25.01.2013 Views

Structure selection and design Copyright Prof Schierle 2012 1

Structure selection and design Copyright Prof Schierle 2012 1

Structure selection and design Copyright Prof Schierle 2012 1

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 1


Selection criteria:<br />

1 Morphology<br />

2 Capacity Limits<br />

3 Code Requirements<br />

4 Cost<br />

5 Load Conditions<br />

6 Resources <strong>and</strong> Technology<br />

7 Sustainability<br />

8 Synergy<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 2


B<br />

Morphology<br />

Vertical / lateral systems:<br />

1 Shear walls are least flexible but good at<br />

apartments <strong>and</strong> hotels with party walls<br />

2 Cantilevers provide the least intrusion at<br />

ground floor<br />

3 Moment frames are most flexible, good<br />

for office buildings<br />

4 Braced frames are more flexible than<br />

walls but less than moment frames<br />

Bracing is usual around central cores<br />

A Concrete moment joint:<br />

Rebars extend through beam & column<br />

B Steel moment joint:<br />

Beam flanges welded to column flanges<br />

Stiffener plates between column flanges<br />

resist bending stress of beam flanges<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 3


Morphology<br />

Correlation of functional <strong>and</strong> structural morphologies<br />

should be considered in selecting structural systems<br />

• Shear walls complement apartments <strong>and</strong> hotels<br />

to serve also as sound barriers between units<br />

• Moment frames complement office buildings<br />

to allow flexible plans for changing rental needs<br />

• Long span structures complement exhibit halls,<br />

auditoria, etc. for unobstructed view<br />

Morphology can also be applied to elements:<br />

• Trusses restrict duct passage<br />

• Vierendeel girders allow duct passage<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 4


Horizontal steel systems<br />

1 Flush framing (joist top flush with beam)<br />

Expensive joist/beam connections<br />

Ducts below beam increase total depth<br />

2 Layered framing (joists on top of beams)<br />

Low-cost joist/beam connections<br />

Reduced total depth assuming:<br />

Ducts between beams<br />

Feeders between joists<br />

Less depth cuts curtain wall <strong>and</strong> AC costs<br />

3 S-shape joist <strong>and</strong> wide flange beams<br />

4 Moment joint<br />

5 Twin channels allow pipe passage<br />

6 Tubular beam <strong>and</strong> column<br />

7 Castillated beam (cut from T-shapes)<br />

increases strength <strong>and</strong> stiffness<br />

A Concrete slab on metal deck<br />

B Joist (S-shape, usual spacing ~ 10’)<br />

C Beam (wide flange, usual spacing ~ 30’)<br />

D Sp<strong>and</strong>rel beam<br />

E Wide flange column (usually W14)<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 5


�<br />

�<br />

Capacity Limits<br />

• Beam depth <strong>and</strong> weight increase with span<br />

• very long beam fails under its own weight<br />

• Economic limit is reached before most capacity<br />

is required to support self-weight<br />

• Short spans cost less than long spans<br />

• Like beams, other structures have capacity limits<br />

• Capacity limits also include minimum spans<br />

For example:<br />

• Cost of joints makes short trusses expensive<br />

• Cost of fittings makes short cables expensive<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 6


Span / depth ratios<br />

<strong>Structure</strong> elements <strong>and</strong> systems have optimal L/d<br />

(span / depth) ratios that may be defined as<br />

10–20–30 rule:<br />

• L/d = 10 for trusses <strong>and</strong> suspension cables<br />

• L/d = 20 for beams<br />

• L/d = 30 for slabs <strong>and</strong> decks<br />

Chinese carpentry proportions are documented in<br />

Building St<strong>and</strong>ards by Li Chieh, construction<br />

superintendent of Emperor Hui-tsung (1101-1125);<br />

considering beauty <strong>and</strong> structure as unified theme.<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 7


