18.02.2013 Views

Entire thesis - PCC

Entire thesis - PCC

Entire thesis - PCC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

T H E S I S AP P R O V A L<br />

T he abst ract and thesi s of Kat heri ne C. Leonar d for the Mast er of Sci ence in Geol ogy<br />

wer e pr esent ed Apr il 26, 2002, and accepted by the t hesis comm it tee and the<br />

depar tm ent .<br />

COMMITTEE APPROVALS: _______________________________________<br />

Scott F. Burns, Chair<br />

_______________________________________<br />

Sherry L. Cady<br />

_______________________________________<br />

Christina L. Hulbe<br />

_______________________________________<br />

Keith S. Hadley<br />

Representative of the Office of Graduate Studies<br />

DEPARTMENTAL APPROVAL: _______________________________________<br />

Michael L. Cummings, Chair<br />

Department of Geology


ABS TRACT<br />

An abst r act of the thesi s of Kat heri ne C. Leonar d for the Mast er of Sci ence in Geol ogy<br />

present ed Apr il 26, 2002.<br />

T it le: T he Rol e of Har vest er Ant s ( Pogonomyrmex owyheei) in Desert P avement<br />

F or mati on in the Sum mer Lake Sand Dunes, South Cent ral Oregon<br />

T here ar e two disti nct t ypes of deser t pavem ent in dune fi el ds east of S umm er<br />

L ake, Or egon. Coar se- gr ained desert pavements ( 5-25 cm cl ast diamet er ) are f ound<br />

above 1336 m eters el evat i on and devel oped t hrough t he i ncorporati on of f i nes beneath<br />

clast s over tens of thousands of year s. Fi ne- gr ained desert pavement (0. 2- 2 cm cl ast<br />

diameter ) is pr esent at elevati ons below the m ost r ecent highst and of pl uvi al L ake<br />

Chewaucan (1336 m ); it s clast s are deri ved from all uvium , si m il ar t o pebbles on anthi ll s<br />

i n the field ar ea. Deser t pavem ents cover approxim at el y t en percent of the study ar ea.<br />

Bur ied deser t pavem ent s in the dune field ar e si m il ar t o t he fi ne desert pavements at t he<br />

sur face.<br />

T he sand dunes ar e hom e to a lar ge populati on of Owyhee harvest er ants<br />

( P ogonomyrmex owyheei ). Ther e are, on average, 66 hi l ls per hect are i n t he r egi on.<br />

All uvium deposi ts host t he hi ghest densit y of ant hi ll s; 73-96 per hect ar e. S and dunes<br />

support between 67 and 75 ant hi l ls per hect are. Desert pavem ents have t he lowest<br />

densi ty, at 48- 59 anthil l s per hectar e.


Ant hi ll reconst ruct i on experi ments show t hat a si ngle colony of har vester ant s<br />

excavat es 0. 01 m 3 of pebbles each year, concentr ati ng enough pebbl es t o cover a squar e<br />

m et er wi th one cent i meter of fi ne- gr ained desert pavement. When thi s is mult ipl ied by<br />

t he densit y of the ant hi l ls i n the st udy ar ea and t he 8000 year per i od si nce pl uvi al lake<br />

Chewaucan’ s recessi on, harvester ant s could have excavat ed enough pebbles t o pave<br />

264,000 hect ares wi t h fi ne pavem ent. E xcavati on values corr espond to a bioturbati on<br />

r at e of 0. 0033 tonnes/ hectare/year .<br />

T he f ine pavement i s stat isti cal ly si mi lar to the ant hi l l pebbl es and consi st s of onl y<br />

a small port i on of the part icle si zes present in al luvi um under lying t he sand dunes. T hi s<br />

i mpli es that the pavem ent i s not a l ag deposit , but a bypr oduct of excavati on and<br />

t ranspor t to the sur face. Deser t pavem ents do cont ai n pebbl es (19 +/- 22 wei ght<br />

per cent ) whi ch ar e too l arge for ant s t o move. Ants don’ t creat e deser t pavem ent , but<br />

t hey excavat e pebbl es up to 5 m m i n diameter whi ch ar e then dispersed acr oss the<br />

sur face of t he sand dunes t o for m the m aj or i ty ( 80 weight per cent ) of the f ine- grained<br />

pavem ent .


T HE ROL E OF HARVE ST E R ANT S (P OGONOM Y RM EX OW YHEE I ) I N DE S ERT<br />

P AVEMENT F ORMAT ION IN THE S UMME R L AKE S AND DUNES , S OUTH<br />

CENTRAL OREGON<br />

by<br />

KAT HE RI NE C. LE ONARD<br />

A t hesi s subm it ted in par ti al f ulf il l ment of t he<br />

r equi rem ents for the degr ee of<br />

MAS TE R OF SCI ENCE<br />

i n<br />

GEOLOGY<br />

P or tl and S tat e Universit y<br />

2002


Ded ic at i on<br />

T o my gr andf ather , Thomas H. Leonard, ( January 11 1908 – F ebr uary 24, 1999) ,<br />

who i nspir ed me t o cli mb mountai ns, sai l oceans, and di sregar d convent ional wisdom .<br />

i


Ack no wl e dg me n ts<br />

T here ar e many peopl e who I woul d li ke to t hank for t hei r contr ibut i ons to this<br />

t hesi s. T hey are l i st ed in sem i -chr onologi cal or der. Dr. Robert S . Anderson of U. C.<br />

S anta Cr uz was the fir st person to i ntr oduce m e to the myster y that is desert pavement.<br />

Dr. S cot t Bur ns, of Port l and St ate Univer si t y, t hought thi s project sounded l ike f un, and<br />

becam e my thesi s advisor , f ield assi stant , and guide. Dr. P atr icia McDowel l, of t he<br />

Uni versi ty of Oregon, suggest ed the Sum mer Lake sand dunes as a good study ar ea for<br />

deser t pavem ent . Dr . Andrew Fount ai n, Port l and State Univer sit y, has by constantl y<br />

asking dif fi cul t quest ions, cont ri but ed enor mousl y to t he pr oject . Dr . Sherr y Cady, of<br />

P or tl and S tat e Universit y, has been a l ong- t er m par ti ci pant on my t hesis comm it t ee, and<br />

was enor mousl y helpf ul i n m y appli cat ions f or num er ous grant s. T he Geol ogi cal<br />

S ociety of Am er ica par ti all y funded thi s pr oject through a st udent resear ch grant,<br />

r ecei ved i n Apr il 2000. The Por tl and S tate Universit y Alumni Associ at ion also assist ed<br />

m e wi th a gener ous travel grant to at tend t he GS A / GSL Eart h S ystem P rocesses<br />

Conference i n E di nburgh, Scot land in June of 2001.<br />

Dr. Anj ana Khat wa, Bruce Tanner and Dr. S lawek T ulaczyc of UC S anta Cr uz<br />

hel ped me wi t h resi n i mpr egnati on and t hi n secti on pr eparati on at U. C. Santa Cr uz i n<br />

Decem ber 2000, and thr ough subsequent discussi ons. Dr. Debor ah Gor don, of St anf or d<br />

Uni versi ty, deser ves t hanks f or a pr oduct ive discussi on regar di ng harvest er ant s and<br />

ant hi ll s. E d Z igoy, of the BLM Port l and Of f ice, helped me t o search f or aeri al<br />

photogr aphs of the study ar ea. The Lakeview off i ce of the S oil S ur vey pr ovided me<br />

wit h the t hen- unpubli shed Sout h L ake Count y S oi l S ur vey. Dr s. Roger Hooke, Pet er<br />

Haf f, and Br ad Werner hel ped me wi th encour agi ng di scussions about deser t pavem ent<br />

i i


and ani m al s. Joe L i cciar di off ered his t houghts on S um m er L ake’s cl im at e histor y.<br />

Dave Fur bi sh, Bil l Dietr i ch, and others at the Gi lber t Club 2000 meeti ng of fered a wi de<br />

arr ay of t houghts and suggest ions whi ch wer e hel pful in refi ning thi s pr oject .<br />

S ix people wi thout whom thi s thesi s could not have happened are m y field<br />

assistants: Jenni fer E dm unson, Su Ikeda, Bar Johnst on, and Meghan L unney in June and<br />

August of 1999, Cor del ia Ransom in October 2000, and Rober t Upson i n S ept em ber<br />

2001.<br />

T he P SU Geol ogy depart ment has hel ped i n many ways. I would part icularl y l ike<br />

t o thank Nancy Er iksson for her fr iendshi p and suppor t, Ansel Johnson for F ri day<br />

aft er noons at t he I one, and m y thesi s com mi t tee, Scot t Bur ns, S herr y Cady, and<br />

Chr isti na Hul be, and Kei t h Hadl ey of the PS U Geography Depar t ment .<br />

L astl y, I must thank m y par ents and grandpar ents for their m oral and f inancial<br />

support which m ade thi s thesi s possi ble.<br />

i ii


T ab le o f Con t en ts<br />

Dedicat i on ............................................................................................................................. i<br />

Acknowl edgments ............................................................................................................... i i<br />

L ist of Tabl es ..................................................................................................................... vii<br />

L ist of Fi gur es...................................................................................................................vii i<br />

Chapt er 1: I ntr oduct ion........................................................................................................ 1<br />

1.1: Gener al Over vi ew .................................................................................................. 1<br />

1.2: Ai m s and Obj ect ives .............................................................................................. 7<br />

1.3: St r uctur e of T his T hesis......................................................................................... 8<br />

Chapt er 2: T he Summ er Lake Sand Dunes i n Context : Miocene Basal ts, Pleist ocene<br />

L akes, and Holocene Cl im ate............................................................................................ 10<br />

2.1: Gener al Geol ogi c Set ti ng..................................................................................... 10<br />

2.2 Cli m at e at Summ er Lake ...................................................................................... 11<br />

2.3: Si t e Charact er i zati on: T he Summ er Lake Dune Fi el d........................................ 15<br />

Chapt er 3: Desert P avement.............................................................................................. 18<br />

3.1: Int roducti on t o Desert P avement ......................................................................... 18<br />

3.2: How Does Deser t P avement F orm ? .................................................................... 20<br />

3.3: Deser t Pavem ent s Obser ved at Sum mer Lake .................................................... 23<br />

3.4: F orm at i on of Deser t P avem ent s at Summ er Lake ............................................. 27<br />

3.5: Met hods: S edim ent s in the Sum mer L ake Sand Dunes...................................... 29<br />

