04.02.2013 Views

Download this Presentation - Altair Technology Conference 2013

Download this Presentation - Altair Technology Conference 2013

Download this Presentation - Altair Technology Conference 2013

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Cassidian Air Systems<br />

Integrated CAE Solutions<br />

Multidisciplinary Structure Optimisation with<br />

CASSIDIAN LAGRANGE<br />

2011 European HyperWorks <strong>Technology</strong> <strong>Conference</strong><br />

Dr. Fernass Daoud, Head of Design Automation and Optimization


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 2


Introduction<br />

Airbus<br />

Dr. Gerd Schuhmacher<br />

Introduction: EADS and Cassidian Structure<br />

Tom Enders (CEO)<br />

Fabrice Brégier (COO)<br />

Airbus Military<br />

Domingo Ureña-Raso<br />

MBDA<br />

A. Bouvier<br />

Eurocopter<br />

Lutz Bertling (CEO)<br />

Cassidian<br />

Systems<br />

H. Guillou<br />

Cassidian<br />

Stefan Zoller<br />

(CEO)<br />

Cassidian<br />

Electronics<br />

B. Wenzler<br />

© 2010 CASSIDIAN - All rights reserved Page 3<br />

EADS Astrium<br />

François Auque (CEO)<br />

Cassidian<br />

Air Systems<br />

B. Gerwert<br />

EADS<br />

Divsions<br />

Cassidian<br />

Business<br />

Units


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 5


Motivation<br />

Dr. Gerd Schuhmacher<br />

Motivation<br />

Challenges of the Multidisciplinary Airframe Design Process<br />

• The aircraft design process requires the combination of a broad spectrum of<br />

commercial as well as company specific analysis and sizing methods:<br />

– a broad spectrum of A/C (company-) specific strength and stability analysis<br />

methods<br />

– company specific aerodynamic and aero-elastic / loads analysis methods<br />

– company specific composite analysis, design and manufacturing methods.<br />

• The aircraft design is driven by a huge number of multidisciplinary design<br />

criteria (manoeuvre, gust and ground loads, aeroelastic efficiencies, flutter<br />

speeds, strength and stability criteria, manufacturing requirements etc.)<br />

resulting from different disciplines (loads, flight controls, dynamics, stress,<br />

design, etc.)<br />

• The design process needs to consider and meet all these design driving<br />

criteria simultaneously, in order to determine an optimum compromise<br />

solution, i.e. all disciplines and multidisciplinary design criteria driving the<br />

airframe structural sizes and the composite lay-up need to be combined and<br />

have to interact within an integrated airframe design process.<br />

© 2010 CASSIDIAN - All rights reserved Page 6


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 8


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Automation of the Global Airframe Development Process<br />

Dr. Gerd Schuhmacher<br />

1. Aerodynamic Analysis<br />

and Loft Optimization<br />

2. Loads Analysis<br />

and Aeroelastics<br />

Load Loops<br />

3. Structural Analysis<br />

and Sizing<br />

© 2010 CASSIDIAN - All rights reserved Page 9<br />

Aerodynamics Optimization<br />

LAGRANGE:<br />

Automation of Loads<br />

and Sizing Loop<br />

Structures + Loads (2007-11)<br />

Structural Optimization (until 2006)<br />

Aerodynamic Shape + Structural Sizes (2012+)


