25.01.2013 Views

Geometric properties Copyright Prof Schierle 2011 1

Geometric properties Copyright Prof Schierle 2011 1

Geometric properties Copyright Prof Schierle 2011 1

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 1


<strong>Geometric</strong> <strong>properties</strong><br />

Type of property: Defines:<br />

1. Cross section area A Axial stress fa and shear stress fv 2. Centroid C Center of mass (Neutral Axis)<br />

3. Moment of Inertia I Bending stress fb and deflection �<br />

4. Polar Moment of Inertia J Torsion stress �<br />

5. Section Modulus S Max. bending stress fb (S = I/c)<br />

6. Radius of Gyration r Column slenderness r = (I/A) 1/2<br />

Today’s topics:<br />

Centroid Centroidal Moment of Inertia, etc.<br />

Parallel Axis Theorem Moment of Inertia of composite sections<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 2


Centroid<br />

Centroid is the center of mass of a body or surface area.<br />

Beam centroid is the Neutral Axis of zero bending stress.<br />

Centroid also defines distributed load center of mass, etc.<br />

1 Centroid C of freeform body<br />

2 Centroid C of composite cross section<br />

(with centroid outside cross section area)<br />

Centroid is a point where the moment of all partial areas<br />

is zero, i. e., the area is balanced at the centroid.<br />

Defining the total area A =�da with lever arms x’ and y’<br />

from an arbitrary origin to partial areas da with lever<br />

arms x and y to that origin, yields:<br />

� Mx = 0 � x’A - � x da = 0<br />

A = �da � x’�da = �x da<br />

x’= �x da / �da<br />

y’= �y da / �da<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 3


X’=8/2=4”<br />

Centroid<br />

Beam centroid example<br />

Assume:<br />

A1 = 8”x2” A1 = 16 in 2<br />

A2 = 2 x 2” x 6” A2 = 24 in 2<br />

Y1 = 6 + 1 Y1 = 7”<br />

Y2 = 6/2 Y2 = 3”<br />

Due to symmetry:<br />

X’ = 8/2 X’ = 4”<br />

Y’= �AY / �A = (A1 Y1+A2 Y2) / (A1+A2)<br />

Part<br />

1<br />

2<br />

�<br />

A (in 2 )<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 4<br />

16<br />

24<br />

40<br />

Y (in)<br />

7<br />

3<br />

A Y (in 3 )<br />

112<br />

72<br />

184<br />

Y’ = 184 / 40 Y’ = 4.6”


1. T-beam centroid<br />

Part<br />

1<br />

2<br />

�<br />

A (in 2 )<br />

8x2 = 16<br />

2x6 = 12<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 5<br />

28<br />

Y (in)<br />

7<br />

3<br />

A Y (in 3 )<br />

Y’ = 148 / 28 Y’ = 5.29”<br />

2. Facade centroid<br />

Part<br />

1<br />

2<br />

�<br />

A (ft 2 )<br />

200x600 = 120,000<br />

2x100x600/2 = 60,000<br />

180,000<br />

Y (ft)<br />

300<br />

200<br />

Y’ = 48,000,000/180.000 Y’ = 267’<br />

3. Plan centroid (eccentricity = seismic torsion �)<br />

Part<br />

1<br />

2<br />

�<br />

A (ft 2 )<br />

2x34 = 68<br />

2x2x(34+20) = 216<br />

284<br />

X (ft)<br />

1<br />

64<br />

112<br />

36<br />

148<br />

A Y (ft 3 )<br />

36,000,000<br />

12,000,000<br />

48,000,000<br />

A X (ft 3 )<br />

68<br />

13,824<br />

13,892<br />

X’ = 13,892 / 284 X’ = 48.9’


Parallel Axis Theorem<br />

The Parallel Axis Theorem is used to find the<br />

Moment of Inertia for composite sections.<br />

1. Beam for derivation<br />

2. T-beam<br />

3. Box beam<br />

Consider the basic Moment of Inertia equation<br />

I = �ay2 Referring to diagram 1 yields:<br />

Ix= �a(y+y’) 2 = �ay2 + �2ayy’ + �ay’ 2<br />

(a+ b) 2 = a 2 + 2 ab + b 2<br />

a b<br />

I x= �ay 2 + 2y�ay’ + �ay’ 2<br />

where �ay’ = 0 since the partial moments above and<br />

below the centroid axis 0-0 cancel out.<br />

Hence:<br />

I x= �ay 2 + �ay’ 2<br />

Since �ay’ 2 = I o<br />

I x=�(I 0+ay 2 )<br />

The Moment of Inertia of composite beams is the sum of<br />

moment of inertia of each part + the cross section area<br />

of each part times their lever arm to the centroid squared.<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 6<br />

a 2<br />

ab<br />

ab<br />

b 2<br />

a<br />

b


Parallel Axis Theorem examples<br />

T-beam<br />

Part<br />

1<br />

2<br />

A (in 2 )<br />

2x6 3 /12 = 36<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 7<br />

12<br />

12<br />

Y (in)<br />

2<br />

2<br />

Ay 2 (in 4 )<br />

48<br />

48<br />

I 0 = bd 3 /12 (in 4 )<br />

6x2 3 /12 = 4<br />

� I x=<br />

I x (in 4 )<br />

52<br />

84<br />

136


Parallel Axis Theorem examples<br />

T-beam<br />

Part<br />

1<br />

2<br />

A (in 2 )<br />

2x6 3 /12 = 36<br />

<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 8<br />

12<br />

12<br />

Y (in)<br />

2<br />

2<br />

Ay 2 (in 4 )<br />

48<br />

48<br />

I 0 = bd 3 /12 (in 4 )<br />

6x2 3 /12 = 4<br />

� I x=<br />

Box-beam<br />

(2 MC13x50, A= 2x14.7 = 29.4, I= 2x 314 = 628)<br />

Part<br />

1<br />

2<br />

A (in 2 )<br />

29.4<br />

20<br />

Y (in)<br />

0<br />

7<br />

Ay 2 (in 4 )<br />

980<br />

2x10x1 3 /12= 2<br />

AISC Table: MC13x50 channel (AISC = American Institute of Steel Construction)<br />

I =<br />

0<br />

I 0 (in 4 )<br />

628<br />

� I x=<br />

I x (in 4 )<br />

52<br />

84<br />

136<br />

I x (in 4 )<br />

628<br />

982<br />

1610


<strong>Geometric</strong> <strong>properties</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2011</strong> 9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!