3.6: Result s: Sedi m ents in t he Summ er Lake Sand Dunes....................................... 31<br />

3.7: Di scussion............................................................................................................ 34<br />

Chapt er 4: Aeri al P hot ogr aphi c Ident i fi cati on of Desert Pavem ent Concent r at ion ........ 36<br />

4.1 Rem ote S ensing Mot ivati on.................................................................................. 36<br />

4.2 Aer i al P hot ographs................................................................................................ 38<br />

4.3 GPS Methods and Data......................................................................................... 40<br />

4.4 Geom et ri c Cor recti on of t he Aeri al Phot ogr aphs ................................................ 43<br />

4.5 Rem ote S ensing Met hods...................................................................................... 44<br />

4.6 Result ing L andf orm Di st ri but ion.......................................................................... 51<br />

Chapt er 5: Owyhee Harvest er Ant Popul at ion Densi t y in t he Sum mer Lake Dunes...... 53<br />

i v


5.1 Ant s........................................................................................................................ 53<br />

5.2 Ant hil ls ..................................................................................................................57<br />

5.3 Ant hil l Densi ty Deter mi nati on Met hods .............................................................. 58<br />

5.4 Result s....................................................................................................................64<br />

5.5: Di scussi on of Ant hi l l Densi ti es ........................................................................... 67<br />

Chapt er 6: P ebble T r ansport By Ant s............................................................................... 71<br />

6.1 Ant hil l Charact eri st i cs and the Car rying Capaci ty of Har vester Ant s................. 71<br />

6.2 Why do harvester s bui ld pebble covered mounds?.............................................. 73<br />

6.3 T he Mechani cs of P ebble P ushing........................................................................ 74<br />

6.4 F iel d and L abor atory Methods: Ant hi ll Regr owt h............................................... 81<br />

6.5 Result s....................................................................................................................85<br />

6.6 Discussi on.............................................................................................................. 91<br />

Chapt er 7: Anthil l Microm or phol ogy ............................................................................... 96<br />

7.1 Ant hil l Str uctur al Char acter isti cs.......................................................................... 96<br />

7.2 Resi n Im pregnat i on and Mi cr omorphol ogic St udy.............................................. 97<br />

7.3 Resi n Im pregnat i on F i el d Met hods ...................................................................... 99<br />

7.4 Resi n Im pregnat i on L aborator y Met hods........................................................... 101<br />

7.5 Discussi on of Resi n Impregnati on Methods ...................................................... 105<br />

7.6 Com put er Anal ysi s of Thin S ect ions.................................................................. 106<br />

7.7 Result s of Computer Analysi s of Thi n Secti ons ................................................ 106<br />

7.8 Resi n Im pregnat i on Di scussi on .......................................................................... 114<br />

Chapt er 8: Desert P avement and ant hi l l pebbl es............................................................ 115<br />

8.1 I nt r oduct ion to the Pebbl e Quest i on ................................................................... 115<br />

8.2 Met hods of Pebbl e Si ze Anal ysi s ....................................................................... 117<br />

8.3 Char acter isti cs of Al luvi um fr om the Chewaucan Ri ver ................................... 119<br />

8.4 Char acter isti cs of Desert P avement Cl ast s in the Sum mer Lake Sand Dunes.. 120<br />

8.5 Char acter isti cs of Anthil l- P ebbl es in t he Fi eld Area ......................................... 123<br />

8.6 S tat isti cal Com par ison of P ebbles f rom Dif fer ent Sources ............................... 129<br />

8.7 S tat isti cal Result s................................................................................................. 132<br />

8.8 Discussi on of P ebble Si zes ................................................................................. 132<br />

v


Chapt er 9: Di scussi on and Concl usi ons.......................................................................... 139<br />

9.1: Charact eri zati on of the St udy Ar ea ................................................................... 139<br />

9.2: Owyhee Har vest er Ant s as Bi ogeom or phic Agent s.......................................... 140<br />

9.3: Pebbl es in Ant hil ls and Deser t Pavem ent s........................................................ 142<br />

9.4: Overall Conclusions........................................................................................... 143<br />

Chapt er 10: Fut ur e Wor k................................................................................................. 146<br />

Ref er ences........................................................................................................................ 149<br />

Appendi x A: "Sand Dune" Par ti cl e S ize Analyses......................................................... 161<br />

Appendi x B: "Painted Hil l s" P ar t icle Si ze Anal yses...................................................... 212<br />

Appendi x C: Ort hocor rect ed Aeri al Photogr aphs .......................................................... 229<br />

Appendi x D: Reclassi fi ed Phot ogr aphs .......................................................................... 248<br />

Appendi x E : Ant hi ll Densi ty P lot s.................................................................................. 254<br />

Appendi x F : Ant hi ll Volum e Calculati ons..................................................................... 268<br />

Appendi x G: Technical Dat a about Resi n ...................................................................... 279<br />

Appendi x H: Thi n Secti on Im ages and Descr ipt ions ..................................................... 281<br />

Appendi x I : All uvium P ar t icle S i ze Anal yses................................................................ 299<br />

Appendi x J: Deser t Pavem ent P ar t icle Si ze Anal yses.................................................... 315<br />

Appendi x K: Ant hi ll Part i cl e Si ze Analyses................................................................... 328<br />

vi


L is t of Ta bl e s<br />

Number...........................................................................................................................P age<br />

T able 4. 1: GP S Gr ound Contr ol P oints ............................................................................ 41<br />

T able 4. 2: GP S Sampl e Locat ions .................................................................................... 42<br />

T able 4. 3: GP S and Der ived Gr ound Contr ol P oints ....................................................... 45<br />

T able 5. 1: P r eviousl y Publi shed Anthi ll Densit ies........................................................... 60<br />

T able 5. 2: 1999 Ant hil l Densi ty Resul ts........................................................................... 65<br />

T able 5. 3: 2000 Ant hil l Densi ty Resul ts........................................................................... 68<br />

T able 5. 4: Aver age Ant hi l l Densi ti es................................................................................ 69<br />

T able 6. 1: Reconstr uct ed Anthil l Measur em ent s.............................................................. 87<br />

T able 6. 2: Resurf aced Ant hi ll Measur ement s................................................................... 88<br />

T able 6. 3: S umm ar y of Ant hi ll Measur ement s ................................................................ 89<br />

T able 6. 4: Desert P avement Ar eas f rom Ant hi l ls............................................................. 90<br />

T able 7. 1: S ynt hesi s of Thi n Secti on Result s................................................................. 107<br />

T able 8. 1: Al luvi um Part i cl e Si zes ................................................................................. 122<br />

T able 8. 2: Desert P avement Part i cl e Sizes ..................................................................... 124<br />

T able 8. 3: Anthil l Par ti cle S izes...................................................................................... 128<br />

T able 8. 4: Aver age of Pebbl es by S ize F ract i on ............................................................ 130<br />

T able 8. 5: Gr aphi c Par ti cle S ize S tat isti cs...................................................................... 133<br />

T able 8. 6: Chi- Squar ed Result s....................................................................................... 134<br />

vii


L is t of Fi gu res<br />

Number...........................................................................................................................P age<br />

F igur e 1.1: Locat ion Map of t he St udy Area...................................................................... 2<br />

F igur e 1.2: Sand Dunes i n t he S t udy Area ......................................................................... 3<br />

F igur e 1.3: Deser t Pavem ent ............................................................................................... 4<br />

F igur e 1.4: Gravel Coated Ant hi l l....................................................................................... 6<br />

F igur e 2.1: Ext ent of Sum mer Lake and of Pl uvi al Lake Chewaucan ............................ 12<br />

F igur e 2.2: Shoreli nes of P luvi al Lake Chewaucan ......................................................... 14<br />

F igur e 2.3: Playa P art icl e Si zes......................................................................................... 17<br />

F igur e 3.1: Classic Deser t Pavem ent ................................................................................ 19<br />

F igur e 3.2: Vesicul ar A Hor izon....................................................................................... 21<br />

F igur e 3.3: Two Var i et ies of Deser t Pavem ent ................................................................ 24<br />

F igur e 3.4: Deser t Pavem ent S tr ati gr aphy........................................................................ 26<br />

F igur e 3.5: Deser t Pavem ent L ocati ons............................................................................ 28<br />

F igur e 3.6: Augur ing i n the S um m er L ake S and Dunes.................................................. 30<br />

F igur e 3.7: Par ti cl e S izes at t he “S D” Si te ....................................................................... 32<br />

F igur e 3.8: Par ti cl e S izes at t he “P ainted Hil ls” S it e........................................................ 33<br />

F igur e 4.1: Sur fi ci al Deposit s in the S and Dunes............................................................. 37<br />

F igur e 4.2: Map of Aer ial P hotograph Coverage............................................................. 39<br />

F igur e 4.3: Ort hocor rect ed Aeri al Photogr aph Mosaic.................................................... 46<br />

F igur e 4.4: Spect ral P at t er n of Surf ace F eat ur es.............................................................. 48<br />

F igur e 4.5: Rem ot e Sensi ng Resul ts ................................................................................. 50<br />

F igur e 5.1: Geogr aphic Range of Genus P ogonomyrmex................................................ 54<br />

vii i


F igur e 5.2: Mat ur e Col ony of P . owyheei ........................................................................ 55<br />

F igur e 5.3: Clear ed Di sk Ar ound Anthi ll ......................................................................... 59<br />

F igur e 5.4: Sur vey Met hods.............................................................................................. 62<br />

F igur e 5.5: Ant hi ll Devel opment al St ages........................................................................ 63<br />

F igur e 5.6: Quest ionable Ant Col onies............................................................................. 66<br />

F igur e 6.1: Ant Car t oon..................................................................................................... 72<br />

F igur e 6.2: Pebbl e- P ushi ng Cart oon................................................................................. 76<br />

F igur e 6.3: For ces Act ing on a Pebbl e.............................................................................. 77<br />

F igur e 6.4: Tunnel Wal l Roughness ................................................................................. 79<br />

F igur e 6.5: Pai nt ed Hi ll s L ocat i on Map............................................................................ 82<br />

F igur e 6.6: Pebbl e Pai nt i ng ...............................................................................................83<br />

F igur e 6.7: Map of Pai nt ed Pebbl e Locat ions .................................................................. 85<br />

F igur e 6.8: Per cent Paint ed P ebbles in 1999 .................................................................... 92<br />

F igur e 6.9: Per cent Paint ed P ebbles in 2000 .................................................................... 93<br />