Truss<br />

L/d = 10<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 8


Girder / beam / joist<br />

L/d = 20<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 9


Concrete slab<br />

L/d = 30<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 10


Horizontal elements<br />

Span ranges <strong>and</strong> span / depth ratios of structure elements<br />

Span L<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 11<br />

Depth D


Horizontal systems<br />

Span ranges, span/depth ratios, span/thickness ratios of systems<br />

Span L<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 12<br />

Depth D


ype of Construction examples:<br />

ype I<br />

ype V<br />

Code Requirements<br />

Good <strong>design</strong> practice starts with code check:<br />

Building codes define Type of Construction<br />

based on fire resistance<br />

Floor area <strong>and</strong> height limits are based on<br />

Type of Construction <strong>and</strong> Occupancy<br />

• Type I may be steel, concrete, or masonry<br />

with no height <strong>and</strong> floor area limitation<br />

• Type II may be steel, concrete, or masonry<br />

with some height <strong>and</strong> floor area limitation<br />

• Type III, IV, <strong>and</strong> V may be of any material<br />

but subject to limited height <strong>and</strong> floor area<br />

• Codes define allowable stress for material:<br />

wood, steel, concrete, <strong>and</strong> masonry<br />

• Codes define floor live loads based on<br />

occupancy <strong>and</strong> roof load based on location<br />

• Codes define <strong>design</strong> methods <strong>and</strong> required<br />

loads for gravity, wind, <strong>and</strong> earthquakes<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 13


Rupture Length<br />

defines the<br />

stress/weight ratio<br />

Cost<br />

Cost is a major <strong>and</strong> often a deciding factor in<br />

selecting system <strong>and</strong> material.<br />

Cost of several options are usually compared<br />

General rules:<br />

• Wood structures cost less than other<br />

materials but are limited to low-rise<br />

• Wood platform framing is more common<br />

<strong>and</strong> costs less than heavy timber framing<br />

• Short spans cost less than long spans<br />

• Low-rise costs less than high-rise<br />

• Simple structures cost less than complex<br />

ones<br />

• Wall structures cost less than moment<br />

frames <strong>and</strong> braced frames<br />

Rupture length = length a material can<br />

hang without breaking under own weight<br />

(compression for concrete <strong>and</strong> masonry)<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 14


Earthquake<br />

Snow<br />

Wind<br />

Load Conditions<br />

Location <strong>and</strong> occupancy define load conditions<br />

• Roof live load = 20 psf in areas without snow, but<br />

may be up to 400 psf in mountains<br />

• Floor load depends on occupancy, for example:<br />

Office LL = 50 psf<br />

Library stack room LL = 125 psf<br />

• Light-weight structures are effective in areas of<br />

earthquakes, since seismic forces are<br />

mass times acceleration (f = m a)<br />

• Ductile steel <strong>and</strong> wood structures are effective to<br />

absorb dynamic seismic load<br />

• Stiff concrete shear walls are effective to resist wind<br />

load but they increase seismic load<br />

• Heavy structures are effective in areas of strong<br />

wind load, like Florida<br />

• Thermal loads are critical in areas of great<br />

temperature variation, like Chicago<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 15


Residential <strong>and</strong> schools<br />

Manufacturing<br />

ASCE 7, page 10<br />

ASCE 7 Table 4.1 excerpts of common live loads<br />

Assembly<br />

fixed seating = 60 psf<br />

movable seating = 100 psf<br />

light = 125 psf<br />

heavy = 250 psf<br />

reading room = 60 psf<br />

stack room = 150 psf<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 16<br />

Office<br />

Library<br />

40 psf<br />

50 psf<br />

Live load reduction<br />

Since large members are unlikely fully loaded,<br />

ASCE 7 allows live load reductions<br />

(except for public spaces <strong>and</strong> LL ≥ 100 psf):<br />

For members supporting ≥ 600 sq. ft.<br />

Reduction shall not exceed<br />

50% for members supporting 1 floor,<br />

60 % for members supporting 2 or more floors


Platform framing Heavy timber<br />

Heavy steel Light gauge steel<br />

Site cast concrete Precast concrete<br />

Masonry Membrane<br />

Resources & Technology<br />

Available resources <strong>and</strong> technology are<br />

important for structure systems <strong>and</strong> material<br />

Resources:<br />

• Wood structures require forests<br />

• Steel structures require iron ore<br />

• Concrete <strong>and</strong> masonry are widely available<br />

Technology:<br />

• Platform framing is very common in the<br />

US but unfamiliar in some other countries<br />

• Steel structures are common in the US<br />

Concrete is common in Asia <strong>and</strong> Europe.<br />

• Precast concrete requires nearby plant to<br />

reduce transportation cost<br />

• Masonry: old technology, labor intensive<br />

• Membrane structures: new technology<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 17