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Structural<br />

Concept<br />

Material<br />

Selection<br />

Dr. Gerd Schuhmacher<br />

Key-<br />

Diagram<br />

Property Selection<br />

1. Loop: (guess / engineering judgement)<br />

Traditional Sizing Process<br />

Aerodynamic Loft,<br />

Inboard Profile<br />

Panel Model<br />

Mass Loads<br />

Loads Loop<br />

GFEM*)<br />

Property Update<br />

for follow up Loops<br />

modified for Dyn.<br />

Sizing Loop<br />

© 2010 CASSIDIAN - All rights reserved Page 10<br />

SDC Requirements,<br />

Parameter envelope<br />

Manual Sizing<br />

(global / local<br />

strength & stability checks)<br />

Check Stress<br />

*) No mass application => no correlation between stiffness & masses<br />

**) Dynamic landing and dynamic gust loads.<br />

NOT SYNCHRONISED with static loads<br />

**)<br />

FCS<br />

Dynamic<br />

Model<br />

Dynamic<br />

Loads<br />

Flutter<br />

not<br />

fulfilled<br />

Aerodynamics,<br />

Preliminary Design<br />

Design<br />

Stress<br />

Loads<br />

Dynamics<br />

Mass


Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

Dr. Gerd Schuhmacher<br />

Multidisciplinary Airframe Design Optimization Process<br />

Structural<br />

Concept<br />

Key-<br />

Diagram<br />

Material<br />

Selection<br />

Mass<br />

Property Selection<br />

Aerodynamic Loft,<br />

Inboard Profile<br />

Panel Model<br />

Dynamic<br />

Nodal loads<br />

GFEM**)<br />

Prelim. Dynamic<br />

Checks<br />

1. Loop : (acc. to mass breakdown)<br />

Flight Physics<br />

Loads<br />

select design<br />

driving manoeuvres<br />

*) Within Block 0 dynamic nodal loads will be<br />

provided externally. Integration into process ongoing<br />

**) stiffness & masses in correlation<br />

***) 1st Global Sizing Loop performed<br />

MDO<br />

(Loads,<br />

Stress,<br />

Dynamics)<br />

Balanced<br />

GFEM<br />

***)<br />

© 2010 CASSIDIAN - All rights reserved Page 11<br />

Dynamic<br />

Check<br />

Property Update<br />

Manual Sizing<br />

(global / local<br />

for prob. follow up Loops<br />

Check Stress<br />

strength & stability checks)<br />

Loads<br />

Check<br />

Checks with tools<br />

from traditional<br />

Sizing Process<br />

Aerodynamics<br />

Design<br />

Stress<br />

Loads<br />

Dynamics<br />

Mass


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 12


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Eurofighter<br />

Composite Wing & Fin<br />

Talarion<br />

Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

A400M Rear Fuselage<br />

& Cargo Door<br />

Dr. Gerd Schuhmacher<br />

Large Spectrum of applications in Military and Civil Aircraft Design<br />

X31 CFC Wing<br />

Multidisciplinary Analysis and Optimization Software Tool<br />

FEM<br />

Statics<br />

Aeroelasticity<br />

Steady Flutter Gust<br />

Dynamics<br />

Stability<br />

Aerodynamics<br />

Doublet<br />

Lattice<br />

Higher<br />

Order<br />

© 2010 CASSIDIAN - All rights reserved Page 13<br />

Skill Tools<br />

Strength<br />

Buckling<br />

Postbuckling<br />

Design for<br />

Manufacturing<br />

Composite Design<br />

Models & Manufact.<br />

Constraints<br />

• Developed by CASSIDIAN Air Systems since 1984<br />

• More then 140 man-years of development<br />

A380 Leading Edge Rib<br />

A350 Wing<br />

A350 Fuselage


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Multidisciplinary Analyses within the Optimization Process<br />

