.<br />

Qu<strong>in</strong>n, P., Beven, K. <strong>and</strong> Lamb, R., 1995. The ln��/ tan �� <strong>in</strong>dex: how to calculate it <strong>and</strong> how to<br />

use it with<strong>in</strong> <strong>the</strong> TOPMODEL framework. Hydrological Processes 9:161‐182.<br />

Refsgaard, J., 1997. Parameterisation, calibration <strong>and</strong> validation of distributed hydrologic<br />

models. Journal of Hydrology 198:69‐97.<br />

Rouse Jr., J., Haas, R., Schell, J. <strong>and</strong> Deer<strong>in</strong>g, D., 1973. Monitor<strong>in</strong>g vegetation systems <strong>in</strong> <strong>the</strong> Great<br />

Pla<strong>in</strong>s with ERTS. In Third Earth Resources Technology Satellite­1 Symposium. Freden, S.,<br />

Mercanti, E. <strong>and</strong> Becker, M. (eds). Wash<strong>in</strong>gton, D.C.: National Aeronautics <strong>and</strong> Space<br />

Adm<strong>in</strong>istration (NASA SP‐351). Technical presentations, section A, volume 1:309‐317.<br />

Roy, D., 1997. Investigation of <strong>the</strong> maximum Normalized Difference Vegetation Index (NDVI) <strong>and</strong><br />

<strong>the</strong> maximum surface temperature (Ts) AVHRR composit<strong>in</strong>g procedures for <strong>the</strong> extraction of<br />

NDVI <strong>and</strong> Ts over forest. International Journal of Remote Sens<strong>in</strong>g 18:2383‐2401.<br />

Saulnier, G.‐M., Beven, K. <strong>and</strong> Obled, C., 1997. Digital elevation analysis for distributed<br />

hydrological <strong>modell<strong>in</strong>g</strong>: reduc<strong>in</strong>g scale dependence <strong>in</strong> effective hydraulic conductivity values.<br />

Water Resources Research 33:2097‐2101.<br />

Saulnier, G.‐M., Obled, C. <strong>and</strong> Beven, K., 1997. Analytical compensation between DTM grid<br />

resolution <strong>and</strong> effective values of saturated hydraulic conductivity with<strong>in</strong> <strong>the</strong> TOPMODEL<br />

framework. Hydrological Processes 11:1331‐1346.<br />

S<strong>and</strong>holt, I., Rasmussen, K. <strong>and</strong> Andersen, J., 2002. A simple <strong>in</strong>terpretation of <strong>the</strong> surface<br />

temperature/vegetation <strong>in</strong>dex space for assessment of surface <strong>moisture</strong> status. Remote Sens<strong>in</strong>g<br />

of Environment 79:213‐224.<br />

Schmugge, T., 1978. Remote sens<strong>in</strong>g of surface soil <strong>moisture</strong>. Journal of Applied Meteorology<br />

17:1549‐1557.<br />

Schmugge, T., 1983. Remote sens<strong>in</strong>g of surface soil <strong>moisture</strong>: recent advances. IEEE Transactions<br />

on Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g GE‐21:336‐344.<br />

Schmugge, T., 1998. Applications of passive microwave observations of surface soil <strong>moisture</strong>.<br />

Journal of Hydrology 212‐213:188‐197.<br />

Schmugge, T., Kustas, W., Ritchie, J., Jackson, T. <strong>and</strong> Rango, A., 2002. Remote sens<strong>in</strong>g <strong>in</strong> hydrology.<br />

Advances <strong>in</strong> Water Resources 25:1367‐1385.<br />

Seibert, J., Bishop, K. <strong>and</strong> Nyberg, L., 1997. A test of TOPMODEL's ability to predict spatially<br />

distributed groundwater levels. Hydrological Processes 11:1131‐1144.<br />

Seibert, J., Stendahl, J. <strong>and</strong> Sørensen, R., 2007. Topographical <strong>in</strong>fluences on soil properties <strong>in</strong><br />

boreal forests. Geoderma 141:139‐148.<br />

Sulebak, J., Tallaksen, L. <strong>and</strong> Erichsen, B., 2000. Estimation of areal soil <strong>moisture</strong> by use of terra<strong>in</strong><br />

data. Geografiska Annaler. Series A, Physical Geography 82:89‐105.<br />

Sørensen, R. <strong>and</strong> Seibert, J., 2007. Effects of DEM resolution on <strong>the</strong> calculation of topographical<br />

<strong>in</strong>dices: <strong>TWI</strong> <strong>and</strong> its components. Journal of Hydrology 347:79‐89.<br />

