20.01.2013 Views

2G1318 Queuing theory and teletraffic systems - KTH

2G1318 Queuing theory and teletraffic systems - KTH

2G1318 Queuing theory and teletraffic systems - KTH

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

3rd lecture<br />

Markov chains<br />

Birth-death process<br />

- Poisson process<br />

Discrete time Markov chains<br />

Viktoria Fodor<br />

<strong>KTH</strong> EES<br />

1


Outline for today<br />

• Markov processes<br />

– Continuous-time Markov-chains<br />

– Graph <strong>and</strong> matrix representation<br />

• Transient <strong>and</strong> steady state solutions<br />

• Balance equations – local <strong>and</strong> global<br />

• Pure Birth process – Poisson process as special case<br />

• Birth-death process as special case<br />

• Outlook: Discrete time Markov-chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

2


• Stochastic process<br />

– p i(t)=P(X(t)=i)<br />

Markov processes<br />

• The process is a Markov process if the future of the process depends on the<br />

current state only - Markov property<br />

– P(X(t n+1)=j | X(t n)=i, X(t n-1)=l, …, X(t 0)=m) = P(X(t n+1)=j | X(t n)=i)<br />

– Homogeneous Markov process: the probability of state change is unchanged<br />

by time shift, depends only on the time interval<br />

P(X(t n+1)=j | X(t n)=i) = p ij(t n+1-t n)<br />

• Markov chain: if the state space is discrete<br />

– A homogeneous Markov chain can be represented by a graph:<br />

• States: nodes<br />

• State changes: edges<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

0 1<br />

M<br />

3


Continuous-time Markov chains<br />

(homogeneous case)<br />

• Continuous time, discrete space stochastic process, with Markov<br />

property, that is:<br />

P(<br />

X ( t<br />

P(<br />

X ( t<br />

n�1<br />

n�1<br />

) �<br />

) �<br />

j | X ( t ) � i,<br />

X ( t<br />

n<br />

j | X ( t ) � i),<br />

n<br />

t<br />

n�1<br />

0<br />

) � l,<br />

�X<br />

( t<br />

• State transition can happen in any point of time<br />

• Example:<br />

– number of packets waiting at the output buffer of a router<br />

– number of customers waiting in a bank<br />

� t<br />

1<br />

��<br />

� t<br />

• The time spent in a state has to be exponential to ensure Markov<br />

property:<br />

– the probability of moving from state i to state j sometime between<br />

t n <strong>and</strong> t n+1 does not depend on the time the process already spent<br />

in state i before t n.<br />

n�1<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

n<br />

0<br />

) � m)<br />

�<br />

� t<br />

states<br />

t 0 t 1 t 2 t 3 t 4 t 5<br />

4


Continuous-time Markov chains<br />

(homogeneous case)<br />

• State change probability depends on the time interval:<br />

P(X(t n+1)=j | X(t n)=i) = p ij(t n+1-t n)<br />

• Characterize the Markov chain with the state transition rates instead:<br />

q<br />

ij<br />

q<br />

ii<br />

P(X(t � Δt) � j|X(t) � i)<br />

� lim<br />

, i � j - rate (intensity) of state change<br />

Δt � 0 Δt<br />

� � � q - defined to easy calculation later on<br />

ij<br />

j � i<br />

Transition rate matrix Q:<br />

� q<br />

�<br />

�<br />

�<br />

Q �<br />

�<br />

�<br />

��<br />

qM<br />

00<br />

0<br />

q<br />

01<br />

�<br />

�<br />

q<br />

�<br />

M ( M �1)<br />

q<br />

q<br />

0M<br />

( M �1)<br />

M<br />

q<br />

MM<br />

�<br />

�<br />

�<br />

�<br />

�<br />

��<br />

0<br />

q 01=4<br />

q 10=6<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

1<br />

��<br />

4<br />

Q<br />

� �<br />

� 6<br />

4 �<br />

� 6<br />

�<br />

�<br />

5


Outline for today<br />

• Markov processes<br />

– Continuous-time Markov-chains<br />

– Graph <strong>and</strong> matrix representation<br />

• Transient <strong>and</strong> steady state solutions<br />

• Balance equations – local <strong>and</strong> global<br />

• Pure Birth process – Poisson process as special case<br />

• Birth-death process as special case<br />

• Outlook: Discrete time Markov-chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