• Simultaneous consideration of aiframe design driving disciplines during<br />

analysis and optimisation:<br />

Stress<br />

Dr. Gerd Schuhmacher<br />

Optimisation<br />

Optimisation model<br />

Criteria model<br />

Optimisation runs<br />

Manufacturing<br />

Minimum & maximum<br />

thickness / dimensions<br />

Composite manuf. rules<br />

Thickness jumps, etc.<br />

Dynamics<br />

Frequency<br />

requirements<br />

Flutter speed<br />

DLM model<br />

for unsteady<br />

aeroelasticity<br />

© 2010 CASSIDIAN - All rights reserved Page 14<br />

Stressing criteria<br />

(strength & stability)<br />

On basis of GFEM<br />

(with mass data)<br />

Aeroelasticity<br />

Aeroelastic<br />

efficiencies<br />

Flutter speed<br />

Gust<br />

Aeroelastic<br />

requirements<br />

Loads<br />

Selected design<br />

driving manoeuvres<br />

including flight<br />

conditions for each<br />

manoeuvre<br />

Aerodynamic<br />

HISSS model<br />

Coupling model<br />

(Beaming)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

hh<br />

bb<br />

Shear walls & longerons<br />

• Cross-sectional dimensions<br />

• Skin thicknesses<br />

Dr. Gerd Schuhmacher<br />

Structural Components to be optimized<br />

bb<br />

ee<br />

cc<br />

DD<br />

Composite & Metallic Stringer<br />

• Cross-sectional dimensions<br />

• Ply thicknesses<br />

Stringer-stiffened panels:<br />

• Cross-sectional dimensions<br />

• Skin thicknesses<br />

© 2010 CASSIDIAN - All rights reserved Page 15<br />

bb<br />

ee<br />

11<br />

Composite & Metallic Skin:<br />

• Ply thicknesses / fibre orientation<br />

e.g. composite skin (wing, fuselage,<br />

taileron)<br />

Metallic frames:<br />

• Cross-sectional dimensions


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Multidisciplinary Analysis Types<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 16<br />

FEM<br />

Optimisation Model<br />


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 17<br />

hh<br />

bb<br />

bb<br />

ee<br />

cc<br />

DD<br />

• Omega profile<br />

• T profile<br />

• Box profile<br />

• C profile<br />

• LZ profile<br />

bb<br />

ee<br />

� Geometric Sizes +<br />

Composite-Lay-up<br />

FEM<br />

11<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 18<br />

FEM<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

…<br />

Criteria Model<br />

HISSS<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 19<br />

FEM<br />

Optimisation Model<br />

Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

comp<br />

� � �xxxx�s<br />

© 2010 CASSIDIAN - All rights reserved Page 20<br />

allow<br />

tens<br />

� � �yyyy�s<br />

allow<br />

FEM<br />

Damage Tolerance & Repairability<br />

• Yamada-Sun<br />

• Puck<br />

• Tsai-Hill<br />

• ….<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 21<br />

w eff<br />

• Skin & Column Buckling<br />

for isotropic, orthotropic<br />

and anisotropic skins<br />

FEM<br />

• Post-Buckling for isotropic<br />

and composite structures<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

Dr. Gerd Schuhmacher<br />

Design Variables and Design Criteria<br />

• Multidisciplinary structure optimisation (variable structure & variable loads)<br />

Criteria Model<br />

Strength (diverse models<br />

depending on failure criteria)<br />

Analytical buckling analysis (also<br />

theory 2nd order)<br />

Local stability analysis (for critical<br />

parts of cross-section), crippling<br />

Displacements (stiffness<br />

requirements)<br />

Constraints for natural frequencies<br />

aeroelastic requirements (steady,<br />

unsteady): efficiencies, flutter, etc.<br />

Manufacturing constraints<br />

HISSS<br />

Constraints for trimmed flight and<br />

landing manoeuvres<br />

Analysis Model<br />

Linear Statics<br />

Linear Dynamics<br />

Steady Aeroelastics<br />

Unsteady Aeroelastics<br />

© 2010 CASSIDIAN - All rights reserved Page 22<br />

FEM<br />

Optimisation Model<br />

… Parametric model defining the design<br />

variables:<br />

• Cross-sectional area of bars (sizing)<br />

• Thickness of shell or membrane<br />

elements (sizing)<br />

• Ply thickness of composites (sizing)<br />

• Fibre orientation in composite stacks<br />

(angles)<br />

• Coordinates of FE nodes (shape)<br />

• Coordinates of control points (CAD,<br />

NURBS)<br />

• Trimming variables (angles of attack)