74


Sørensen, R., Z<strong>in</strong>ko, U. <strong>and</strong> Seibert, J., 2006. On <strong>the</strong> calculation of <strong>the</strong> topographic wetness <strong>in</strong>dex:<br />

evaluation of different methods based on field observations. Hydrology <strong>and</strong> Earth System<br />

Sciences, 10:101‐112.<br />

Tarboton, D., 1997. A new method for <strong>the</strong> determ<strong>in</strong>ation of flow directions <strong>and</strong> upslope areas <strong>in</strong><br />

grid digital elevation models. Water Resources Research 33:309‐319.<br />

Thieken, A., Lücke, A., Diekkrüger, B. <strong>and</strong> Richter, O., 1999. Scal<strong>in</strong>g <strong>in</strong>put data by GIS for<br />

hydrological <strong>modell<strong>in</strong>g</strong>. Hydrological Processes 13:611‐630.<br />

Thompson, J., Bell, J. <strong>and</strong> Butler, C., 2001. Digital elevation model resolution: effects on terra<strong>in</strong><br />

attribute calculation <strong>and</strong> quantitative soil‐l<strong>and</strong>scape <strong>modell<strong>in</strong>g</strong>. Geoderma 100:67‐89.<br />

Thompson, J. <strong>and</strong> Moore, R., 1996. Relations between topography <strong>and</strong> water table depth <strong>in</strong> a<br />

shallow forest soil. Hydrological Processes 10:1513‐1525.<br />

Tombul, M., 2007. Mapp<strong>in</strong>g field surface soil <strong>moisture</strong> for hydrological <strong>modell<strong>in</strong>g</strong>. Water<br />

Resources Management 21:1865‐1880.<br />

Topp, G., Davis, J. <strong>and</strong> Annan, A., 1980. Electromagnetic determ<strong>in</strong>ation of soil water content:<br />

measurement <strong>in</strong> coaxial transmission l<strong>in</strong>es. Water Resources Research 16:574‐582.<br />

Vaze, J. <strong>and</strong> Teng, J., 2007. Impact of DEM resolution on topographic <strong>in</strong>dices <strong>and</strong> hydrological<br />

<strong>modell<strong>in</strong>g</strong> results. In MODSIM 2007 International Congress on Modell<strong>in</strong>g <strong>and</strong> Simulation. Oxley, L.<br />

<strong>and</strong> Kulasiri, D. (eds). Modell<strong>in</strong>g <strong>and</strong> Simulation Society of Australia <strong>and</strong> New Zeal<strong>and</strong>, 706‐712.<br />

Vázquez, R., Feyen, L., Feyen, J. <strong>and</strong> Refsgaard, J., 2002. Effect of grid size on effective parameters<br />

<strong>and</strong> model performance. Hydrological Processes 16:355‐372.<br />

Verstraeten, W., Veroustraete, F., van der S<strong>and</strong>e, C., Grootaers, I. <strong>and</strong> Feyen, J., 2006. <strong>Soil</strong><br />

<strong>moisture</strong> retrieval <strong>us<strong>in</strong>g</strong> <strong>the</strong>rmal <strong>in</strong>ertia, determ<strong>in</strong>ed with visible <strong>and</strong> <strong>the</strong>rmal spaceborne data,<br />

validated for European forests. Remote Sens<strong>in</strong>g of Environment 101:299‐314.<br />

Vivoni, E., Ivanov, V., Bras, R. <strong>and</strong> Entekhabi, D., 2005. On <strong>the</strong> effects of triangulated terra<strong>in</strong><br />

resolution on distributed hydrologic model response. Hydrological Processes 19, 2101‐2122.<br />

Wagner, W., Blöschl, G., Pampaloni, P., Calvet, J.‐C., Bizzarri, B., Wigneron, J.‐P. <strong>and</strong> Kerr, Y., 2007.<br />

Operational read<strong>in</strong>ess of microwave remote sens<strong>in</strong>g of soil <strong>moisture</strong> for hydrologic applications.<br />

Nordic Hydrology 38:1‐20.<br />

Walker, J. <strong>and</strong> Willgoose, G., 1999. On <strong>the</strong> effect of digital elevation model accuracy on hydrology<br />

<strong>and</strong> geomorphology. Water Resources Research 35:2259‐2268.<br />

Walthall, C., Gish, T., Ch<strong>in</strong>kuyu, A., Dulaney, W., Kaul, M. <strong>and</strong> Daughtry, C., 2004. Analysis of<br />

surrogate <strong>in</strong>dicators for evidence of subsurface preferential flow pathways: impact of subsurface<br />

preferential flow on variability of NDVI. Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g Symposium 2004. IGARSS<br />

apos; 04. Proceed<strong>in</strong>gs. IEEE International 6:3992‐3995.<br />

Wang, J., O’Neill, P., Jackson, T. <strong>and</strong> Engman, E., 1983. Multifrequency measurements of <strong>the</strong><br />

effects of soil <strong>moisture</strong>, soil texture, <strong>and</strong> surface roughness. IEEE Transactions on Geoscience <strong>and</strong><br />