6


q<br />

ij<br />

i<br />

i<br />

�<br />

�t�0<br />

p ( t � �t)<br />

�<br />

p ( t)<br />

� p ( t)<br />

pi<br />

( t � �t)<br />

� pi<br />

( t)<br />

�<br />

�t<br />

i<br />

i<br />

i<br />

i<br />

j<br />

p<br />

j�i<br />

p ( t � �t)<br />

� p ( t)<br />

� p ( t)<br />

q �t<br />

�<br />

dp(<br />

t)<br />

�<br />

dt<br />

P(<br />

X ( t � �t)<br />

� j | X ( t)<br />

� i)<br />

lim<br />

�t<br />

�<br />

�<br />

p(<br />

t)<br />

Q, p(<br />

t)<br />

� p(<br />

0)<br />

�e<br />

j<br />

ii<br />

q<br />

ij<br />

( t)<br />

q<br />

�t<br />

�<br />

ji<br />

�<br />

j�i<br />

Qt<br />

Transient solution<br />

• The transient - time dependent – state probability distribution<br />

• p(t)={p 0(t), p 1(t), p 2(t),...} – probability of being in state i at time t,<br />

given p(0).<br />

�<br />

j�i<br />

p<br />

j<br />

p<br />

�(<br />

�t)<br />

�<br />

�t<br />

j<br />

�<br />

( t)<br />

q<br />

( t)<br />

q<br />

ji<br />

�<br />

P(<br />

X ( t � �t)<br />

�<br />

ji<br />

�t<br />

��<br />

( �t),<br />

leaves the state arrives to the state<br />

�t<br />

��<br />

( �t)<br />

�<br />

dpi<br />

( t)<br />

�<br />

dt<br />

�<br />

j<br />

�<br />

j<br />

�t�0<br />

p<br />

p<br />

j | X ( t)<br />

� i)<br />

� q<br />

�(<br />

�t)<br />

lim � 0<br />

�t<br />

j<br />

j<br />

( t)<br />

q<br />

( t)<br />

q<br />

Transient solution<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

ji<br />

ji<br />

ij<br />

�t<br />

��<br />

( �t)<br />

�t<br />

��<br />

( �t)<br />

( �<br />

�<br />

j�i<br />

q<br />

ij<br />

�<br />

q<br />

ii<br />

)<br />

7


0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

q 01=4<br />

q 10=6<br />

1<br />

p 0(t)<br />

p 1(t)<br />

Example – transient solution<br />

��<br />

4<br />

� �<br />

� 6<br />

4 �<br />

� 6<br />

�<br />

�<br />

0.2 0.4 0.6 0.8 1<br />

dp(<br />

t)<br />

p(<br />

t)<br />

Q<br />

�<br />

dt<br />

p(<br />

t)<br />

� p(<br />

0)<br />

�e<br />

Q Qt<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

1<br />

Transient<br />

state<br />

p 0(t)<br />

p 1(t)<br />

Stationary / steady<br />

state<br />

0.2 0.4 0.6 0.8 1<br />

A: p 0(0)=0, p 1(0)=1 B: p 0(0)=1, p 1(0)=0<br />

8


• Matrix exponential<br />

• Matrix exponentials are defined as:


• Def: stationary state probability distribution (stationary solution)<br />

– p � lim p(<br />

t)<br />

exists<br />

t�� Stationary solution (steady state)<br />

– p is independent from p(0)<br />

• The stationary solution p has to satisfy:<br />

dp(<br />

t)<br />

( t)<br />

Q � � 0,<br />

� p ( t)<br />

�1<br />

dt<br />

p i<br />

Note: the rank of Q MM is M-1!<br />

0<br />

q 01=4<br />

q 10=6<br />

1<br />

�p , p � � �0, 0�<br />

p<br />

0<br />

0<br />

�<br />

1<br />

0.<br />

6,<br />

��<br />

4<br />

�<br />

� 6<br />

� q<br />

�<br />

�<br />

�<br />

Q<br />

�<br />

�<br />

�<br />

��<br />

qM<br />

p<br />

4 �<br />

� 6<br />

�<br />

�<br />

0.<br />

4<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

1<br />

�<br />

00<br />

0<br />

q<br />

01<br />

�<br />

�<br />

q<br />

,<br />

�<br />

M ( M �1)<br />

p<br />

0<br />

�<br />

q<br />

q<br />

( M �1)<br />

M<br />

q<br />

p<br />

0M<br />

MM<br />

1<br />

�<br />

�<br />

�<br />

�<br />

�<br />

��<br />

�1<br />

10


Important theorems – without the proof<br />

• Stationary solution exists, if<br />

– The Markov chain is irreducible (there is a path between any two states) <strong>and</strong><br />

