28.01.2013 Views

Topology Optimization of a Steel-Aluminium-Hybrid for an ...

Topology Optimization of a Steel-Aluminium-Hybrid for an ...

Topology Optimization of a Steel-Aluminium-Hybrid for an ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Altair EHTC<br />

<strong>Topology</strong> <strong>Optimization</strong> <strong>of</strong> a <strong>Steel</strong>-<strong>Aluminium</strong>-<strong>Hybrid</strong> <strong>for</strong> <strong>an</strong><br />

Automotive Body Structure<br />

Speaker: D. Funke (Imperia GmbH)<br />

November 4th, 2009<br />

Ludwigsburg


Page 2<br />

11/04/2009<br />

Agenda<br />

1. Common <strong>Hybrid</strong> Structures in today‘s Automotive Industry<br />

2. The <strong>Steel</strong>-<strong>Aluminium</strong>-<strong>Hybrid</strong>: VarioStruct<br />

3. Principle <strong>of</strong> <strong>Hybrid</strong> Structures<br />

4. Loadcases<br />

5. Dimensioning <strong>of</strong> the Sheet Metal Pr<strong>of</strong>ile<br />

6. Analogous Model <strong>for</strong> Rib <strong>Optimization</strong><br />

7. Dimensioning <strong>of</strong> Rib Structure with Submodel<br />

8. Dimensioning <strong>of</strong> Rib Structure with Component Model<br />

9. The VarioStruct Ro<strong>of</strong> Crossmember<br />

10. Mech<strong>an</strong>ical Properties <strong>of</strong> the VarioStruct Ro<strong>of</strong> Crossmember


Page 3<br />

11/04/2009<br />

1. Common <strong>Hybrid</strong> Structures in today‘s Automotive Industry<br />

Application <strong>of</strong> metal-plastic-hybrid in<br />

<strong>an</strong> automotive body<br />

Source: L<strong>an</strong>xess Source: Honda<br />

• Ro<strong>of</strong> crossmember with master<strong>for</strong>med<br />

plastic rein<strong>for</strong>cement<br />

• Form closure<br />

<strong>Steel</strong>-lightmetal-composite casting<br />

in motor m<strong>an</strong>ufacture<br />

• Engine block with cast-in cylinder<br />

liners<br />

• Form closure<br />

• Metallic continuity<br />

� Thin-walled steel-lightmetal-hybrids <strong>for</strong> automotive body structures


Page 4<br />

11/04/2009<br />

2. The <strong>Steel</strong>-<strong>Aluminium</strong>-<strong>Hybrid</strong>: VarioStruct<br />

Material 1 (Sheet)<br />

• property pr<strong>of</strong>ile 1<br />

+<br />

• <strong>Aluminium</strong> rib structure casted in steel sheet pr<strong>of</strong>ile<br />

• Adv<strong>an</strong>tage <strong>of</strong> both material will be taken<br />

• Connection steel ↔ casting<br />

• Complex cast structures with sheetmetals possible<br />

• High potential <strong>of</strong> integration<br />

Material 2 (Cast)<br />

• property pr<strong>of</strong>ile 2<br />

• Possible to combine other materials<br />

master<br />

<strong>for</strong>ming<br />

<strong>Steel</strong>-<strong>Aluminium</strong>-<br />

<strong>Hybrid</strong><br />

metallic continuity<br />

<strong>for</strong>m closure<br />

continued sheet metal<br />

cast c<strong>an</strong>tilever<br />

assembly<br />

attachment<br />

extrusion joint<br />

frictional<br />

connection


Page 5<br />

11/04/2009<br />

3. Principle <strong>of</strong> <strong>Hybrid</strong> Structures<br />

F<br />

Conventional<br />

sheet metal structure<br />

F<br />

<strong>Hybrid</strong><br />

structure<br />

• Prevention <strong>of</strong> local buckling<br />

• Limitation <strong>of</strong> plastic hinges<br />

� less weight<br />

� higher energyabsorption<br />

supporting<br />

effect<br />

Maximum supporting effect:<br />

� Optimal dimensioning <strong>of</strong> cast ribs<br />

� Design proposal: topology optimization with OptiStruct<br />

Conventional sheet metal structure<br />

cross section<br />

height<br />

<strong>Hybrid</strong> structure<br />

cross section height


Page 6<br />

11/04/2009<br />

4. Loadcases<br />

Example <strong>of</strong> Submodel<br />

• Ro<strong>of</strong> impact<br />

• Torsion<br />

Design space<br />

• Pole impact<br />

F<br />

Combination <strong>of</strong> all<br />

loadcases<br />

F<br />

F<br />

F<br />

Component Model<br />

• 3-point-bending, centric<br />

• 3-point-bending, excentric<br />

F<br />

F<br />

• Axial compression<br />

Combination <strong>of</strong> all<br />

loadcases<br />

F


Page 7<br />

11/04/2009<br />

5. Dimensioning <strong>of</strong> the Sheetmetal Pr<strong>of</strong>ile<br />

• <strong>Topology</strong> optimization (solids)<br />

• Submodel<br />

• Combination <strong>of</strong> all loadcases<br />

Result <strong>of</strong> topology optimization Derived pr<strong>of</strong>ile <strong>of</strong> sheetmetal<br />