Remote Sens<strong>in</strong>g GE‐21:44‐51.<br />

Wang, C., Qi, S., Niu, Z. <strong>and</strong> Wang, J., 2004. Evaluat<strong>in</strong>g soil <strong>moisture</strong> status <strong>in</strong> Ch<strong>in</strong>a <strong>us<strong>in</strong>g</strong> <strong>the</strong><br />

temperature‐vegetation dryness <strong>in</strong>dex (TVDI). Canadian Journal of Remote Sens<strong>in</strong>g 30:671‐679.<br />

75


Wang, X., Zhang, Z. <strong>and</strong> Tan, W., 2005. Us<strong>in</strong>g temperature/vegetation <strong>in</strong>dex to assess surface soil<br />

<strong>moisture</strong> status. Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g Symposium 2005. IGARSS apos;05. Proceed<strong>in</strong>gs.<br />

2005 IEEE International 6:4493‐4496.<br />

Wang, L., Qu, J., Zhang, S., Hao, X. <strong>and</strong> Dasgupta, S., 2007. <strong>Soil</strong> <strong>moisture</strong> estimation <strong>us<strong>in</strong>g</strong> MODIS<br />

<strong>and</strong> ground measurements <strong>in</strong> eastern Ch<strong>in</strong>a. International Journal of Remote Sens<strong>in</strong>g 28:1413‐<br />

1418.<br />

Wang, X., Xie, H., Guan, H. <strong>and</strong> Zhou, X., 2007. Different responses of MODIS‐derived NDVI to<br />

root‐zone soil <strong>moisture</strong> <strong>in</strong> semi‐arid <strong>and</strong> humid regions. Journal of Hydrology 340:12‐24.<br />

Warren, S., Hohmann, M., Auerswald, K. <strong>and</strong> Mitasova, H., 2004. An evaluation of methods to<br />

determ<strong>in</strong>e slope <strong>us<strong>in</strong>g</strong> digital elevation data. Catena 58:215‐233.<br />

Wilson, J. <strong>and</strong> Gallant, J., 1996. EROS: A grid‐based program for estimat<strong>in</strong>g spatially‐distributed<br />

erosion <strong>in</strong>dices. Computers & Geosciences 22:707‐712.<br />

Wilson, J., Repetto, R. <strong>and</strong> Snyder, R., 2000. Effect of data source, grid resolution, <strong>and</strong> flow‐<br />

rout<strong>in</strong>g method on computed topographic attributes. In Terra<strong>in</strong> Analysis: Pr<strong>in</strong>ciples <strong>and</strong><br />

Applications. Wilson, J. <strong>and</strong> Gallant, J. (eds). John Wiley <strong>and</strong> Sons, New York, 133‐161.<br />

Wilson, J., Lam, C. <strong>and</strong> Deng, Y., 2007. Comparison of <strong>the</strong> performance of flow‐rout<strong>in</strong>g algorithms<br />

used <strong>in</strong> GIS‐based hydrologic analysis. Hydrological Processes 21:1026‐1044.<br />

Wolock, D. <strong>and</strong> Price, C., 1994. Effects of digital elevation model map scale <strong>and</strong> data resolution on<br />

a topography‐based watershed model. Water Resources Research 30:3041‐3052.<br />

Wolock, D. <strong>and</strong> McGabe, G., 1995. Comparison of s<strong>in</strong>gle <strong>and</strong> multiple flow direction algorithms<br />

for comput<strong>in</strong>g topographic parameters <strong>in</strong> TOPMODEL. Water Resources Research 31:1315–1324.<br />

Wolock, D. <strong>and</strong> McGabe, G., 2000. Differences <strong>in</strong> topographic characteristics computed from 100‐<br />

<strong>and</strong> 1000‐m resolution digital elevation model data. Hydrological Processes 14:987‐1002.<br />

Wu, S., Li, J. <strong>and</strong> Huang, G., 2007. Modell<strong>in</strong>g <strong>the</strong> effects of elevation data resolution on <strong>the</strong><br />

performance of topography‐based watershed runoff simulation. Environmental Modell<strong>in</strong>g &<br />