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 25


Overview on past applications<br />

Eurofighter (�1985)<br />

Composite Wing & Fin<br />

Trainer Wing (2000)<br />

Composite Wing& Fin<br />

Dr. Gerd Schuhmacher<br />

Overview on past applications<br />

X-31A Wing (1990)<br />

Composite Wing<br />

A400M (2004-2006)<br />

Rear Fuselage Skin+Frames<br />

© 2010 CASSIDIAN - All rights reserved Page 26<br />

Stealth Demonstrator (1995)<br />

Full A/C Design<br />

Advanced UAV (2006 + )<br />

Composite Wing


Application of MDO at Cassidian (2)<br />

A350 XWB VTP Optimisation<br />

A30X Wing Optimisation<br />

Topology & Sizing Optimization<br />

of Sec. 19, A350<br />

• > 20 % weight reduction !<br />

Page 27<br />

Dr. Gerd Schuhmacher<br />

Overview on selected Applications<br />

Optimum Composite<br />

Sizing Layout within 2<br />

Month (MAS-<br />

Acquisition phase)<br />

• Optimum Composite Sizing<br />

of several variants with 2<br />

FTE * 12 Month (AI UK)<br />

• > 35 % weight saving<br />

(compared to AL-design)!<br />

© 2010 CASSIDIAN - All rights reserved Page 27<br />

A350 XWB Wing Optimisation<br />

ca. 3000 DV<br />

250 000 Constraints<br />

Aeroelastics<br />

• Optimum Composite<br />

Sizing of 40 Variants with<br />

3 FTE * 6 Month for AI<br />

Toulouse<br />

• ca. 20 % weight saving !<br />

A350 XWB Fuselage Optimisation Sec. 13-14<br />

ca. 15000 DV<br />

1000 000 Constraints<br />

A380 Leading Edge Rib Optimization<br />

• Optimum Composite Sizing<br />

with 2 FTE * 5 Month<br />

• Feasible Design without<br />

weight increase ! (PAG)<br />

• > 40 % weight reduction !


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 34


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Application to the Unmanned Aerial Vehicle Talarion<br />

Unmanned surveillance and reconnaissance aircraft<br />

Appr. Dimensions: Length: 14 m; Height: 4,5 m ; Span 26 m<br />

Take-off weight : 8000 kg class<br />

Performance<br />

Loiter Speed: >200 ktas<br />

Ceiling: > 43 kft<br />

Endurance: > 20 h class<br />

© 2010 CASSIDIAN - All rights reserved Page 35


Application to the Unmanned Aerial Vehicle Talarion<br />

• Objective:<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

– Mass estimation<br />

• In consideration of<br />

– Flight-Physical constraints<br />

– Strength<br />

– Stability<br />

– Manufacturing<br />

FE Model<br />

Analysis Model:<br />

Fully coupled<br />

structure-aerodynamic<br />

(Aeroelastic)<br />

© 2010 CASSIDIAN - All rights reserved Page 36<br />

Automation of both loops:<br />

Loads & Sizing Loop<br />

Aerodynamic Model


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Phase 1: Manoeuvre load simulation<br />

• Requirements:<br />

– (full aircraft) finite element model<br />

– (full aircraft) aerodynamic model<br />

HISSS (Higher Order Sub- and<br />

Supersonic Singularity Method) or<br />

DLM (Doublet Lattice) panel model<br />

– Coupling model:<br />

Beaming & Splining Methods used in order to<br />

transfer aerodynamic loads to the FE-Model<br />

and structural deflections to the Aero-Model<br />

i.e. fully coupled analysis models, without<br />

condensation<br />

© 2010 CASSIDIAN - All rights reserved Page 37<br />

FE model<br />

aerodynamic<br />

model


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Manoeuvre Load Simulation<br />

• Based on the Mission and Structural Design Criteria the flight envelope is<br />

established and scanned (10 3 - 10 5 manoeuvres) in order to determine the<br />

design driving, steady manoeuvres with maximum loads<br />

� Down selection of design driving steady manoeuvres (~10 2 manoeuvres).<br />

© 2010 CASSIDIAN - All rights reserved Page 38


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Manoeuvre Load Simulation<br />