Sustainability<br />

Sustainability is an important<br />

to reduce future cost <strong>and</strong><br />

negative impact on the environment<br />

• Wood is the only renewable material<br />

with the lowest energy consumption<br />

for production<br />

• But wood is combustible <strong>and</strong> not<br />

allowed for type I & II construction)<br />

• Steel can be recycled but not renewed<br />

<strong>and</strong> requires more energy for<br />

production than wood<br />

• Concrete can be recycled but requires<br />

more energy for production than wood<br />

• Masonry can be recycled but requires<br />

more energy for production than wood<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 18


Synergy - a system, greater than the sum of its parts.<br />

Pragmatic example<br />

NO Synergy<br />

Synergy<br />

Comparing wood beams of 1”x12” boards.<br />

Stiffness is defined by the moment of inertia I:<br />

1 board, I = 12x13 /12 I = 1<br />

10 boards, I = 10 (12x13 /12) I = 10<br />

10 boards glued, I = 12x103 /12 I = 1000<br />

Strength is defined by Section modulus S = I/c:<br />

1 board, S = 1/o.5 S = 2<br />

10 boards, S = 10/0.5 S = 20<br />

10 boards, glued, S =1000/5 S = 200<br />

Note:<br />

The same amount of material is<br />

100 times stiffer<br />

10 times stronger<br />

when glued to engages fibers in tension <strong>and</strong> compression<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 19


Columns define plan <strong>and</strong> circulation<br />

Vaults define spatial character<br />

Design Synergy – Gothic cathedral example<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 20<br />

Buttresses resist vault thrust <strong>and</strong> define facade


Olympic Dome, Rome<br />

Architect: Piacentini<br />

Engineer: Nervi<br />

Synergy<br />

Prefab ribs:<br />

• Resist buckling<br />

• Provide lighting<br />

• Enhance acoustics<br />

• Define gestalt<br />

a stroke of genius<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 21


Conceptual <strong>design</strong> / analysis<br />

<strong>and</strong> testing methods<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 22


Schematic <strong>design</strong><br />

Global moment <strong>and</strong> shear may be used to analyze<br />

elements like beam, truss, cable, arch<br />

They all resist the global moment by a horizontal<br />

couple. The product of couple force F <strong>and</strong> its lever<br />

arm d resist the global moment:<br />

M = F d hence<br />

F = M / d<br />

Designation of force F varies:<br />

T (tension), C (compression), H (horizontal<br />

reaction). For simple support <strong>and</strong> uniform load:<br />

M = w L2 / 8<br />

V = w L / 2<br />

M = max. global moment<br />

V = maximum global shear<br />

w = uniform load per unit length<br />

L = span<br />

For other load or support conditions M <strong>and</strong> V are<br />

computed as for equivalent beams.<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 23