Software 22:1250‐1260<br />

Wu, W., Fan, Y., Wang, Z. <strong>and</strong> Liu, H., 2008. Assess<strong>in</strong>g effects of digital elevation model<br />

resolutions on soil‐l<strong>and</strong>scape correlations <strong>in</strong> a hilly area. Agriculture, Ecosystems <strong>and</strong><br />

Environment 126:209‐216.<br />

Wu, X. <strong>and</strong> Archer, S., 2005. Scale‐dependent <strong>in</strong>fluence of topography‐based hydrologic features<br />

on patterns of woody plant encroachment <strong>in</strong> savanna l<strong>and</strong>scapes. L<strong>and</strong>scape Ecology 20:733‐742.<br />

Yilmaz, M., Hunt Jr., E., Go<strong>in</strong>s, L., Ust<strong>in</strong>, S., V<strong>and</strong>erbilt, V. <strong>and</strong> Jackson, T., 2008. Vegetation water<br />

content dur<strong>in</strong>g SMEX04 from ground data <strong>and</strong> L<strong>and</strong>sat 5 Thematic Mapper <strong>imagery</strong>. Remote<br />

Sens<strong>in</strong>g of Environment 112:350‐362.<br />

Yue, W., Xu, J., Tan, W. <strong>and</strong> Xu, L., 2007. The relationship between l<strong>and</strong> surface temperature <strong>and</strong><br />

NDVI with remote sens<strong>in</strong>g: application to Shanghai L<strong>and</strong>sat 7 ETM+ data. International Journal<br />

of Remote Sens<strong>in</strong>g 28:3205‐3226.<br />

Zeng, Y., Feng, Z. <strong>and</strong> Xiang, N., 2004. Assessment of soil <strong>moisture</strong> <strong>us<strong>in</strong>g</strong> L<strong>and</strong>sat ETM+<br />

temperature/vegetation <strong>in</strong>dex <strong>in</strong> semiarid environment. Proceed<strong>in</strong>gs of <strong>the</strong> IEEE International<br />

Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g Symposium 6:4306‐4309.<br />

76


Z<strong>in</strong>ko, U., Dynesius, M., Nilsson, C. <strong>and</strong> Seibert, J., 2006. The role of soil pH <strong>in</strong> l<strong>in</strong>k<strong>in</strong>g<br />

groundwater flow <strong>and</strong> plant species density <strong>in</strong> boreal forest l<strong>and</strong>scapes. Ecography 29:515‐524.<br />

Zhan, Z., Q<strong>in</strong>, Q. <strong>and</strong> Wang, X., 2004. The application of LST/NDVI <strong>in</strong>dex for monitor<strong>in</strong>g l<strong>and</strong><br />

surface <strong>moisture</strong> <strong>in</strong> semiarid area. Geoscience <strong>and</strong> Remote Sens<strong>in</strong>g Symposium 2004. IGARSS<br />

apos;04. Proceed<strong>in</strong>gs. 2004 IEEE International 3:1551‐1554.<br />

Zhang, W. <strong>and</strong> Montgomery, D., 1994. Digital elevation model grid size, l<strong>and</strong>scape representation,<br />

<strong>and</strong> hydrologic simulations. Water Resources Research 30:1019‐1028.<br />

Zhang, F., Gao, Z. <strong>and</strong> Zuo, L., 2007. Study on relationship of soil <strong>moisture</strong> <strong>and</strong> l<strong>and</strong> cover: a case<br />

<strong>in</strong> Lij<strong>in</strong> County, Shangdong Prov<strong>in</strong>ce. Remote Sens<strong>in</strong>g <strong>and</strong> Model<strong>in</strong>g of Ecosystems for<br />

Susta<strong>in</strong>ability IV. Gao, W. <strong>and</strong> Ust<strong>in</strong>, L. (eds). Proceed<strong>in</strong>gs of SPIE 6679, 667918, SPIE, Bell<strong>in</strong>gham,<br />

WA.<br />

Zhou, Q. <strong>and</strong> Liu, X., 2002. Error assessment of grid‐based flow rout<strong>in</strong>g algorithms used <strong>in</strong><br />

hydrological models. International Journal of Geographical Information Science 16:819‐842.<br />

77


Appendix<br />

Appendix A Orig<strong>in</strong>al 50 metre resolution DEM as acquired from Lantmäteriet<br />

78


Appendix B Precipitation over Stockholm <strong>in</strong> mm dur<strong>in</strong>g July 2002<br />

79


Appendix C Average temperature around Stockholm <strong>in</strong> °C dur<strong>in</strong>g July 2002<br />

80


Appendix D D∞ flow direction grid surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM<br />

81


Appendix E D∞ slope grid surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM<br />