• Each design driving, steady manoeuvre can be described by the<br />

– Mass configuration and CoG position<br />

– Altitude<br />

– Mach number<br />

– Accelerations and rotational speeds (up to 9 values)<br />

• Global Equilibrium of Forces and Moments has to be achieved for these<br />

pre-scribed manoeuvres of the elastic aircraft:<br />

Flight Parameter<br />

© 2010 CASSIDIAN - All rights reserved Page 39<br />

F y(inertia) + F y(aerodynamic) = 0<br />

F z(inertia) + F z(aerodynamic) = 0<br />

M x(inertia) + M x(aerodynamic) = 0<br />

M y(inertia) + M y(aerodynamic) = 0<br />

M z(inertia) + M z(aerodynamic) = 0


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Steady manoeuvre loads analysis within LAGRANGE<br />

Trimming Process<br />

• For each steady manoeuvre (Mass, CoG, Altitude, Mach, Accelerations)<br />

the angles of attack (pitch angle, yaw angle and the AoA of the control<br />

surfaces are determined by minimizing the residual forces.<br />

β:<br />

mainly trim sideslip<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

β<br />

α<br />

α:<br />

mainly trim lift<br />

Flight Parameter<br />

sym. elevators:<br />

mainly trim pitch axis<br />

rudder:<br />

mainly trim yaw axis<br />

sym. elevators:<br />

mainly trim pitch axis<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

© 2010 CASSIDIAN - All rights reserved Page 40<br />

F y(inertia) + F y(aerodynamic) = 0<br />

F z(inertia) + F z(aerodynamic) = 0<br />

M x(inertia) + M x(aerodynamic) = 0<br />

M y(inertia) + M y(aerodynamic) = 0<br />

M z(inertia) + M z(aerodynamic) = 0<br />

alfa = - xx °<br />

beta = - yy °<br />

delta aileron = zz °<br />

delta elevator = hh °<br />

delta rudder = kk °


Application to the Unmanned Aerial Vehicle Talarion<br />

Under Development<br />

Dr. Gerd Schuhmacher<br />

Integration of Transient Gust into Optimisation<br />

A “gust case” is defined as a combination of:<br />

a) steady manoeuvre: flight condition and mass configuration (c.o.g. position !)<br />

(altitude & aircraft speed; usually 1g cruise)<br />

b) gust condition: wave-length and up- or down wind gust velocity and<br />

incidence angle (usually sinusoidal shaped)<br />

� leading to huge amount of different gust cases<br />

(up to ~10000), which have to be considered !<br />

example:<br />

© 2010 CASSIDIAN - All rights reserved Page 43<br />

~<br />

evaluated<br />

time steps<br />

(approx. 1000)<br />

flight condition<br />

(incl. mass configuration)<br />

gust wave<br />

length<br />

gust up-<br />

wind profile


Application to the Unmanned Aerial Vehicle Talarion<br />

Under Development<br />

Dr. Gerd Schuhmacher<br />

Many gust blocks<br />

gust block for selected mass configuration<br />

Many gust cases<br />

gust case =<br />

Gust Process<br />

incremental gust analysis<br />

• specific mass configuration,<br />

• specific incidence angle,<br />

• specific wave length,<br />

• specific speed,<br />

• specific altitude<br />

+<br />

basic flight attitude<br />

• trimmed aeroelastic steady manoeuvre<br />

• for specific mass configuration,<br />

• specific altitude,<br />

• specific speed<br />

• to be superimposed to an incremental gust<br />

© 2010 CASSIDIAN - All rights reserved Page 44<br />

Database<br />

(HDF5)<br />

evaluation of all<br />

gust cases for<br />

selected mass<br />

configuration<br />

• Implementation of the Incremental Gust Response and the Sensitivities is completed.<br />

• Implementation process for the fully automated determination of the design driving<br />

time steps and the superposition to manoeuvre load cases is ongoing.