� Next step: dimensioning <strong>of</strong> rib structure


Page 8<br />

11/04/2009<br />

6. Analogous Model <strong>for</strong> Rib <strong>Optimization</strong><br />

• Application <strong>of</strong> volume elements<br />

� Elements ↑, calculation time ↑<br />

� Maximum rib thickness ↔ element size (Maxdim = 6 * l c )<br />

• Remedial action with approach by Hartzheim [1]<br />

• Design space: shell elements<br />

• Approximation <strong>of</strong> volume: rigid bars<br />

� Elements ↓<br />

� High resolution with small elements<br />

� � thin ribs<br />

[1] HARTZHEIM, Lothar: Strukturoptimierung, Verlag Harri Deutsch, Fr<strong>an</strong>kfurt, 2008<br />

shell layer 1, design space<br />

rigid bar<br />

shell layer 2, sheetmetal, nondesign space


Page 9<br />

11/04/2009<br />

7. Dimensioning <strong>of</strong> Rib Structure with Submodel<br />

• <strong>Topology</strong> optimization (shells)<br />

• Submodel<br />

• Combination <strong>of</strong> all loadcases<br />

• Suitable <strong>for</strong> outer rib structures<br />

Iteration 10<br />

Iteration 20<br />

Iteration 30<br />

derived structure<br />

design space<br />

� Next step: dimensioning <strong>of</strong> rib structure in crossmember‘s middle area


Page 10<br />

11/04/2009<br />

8. Dimensioning <strong>of</strong> Rib Structure with Component Model<br />

F<br />

• <strong>Topology</strong> optimization (shells)<br />

• Component model<br />

• Combination <strong>of</strong> all loadcases<br />

• Suitable <strong>for</strong> inner rib structures<br />

F<br />

F<br />

ribs derived from first optimization<br />

Iteration 15<br />

Iteration 25<br />

Iteration 36<br />

design space<br />

� Next step: derive initial rib structure <strong>for</strong> nonlinear optimization


Page 11<br />

11/04/2009<br />

9. The VarioStruct Ro<strong>of</strong> Crossmember<br />

component model<br />

loadcases, constrains, designspace, ...<br />

topology optimization, solids<br />

topology optimization, shells<br />

derive rib structure<br />

submodel<br />

initial design<br />

nonlinear optimization (crash loadcases)<br />

final design


Page 12<br />

11/04/2009<br />

10. Mech<strong>an</strong>ical Properties <strong>of</strong> the VarioStruct Ro<strong>of</strong> Crossmember<br />

<strong>Hybrid</strong> structure Conventional sheetmetal structure


Page 13<br />

11/04/2009<br />

11. Mech<strong>an</strong>ical Properties <strong>of</strong> the VarioStruct Ro<strong>of</strong> Crossmember<br />

• 3-point-bending test<br />

Force [-]<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Conventional<br />

Original<br />

VarioStruct<br />

0 50 100<br />

Displacement [mm]<br />

120%<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

75% 106% 112%<br />

Mass Maximum<br />

Force<br />

Absorbed<br />

Energy


Page 14<br />

11/04/2009<br />

Th<strong>an</strong>ks to BMBF<br />

Th<strong>an</strong>ks to project partners<br />

Th<strong>an</strong>ks <strong>for</strong> support in research project from


Page 15<br />

11/04/2009<br />

Imperia GmbH<br />

Automotive Engineering<br />

Soerser Weg 9<br />

D-52070 Aachen<br />

Dipl.-Ing. (FH) David Funke<br />

Tel.: +49 - (0)2 41 - 6 08 33-15<br />

Fax: +49 - (0)2 41 - 6 08 33-20<br />

Mail: funke@imperia.info<br />

Dipl.-Ing. Niels Nowack<br />

Tel.: +49 - (0)2 41 - 6 08 33-14<br />

Fax: +49 - (0)2 41 - 6 08 33-20<br />

Mail: nowack@imperia.info<br />

Th<strong>an</strong>k you <strong>for</strong> your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!