F igur e 7.1: Ant hi ll Selected for I mpr egnati on ............................................................... 100<br />

F igur e 7.2: Trenched Ant hil l........................................................................................... 102<br />

F igur e 7.3: Features i n Ant hi ll ........................................................................................ 103<br />

F igur e 7.4: Can L ocati ons ............................................................................................... 104<br />

F igur e 7.5: Tunnel Wal l Sedim ent s ................................................................................ 109<br />

F igur e 7.6: Tunnel Slope................................................................................................. 110<br />

F igur e 7.7: Pebbl es at Dept h in Anthi ll .......................................................................... 111<br />

F igur e 7.8: Resin I m pr egnat ed Ants ............................................................................... 112<br />

i x


F igur e 7.9: Layer ed Const ruct ion of Ant hi ll .................................................................. 113<br />

F igur e 8.1: Pebbl e Sized Cl asts in t he St udy Area......................................................... 116<br />

F igur e 8.2: All uvium P ar t icle S i ze ................................................................................. 121<br />

F igur e 8.3: Deser t Pavem ent P ar t icle Si ze ..................................................................... 125<br />

F igur e 8.4: Par ti cl e S ize of Bul k Ant hi ll ........................................................................ 126<br />

F igur e 8.5:Anthil l Par ti cle S ize....................................................................................... 127<br />

F igur e 8.6: Pebbl e Par ti cle S ize Hist ogram.................................................................... 131<br />

F igur e 8.7: Pebbl e Transf er Model ................................................................................. 135<br />

F igur e 9.1: Ant Col ony L i fe Cycl e ................................................................................. 144<br />

P late 1: Map of S am pli ng Locati ons.............................................................i n Back Pocket<br />

x


CH AP T E R 1: INT RO DU CT I ON<br />

1. 1: Gene r a l Ove r v i ew<br />

T he pri nci pal obj ect ive of this thesi s is t o develop a conceptual m odel of deser t<br />

pavem ent developm ent i n the S um m er L ake sand dunes. St eps i nvolved incl ude<br />

studying Owyhee har vester ant s (P ogonomyrmex owyheei ) as bi ogeom orphi c agent s,<br />

charact eri zat ion of the landf or m s pr esent i n t he st udy area, and com pari son of pebbl es<br />

f ound i n ant hil ls and in desert pavem ents i n t he st udy area.<br />

T he study ar ea is l ocated t o the east of Sum mer Lake, Or egon, f if teen ki l om et er s<br />

nor th of t he town of P ai sley (F i gure 1. 1) . Summ er Lake occupies a small port ion of the<br />

basin occupi ed by pl uvial L ake Chewaucan dur ing glaci al peri ods i n the past . As i s<br />

com mon in pl uvi al vall eys of the Great Basi n ( Gr ayson, 1993; Mehr inger and Wi gand,<br />

1986) , sand dunes have f orm ed on t he pr esent ly unoccupied eastern shor e of the l ake<br />

( Fi gure 1. 2) . These sand dunes form a dune fi el d, which i s mantl ed wi th patchy deser t<br />

pavem ent and harvest er anthil ls cover ed i n pebbl es li thologi cal ly si mi lar t o those<br />

com pr isi ng t he deser t pavem ents.<br />

Deser t pavem ent s ar e com m on f eat ur es in ari d envi ronm ent s (F i gure 1. 3) . A<br />

deser t pavem ent i s a sur f ace coati ng of stones, usual ly well varnished ( blackened) , on a<br />

soi l whi ch i s f ree of incor porat ed st ones f or som e appr eci abl e dept h ( roughly 10-100cm)<br />

bel ow t he sur face. Once form ed, t hey are usuall y stabl e sur f aces which rem ai n at the<br />

soi l's sur face ( Cooke et al . , 1993; Hooke, 1966). Deser t pavem ents ar e usual ly pr esent<br />

1


Summer<br />

Lake<br />

Ten Mile<br />

Ridge<br />

15<br />

Chewaucan<br />

River<br />

15 30 km<br />

Figure 1.1 Location Map. The study area is located on the eastern shore of Summer Lake,<br />

Oregon, in a field of sand dunes. The sand dunes have either formed or migrated into this<br />

area in the last 8200 years, since pluvial Lake Chewaucan's most recent highstand. Desert<br />

pavements and harvester anthills are found in the present dune field. Summer Lake only<br />

occupies a small portion of pluvial Lake Chewaucan's former extent. The sand dune field<br />

to the east of the lake overlies alluvium from the Chewaucan River, which currently flows<br />

north into the town of Paisley, then turns towards the east.<br />

2


Figure 1.2: Sand Dunes east of Summer Lake. These dunes have formed in an area<br />

which was underwater 8200 years ago. The high concentration of sagebrush on the dunes<br />

might lead to their classification as "semi-active" (Lancaster, 1995), but the area is under<br />

constant eolian action, as evidenced by the dust storm visible between the dunes in the<br />

foreground and winter ridge in the background (large clouds of dust often billow off of the<br />

playa surrounding Summer Lake).<br />

3


Figure 1.3: Desert pavement in the Summer Lake sand dunes. Desert pavements are<br />

extremely common features in arid environments. A desert pavement is a surface deposit<br />

of gravel-sized clasts (greater than two millimeters in diameter) overlying a fine-grained<br />

soil. The uppermost horizon of this soil contains abundant vesicles formed by trapped air,<br />

probably during rapid wet-dry cycling after rainstorms. In this photograph the pavement<br />

has been compressed into the A horizon by vehicle traffic, causing the bright colored tire<br />

tracks in an otherwise dark surface.<br />

4


i n conj uncti on wi th a si l t- ri ch vesi cul ar "A" soi l hori zon ( Av) . Curr ent r esear ch holds<br />

t hat bot h the deser t pavement and the Av hor izon requir e ari d cli mat ic condit ions and<br />

l ong per iods of t im e i n whi ch t o f or m ( McFadden et al ., 1998). The Sum mer L ake sand<br />

dunes appear to have experi enced m or e r apid deser t pavem ent for mati on than has<br />

previ ously been r ecorded in t he scienti fi c lit er ature.<br />

T he predom inant ant speci es i n the S umm er L ake sand dunes (t her e ar e at least<br />

t wo smal ler twi g- mound buil di ng gener a) i s the Owyhee harvest er ( P ogonomyrmex<br />

owyheei ) . The Owyhee har vester ant has the widest range of any Nort h Ameri can<br />

har vest er ant , fr om nort her n Mexico in the south to nor t hern Br it ish Col umbia, and f r om<br />

t he P aci fi c Ocean t o east er n Nor th Dakota, but i s among the least st udied ( Taber, 1998) .<br />

I t is sm al ler t han som e of it s cousi ns (3mm rather than 6m m long) m aki ng it a l ess<br />

att ract i ve r esear ch subj ect ( Gordon, 1999). Nonet heless, som e r esear ch has been done<br />

on P . owyheei nest densit i es i n the I daho hi gh deser t ( Port er and Jor gensen, 1988).<br />

Har vest er ant s buil d pebble-coat ed m ounds on t op of t hei r nests ( Fi gur e 1.4).<br />

T here ar e sever al hypotheses to expl ain t he reason for thi s behavior , but t he acti on it self<br />

has not been st udied, as bi ol ogi st s have been mor e concerned wi th i t s causes. An<br />

hypot hesis curr entl y i n favor am ong ent om ol ogi st s i s that har vest er ants’ str ong sense of<br />

smell l eads them to buil d t hese hi ll s usi ng rocks because por ous rocks hold t he colony’ s<br />

scent , det er r ing ant s fr om ot her col oni es f r om vi si ti ng ( Gordon, 1999; Gordon, 1984).<br />

A m or e classi c expl anati on is t hat t he pebbl es ar e a byproduct of subt er r anean<br />

excavat i on of t he colony’ s home ( Br anner , 1910; F or el, 1929). I pr opose that t he ant s<br />

are excavati ng these pebbles and pil i ng t hem i nt o ant hi l ls t o prevent the wind from<br />

5


Figure 1.4: An Owyhee harvester anthill in the Summer Lake sand dunes.<br />

Harvester ant colonies build gravel mounds over their homes, perhaps to protect the<br />

colony from wind erosion, as they tend to live in arid environments. The colony may<br />

live as long as twenty five years once the ants have established a gravel covered mound<br />

(Taber, 1998). The cleared area surrounding the mound is also typical of harvester ants.<br />

The gravels used in the construction of the anthill are usually less than five millimeters<br />

in diameter, as illustrated by the ball-point pen in the above photograph, which is seven<br />

millimeters in diameter.<br />

6


erodi ng thei r hom es. I have al so at t em pt ed to i nvest igate t he mechani sm s by whi ch t hey<br />

const ruct the ant hi l ls.<br />

1. 2: Ai m s and Ob j e ct i ve s<br />

T he pri m ar y obj ecti ve of this st udy was t o det er m ine whether harvest er ants have<br />

hel ped devel op the deser t pavem ent i n t he S umm er Lake sand dunes. Thi s requi red t he<br />

i nvesti gat ion of thr ee general probl ems. F i rst, I char act er i zed som e of the physi cal<br />

propert i es of t he sand dune ecosystem , focusing on part i cl e size analysi s of the sand<br />

dunes t hem sel ves, t he deser t pavem ent s that form in areas bet ween t he act ive dunes, and<br />

t he all uvi um which under l ies the sand dunes.<br />

S econdl y, I studi ed the rat e of anthi ll growth, the char acter isti cs of sedi ment s<br />

i ncor por at ed into anthil l s, and the rel at ionship of other physi cal processes to ant<br />

t ranspor t of sedi ments i n t he S umm er Lake sand dunes. The r ole of ant s as<br />

biogeom orphi c agent s has been noted by ot her s ( Br anner , 1910; But l er , 1995) , but r ates<br />

and processes by whi ch Owyhee harvest er ant s m odi fy t hei r physi cal envir onm ent have<br />

not been f or m al ly i nvest i gated pri or to t hi s study.<br />

T hi rdly, I sought t o expl ai n the r el ati onshi p bet ween t he pebbl es i n t he desert<br />

pavem ent sur f aces and pebbl es i ncorporated int o ant hi ll s i n the study ar ea. Bot h<br />

f eatures are composed of pebbles der i ved fr om al l uvium deposi ts t hat underl ie t he dune<br />

f ield. Do harvester ant s par ti cipat e i n the f or m at ion of deser t pavem ent ?<br />