Application to the Unmanned Aerial Vehicle Talarion<br />

Currently under<br />

development<br />

Dr. Gerd Schuhmacher<br />

Application to the Unmanned Aerial Vehicle Talarion<br />

Summary for Phase 1: Manoeuvre, Gust and Landing Loads Analysis<br />

• The manoeuvre load simulation of elastic aircraft (fully coupled aerodynamicstructure<br />

model) is combined with a trimming process (optimisation task) in<br />

order to provide the distributed, elastic aircraft manoeuvre loads.<br />

• The distributed aerodynamic and inertia loads are directly applied to the global,<br />

non-condensed FE model, providing the stresses and displacements for the<br />

subsequent strength and stability analysis.<br />

• Gust loads are determined as incremental dynamic response. The time steps<br />

resulting in maximum local stresses are determined and the resulting<br />

deflections are superimposed to the corresponding steady manoeuvres.<br />

• Landing Gear Loads are determined by an external Multi-Body-Analysis and<br />

then applied to the global full aircraft model in order consider them in the sizing<br />

process.<br />

• By incorporating the loads analysis into the optimisation platform LAGRANGE<br />

both very time consuming loops (loads & sizing) are automated.<br />

© 2010 CASSIDIAN - All rights reserved Page 45


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

Phase 2: Multidisciplinary Sizing optimisation<br />

Criteria Model<br />

• Strength analysis:<br />

• Damage tolerance<br />

• Von Mises<br />

• Skin buckling (for composite skin and<br />

metallic shear walls)<br />

• Column buckling<br />

• Flight-Physics:<br />

• Force equilibrium in Y, Z<br />

• Moment equilibrium around X, Y, Z<br />

Analysis Model<br />

© 2010 CASSIDIAN - All rights reserved Page 46<br />

Aeroelastic analysis<br />

Manoeuvre Simulation<br />

trimming Process Optimisation Model<br />

• Ply thickness of composite skin<br />

• Thickness of metallic shear walls<br />

• Cross-sectional areas of stringers<br />

• Trimming variables


Application to the Unmanned Aerial Vehicle Talarion<br />

• Optimisation Model:<br />

Dr. Gerd Schuhmacher<br />

Stacking sequence:<br />

Talarion Rapid Fuselage Design Study<br />

2312 elements linked to 43 patches<br />

45°<br />

-45°<br />

90°<br />

0°<br />

45°<br />

-45°<br />

90°<br />

0°<br />

0°<br />

90°<br />

-45°<br />

45°<br />

0°<br />

90°<br />

-45°<br />

45°<br />

Composite skin Composite/Metallic Stringer<br />

16 layers<br />

linked to 3 design variables<br />

129 design variables<br />

(3 * 43 patches)<br />

4212 elements linked to 174 patches<br />

174 design variables<br />

(1 * 174 patches)<br />

Total: 1015 design variables<br />

© 2010 CASSIDIAN - All rights reserved Page 47<br />

Metallic Shear Walls<br />

8087 elements linked to 712<br />

patches<br />

712 design variables<br />

(1 * 712 patches)


Analysis Model: Steady Aeroelasticity<br />

• Optimisation Model:<br />

Dr. Gerd Schuhmacher<br />

β:<br />

mainly trim sideslip<br />

Talarion Rapid Fuselage Design Study<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