pQ<br />

� 0, p�1<br />

�1<br />

Stationary solution (steady state)<br />

– has positive solution<br />

• Equivalently, stationary solution exists, if<br />

– The Markov chain is irreducible<br />

– For all states: the mean time to return to the state is finite<br />

• Finite state, irreducible Markov chains always have stationary solution.<br />

• Markov chains with stationary solution are also ergodic:<br />

– p i gives the portion of time a single realization spends in state i, <strong>and</strong><br />

– the probability that one out of many realizations are in state i at arbitrary<br />

point of time<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

11


Outline for today<br />

• Markov processes<br />

– Continuous-time Markov-chains<br />

– Graph <strong>and</strong> matrix representation<br />

• Transient <strong>and</strong> steady state solutions<br />

• Balance equations – local <strong>and</strong> global<br />

• Pure Birth process – Poisson process as special case<br />

• Birth-death process as special case<br />

• Outlook: Discrete time Markov-chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

12


Balance equations<br />

• How can we find the stationary solution? pQ=0<br />

0 � pQ<br />

�<br />

State<br />

0 � �(<br />

q<br />

q<br />

21<br />

12<br />

2<br />

State<br />

0 � q<br />

q<br />

p<br />

p<br />

1<br />

1:<br />

12<br />

12<br />

� ( q<br />

2 :<br />

p<br />

1<br />

� q<br />

� q<br />

32<br />

12<br />

� q<br />

p<br />

3<br />

14<br />

21<br />

) p<br />

� q<br />

p<br />

14<br />

2<br />

� q<br />

1<br />

) p<br />

21<br />

� q<br />

1<br />

� q<br />

p<br />

32<br />

2<br />

21<br />

flow in flow out<br />

p<br />

p<br />

3<br />

2<br />

q 14<br />

q12 P1 P2 P3 q 21<br />

• Global balance conditions<br />

– In equilibrium (for the stationary solution)<br />

– the transition rate out of a state – or a group of states - must equal<br />

the transition rate into the state (or states)<br />

• flow in = flow out<br />

– defines a global balance equation<br />

P 4<br />

q 43<br />

q 32<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

��<br />

( q12<br />

� q<br />

�<br />

� �<br />

q21<br />

Q<br />

� 0<br />

�<br />

� 0<br />

14<br />

)<br />

q<br />

12<br />

� q<br />

q<br />

32<br />

0<br />

21<br />

0<br />

0<br />

� q<br />

q<br />

43<br />

32<br />

q<br />

14<br />

0<br />

0<br />

� q<br />

43<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

13


Group work<br />

• Global balance equation for state 1 <strong>and</strong> 2:<br />

0 � pQ<br />

State<br />

0 � �(<br />

q<br />

q<br />

21<br />

12<br />

2<br />

State<br />

0 � q<br />

q<br />

p<br />

p<br />

1<br />

1:<br />

12<br />

12<br />

� ( q<br />

2 :<br />

p<br />

1<br />

� q<br />

32<br />

�<br />

� q<br />

12<br />

� q<br />

p<br />

3<br />

14<br />

21<br />

) p<br />

� q<br />

p<br />

14<br />

2<br />

� q<br />

1<br />

) p<br />

21<br />

� q<br />

1<br />

� q<br />

p<br />

32<br />

2<br />

21<br />

p<br />

p<br />

3<br />

2<br />

q 12<br />

q 14<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

P 4<br />

q 43<br />

P 1 p 2 P 3<br />

q 21<br />

• Is there a global balance equation for the circle around<br />

states 1 <strong>and</strong> 2?<br />

q 32<br />

14


Balance equations<br />

• Local balance conditions in equilibrium<br />

– the local balance means that the total flow from one part of the chain<br />

must be equal to the flow back from the other part<br />

– for all possible cuts<br />

– defines a local balance equation<br />

– The local balance equation is the same as a global balance equation<br />

around a set of states!<br />

q 14<br />

P 4<br />

q12 P1 p2 P3 q 21<br />

q 43<br />

q 32<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

15


Balance equations<br />

• Set of linear equations instead of a matrix equation<br />

0<br />

0<br />

q<br />

�<br />

�<br />

12<br />

p<br />

pQ<br />

q<br />

1<br />

12<br />

p<br />

1<br />

� q<br />