82


Appendix F D∞ contribut<strong>in</strong>g area surface for <strong>TWI</strong> calculation with<strong>in</strong> TauDEM<br />

83


Appendix G NDVI surface calculated by L<strong>and</strong>sat 7 ETM+ b<strong>and</strong>s 3 <strong>and</strong> 4<br />

84


Appendix H Temperature <strong>in</strong> °C derived from <strong>the</strong> ETM+ <strong>the</strong>rmal b<strong>and</strong> on August 4th, 2002<br />

85


Appendix I <strong>TWI</strong> surface calculation variants for 'NoData'<br />

86


Appendix J <strong>TWI</strong> surface calculation variants for 'unfilled'<br />

87


Appendix K <strong>TWI</strong> surface calculation variants for 'filled'<br />

88


Appendix L <strong>TWI</strong>/TVDI scatterplots for vegetation classes 0 to 7<br />

89


Appendix M <strong>TWI</strong>/TVDI scatterplots for soil classes<br />

90


Appendix N <strong>TWI</strong>/TVDI scatterplots for soil class bog <strong>and</strong> vegetation classes 0 to 7<br />

91


Appendix O <strong>TWI</strong>/TVDI scatterplots for soil class clay <strong>and</strong> vegetation classes 0 to 7<br />

92


Appendix P <strong>TWI</strong>/TVDI scatterplots for soil class rock <strong>and</strong> vegetation classes 0 to 7<br />

93


Appendix Q <strong>TWI</strong>/TVDI scatterplots for soil class s<strong>and</strong> <strong>and</strong> vegetation classes 0 to 7<br />

94


Appendix R <strong>TWI</strong>/TVDI scatterplots for soil class till <strong>and</strong> vegetation classes 0 to 7<br />

95


Surface M<strong>in</strong> Max Mean Std. deviation Pixel count Area percentage<br />