β<br />

α<br />

sym. elevators:<br />

mainly trim pitch axis<br />

α:<br />

mainly trim lift<br />

5 design variables for each load case<br />

~ 50 Load cases<br />

________________________________<br />

~250 Design variables<br />

rudder:<br />

mainly trim yaw axis<br />

sym. elevators:<br />

mainly trim pitch axis<br />

antimetric ailerons:<br />

mainly trim roll axis<br />

© 2010 CASSIDIAN - All rights reserved Page 48


Application to the Unmanned Aerial Vehicle Talarion<br />

• Criteria Model:<br />

Composites:<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

Maximum strain (Damage Tolerance)<br />

36992 constraints * 34 load cases<br />

Metallic:<br />

Von Mises stress<br />

Strength Stability<br />

12299 constraints * 34 load cases<br />

1.675.894 strength constraints<br />

Skin & shear wall buckling:<br />

© 2010 CASSIDIAN - All rights reserved Page 49<br />

1080 constr. * 34 load cases<br />

Total: 1.726.860 constraints<br />

Stringer Column Buckling:<br />

419 constr. * 34 load cases<br />

50966 buckling constraints


Optimisation at Cassidian Air Systems<br />

• Criteria Model:<br />

�<br />

�<br />

�<br />

Dr. Gerd Schuhmacher<br />

Flight-Physics<br />

M<br />

M<br />

M<br />

x<br />

y<br />

z<br />

� 0<br />

� 0<br />

� 0<br />

�<br />

�<br />

5 constraints / load case<br />

~ 50 load cases<br />

_________________<br />

~ 250 constraints<br />

Talarion Rapid Fuselage Design Study<br />

Y � 0<br />

Z � 0<br />

© 2010 CASSIDIAN - All rights reserved Page 50<br />

Flutter Displacement<br />

Manufacturing<br />

_________________<br />

1 flutter constraint /<br />

mass configuration<br />

U<br />

�<br />

max<br />

max<br />

~ 5 Displacement<br />

constraints / load case<br />

50 load cases<br />

________________<br />

~ 250 constraints<br />

hh<br />

bb<br />

�ttot �ttot<br />

ttot1 ttot1<br />

bb<br />

ee<br />

Layer thickness fitting:<br />

8layer * 47 steps = 376<br />

Minimum relative group<br />

thickness: 147<br />

Minimum absolute stack<br />

thickness: 49<br />

______________<br />

572 constraints<br />

ttot2 ttot2<br />

cc<br />

DD<br />

bb<br />

ee<br />

11


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

• Skin Thickness & overall Reserve Factor:<br />

Total Thickness<br />

Composite Skin<br />

© 2010 CASSIDIAN - All rights reserved Page 51<br />

Overall R f


Application to the Unmanned Aerial Vehicle Talarion<br />

Dr. Gerd Schuhmacher<br />

Talarion Rapid Fuselage Design Study<br />

• Thickness of Metallic Shear Walls, Frames, Floors & overall Reserve<br />

Factor:<br />

Total Thickness<br />

Metallic Shear Walls, Frames, Floor<br />

© 2010 CASSIDIAN - All rights reserved Page 52<br />

Overall R f<br />

All Results are available in different formats (colour<br />

plots, Excel Tables, Database etc.)