32<br />

�<br />

� q<br />

p<br />

• Global balance :<br />

– flow in = flow out around a state<br />

– or around many states<br />

• Local balance equation:<br />

– flow in = flow out across a cut<br />

q43p4 �<br />

q32p3<br />

• M states<br />

– M-1 independent equations<br />

– �pi=1 3<br />

21<br />

�<br />

p<br />

2<br />

q<br />

� q<br />

21<br />

p<br />

32<br />

2<br />

p<br />

flow in flow out<br />

3<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

q 12<br />

q 14<br />

P 4<br />

q 43<br />

P 1 p 2 P 3<br />

q 21<br />

q 12<br />

q 14<br />

P 4<br />

q 43<br />

q 32<br />

P 1 p 2 P 3<br />

q 21<br />

q 32<br />

16


Outline for today<br />

• Markov processes<br />

– Continuous-time Markov-chains<br />

– Graph <strong>and</strong> matrix representation<br />

• Transient <strong>and</strong> steady state solutions<br />

• Balance equations – local <strong>and</strong> global<br />

• Pure Birth process – Poisson process as special case<br />

• Birth-death process as special case<br />

• Outlook: Discrete time Markov-chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

17


Pure birth process<br />

• Continuous time Markov-chain, infinite state space<br />

• Transitions occur only between neighboring states<br />

– State independent birth intensity: � � �,<br />

�i<br />

k-1 k k+1<br />

• No stationary solution<br />

• Transient solution:<br />

� k-1=� � k=�<br />

− p k(t)=P(system in state k at time t)<br />

− number of events (births) in an interval t<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

i<br />

Q<br />

�<br />

��<br />

�<br />

�<br />

�<br />

0<br />

� 0<br />

�<br />

� 0<br />

�<br />

� �<br />

0<br />

0<br />

0<br />

�<br />

� �<br />

0<br />

��<br />

0<br />

�<br />

�<br />

� �<br />

�<br />

��<br />

18


Pure birth process<br />

• Transient solution – number of events (births) in an interval (0,t]<br />

p'(<br />

t)<br />

� p(<br />

t)<br />

Q,<br />

p'<br />

p'<br />

�<br />

p'<br />

0<br />

1<br />

k<br />

( t)<br />

� ��p<br />

( t)<br />

� �p<br />

0<br />

( t)<br />

� �p<br />

0<br />

k �1<br />

�k-1=� �k=� k-1 k k+1<br />

( t)<br />

p<br />

0<br />

( 0)<br />

( t)<br />

� �p<br />

( t)<br />

1<br />

( t)<br />

� �p<br />

k<br />

�1,<br />

( t)<br />

�<br />

p<br />

�<br />

k<br />

p<br />

( 0)<br />

0<br />

p<br />

( t)<br />

� e<br />

k<br />

� 0<br />

��t<br />

� p'<br />

( t)<br />

� �e<br />

1<br />

��t<br />

( �t)<br />

( t)<br />

�<br />

k!<br />

� �p<br />

( t)<br />

• Pure birth process gives Poisson process! – time between state<br />

transitions is Exp(λ)<br />

for<br />

k<br />

��t<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

e<br />

k<br />

1<br />

� 0<br />

� p ( t)<br />

� �te<br />

1<br />

��t<br />

Q<br />

�<br />

��<br />

�<br />

�<br />

�<br />

0<br />

� 0<br />

�<br />

� 0<br />

�<br />

� �<br />

0<br />

0<br />

0<br />

�<br />

� �<br />

0<br />

��<br />

0<br />

�<br />

�<br />

� �<br />

�<br />

��<br />

19


Equivalent definitions of Poisson process<br />

1. Pure birth process with intensity �<br />

2. The number of events in period (0,t] has Poisson distribution with<br />

parameter �<br />

3. The time between events is exponentially distributed with parameter �<br />

P(<br />

X � t)<br />

�1�<br />

e<br />

��t<br />

previous slide<br />

number of events<br />

Poisson distribution<br />

pure birth process<br />

time between events<br />

exponential<br />

previous lecture<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

check in the binder<br />

20


Pure death process<br />

• Continuous time Markov-chain, infinite state space<br />

• Transitions occur only between neighboring states<br />

– State independent death intensity: � � �,<br />

�i<br />

� 0<br />

• No stationary solution<br />

k-1 k k+1<br />

�<br />

�<br />

• Pure death process gives Poisson process until reaching state 0<br />

• Time between state transitions is Exp(µ)<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