7


1. 3: S t r u ct ur e of Thi s The si s<br />

T he set t ing for t hi s i nvest igat i on i s descr i bed in chapt er t wo, whi ch pr ovi des a<br />

gener al pi ct ure of the geol ogy and cl im at e of the study ar ea. The fol lowing si x chapters<br />

each address a component of t he br oad quest i ons present ed above. T hese chapt er s each<br />

i nclude the background i nform at i on and descr ipti on of t he met hods necessary f or thei r<br />

r espect i ve t opi c.<br />

I n chapt er t hree, I di scuss desert pavement s, bot h in t heory and in the Sum mer<br />

L ake sand dunes. T his i s achieved t hrough det ai l ed study of sedi ments and of t he<br />

f or mer locat i ons of pl uvi al L ake Chewaucan’ s shor el ines relat ive to deser t pavem ent<br />

deposit s.<br />

Because this <strong>thesis</strong> coul d not possibl y incor porat e detai led mappi ng of al l surf ace<br />

deposit s f ound in t he dune fi el d, I att em pt to quanti fy these deposi ts, in part i cular t he<br />

per cent age of t he ar ea m ant led wit h deser t pavem ent , thr ough remote sensi ng. Chapter<br />

f our di scusses aeri al photogr aphic i nterpret at ion and r emote sensing t echni ques appl i ed<br />

t owar ds this goal .<br />

Har vest er ant s and ant hi l ls are the subject of chapters fi ve, six, and seven. I<br />

present the resul ts of anthil l densi t y surveys i n chapt er fi ve and com par e my r esult s wit h<br />

t hose of r esear cher s i n other ar eas. Chapt er si x i s focused on ant hil l const ructi on<br />

m et hods and rat es. The field r esi n- i mpregnati on techni que I developed t o study anthi ll<br />

str uctur e in detail is descri bed i n chapt er seven, al ong wit h m y fi ndi ngs.<br />

My f inal quest ion, the rel at ionship between desert pavement , ant hi l ls, and<br />

all uvium , is addr essed i n chapt er ei ght . T his chapter includes par t icle si ze anal ysi s of<br />

8


t hese t hree disti nct t ypes of pebble- deposi t and st at ist ical compar i son of the thr ee<br />

groups.<br />

9


CH AP T E R 2: THE S UM ME R L AKE S AN D DUN E S IN CONT E X T :<br />

MI OC E N E BAS AL T S , P L E I S T OCE NE L AKE S , AN D HO L OC E N E CL I MA T E<br />

2. 1: Gene r a l Geo l o gi c S et t i n g<br />

T he bedr ock in the Sum mer L ake basin consist s of late Mi ocene ( ca. 6-7 Ma)<br />

t holeii t ic basalt s ( Di ggles et al. , 1990b; Jel li nek et al. , 1996) over lai n by Cenozoi c<br />

t uf faceous sedi ment ary deposi ts. The basin fl oor i s cover ed wi th pl aya and all uvi al<br />

sedim ent s. T he sedi m ents ar e mor e than 30 m thick at the nor t hern end of the pr esent<br />

l ake ( Negr ini et al. , 2000) . Holocene sand dunes i n t he east er n par t of the basin ar e up<br />

t o 10m thi ck ( Adri an et al ., 1993; Di ggl es et al. , 1990b) . The dunes over li e Chewaucan<br />

River al luvi um of an unknown depth ( Di ggles et al. , 1990b). The Chewaucan Ri ver<br />

f lowed nor th into t he Sum mer Lake basin unt i l the end of t he last gl acial per iod<br />

( Al li son, 1982) . A sm all l ate Miocene / ear ly Pl iocene ci nder cone cal led Ten Mil e<br />

Ridge outcrops in t he mi ddl e of the sand dunes ( F igur e 1.1; Diggl es et al ., 1990a) .<br />

Nor th-sout h trending cli f fs of Miocene basal t cr eat e the east and west edges of the<br />

val ley ( Tr auger , 1958) as i s typical of Basi n and Range topography i n the sout hwest er n<br />

Uni ted States ( Br adley, 1982; S tewar t et al ., 1975) . The Brothers F aul t zone which cut s<br />

t hr ough the nor theastern corner of t he vall ey is of ten ref er r ed t o as the nor thernmost<br />

boundar y of the Basi n and Range physi ographi c pr ovi nce, whil e Winter Ridge to t he<br />

west of Summ er Lake is consider ed to be i ts west ern boundary ( Di ggles et al. , 1990b;<br />

Donat h, 1962; P hi ll i ps and Denburgh, 1971). The basin has under gone extensi ve<br />

10


t ectoni c def orm at ion, wi t h the most recent maj or eart hquake (gr eater t han M 6.9)<br />

occur ri ng at least 4000 years ago ( Langri dge et al. , 2001; Pezzopane and Weldon,<br />

1993) .<br />

S um mer Lake is in t he Basin and Range physi ogr aphic province ( Donath, 1962),<br />

approxi m at el y 120 ki lomet er s east of Cr at er Lake, but pumi ce fr om Mt . Mazam a’ s 6845<br />

years BP erupti on i s f ound near the present - day shoreli ne ( Al li son, 1945; Davi s, 1985).<br />

S om e researcher s have al so descr ibed the Sum mer Lake sand dunes as bei ng excl usi vely<br />

com posed of Mazam a ash and pumi ce ( Negr ini , 2001) . The Sum mer L ake area is<br />

wit hi n the heavy bl ast zone ( deposit s > 15 cm thi ck; Wil li ams and Goles, 1968) fr om<br />

t he cli m at ic er upti on of 6845 +/ - 50 year s BP ( Bacon, 1983) .<br />

2. 2 Cl i m a t e at S um m er L ake<br />

P resent - day Sum mer Lake is a rem nant of pluvial Lake Chewaucan (F igure 2. 1) ,<br />

one of the nort hernm ost of the ice-age Basi n and Range lakes ( Fr iedel , 1993) . Lake<br />

Bonnevi l le, of which t he Gr eat Sal t Lake is the present remnant , was t he fi rst of these<br />

f or merl y m assive lakes t o be ident if i ed by Russel l on hi s 19t h cent ury r econnai ssance<br />

geology expedit ions to t he west ern U. S. ( Russel l , 1885) . Pl uvi al l akes for m in cl osed<br />

basins in the wester n Uni ted St ates dur ing ice ages when t he pr esence of a large i ce<br />

sheet t o t he nort h for ces t he sub- pol ar j et st ream sout h of its i nt erglacial posit ion<br />

bri nging m or e preci pit at i on t o present day deser t s ( COHMAP , 1988; Wendl and, 1989).<br />

At Summ er Lake, appr oxim ately 1300 m above sea l evel, t he Pl eistocene was<br />

r ai ni er than the pr esent , and t he al pine snowl ine m ay have been as much as 800 m l ower<br />

t han it is now (Wigand, 2001) . The trees t hat curr entl y occur only on r i dges above<br />

11


Summer<br />

Lake<br />

Chewaucan<br />

River<br />

Ten<br />

Mile<br />

Ridge<br />

Shoreline of<br />

Pluvial Lake<br />

Chewaucan<br />

Figure 2.1: Pluvial Lake Chewaucan. The present-day Summer Lake sand dunes are<br />

located to the east of the lake in the area occupied by the lake at its maximum recorded<br />

extent 30,000 years ago (Allison, 1982).<br />

12


S um mer Lake wer e pr obabl y f ound at l ower el evati ons near i ts shor el i nes dur ing<br />

t he P lei st ocene. T he speci es r epr esent ed i n pol l en f rom l ake sedim ent cores wer e the<br />

sam e as those f ound pr esent ly, but r elati ve abundances wer e dif ferent (Cohen et al .,<br />

2001) .<br />

P luvi al Lake Chewaucan covered the curr ent locat i on of the sand dunes dur ing the<br />

P leistocene ( Al li son, 1982; Reheis, 1999) . The pluvi al lake has been ext ensi vel y<br />

docum ent ed because its sedi ment s r ecord t he last paleom agnet i c rever sal ( Davi s, 1985;<br />

Negri ni and Davis, 1992; Negr ini et al. , 1988) . Twel ve thousand years ago pl uvi al Lake<br />

Chewaucan occupied bot h the S um m er and Aber t L ake basins. Appr oxim ately 8000<br />

years ago the l ake receded, l eaving behind two separate lakes. All i son ( 1954) identi f ied<br />

sever al terr aces at el evati ons bet ween 1277 and 1377 met er s (4190 and 4520 feet ) above<br />

sea l evel. The m odern el evat ion of the l ake i s about 1264 m eters ( 4150 feet) . Al li son<br />

( 1982) later cor rel at ed t he 1377 meter ( 4520 foot ) elevat ion shorel ine wi t h a radiocar bon<br />

age of 30, 700 years B. P . He i denti f ies the 1357 m et er (4455 f oot) shor eli ne wi th a<br />

17, 500 years B. P . radiocar bon age, and t he 1337 meter (4385 foot ) ter race as t he most<br />

r ecent impor t ant shoreli ne, car ved duri ng t he mi nor pluvial epi sode which ended<br />

approxi m at el y 8000 years ago (F i gure 2. 2) . The presence of thi s shoreli ne is<br />

unexpect ed ( L icci ar di, 2001) . Duri ng the 8200 yr BP cold event the m aj ori ty of pluvial<br />

l akes i n t he Gr eat Basin were not rej uvenat ed ( Benson et al ., 1990), but L ake<br />

Chewaucan ref il led its basi n ( Fr iedel , 1993; Negr ini, 2001) connect ing the present day<br />

S um mer and Aber t lakes.<br />

13


modern<br />

historic<br />

17,500 ybp<br />

30,000 ybp<br />

10 0 10 20 Kilometers<br />

W<br />

Figure 2.2: Former and current extents of Summer Lake and Lake Chewaucan. �<br />

The largest lake shape shown in this image represents the 30,000 year pluvial shoreline, �<br />

the next largest is the 17,500 year shoreline, and the two small lakes on the left are modern �<br />