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 53


Under Development<br />

Four distinct decks of the Lagrange input file to be considered<br />

Dr. Gerd Schuhmacher<br />

LAGRANGE Input deck<br />

LAGRANGE Profile in HyperMesh<br />

Design Control Deck<br />

(control commands)<br />

NASTRAN-<br />

Deck<br />

Case Control<br />

Deck<br />

Optimization Data Deck<br />

(optimization data)<br />

LAGRANGE Profile I/O<br />

Bulk Data Deck<br />

� loads reduced NASTRAN template<br />

...<br />

...<br />

...<br />

ENDCONTROL<br />

...<br />

...<br />

...<br />

BEGIN BULK<br />

...<br />

...<br />

...<br />

ENDDATA<br />

...<br />

...<br />

...<br />

ENDE<br />

� uses standard NASTRAN I/O- procedures (CCD & BDD)<br />

� provides extended I/O- features (DCD and ODD)<br />

© 2010 CASSIDIAN - All rights reserved Page 54<br />

Chap. 3<br />

Chap. 4<br />

Chap. 5<br />

to<br />

Chap. 8<br />

HM user-page


Under Development<br />

Dr. Gerd Schuhmacher<br />

Automatic Generation of DVs and BFs (defopt)<br />

External defopt- usage fully supported<br />

© 2010 CASSIDIAN - All rights reserved Page 55<br />

manage config-files<br />

execution of external binary<br />

� defopt writes files to disk<br />

� data to be imported<br />

� generic process extendible for further external executables


Under Development<br />

Dr. Gerd Schuhmacher<br />

Manual Generation / Editing of DVs and BFs<br />

=> Analysis => ODD<br />

=> Model browser => OutputBlocks<br />

© 2010 CASSIDIAN - All rights reserved Page 56


Contents<br />

Dr. Gerd Schuhmacher<br />

Contents<br />

• Introduction: Cassidian Air Systems<br />

• Motivation: Challenges & Opportunities of the Airframe Design Process<br />

• Multidisciplinary Airframe Design Optimization at Cassidian Air Systems<br />

� Traditional Airframe Design vs. automated Multidisciplinary Design Optimization<br />

� Multidisciplinary Airframe Design Optimization Procedure LAGRANGE<br />

• Applications<br />

� Overview on past applications<br />

� Application to the Unmanned Aerial Vehicle Talarion<br />

• LAGRANGE profile in Hypermesh<br />

• Benefits of the Automated Airframe Design Process<br />

© 2010 CASSIDIAN - All rights reserved Page 57


Summary<br />

Dr. Gerd Schuhmacher<br />

Benefits of the Automated Airframe Design Process<br />

• The optimization assisted airframe design process has been established and<br />

applied within all design phases of a broad range of A/C projects (civil and military<br />

applications; components, large assemblies & full A/C).<br />

• The multidisciplinary design optimisation with LAGRANGE leads to a feasible<br />

airframe design which satisfies the requirements of all relevant disciplines with<br />

minimum weight.<br />

• The automation of both loops: structural sizing and loads loop results in an<br />

drastic reduction of development time and effort.<br />

• The strategic decision for an continued development the in-house MDO tool<br />

LAGRANGE is due to the specific aerospace design criteria on one hand (no<br />

Commercial Of The Shelf tool available) and the tremendous benefits and<br />

competitive advantages on the other hand.<br />

• The in-house software availability allows the fast adaption to advanced analysis<br />

methods as well as to new technological product and customer requirements.<br />

• Further Applications and Co-Operations are welcome !<br />

© 2010 CASSIDIAN - All rights reserved Page 59


Thank you for your attention!<br />

The reproduction, distribution and utilization of <strong>this</strong> document as well as<br />

the communication of its contents to others without express authorization<br />

is prohibited. Offenders will be held liable for the payment of damages.<br />

All rights reserved in the event of the grant of a patent, utility model or design.<br />

Dr. Gerd Schuhmacher<br />

© 2010 CASSIDIAN - All rights reserved Page 60


Optimisation at Cassidian Air Systems<br />

Dr. Gerd Schuhmacher<br />

Benefits of Design Automation<br />

• Multidisciplinary optimisation with LAGRANGE provides a structural<br />

design which satisfies the requirements of all relevant disciplines with<br />

minimum weight<br />

• Automation of both loops: structural sizing and load analysis (through full<br />

coupling to aerodynamic analysis tools)<br />

• Huge multidisciplinary criteria model covering requirements of all structure<br />

design driving disciplines<br />

• Drastic reduction of development time and effort (>50%)<br />

• Reduced cost due to automation of the design process<br />

– Estimated Saving for Talarion Development Process:<br />

• Traditional Manual Process:<br />

e.g. 6 Load Loops (LL) * 1 J / LL * 40 FTE (Stress, Loads, Dynamics, Mass, Design,<br />

etc.) = 240 Man-Years<br />

• With MDO Process: 2 Load Loops * 0,65 J / LL * 40 FTE = 52 Man-Years<br />

• Estimated Saving: 188 Man-Years (37,6 Mill. €) !!!<br />

• Product/project specific requirements can be integrated (if required) in the<br />

platform easily (Property of CASSIDIAN Air Systems)<br />

– Over 3 Million lines of code, 140 Man-Yeas development<br />

© 2010 CASSIDIAN - All rights reserved Page 61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!