tvdi 0.01 1.00 0.26 0.12 874879 100<br />

tvdi0 0.01 1.00 0.39 0.14 156469 18<br />

tvdi1 0.01 1.00 0.29 0.10 55281 6<br />

tvdi2 0.03 1.00 0.27 0.10 194685 22<br />

tvdi3 0.01 1.00 0.24 0.08 122934 14<br />

tvdi4 0.03 0.72 0.18 0.04 37713 4<br />

tvdi5 0.05 0.92 0.18 0.04 235067 27<br />

tvdi6 0.03 0.84 0.19 0.05 64594 7<br />

tvdi7 0.08 0.37 0.19 0.03 5661 1<br />

tvdibog 0.04 1.00 0.23 0.12 29542 4<br />

tvdiclay 0.01 1.00 0.28 0.12 323124 40<br />

tvdirock 0.05 1.00 0.23 0.09 148101 18<br />

tvdis<strong>and</strong> 0.01 1.00 0.28 0.14 40143 5<br />

tvditill 0.01 1.00 0.23 0.11 260309 32<br />

tvdibog0 0.11 1.00 0.44 0.18 3813 13<br />

tvdibog1 0.13 0.79 0.26 0.10 1539 5<br />

tvdibog2 0.04 0.71 0.23 0.09 2888 10<br />

tvdibog3 0.06 0.86 0.22 0.09 4641 16<br />

tvdibog4 0.08 0.58 0.16 0.03 3417 12<br />

tvdibog5 0.07 0.86 0.17 0.04 8928 30<br />

tvdibog6 0.06 0.60 0.17 0.04 3197 11<br />

tvdibog7 0.11 0.33 0.18 0.33 1157 4<br />

tvdiclay0 0.01 1.00 0.41 0.14 58932 18<br />

tvdiclay1 0.09 1.00 0.31 0.10 22165 7<br />

tvdiclay2 0.03 1.00 0.28 0.10 135716 42<br />

tvdiclay3 0.06 0.88 0.24 0.08 45677 14<br />

tvdiclay4 0.09 0.71 0.18 0.04 10221 3<br />

tvdiclay5 0.08 0.77 0.18 0.04 34563 11<br />

tvdiclay6 0.05 0.68 0.19 0.05 15348 5<br />

tvdiclay7 0.11 0.36 0.19 0.05 252 0<br />

tvdirock0 0.09 1.00 0.35 0.13 23351 16<br />

tvdirock1 0.09 1.00 0.26 0.09 8740 6<br />

tvdirock2 0.05 0.95 0.29 0.09 11193 8<br />

tvdirock3 0.08 0.96 0.24 0.07 18500 13<br />

tvdirock4 0.09 0.54 0.18 0.04 5020 3<br />

tvdirock5 0.05 0.73 0.19 0.04 69239 47<br />

tvdirock6 0.07 0.80 0.19 0.05 11525 8<br />

tvdirock7 0.08 0.37 0.19 0.04 200 0<br />

tvdis<strong>and</strong>0 0.10 1.00 0.40 0.14 12782 32<br />

tvdis<strong>and</strong>1 0.12 1.00 0.29 0.11 3925 10<br />

tvdis<strong>and</strong>2 0.08 0.99 0.27 0.10 5331 13<br />

tvdis<strong>and</strong>3 0.01 0.96 0.26 0.09 5165 13<br />

tvdis<strong>and</strong>4 0.10 0.54 0.18 0.05 1954 5<br />

tvdis<strong>and</strong>5 0.09 0.92 0.18 0.05 7931 20<br />

tvdis<strong>and</strong>6 0.10 0.50 0.19 0.05 2989 7<br />

tvdis<strong>and</strong>7 0.12 0.27 0.18 0.03 41 0<br />

tvditill0 0.01 1.00 0.38 0.14 48650 19<br />

tvditill1 0.01 1.00 0.27 0.10 14654 6<br />

tvditill2 0.03 0.96 0.24 0.08 16075 6<br />

tvditill3 0.01 1.00 0.24 0.07 36846 14<br />

tvditill4 0.03 0.72 0.18 0.04 14087 5<br />

tvditill5 0.09 0.76 0.18 0.03 101545 39<br />

tvditill6 0.03 0.84 0.18 0.04 27947 11<br />

tvditill7 0.11 0.37 0.18 0.04 320 0<br />

Appendix S TVDI surface comb<strong>in</strong>ation statistics<br />

96


Surface M<strong>in</strong> Max Mean Std. deviation Pixel count Area percentage<br />