Summer Lake and the historic extent of Summer Lake recorded during the Fremont party's �<br />

visit to Oregon in the 1840s.<br />

N<br />

S<br />

E<br />

13


T here i s an abundance of desert varni sh on pavem ent s and out crops i n t he sand<br />

dunes t hat demonstr ates the ari dit y of this ar ea. The closest meteorologic stat ions ar e<br />

l ocat ed in t he towns of Pai sl ey, t o the sout h and S um mer L ake, to t he nor thwest of t he<br />

l ake (F i gure 1. 1) . Accor di ng t o Kienzl e ( 1999) the eastern edges of si m il ar basi ns wi th<br />

ari di c soi ls in t he sout her n por ti on of L ake County r eceive an aver age r ainfall of 0. 2 m<br />

per year , mostl y in the for m of summ er thunder st orm s. The t emper at ure r egi me f or<br />

such soi ls i s m esic: aver aging 0.6 ˚ C wit h a f rost- fr ee peri od of between 70 and 110<br />

days. At P ai sley the Oregon Cli m at e Ser vi ce recor ds a m ean annual ai r tem peratur e of<br />

8.9 ˚ C, and at Summ er Lake they recor d a mean annual ai r t em per at ur e of 7.5 ˚ C. Bot h<br />

of these t owns ar e locat ed in f ar mor e hospi tabl e cli mat es t han t he sand dunes on the<br />

eastern shor e of the l ake. T he dunes are very spar sely veget at ed wi th sagebr ush and<br />

occasional gr asses. T her e is a large popul ati on of har vester ant s, as well as other desert<br />

ani mals such as j ackrabbi ts and li zar ds.<br />

2. 3: S i t e Char ac t e r i z at i on : Th e S um m er L ak e Dun e F i e l d<br />

T en Mil e Ridge is a pr om i nent geographi c feature fr equentl y ref er red t o in this<br />

t hesi s. S and dunes form a semi - cont i nuous sheet through m ost of the f iel d ar ea, as wel l<br />

as occur ri ng in i ndi vi dual cr escents on T en Mi le Ri dge. L ake Chewaucan’ s m ost recent<br />

pluvi al maxi m um covered the areas that now com pr i se t he dune sheet (Pl at e 1), but the<br />

r idge pr oj ect ed out of t he water . Desert pavements on Ten Mi le Ridge ar e com posed of<br />

coarse (10-30cm ), heavil y var ni shed basal ti c cinder clasts wi th wel l -developed soi ls.<br />

T hey ar e sim i lar to the classic deser t pavem ents descri bed by Wel ls et al . ( 1985) in t he<br />

southwestern U. S. T he evi dence for extensive soi l -devel opm ent com bi ned wi th t he<br />

15


l engt h of ti m e that these r esear cher s prescr ibe for sim i lar deser t pavem ent developm ent<br />

i ndicat e t hat t hi s area is di st i nctl y dif fer ent than lower el evat ions whi ch wer e underwat er<br />

8200 years ago (Chapter 3).<br />

Deser t pavem ent s at el evati ons bel ow 1337 m eters (4385 feet) ar e com posed of<br />

wel l- rounded pebbles der i ved fr om the all uvi um underl yi ng the sand dunes. The soi l<br />

profi les beneat h these desert pavements are di st i nctl y dif fer ent fr om those on Ten Mi le<br />

Ridge, wit h vesicul ar A hor izon devel opment , but li tt le to no other soil hori zonat ion.<br />

All uvium f rom t he Chewaucan River was sam pl ed at a vari ety of l ocat i ons around<br />

t he sand dunes (P lat e 1) , but was not r eached dur ing cor ing of the dunes (discussed in<br />

Chapt er 3) . It i s ver y poorl y sor ted, wi th part i cl es r anging f rom clay (less t han t wo<br />

m icrons) t o cobbl e (6- 26 cent im eter) si ze ( Bl ai r and McPher son, 1999) . These sam ples<br />

wil l be di scussed i n greater depth i n Chapt er 8.<br />

T he dune sheet is composed of f i ne sand, for whi ch ther e are two li kel y sources.<br />

P ar ti cl e size of the sand var ies onl y sli ght ly t hroughout the study ar ea (F igur es 3. 7 and<br />

3.8). The esti mated 15 cm of Mazama ash and pum i ce whi ch bl anket ed the val ley 6800<br />

years ago ( Wi ll iam s and Gol es, 1968) coul d have been rewor ked i nt o dunes but cannot<br />

account for a t en m eter thi ck dune sheet. Def lat ion of the Sum mer Lake playa over t he<br />

l ast 6000 years m ust also be an im por tant sour ce of dune sand. T he pl aya sedim ent s in<br />

t he val l ey ar e pr edomi nantl y si l t and clay sized (F igur e 2.3) . Dessicat i on cracks i n t hese<br />

playas all ow the wi nd to easi ly er ode t hi s sedim ent ( Bagnol d, 1954; Glenni e, 1970;<br />

Mabbutt , 1977).<br />

16


Weight Percent<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

10000<br />

1000<br />

Figure 2.3: Particle Size of Playa Sediments. These three samples from playas in<br />

the study area (see Plate 1 for locations) demonstrate that the dominant particle sizes<br />

in playa sediments are silt and clay.<br />

100<br />

Particle Size (microns)<br />

10<br />

SD6playa<br />

SD7playa<br />

DP3playa<br />

17<br />

1


CH AP T E R 3: DE S E R T PAV E M E NT<br />

3. 1: I nt r od uct i o n to De ser t Pa vem en t<br />

T he classi c image of t he desert which m any peopl e have gai ned f rom movies such<br />

as “L awr ence of Arabia” is an endl ess sea of sand dunes. Thi s is not a reali st i c<br />

def init i on of a desert , as most deser ts i n the worl d ar e covered wi t h rocks or crust y soi ls<br />

( Abraham s and P ar sons, 1994; Cooke et al. , 1993; Mabbut t , 1977) . Such deser ts oft en<br />

exhibit a sur face l ayer of rocks one to t wo cl ast s thick above a soi l or ot her fine grained<br />

deposit , r ef err ed t o as deser t pavem ent by Ameri can geom or phologi st s ( Gi lber t , 1875;<br />

Mabbutt , 1977). El sewhere, t hi s sur face deposit i s cal led a gi bber pl ai n or st ony m ant le<br />

( Aust ral ia), hamm ada, reg, or seri r (Ar abic) , or gobi ( centr al Asia) . Br it ish<br />

geomorphol ogi st s usual ly adopt the name used i n the countr y of st udy, as such surf aces<br />

do not exi st in t he Br it i sh I sl es.<br />

A t extbook desert pavement (F igure 3. 1) i s a sur f ace coati ng of clasts i n whi ch<br />

approxi m at el y 70 per cent of t he cl ast s ar e par ti all y em bedded i n the underl yi ng soil ,<br />

wit h 20 percent of the surf ace of each cl ast embedded ( Cooke, 1970) . The clast s<br />

protr ude i nt o a sil t y fi ne- gr ai ned "A" soil hori zon appr oxim ately 15 cm thi ck, contai ni ng<br />

small vesi cl es or ai r bubbl es. Below t hi s is a B hor izon, between 20 and 60 cm in<br />

t hi ckness, wi th an average (f or pavem ent mantl ed soil s in Cal if or ni a and Chil e) cl ay<br />

content of ar ound t en per cent , whi ch is also f ree of coarse par ti cl es. The C hori zons of<br />

soi ls beneat h deser t pavement s tend to be r i cher in coar se part icles t han t he A and B<br />

18


Figure 3.1: Classic Desert Pavement in the Summer Lake sand dunes. This is an<br />

area of fine (0.5-5 cm clast size) desert pavement located near Ten Mile Ridge (the<br />

cinder cone visible in the background). The scattered sagebrush visible in this photograph<br />

are surrounded by small piles of sand. Desert pavement is a surface deposit of<br />

gravel which overlies a fine grained soil without any gravel in it. Desert pavement is<br />

a common feature of deserts, but its origin is hard to determine.<br />

19


hor izons above them . They usual ly over li e eit her all uvi um or bedrock, which ar e t he<br />

t wo m ost com m on sour ces of coar se par ti cl es for pavem ent s ( Cooke, 1970; Dixon,<br />

1994) .<br />

T he vesi cular A hor i zon (Fi gure 3. 2) is a f eat ur e pecul i ar t o deser t soi l s<br />

( Bi rkel and, 1999; Di xon, 1994; Dunker ley and Brown, 1997). It s disti nct ive textur e is<br />

devel oped when ai r or ot her gasses ar e tr apped wi thin t he soi l duri ng som e type of<br />

m or phol ogi cal change. I t has been cr eated in labor at or y envi ronm ent s by repeat edl y<br />

wet ti ng and drying a beaker f ul l of soi l ( Bunt ing, 1977; E venar i et al ., 1974; S pr inger ,<br />

1958) . Vesi cle developm ent m i ght not r equir e deser t pavem ent clasts at the surf ace of<br />

t he soi l , but i t does requi re some sort of sur face seal i ng ( Dunker l ey and Br own, 1997) .<br />

T here i s consider abl e debat e as to whet her microorganism s ar e i nvol ved i n t hi s process<br />

( Kr um bei n and Giele, 1979; McFadden et al ., 1998) . Ther e i s also a gener al st at e of<br />

confusi on about t he st abi li ty of vesi cular A hor i zons i n wet - dr y cycles succeedi ng t hose<br />

whi ch m ay have form ed them. Thi s hor izon i s com m only r eferr ed to as t he "Av"<br />

hor izon, alt hough t his i s not an off i ci al t axonom ic t er m ( Soil S urvey St af f, 1999) .<br />

3. 2: How Do es De se r t Pa vem en t For m ?<br />

T he f undam ent al problem under lyi ng m odern desert pavement st udi es i s<br />

det er mi ning how clasts ar e concent rat ed on the surf ace. Many physi cal pr ocess<br />

hypot heses have been i nvoked to expl ain desert pavement s. T hese include defl at i on<br />

( Gi lber t , 1875; Hooke, 1966; Mabbutt , 1977; Shlem on, 1978) , sheet f lood ( Wi ll iam s and<br />

Z im bl em an, 1994), erosi on of fi nes dur ing r ai nf all events ( Wainwr i ght et al ., 1995) ,<br />

deposit i on of f ines beneath t he cl ast sur face thr ough eoli an forcing<br />

20


Desert Pavement<br />

Cleared Surface<br />

7mm diameter pen<br />

vesicle<br />

Figure 3.2: Vesicular A horizon in the Summer Lake sand dunes. Vesicular A horizons,<br />

commonly referred to as "Av" horizons, are found beneath desert pavements and other<br />

soil crusts in arid environments. They have been experimentally created through<br />

repeated wet-dry cycles in laboratories. The vesicles in this Av horizon, which occurred<br />

beneath a "fine" desert pavement south of Ten Mile Ridge, are near in size to the pavement<br />

clasts (between one and five milimeters in diameter). The pebbles which formed<br />

the pavement can be seen at the left side of the picture.<br />

21


( McFadden et al ., 1998; Wel ls et al. , 1990) , chemi cal di ssol ut i on of all cl asts in t he soil<br />

save those at t he surf ace ( Goudie and Par ker, 1998) , and f r eeze- thaw cycl ing ( Ingl is,<br />