Assuming simply supported condition <strong>and</strong> uniform<br />

load, the max global shear occurs at supports <strong>and</strong><br />

max global moment at mid-span<br />

Beams resist bending by a couple, with 2/3 beam<br />

depth d as lever arm; compression C on top <strong>and</strong><br />

tension T on bottom.<br />

Trusses resist the global moment by top bar<br />

compression <strong>and</strong> bottom bar tension, with truss<br />

depth as lever arm (max chord forces @ max M)<br />

C = T = M / d<br />

Web bars resist shear (max force @ max shear)<br />

Suspension cables resist the global moment<br />

by horizontal reaction H times sag f as lever<br />

arm (max cable force at supports, where H, R<br />

<strong>and</strong> cable tension T form equilibrium vectors:<br />

T = (H 2 + R 2 ) 1/2<br />

Arches resist global moments like cables, but in<br />

compression instead of tension:<br />

C = (H 2 +R 2 ) 1/2<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 24


Radial pressure<br />

Referring to A:<br />

Radial pressure per unit length acting<br />

on a circular ring yields ring tension<br />

T = R p<br />

T = ring tension<br />

R = radius of ring curvature<br />

p = uniform radial pressure per unit length<br />

Units must be compatible:<br />

• If p is force / ft, R must be in feet<br />

• If p is force / m, R must be in meters<br />

Reversed pressure toward the ring center<br />

would reverse tension to compression.<br />

Proof<br />

Referring to ring segment B:<br />

• T acts normal to radius R<br />

• p acts normal to ring segment of length 1<br />

Referring to ring segment B <strong>and</strong> polygon C:<br />

• p <strong>and</strong> T represent equilibrium at o<br />

T / p = R / 1 (similar triangles), hence<br />

T = R p<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 25


Prestress<br />

The effect of prestress on cable structures is<br />

shown on a wire with <strong>and</strong> without prestress,<br />

subject to a load P applied at its center.<br />

1 Wire without prestress<br />

resists load P in upper link only<br />

Wire force F = P<br />

2 Wire with prestress PS<br />

resists load P in upper <strong>and</strong> lower link.<br />

Upper link increases: F = PS + P/2<br />

Lower link decreases: F = PS – P/2<br />

Prestress reduces deflection � to half<br />

3 Stress/strain diagram<br />

A Stress/strain without prestress<br />

B Stress/strain with prestress<br />

C Prestress reduced to zero (PS = 0)<br />

D Prestressed wire after PS = 0<br />

Note:<br />

Prestress should be half the stress under<br />

load + a reserve for thermal variation<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 26


Static test model<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 27


Static Model<br />

Static models may resist axial stress (truss),<br />

Bending stress (beam) or<br />

Combined stress (moment frame)<br />

Static models have three scales:<br />

Geometric Scale: S g= L m/L o (length scale)<br />

Force Scale: S f = P m/P o (force scale)<br />

Strain Scale: S s= � m/� o (strain scale)<br />

The strain scale may amplify small deflections,<br />

but should be 1:1 to avoid errors @ large strain<br />

The following derivations assume:<br />

A = Cross-section area<br />

E = Modulus of elasticity<br />

I = Moment of inertia<br />

m = Subscript for model<br />

o = Subscript for original structure<br />

Axial stress model<br />

Unit Strain � = �L/L<br />

�L = P L / (AE) hence<br />

Force P=A E �L/L= A E � hence<br />

S f = A mE m/(A oE o) S S<br />

S f = A mE m/(A oE o) If S S = 1<br />

S f = A m/A o = S g 2 If = E m = E o<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 28


Bending stress model<br />

Unit Strain � = � / L<br />

Strain � = kPL 3 / (EI)<br />

Force P = EI� / (kL 3 ) = EI / (kL 2 ) �<br />

Force Scale S f = P m / P o<br />

S f = [E mI m / (E oI o)] (k o / k m ) (L o 2 / Lm 2 ) (�m / � o)<br />

Since model <strong>and</strong> original have the same load<br />

<strong>and</strong> supports, the constants of integration<br />

k m = k o, hence k o/k m may be ignored; <strong>and</strong><br />

L o 2 / Lm 2 = 1 / SG 2<br />

� m / � o = S S<br />

Therefore the force scale is:<br />

S f = E mI m/(E oI o) (1/S g 2 ) Ss<br />

S f = E mI m/(E oI o) (1/S g 2 ) If Ss = 1<br />

S f = I m/I o (1/S g 2 ) If Em = E o<br />

S f = S g 2 If details are @ geometric scale<br />

Combined axial <strong>and</strong> bending resistance<br />

Models of both axial <strong>and</strong> bending resistance,<br />

such as moment frames, require all details<br />

are in geometric scale since<br />

• Cross section area increases linear with depth<br />

• Moment of Inertia increases at 3 rd power<br />

<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 29


<strong>Structure</strong> <strong>selection</strong> <strong>and</strong> <strong>design</strong> <strong>Copyright</strong> <strong>Prof</strong> <strong>Schierle</strong> <strong>2012</strong> 30<br />

�<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!