twi 1.04 12.52 2.84 1.65 874879 100<br />

twi0 1.04 12.52 2.81 1.61 156469 18<br />

twi1 1.04 12.20 2.87 1.66 55281 6<br />

twi2 1.04 12.43 3.13 2.03 194685 22<br />

twi3 1.04 12.31 2.83 1.65 122934 14<br />

twi4 1.04 11.04 2.91 1.60 37713 4<br />

twi5 1.04 11.27 2.61 1.26 235067 27<br />

twi6 1.04 11.32 2.79 1.44 64594 7<br />

twi7 1.04 11.88 3.28 2.31 5661 1<br />

twibog 1.04 10.99 3.13 2.03 29542 4<br />

twiclay 1.04 15.52 3.10 1.31 323124 40<br />

twirock 1.04 11.50 2.45 1.13 148101 18<br />

twis<strong>and</strong> 1.14 10.46 2.94 1.63 40143 5<br />

twitill 1.04 11.67 2.62 1.27 260309 32<br />

twibog0 1.04 10.56 3.11 2.06 3818 13<br />

twibog1 1.04 10.29 3.27 2.15 1539 5<br />

twibog2 1.04 10.94 3.45 2.31 2888 10<br />

twibog3 1.04 10.93 3.29 2.21 4641 16<br />

twibog4 1.04 10.98 3.24 2.10 3417 12<br />

twibog5 1.04 9.94 2.89 1.74 8928 30<br />

twibog6 1.04 10.87 3.06 1.86 3197 11<br />

twibog7 1.04 10.99 3.31 3.37 1157 4<br />

twiclay0 1.04 11.52 3.08 1.87 58932 18<br />

twiclay1 1.04 12.20 3.08 1.86 22165 7<br />

twiclay2 1.04 12.17 3.18 2.07 135716 42<br />

twiclay3 1.04 12.10 3.04 1.82 45677 14<br />

twiclay4 1.04 11.04 3.11 1.72 10221 3<br />

twiclay5 1.04 11.27 2.96 1.53 34563 11<br />

twiclay6 1.04 11.07 3.03 1.64 15348 5<br />

twiclay7 1.04 11.47 3.06 2.10 252 0<br />

twirock0 1.04 10.76 2.43 1.14 23351 16<br />

twirock1 1.04 10.60 2.45 1.08 8740 6<br />

twirock2 1.04 11.42 2.70 1.55 11193 8<br />

twirock3 1.04 11.00 2.45 1.20 18500 13<br />

twirock4 1.04 10.64 2.61 1.24 5020 3<br />

twirock5 1.04 9.45 2.38 1.01 69239 47<br />

twirock6 1.04 11.32 2.54 1.18 11525 8<br />

twirock7 1.04 11.50 2.53 1.55 200 0<br />

twis<strong>and</strong>0 1.04 10.22 2.78 1.55 12782 32<br />

twis<strong>and</strong>1 1.04 10.46 2.94 1.61 3925 10<br />

twis<strong>and</strong>2 1.04 10.29 3.13 1.91 5331 13<br />

twis<strong>and</strong>3 1.04 10.11 2.89 1.65 5165 13<br />

twis<strong>and</strong>4 1.04 8.99 3.05 1.66 1954 5<br />

twis<strong>and</strong>5 1.04 9.37 2.90 1.56 7931 20<br />

twis<strong>and</strong>6 1.04 9.78 2.98 1.62 2989 7<br />

twis<strong>and</strong>7 1.04 6.11 2.71 1.41 41 0<br />

twitill0 1.04 10.66 2.60 1.31 48650 19<br />

twitill1 1.04 10.60 2.63 1.25 14654 6<br />

twitill2 1.04 11.13 2.67 1.44 16075 6<br />

twitill3 1.04 11.67 2.60 1.30 36846 14<br />

twitill4 1.04 10.96 2.75 1.36 14087 5<br />

twitill5 1.04 9.59 2.58 1.20 101545 39<br />

twitill6 1.04 11.18 2.70 1.30 27947 11<br />

twitill7 1.04 11.50 3.04 2.07 320 0<br />

Appendix T <strong>TWI</strong> surface comb<strong>in</strong>ation statistics<br />

97


Appendix U <strong>TWI</strong>/TVDI <strong>and</strong> TVDI/<strong>TWI</strong> quantile classification scatterplots<br />

98


Appendix V <strong>TWI</strong>/TVDI <strong>and</strong> TVDI/<strong>TWI</strong> natural breaks classification scatterplots<br />

99


Reports <strong>in</strong> Geographic Information Technology<br />

The TRITA-GIT Series - ISSN 1653-5227<br />

2009<br />

09-001 Ahmed Abdalla. Determ<strong>in</strong>ation of a gravimetric geoid of Sudan <strong>us<strong>in</strong>g</strong> <strong>the</strong> <strong>KTH</strong> method. Master of<br />

Science <strong>the</strong>sis <strong>in</strong> geodesy No.3109. Supervisor: Huaan Fan. Janaury 2009.<br />

09-002 Husse<strong>in</strong> Mohammed Ahmed Elhadi. GIS, a tool for pavement management. Master of Science<br />

<strong>the</strong>sis <strong>in</strong> geo<strong>in</strong>formatics. Supervisor: Hans Hauska. February 2009.<br />

09-003 Robert Odol<strong>in</strong>ski <strong>and</strong> Johan Sunna. Detaljmätn<strong>in</strong>g med nätverks-RTK – en<br />

noggrannhetsundersökn<strong>in</strong>g (Detail survey<strong>in</strong>g with network RTK – an accuracy research). Master of<br />

Science <strong>the</strong>sis <strong>in</strong> geodesy No.3110. Supervisor: Clas-Göran Persson <strong>and</strong> Milan Horemuz. March<br />

2009.<br />

09-004 Jenny Illerstam och Susanna Bosrup. Restfelshanter<strong>in</strong>g med Natural Neighbour och TRIAD vid<br />

byte av koord<strong>in</strong>atsystem i plan och höjd. Master of science <strong>the</strong>sis <strong>in</strong> geodesy No. 3111. Supervisor:<br />

Milan Horemuz <strong>and</strong> Lars Engberg. March 2009.<br />

09-005 Erik Olsson. Export<strong>in</strong>g 3D Geo<strong>in</strong>formation from Baggis Database to CityGML. Supervisors: Peter<br />

Axelsson <strong>and</strong> Yifang Ban. April 2009.<br />

09-006 Henrik Nilsson. Referenssystemsbyte i Oskarshamns kommun – en fallstudie (Change of reference<br />

systems <strong>in</strong> Oskarshamn – a case study). Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3112. Supervisor:<br />

Huaan Fan. May 2009.<br />

09-007 Chi-Hao Poon. Interaktiv Multikriteria-Analys (Interactive Multi-Criteria Evaluation). Supervisor:<br />

Mats Dunkars <strong>and</strong> Yifang Ban. May 2009.<br />

09-008 Emma Lundberg. Fastighetsdokumentation – en jämförelse mellan två geodetiska tekniker.<br />

Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3113. Supervisor: Milan Horemuz, Kar<strong>in</strong> Klasén <strong>and</strong> Ivar<br />

Andersson. May 2009.<br />

09-009 Andenet Ashagrie Gedamu. Test<strong>in</strong>g <strong>the</strong> Accuracy of H<strong>and</strong>held GPS Receivers <strong>and</strong> Satellite Image<br />

for L<strong>and</strong> Registration. Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3114. Supervisor: Milan Horemuz<br />