i<br />

21


Outline for today<br />

• Markov processes<br />

– Continuous-time Markov-chains<br />

– Graph <strong>and</strong> matrix representation<br />

• Transient <strong>and</strong> steady state solutions<br />

• Balance equations – local <strong>and</strong> global<br />

• Pure Birth process – Poisson process as special case<br />

• Birth-death process as special case<br />

• Outlook: Discrete time Markov-chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

22


Birth-death process<br />

• Continuous time Markov-chain<br />

• Transitions occur only between neighboring states<br />

i�i+1 birth with intensity λ i<br />

i�i-1 death with intensity μ i (for i>0)<br />

�<br />

��<br />

q<br />

�<br />

� q10<br />

Q �<br />

� q20<br />

�<br />

� �<br />

0 j<br />

�<br />

q<br />

�<br />

q<br />

01<br />

21<br />

1 j<br />

�<br />

�<br />

02<br />

12<br />

2 j<br />

��<br />

��<br />

�0<br />

� �<br />

��<br />

� �<br />

�1<br />

��<br />

� 0<br />

� �<br />

��<br />

�<br />

modells population<br />

�k-1 �k k-1 k k+1<br />

q<br />

q<br />

q<br />

q<br />

� k<br />

� ( � � � )<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

�<br />

1<br />

�<br />

0<br />

2<br />

1<br />

� ( � � � )<br />

• State holding time – length of time spent in a state k<br />

– Until transition to states k-1 or k+1<br />

– Minimum of the times to the first birth or first deaths � minimum of two<br />

Exponentially distributed r<strong>and</strong>om variables: Exp(� k+� k)<br />

� k+1<br />

2<br />

0<br />

�<br />

1<br />

2<br />

��<br />

0<br />

�<br />

�<br />

� � 2<br />

�<br />

��<br />

23


B-D process - stationary solution<br />

• Local balance equations, like for general Markov-chains<br />

• Stability: positive solution for p (since the MC is irreducible)<br />

Cut 1:<br />

�k<br />

�1<br />

pk<br />

�1<br />

� �k<br />

pk<br />

�<br />

�k<br />

�1<br />

pk<br />

� pk<br />

�1<br />

�<br />

Cut 2 : � p<br />

�<br />

�<br />

�<br />

p<br />

0<br />

p<br />

p<br />

k<br />

k<br />

�<br />

� 1<br />

�<br />

1�<br />

k<br />

�<br />

1<br />

�<br />

k<br />

�<br />

1<br />

k �1<br />

�<br />

� �<br />

�0<br />

��<br />

� ��<br />

k �1<br />

k<br />

�i<br />

�<br />

k �1<br />

i�0<br />

k �1 i�1<br />

p<br />

,<br />

p<br />

0<br />

k �1<br />

�<br />

k �1<br />

�<br />

i�0<br />

�<br />

�i<br />

�<br />

i�1<br />

p<br />

k �1<br />

p<br />

0<br />

,<br />

�<br />

k<br />

�k<br />

�<br />

k �1<br />

k-1<br />

k �1<br />

� k-1<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

p<br />

k<br />

�<br />

�k�k<br />

�1<br />

� �<br />

k<br />

p<br />

� k<br />

k �1<br />

k<br />

Cut 1 Cut 2<br />

� k<br />

� k+1<br />

k+1<br />

Group work: stationary solution for<br />

state independent transition rates:<br />

�i � �,<br />

�i<br />

� �.<br />

24


Markov-chains <strong>and</strong> queuing <strong>systems</strong><br />

• Why do we like Poisson <strong>and</strong> B-D processes?<br />

How are they related to queuing <strong>systems</strong>?<br />

– If arrivals in a queuing system can be modeled as Poisson<br />

process � also as a pure birth process<br />

– If services in a queuing <strong>systems</strong> can be modeled with<br />

exponential service times � also as a (pure) death process<br />

– Then the queuing system can be modeled as a birth-death<br />

process<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

λ<br />

λ<br />

μ μ<br />

25


Summary – Continuous time Markov-chains<br />

• Markovian property: next state depends on the present state<br />

only<br />

• State lifetime: exponential<br />

• State transition intensity matrix Q<br />