1965; Matsuoka, 1995). Regar dl ess of for mati on mechani sm , t hese st udi es have all<br />

r epor ted t hat deser t pavement s are st able surf ace coati ngs f or fi ne- gr ai ned sedi ment s or<br />

soi ls.<br />

Of the many processes pr oposed for desert pavement form ati on, onl y def lat ion can<br />

be physi call y appli ed in al l envir onm ents wher e deser t pavem ent s ar e f ound. The<br />

def lati on model assumes an init i al ly very t hick soi l or unconsoli dat ed sedi ment ary unit<br />

containi ng a sm al l propor ti on of gravel -sized cl ast s. Over tim e, t he soi l er odes away,<br />

l eavi ng the gravel as a lag deposi t at the sur face ( Gi lber t , 1875) . If t he soi l below t he<br />

pavem ent i s representati ve of t he ini ti al coar se- part icl e concent rat ion above t he pr esent<br />

ground sur face, est i mates of the i ni t ial thi ckness of soil r equir ed to cr eate t he exi st ing<br />

stony surf ace l ayer s woul d requi re t he form er pr esence of physi call y unr eal isti c amount s<br />

of soil in m any envi ronm ent s ( Cooke et al . , 1993; Mabbut t, 1977). This has led<br />

r esearcher s to speculate on a number of sit e-specif ic m odels to expl ai n deser t pavem ent<br />

f or mati on.<br />

T he m ost popular model at present is that of Wel l s and McF adden, in which clast s<br />

are slowly separated f rom an exposed bedr ock sur f ace by the incor por at ion of eol ian<br />

dust int o cr acks in the rock ( McFadden et al ., 1987; Wel ls et al. , 1985) . This pr ocess<br />

r equi res t ens of thousands of year s and i s most appli cable t o per fectl y flat bedrock<br />

sur faces such as lava fl ows. I t i s not wel l sui t ed t o abandoned al l uvial f ans, on which<br />

deser t pavem ent s ar e oft en found ( Hooke, 1990) . This model also rai ses t he<br />

22


f undamental quest ion of whether the def init i on of deser t pavement r equir es an<br />

under lyi ng f i ne-grai ned soi l.<br />

Quade ( 2001) suggest s that deser t pavem ent is not as st abl e as pr evi ous studi es<br />

have dem onst r at ed, and questi ons i ts pr eser vat ion t hr ough gl aci al peri ods. His work in<br />

t he Deat h Val ley region of Cali f or ni a and Nevada found that no deser t pavem ent older<br />

t han the l ast glaci al (12.5ka) is pr eserved above 400m elevat ion. He does not ident i fy<br />

l ocal pl uvial l ake sur face el evati on. He al so bases these dates on deser t varni sh, whi ch<br />

m ay be a f aul ty m et hodol ogy f or dati ng surf aces. ( Br oecker and L iu, 2001)<br />

Recent wor k suggest s t hat biota of m any sizes (f r om beet les to burr os) m ay pl ay a<br />

r ol e in the inf lati on pr ocess descri bed above by rocking clasts back and fort h to al l ow<br />

f ines t o be emplaced beneat h them ( Haff and Wer ner, 1996). The wor k discussed in this<br />

t hesi s suggests yet anot her possibil i ty, in which biologic agents ( har vester ant s) excavate<br />

t he clasts and pl ace t hem on top of the f ine-grai ned sand dunes.<br />

3. 3: Dese r t Pa ve m e nt s Obse r v ed at S um m er L ake<br />

T wo dif f er ent styles of deser t pavem ent are pr esent i n the st udy ar ea (F i gure 3. 3) .<br />

T he f ir st type is f ound on the sand dunes and is composed of sm al l (2m m- 1cm ), well -<br />

r ounded pebbl es of var ious li thologi es, der i ved from al l uvium under l yi ng the sand<br />

dunes i n t hi s area ( Di ggles et al. , 1990b). Deser t pavem ents on T en Mi le Ri dge, above<br />

t he 8200 year s B. P . highst and of Sum mer Lake, consist of lar ge ( centi met er s wi de)<br />

f latt ened heavi ly varnished basalt ic ci nder cl ast s.<br />

T he A hori zons of soil s beneath these t wo t ypes of pavem ents shar e sever al<br />

charact eri st i cs. Both have wel l -developed vesicular textures. T hi s i s to be expect ed as<br />

23


Figure 3.3: Two types of desert pavement exist in the Summer Lake sand dunes. The upper<br />

photograph is from Ten Mile Ridge, above the 8200 year B. P. shoreline of Lake Chewaucan. It<br />

shows a coarse-grained desert pavement composed of bedrock fragments. The lower photograph<br />

is of fine desert pavement with clasts derived from the alluvium that underlies the sand dunes.<br />

The 7mm diameter pen in the lower photograph is wider than most of the pebbles in this pavement,<br />

the hiking boot in the upper photo is similar in diameter to the pavement clasts there. 24


ot h have exper ienced the sam e cli mat ic condit ions duri ng the l ast 8000 years. They<br />

share si mi lar soi l par ti cle sizes (m ode of 200 m i cr ons) , and extr em ely basi c pHs<br />

averagi ng about 10.2 (AST M 1:1 di st il l ed wat er met hod) . A hi gh pH i s t ypi cal of deser t<br />

soi ls wher e the ari d cli m at e resul ts in a l ow or ganic m att er cont ent ( Cooke et al . , 1993) .<br />

All of the soil sam ples col lect ed in the st udy ar ea eff ervesce vi ol ent ly when weak<br />

hydrochl or ic acid i s appl ied to them , i ndicati ng a hi gh calci um car bonat e content. Thi s<br />

i s typi cal of deser t soi l s, as there is l it t le r ainfall to wash car bonat es away, and the low<br />

organic matt er cont ent l i mi ts di ssol uti on by organi c aci ds ( Dunker l ey and Br own, 1997) .<br />

Bel ow t he A hor izon, soi l s under lying t he t wo types of pavem ent are di st i nct.<br />

F ine- gr ained pavements f ound in the dune fi eld over li e imm at ure A-over -C soil s. S oi l s<br />

beneath the coarse- grained pavem ents on T en Mi le Ri dge are m ore developed, wi th<br />

r eddened B hori zons. The t hi ckness of the soi l beneath the fine- gr ained pavements i s<br />

dif fi cul t to determ i ne because the C hori zon blends i nt o t he underl ying dune sand. The<br />

soi l beneath coar se- gr ai ned pavement s i s thi n; weat hered bedr ock occur s at a depth of<br />

approxi m at el y 50 cm .<br />

T he sedi ment s beneat h the f ine- grained deser t pavem ents have a hi gh CaCO3<br />

content which has part ial ly cem ent ed the soi l. A t ypical st r at igraphy i ncl udes a 6- 10<br />

m m thick l ayer of f i ne pebbles and coar se sand, overl yi ng a 10 cm t hick layer wi th<br />

ext remel y dense vesi cl e concent r at ions, a 20cm t hick layer wi th i nt erm it t ent vesicles,<br />

and upwards of 60cm of f i ne sand wit h ver y int er m it tent coar se sand / fi ne pebbl e si zed<br />

par ti cl es pr esent i n i t (Fi gure 3. 4) . This can be cont r asted wit h all uvi um f rom l ocati ons<br />

25


Desert Pavement<br />

Alluvial Cobble<br />

Vesicular A horizon<br />

Non-vesicular silty horizon<br />

Cleared Surface<br />

Foreground Soil Surface<br />

Weathered soil horizon in alluvium<br />

30 cm<br />

shovel<br />

blade<br />

Figure 3.4: Desert Pavement Stratigraphy. The stratigraphy beneath a fine-grained<br />

desert pavement in the Summer Lake sand dunes (Site DP7 on Plate 1). One to two<br />

centimeters of loosely packed pebbles overlie a ten to 15 cm thick vesicular A horizon,<br />

which in this location lies over a dense silty horizon without vesicles and a weathered<br />

soil horizon in poorly sorted alluvium from the Chewaucan River. In other parts of<br />

the study area there may be two to three meters of dense sand between the surface and<br />

alluvium.<br />

26


around the dune sheet, which contains a wide r ange of part icl e si zes, fr om cl ay to 10cm<br />

cobbl es.<br />

3. 4: F or m a t i o n of De se r t Pa ve m en t s at S um m er L ake<br />

T he t wo types of deser t pavem ent i n the study ar ea appear to have been cr eated by<br />

dif ferent pr ocesses. They ar e sim il ar in m any char acter isti cs, but the dif ference i n soi l<br />

devel opm ent suggest s t hat t he coar se- gr ai ned desert pavement s are ol der than the f ine-<br />

grained deser t pavem ents. The lar ge part icl e si ze deser t pavem ent on Ten Mil e Ridge<br />

probabl y f or m ed t hr ough inf lati on ( McFadden et al ., 1987; Wel ls et al. , 1985) . This<br />

t ype of pavem ent is only found above 1341 m eters (4400 feet) in elevat ion. T he Ten<br />

Mil e Ri dge pl at eau has been subaer ial ly exposed since pl uvial L ake Chewaucan’ s<br />

P leistocene highstand, 17,500 r adi ocarbon year s B.P . ( Al li son, 1954; F igur e 3.5) . T he<br />

m ost recent pluvi al maxi m um of 8200 years ago cor responded wi th a shor el i ne at<br />

1337m el evat i on ( Fr iedel , 1993; L icciardi , 2001) .<br />

F ine- gr ained desert pavem ents exist at el evati ons bel ow the most recent pluvi al<br />

highstand. They exhibit cl assi c desert pavement st rati graphy, and in fact have thicker<br />

f ine gr ained deposi t s beneath t hem t han t hose on Ten Mi l e Ri dge. I f bot h pavem ent s<br />

f or med thr ough infl ati on, t hese fi ne- gr ai ned pavement s would have t o be older t han t he<br />

coarse- grained pavem ents which have thi nner soil s under l yi ng them . The pluvi al<br />

history and the soi l developm ent dif f er ences bot h suggest an ol der age f or the coarse-<br />

grained deser t pavem ents. This means t hat the f i ne-grai ned deser t pavem ent s must have<br />

f or med thr ough some pr ocess other than infl ati on.<br />

27


W<br />

N<br />

S<br />

E<br />

"∂ 'a<br />

*a<br />

*b<br />

" b<br />

1 0 1 2 Kilometers<br />

Figure 3.5: Locations of Desert Pavement in the Study Area. The islands in the<br />

upper middle portion of this image are peaks on Ten Mile Ridge (Plate 1). The light blue<br />

colored area in this image (clipped from a map of the extents of pluvial Lake Chewaucan,<br />

prepared using ArcView GIS software) represents the 8200 year b. p. shoreline of pluvial<br />