<strong>and</strong> Lars Palm. May 2009.<br />

09-010 Abubeker Worake Ahmed <strong>and</strong> Workaferahu Abebe Mergia. Determ<strong>in</strong>ation of transformation<br />

parameters between WGS 84 <strong>and</strong> ADINDAN. Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3115.<br />

Supervisor: Huaan Fan. May 2009.<br />

09-011 Andreas Jungner. Ground-Based Syn<strong>the</strong>tic Aperture Radar Data Process<strong>in</strong>g for Deformation<br />

Measurement. Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3116. Supervisors: Milan Horemuz <strong>and</strong><br />

Michele Crosetto. May 2009.<br />

09-012 Anna Miskas <strong>and</strong> Andrea Molnar. Establish<strong>in</strong>g a Reference Network <strong>in</strong> Parts of Amhara Region,<br />

Ethiopia Us<strong>in</strong>g Geodetic GPS Equipment. Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3117.<br />

Supervisors: Milan Horemuz <strong>and</strong> Lars Palm. June 2009.


09-013 Shareful Hassan. Assessment of L<strong>and</strong>use <strong>and</strong> L<strong>and</strong> Degradation <strong>in</strong> <strong>the</strong> North-Western Part of<br />

Bangladesh Us<strong>in</strong>g L<strong>and</strong>sat Imagery. Supervisors: Hans Hauska. June 2009.<br />

09–014 Qaisar Khyber. Effects of <strong>the</strong> Muzzaffarabad Earthquake 2005 - Detection <strong>and</strong> Quantification of<br />

Changes <strong>in</strong> L<strong>and</strong>cover/L<strong>and</strong>use. Supervisors: Hans Hauska. June 2009.<br />

09-015 Thomas Wahlberg. Undersökn<strong>in</strong>g av strikta och iterativa metoder för omv<strong>and</strong>l<strong>in</strong>g från kartesiska<br />

till geodetiska koord<strong>in</strong>ater. Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3118. Supervisors: Lars<br />

Sjöberg. June 2009.<br />

09-016 Alfred Awotwi. Detection of L<strong>and</strong> Use <strong>and</strong> L<strong>and</strong> Cover Change <strong>in</strong> Accra, Ghana, between 1958<br />

<strong>and</strong> 2003 <strong>us<strong>in</strong>g</strong> L<strong>and</strong>sat <strong>imagery</strong>. Supervisor: Hans Hauska. August 2009.<br />

09-017 Walyeldeen Hassan Edres. Crustal motion at <strong>the</strong> permanent GPS station SVEA, Antarctica.<br />

Master’s of Science <strong>the</strong>sis <strong>in</strong> geodesy No.3119. Supervisors: Milan Horemuz. August 2009.<br />

09-018 Kazi Humayun Kabir. An Investigation <strong>in</strong>to Geospatial Tools for a Multipurpose Digital Cadastre<br />

Prototype <strong>in</strong> Bangladesh. Supervisor: Leif Eidenstedt. September 2009.<br />

09-019 Raquel Libros Rodríguez <strong>and</strong> Yol<strong>and</strong>a Pérez Dorado. Assess<strong>in</strong>g Tsunami Vulnerability <strong>us<strong>in</strong>g</strong><br />

MCE <strong>in</strong> Phang Nga, Thail<strong>and</strong>. Supervisors: Thuy Vu, Irene Rangel. September 2009.<br />

09-020 Md. Tariqul Islam. Bank Erosion <strong>and</strong> Movement of River Channel: A Study of Padma <strong>and</strong> Jamuna<br />

Rivers <strong>in</strong> Bangladesh Us<strong>in</strong>g Remote Sens<strong>in</strong>g <strong>and</strong> GIS. Supervisors: Hans Hauska. December<br />

2009.<br />

09-021 Osama A. Rahman Adam Yousif. Multitemporal Spaceborne SAR <strong>and</strong> Fusions of SAR<br />

<strong>and</strong> Optical Data for Unsupervised Change Detection <strong>in</strong> Shanghai. Supervisor: Yifang Ban.<br />

December 2009.<br />

2010<br />

10-001 Jan Haas. <strong>Soil</strong> <strong>moisture</strong> <strong>modell<strong>in</strong>g</strong> <strong>us<strong>in</strong>g</strong> <strong>TWI</strong> <strong>and</strong> <strong>satellite</strong> <strong>imagery</strong> <strong>in</strong> <strong>the</strong> Stockholm region.<br />

Master’s of Science <strong>the</strong>sis <strong>in</strong> geo<strong>in</strong>formatics. Supervisors: Ulla Mörtberg <strong>and</strong> David Gustafsson.<br />

March 2010.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!