• Stationary solution: pQ=0, or balance equations<br />

• Poisson process<br />

– pure birth process (�)<br />

– number of events has Poisson distribution, E[X]=�t<br />

– interarrival times are exponential E(�)=1/�<br />

• Birth-death process: transition between neighboring states<br />

• B-D process may model queuing <strong>systems</strong>!<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

26


Discrete-time Markov-chains<br />

(detour)<br />

• Discrete-time Markov-chain: the time is discrete as well<br />

– X(0), X(1), … X(n), …<br />

– Single step state transition probability for homogeneous MC:<br />

P(X(n+1)=j | X(n)=i) = p ij, �n<br />

• Example<br />

– Packet size from packet to packet<br />

– Number of correctly received bits in a packet<br />

– Queue length at packet departure instants …<br />

(get back to it at non-Markovian queues)<br />

p 01<br />

p1m pm1 0 1<br />

M<br />

p 10<br />

p 0m<br />

p m0<br />

<strong>2G1318</strong> <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

27


• Transition probability matrix:<br />

– The transitions probabilities can be represented in a matrix<br />

– Row i contains the probabilities to go from i to state j=0, 1, …M<br />

p 01<br />

Discrete-Time Markov-chains<br />

• P ii is the probability of staying in the same state<br />

0 1<br />

M<br />

p 10<br />

p 0m<br />

p m0<br />

p1m pm1 � p00<br />

p01<br />

� p0M<br />

�<br />

�<br />

p p<br />

�<br />

� 10 11 �<br />

P � �,<br />

� pij<br />

�1<br />

� � � � � j<br />

�<br />

�<br />

� pM<br />

0 � pMM<br />

�<br />

<strong>2G1318</strong> <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

�i<br />

28


• The probability of finding the process in state j at time n is denoted by:<br />

– p j (n) = P(X(n) = j)<br />

– for all states <strong>and</strong> time points, we have:<br />

� � ) (<br />

) ( ( n)<br />

n<br />

p p p<br />

p �<br />

�<br />

( n)<br />

n<br />

0 1<br />

M<br />

• The time-dependent (transient) solution is given by:<br />

p<br />

p<br />

( n�1)<br />

i<br />

( n�1)<br />

�<br />

p<br />

Discrete-Time Markov-chains<br />

� pi<br />

pii<br />

��<br />

p<br />

j�i<br />

( n)<br />

j<br />

p<br />

( n)<br />

( n�1)<br />

P � p PP � �<br />

ji<br />

�<br />

p<br />

( 0)<br />

P<br />

n�1<br />

<strong>2G1318</strong> <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

p 01<br />

p1m pm1 0 1<br />

M<br />

p 10<br />

p 0m<br />

p m0<br />

29


• Steady (or stationary) state exists if<br />

– The limiting probability vector exists<br />

– And is independent from the initial probability vector<br />

lim �<br />

n��<br />

• Stationary state probability distribution is give by:<br />

• Note also:<br />

�p p p �<br />

( n)<br />

p � p 0 1 �<br />

M<br />

p � p P,<br />

�<br />

j�<br />

0<br />

p<br />

j<br />

�1<br />

M<br />

– The probability to remain in a state j for m time units has geometric<br />

distribution<br />

�1 p 1�<br />

m<br />

jj<br />

Discrete-Time Markov-chains<br />

� p �<br />

jj<br />

� ( n�1)<br />

( n)<br />

p � p P�<br />

– The geometric distribution is a memoryless discrete probability<br />

distribution (the only one)<br />

<strong>2G1318</strong> <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong> <strong>systems</strong><br />

30


Summary<br />

• Continuous-time Markov chains<br />

• Balance equations (global, local)<br />

• Pure birth process <strong>and</strong> Poisson process<br />

• Birth-death process<br />

• Discrete time Markov chains<br />

EP2200 <strong>Queuing</strong> <strong>theory</strong> <strong>and</strong> <strong>teletraffic</strong><br />

<strong>systems</strong><br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!