Lake Chewaucan. The darker blue is the 30,000 year shoreline (elevations from Allison,<br />

1982). Point "a" is the GPS location of the coarse-grained desert pavement shown in<br />

Figure 3.3, while point "b" is the location of the fine-grained pavement shown in the same<br />

figure.<br />

28


3. 5: Met h od s: Se di m en t s in t he Su m m er La ke Sa nd Du ne s<br />

S edim ent cor es were hand- augered at thr ee si tes in the study ar ea ( F igur e 3.6,<br />

P late 1) . T he dept h r eached at the “SD” si t e was 3.2 m eters beneat h t he surf ace of that<br />

l ar ge acti ve dune. This si te i s l ocated in the center of the study ar ea, ami d lar ge roll ing<br />

sand dunes wi th i nt erm it t ent pat ches of f ine desert pavement and sm all pl ayas. The<br />

other borehol es att ained dept hs of sl ight ly over a meter . One of t hese is at t he "painted<br />

hil ls" sit e at the southern end of t he dune sheet , whil e t he ot her is on a large crescent ic<br />

sand dune on Ten Mi l e Ri dge. T he locat ions were determ i ned usi ng a Tr im ble GPS<br />

uni t.<br />

S am pl es were coll ect ed f r om t he auger r oughl y every 10 cm depth at each sit e.<br />

T he sam ples wer e caught in zi pl ock bags and numbered wi t h the sit e nam e and t he<br />

depth. Sampl ing depth was deter mi ned by runni ng a st eel m easur ing tape to the bot tom<br />

of the hol e aft er t he auger was removed. Detail ed anal ysi s was per f or med on the S D<br />

and P H sam pl es. The T en Mi le Ri dge sam pl es were char act er ized using f iel d<br />

obser vat ions.<br />

T he sam ples wer e ai r -dri ed in t he lab pri or to part icle si ze anal ysi s. Each sam pl e<br />

was wei ghed, then wet si eved thr ough a #230 si eve i nt o a 1000 m l set tl ing col um n usi ng<br />

disti ll ed wat er . T he coarse fr act ion was t hen dr ied in an oven at around 105 degr ees<br />

Cel ci us befor e re-weighi ng. I det er m ined t he par ti cl e size fract ions for t he l arger than<br />

63 mi cr on por ti on of each sam pl e usi ng a st ack of U.S . Standard S ieves and a W. S.<br />

T yl er Corpor ati on RX-86 Sieve S haker . Each sampl e was mechanical ly si eved for 15<br />

29


Figure 3.6: Augering at the "SD" site in the Summer Lake sand dunes. Using the<br />

auger (held by field assistants Meghan Lunney and Jennifer Edmundson) shown in<br />

this photograph we extracted samples every ten centimeters to a depth of 3.2 meters.<br />

The auger becomes unsteady with the addition of the fourth and fifth stem-segments.<br />

30


20 mi nut es ( McCave and Syvit ski , 1991; McManus, 1988). The sil t and clay size m ass<br />

f ract ions wer e deter mi ned usi ng the pipet te method ( Syvi tski et al ., 1991).<br />

3. 6: Res ul t s: S ed i m e nt s i n th e S um m er L ak e S an d Dun es<br />

T he par t icle si ze pr of il e beneat h the "SD" sit e includes f our bur ied desert<br />

pavem ent hor i zons ( F igur e 3.7). T hese hori zons are separated by pebbl e- f ree sand.<br />

Bur ied pavem ent s ar e i denti fi ed based on the absence of pebbl es i n the samples above<br />

and bel ow them in t he cor e. Each cor e sampl e captures a r oughl y 10cm int er val. T he<br />

bur ied pavem ent sam ples include a subst anti al num ber of part i cl es gr eater t han 2mm i n<br />

diameter . Augeri ng ended at 3. 2 m dept h when we encount er ed a large r ock i n ei t her a<br />

pavem ent hor i zon or the all uvium beneat h the dune sheet (Appendix A) .<br />

T he cor e at the pai nted hil ls si te ( F igur e 3.8) in the southern dunes of f er s an<br />

i nt ri gui ng pi ct ur e of the Mazam a ash. The upper 0. 6 m of thi s core cont ains pebbl e-<br />

sized pumi ce cl asts that ar e not present lower i n t he core, and whi ch may have been<br />

concent r at ed by bul k densit y rel at ed er rors in sample spli tt i ng, bot h in the fi eld and in<br />

t he l aborator y. Bel ow 60 cm the coar se par t icles are al luvi al pebbl es si mi lar to those<br />

f rom deser t pavem ent s in the ar ea. We st opped cori ng at 1.3m due t o cont act wi t h a<br />

dense l ayer of pl aya or cal cr et e sedi ment s (Appendi x B) .<br />

T he sand dune cor ed at T en Mi le Ri dge was unif or m ly f ine-grai ned. There were<br />

no pebbl es pr esent unt il we r eached bedrock or coar se desert pavement at 1. 5 met er s<br />

depth.<br />

31


0 m depth<br />

buried pavement horizon, 2.2m<br />

buried pavement horizon, 2.5m<br />

buried pavement horizon, 3m<br />

buried pavement horizon, 3.2m<br />

3.3m depth<br />

particle size (microns) diminishing to the right<br />

Figure 3.7: Particle Size profile from "SD" site. The squiggly lines in this figure are<br />

particle size frequency curves (weight percent on the y-axis, particle size on the x-axis)<br />

placed according to approximate depth.<br />

32


particle size (microns) decreasing to the right<br />

0 m depth<br />

1.2 m depth<br />

Figure 3.8: Particle Size profile from "PH" site. The squiggly lines in this figure are<br />

particle size frequency curves (weight percent on the y-axis, particle size on the x-axis)<br />

placed according to approximate depth. The maximum depth reached in augering at this<br />

site was 120 cm. The upper portion of the core contained abundant pumice clasts, visible<br />

in the left-ward leaning of the peaks at the top of this figure.<br />

33


3. 7: Di s cu ssi on<br />

T here ar e two disti nct desert pavement types i n the S um m er L ake sand dunes.<br />

P avem ent s on Ten Mi l e Ri dge above the m ost recent pluvi al shoreli ne ar e com posed of<br />

coarser cl ast s and contai n fr agm ents which have been det ached f rom local bedr ock<br />

sur faces t hr ough an infl ati on pr ocess l ike that descr ibed by Well s et al . ( 1985) .<br />

P avem ent s bel ow t he 8200 year B. P . shoreli ne ar e com posed of f ine (usual ly l ess t han<br />

one cm in di ameter) pebbl es der i ved from al l uvium . T he al luvium is at a far gr eat er<br />

depth below the sur f ace of the sand dunes t han t he bedr ock on T en Mi le Ri dge is below<br />

t he desert pavement s f ound ther e. Both t ypes of pavement exhibit vesi cul ar A hori zons<br />

and clast- fr ee lower soi l hor izons. The “f i ne-gr ai ned” deser t pavem ents must evol ve<br />

t hr ough a di f ferent and previ ously unexpl ai ned m ethod. They ar e geogr aphical ly near<br />

t he coar se pavement s, exhibit t hicker t hough l ess m at ur e soi l hor izons, and have<br />

evolved in l ess t han hal f t he t i me avai labl e f or the for mati on of t he coarse pavem ent s.<br />

T he dunes ar e com posed of f ine sand (mode of 200 mi cr ons). There have been at<br />

l east f our peri ods of deser t pavem ent f or mat ion, as evi denced by the f our bur ied<br />

pavem ent hor i zons encount er ed at t he SD sit e. Carbon dati ng of t he pavem ents woul d<br />

l ikel y yield unhelpf ul r esult s. Organi c mat ter in the dunes is l ar gel y der ived fr om sage<br />

brush, whi ch has roots t hat coul d easil y reach t he dept hs of the bur ied pavem ent s<br />

( Di ggles et al. , 1990b). The area is al so home to ant s, whi ch are fr equentl y blamed wit h<br />

disrupt i ng sedi ment s f or soil -f r acti on carbon dat ing pur poses ( Hedges and Gowlett ,<br />

1986; S charpenseel, 1979) .<br />

34


Another potenti al m ethod of dat i ng desert pavements t hat was reject ed for use i n<br />

t hi s st udy i s t o dat e deser t var ni sh found on them. Deser t var ni sh is a bact er i al buil dup<br />

f ound on t he surf ace of rocks i n ari d envir onm ent s (Dor n and Ober lander, 1981). T hi s<br />

m et hod has been standardi zed thr ough fr equent use ( Dorn, 1986; Fr iedel , 1993;<br />

Har ri ngt on and Whit ney, 1987; Quade, 2001). Recent wor k by Liu and Br oecker ( 2000)<br />

poi nt s out t hat desert varnish does not grow at uni form rates, even in di ff er ent l ocati ons<br />

on the sam e piece of r ock, maki ng it unreli abl e for dat i ng. The sam e aut hors ( Br oecker<br />

and L iu, 2001) al so demonst rated that deser t var ni sh does not necessar il y recor d<br />

t em perat ur e, only a lack of r ai nfall .<br />

Mazam a ash i s present at the souther n end of t he dune sheet, as i ndi cated by<br />

pebbl e sized pumi ce fr agm ents f ound in the sedim ent s and at Five Mi l e Cave ( Al li son,<br />

1945) . The Mazam a sedim ent s found at t he "pai nt ed hi l ls" si t e ar e coarser than those<br />

f ound i n eit her t he al luvium under lyi ng t hem or the l ar ge sand dunes at the "SD" sit e.<br />

T he pebble si zed pum ice fragm ent s ar e absent i n the sedi ment s auger ed out of the "SD"<br />

sand dune, and they ar e also absent in near by deser t pavem ent sam pl es. Whi le m y<br />

sam pl ing suggests t hat Mazama deposi t s ar e absent f rom much of the study ar ea,<br />

det ai led chem ical anal ysi s of sedi ments f rom a vari et y of locat ions in t he dunef ield is<br />

necessar y to rule out the possi bil it y t hat the dunes ar e com posed of r eworked Mazama<br />

deposit s.<br />

35


CH AP T E R 4: AE R I A L PHO T O GRA P H I C ID E N T I F I C AT I ON OF DE S E R T<br />

P A VE ME NT CO NCE NT RA T I O N<br />

4. 1 Re m ot e Sen si ng Mo t i vat i o n<br />

I n this chapt er I di scuss t he m ethods used to est im at e the percentage of the st udy<br />

area cover ed in desert pavement . Quant if icati on of t he im pact of harvest er ant s on the<br />

f or mati on of desert pavem ent i n t he Summ er Lake sand dunes requi res an est im at e of<br />

t he area covered by pavem ent. Tradi t ional mappi ng is t oo ti m e and labor intensi ve t o be<br />

a pract i cal met hod. Aer i al phot ographi c int er pr etati on has been pr oposed as an ef fi cient<br />

and cost -eff ect ive alt er nat ive to fi eld m apping, and it s usef ul ness is eval uated her e.<br />

Researcher s oft en use di f ferences in spectr al charact er i st ics t o di f ferenti at e ari d<br />

l and- sur face feat ur es. For exam pl e, Ri vard et al . (1992) used spect ral val ues to cl assif y<br />

sand dunes and varni shed rocks in the Middl e E ast . T hat and ot her studi es have used<br />

L andsat TM and MS S, SP OT , and ot her sat el li t e rem ot e sensi ng data t o classi fy l and<br />

sur face types ( Bull ar d et al. , 1995; E l -S heikh and Syiam, 1989; Jacobber ger et al . , 1983;<br />

S hi pm an and Adams, 1987; Weit z and F arr , 1992; Z i mbel man and Wi ll iam s, 1996).<br />

Whi le aeri al phot ogr aphs coll ect onl y one band of panchr om at i c li ght , it is expect ed that<br />

som e analogy can be dr awn t o ear li er anal yses of rock and sedim ent albedos (F igure<br />

4.1). Aer ial photographs wer e used her e because avai lable satell it e coverage i s eit her<br />

prohi bi t ivel y expensive or of l ower resol ut i on t han avai labl e aer ial phot ographs.<br />

36


Figure 4.1: Surficial deposits in the Summer Lake sand dunes. Desert pavements (in<br />

the foreground with the tire tracks) are darker and less reflective than sand dunes (present<br />

in the background of this photograph). It should be possible to differentiate between the<br />

two based solely on this observation about their spectral characteristics.<br />

37


4. 2 Ae r i a l Pho t o gr aph s<br />

T he onl y avai labl e photographs cover i ng t he east ern side of Sum mer Lake are<br />

black and whi te pri nts f r om t he Nati onal Aer ial Photogr aphy Progr am (NAP P ) (USGS<br />

E ROS web page,<br />

htt p: // edc.usgs.gov/ Webgl is/gli sbi n/ f inder_m ai n. pl?dataset _name=NAP P rechecked 2-<br />

27- 2002; E d Zigoy of t he BL M Por tl and off ice, per sonal com municat ion, 11- 98). The<br />

NAP P photogr aphs have a maxim um resol ut ion of 1: 40, 000, lower t han the 1: 10,000<br />

r esol ut i on t hat woul d have been ideal .<br />

Deser t pavem ent can be di st ingui shed at t he 1: 40, 000 resol ut i on ( Bull ar d et al. ,<br />

1995; L aymon et al. , 1998) . However , it is not rel iabl y disti nguishable f r om bedr ock<br />

wit hout the inclusi on of ul tr avi ol et or i nf r ar ed radi at i on ( Weit z and F arr , 1992) . An<br />

i ni ti al objecti ve was to di st ingui sh between t he fi ne and coarse deser t pavem ent s<br />

descr ibed in chapter t hr ee, and to i denti fy the presence of veget at i on or soi l crust i ng on<br />

t he sand dunes, but the photo scal e was t oo coar se.<br />

T o compl et el y analyze the area along the eastern edge of S um m er L ake r equir ed<br />

18 phot ogr aphs, coveri ng appr oxi matel y 500 km 2 . These phot ographs span an ar ea<br />

r oughly 25 km t o the east of the l ake and 20 km nor th f r om F i ve Mil e Cave ( Fi gur e 4. 2),<br />

a promi nent local t opogr aphic f eat ur e ( Pl at e 1). E ach photograph was scanned using a<br />

Microtek S canMaker 5 f lat bed scanner , at 300 dpi resolut ion. T he scanned i mages wer e<br />

i nspect ed usi ng Adobe Photoshop to determ ine t he scal e of features that could be<br />

disti nguished i n the digi tal im age f i les.<br />

38


Summer<br />

Lake<br />

Ten Mile<br />

Ridge<br />

15<br />

Chewaucan<br />

River<br />

15 30 km<br />

Figure 4.2: Aerial photo coverage. The black box delineates the area covered by NAPP<br />

aerial photographs purchased for this study. There are four north-south flight lines of five<br />

photographs each. Two photographs covering the lake were omitted from this study.<br />

39


4. 3 GP S Met hod s an d Dat a<br />

Ground contr ol point s must be establ i shed t o ort hographi call y cor rect a<br />

photogr aph ( Cambel l , 1996) . A gr ound contr ol point i s a featur e of known geogr aphic<br />

l ocat ion t hat can be dist inguished i n an aer ial photogr aph. Road i ntersect ions that were<br />

promi nentl y visible in t he di gi t al phot ographs were sel ect ed as ground cont rol poi nt s.<br />

T heir l ocati ons wer e det erm ined in t he fi el d usi ng a Tr i mble GeoE xpl or er II GPS unit .<br />

L ocat ions of known pat ches of desert pavement, acti ve sand dunes, and exposed<br />

all uvium wer e also det er m ined using GPS f or use as tr ai ning sit es t o aid in r em ote<br />

sensi ng detecti on of t hese feat ures.<br />

T he T ri m bl e GPS uni t i s capable of di ff er ent ial GPS cor r ecti on and of car ri er<br />

phase corr ect ion, using the T ri m bl e Pat hf inder Of fi ce GP S sof twar e. L ocati ons wer e<br />

det er mi ned by col lecti ng data f or fi ve- mi nut e int er vals at each sit e, st ori ng t he posit ion<br />

dat a in the Tri mble handhel d uni t, and marki ng t he fi le name on a m ap of the ar ea that I<br />

car ri ed wi th me i n the f i el d. Car ri er- phase dif f er enti al cor rect ion was perf or m ed using<br />

t he P at hfi nder Of fi ce sof twar e (WGS84 geogr aphic pr oj ect ion, locati ons wi thin UT M<br />

zone ten nor t h) . T he cal culated posi ti ons wer e expor ted t o Microsof t Excel f or<br />

t abul at i on and im por t int o the rem ot e sensi ng sof twar e. Descri pt ions of the represented<br />

f eature (ground cont rol poi nt s for or thocor r ecti on or t r ai ni ng si tes f or remote sensi ng)<br />

and general inf or mat ion about i t s locat ion are f ound in Tabl es 4. 1 and 4. 2.<br />

40


Table 4. 1: GPS Ground Control Points: The Easting, Northing, and Height Above<br />

Ellipsoid (HAE) values are corrected values from Pathfinder Office, originally<br />

collected using a Trimble GPS unit.<br />

Rover F i le Descrip t ion UTM- UTM- H . A. E.<br />

Nam e<br />

Easti ng North in g<br />

R071317A Qal 2 si t e: 5m il e cave tur noff 700001. 127 4736947. 916 1318. 739<br />

R071317B Qal 3: cutoff to nor t h of cave 699587. 548 4739034. 83 1318. 925<br />

R071318A Qal 5: east er n r oad int er sect 701607. 231 4739326. 384 1324. 45<br />

R071319A Qal 6: 6134-6134A int er secti on 699160. 48 4739573. 814 1326. 732<br />

R071319B Qal 7 698534. 134 4740895. 736 1321. 801<br />

R071319C DP1, DP 2 697993. 036 4742344. 532 1326. 242<br />

R071320A DP3, DP 4: Loco Lake cutof f 697338. 625 4743566. 853 1316. 971<br />

R071323A nor ther n cut off t o PH si t e 697875. 67 4742599. 263 1331. 038<br />

R071323B cor ner of squar e east of PH 697273. 831 4741592. 359 1327. 718<br />

41


Table 4. 2: GPS Locations of Sampling Sites. The UTM values for easting,<br />

northing, and height above the ellipsoid (HAE) were originally collected using a<br />

Trimble GPS unit. The values reported here are corrected values from Pathfinder<br />

Office.<br />

Rover F i le Descr ipt ion UTM- UTM- HAE<br />

Nam e<br />

E asti ng Nor thing<br />

R100500A playa sample 686893. 212 4760721. 812 1262. 423<br />

R100501A playa sample 681747. 648 4737435. 742 1193. 433<br />

R100522A T MR nor t h dune point A 696163. 128 4745803. 05 1263. 194<br />

R100522B T MR sout h- dune point A 700838. 372 4739237. 428 1356. 526<br />

R100523A Densi ty Si te 1 696466. 297 4744786. 071 1338. 504<br />

R100523B Densi ty Si te 2 696501. 107 4744844. 588 1351. 698<br />

R100618A Densi ty Si te 3 696177. 488 4745734. 889 1341. 595<br />

R100618B Densi ty Si te 4 700847. 218 4739250. 309 1355. 653<br />

R100619A Densi ty Si te 5 699177. 505 4739568. 69 1351. 804<br />

R100619B Densi ty Si te 6 699144. 1 4739572. 5<br />

R100620A Densi ty Si te 7 698412. 657 4741147. 579 1334. 89<br />

R100620B Densi ty Si te 8 698402. 5 4741134<br />

R100622A Densi ty Si te 9 697383. 236 4743407. 554 1332. 381<br />

R100622B Densi ty Si te 10 697442. 271 4743388. 804 1335. 949<br />

R100701A S D core si te 697446. 059 4743388. 329 1360. 947<br />

R071219A S D3 ant hil l 697434. 1371 4743407. 645 1320. 4463<br />

R071221A west pl aya ( S D) 697387. 713 4743376. 038 1314. 489<br />

R071221B east pl aya ( S D) 697462. 719 4743441. 54 1314. 453<br />

R071317A Qal 2 si t e: 5 mi le cave t urnof f 700001. 127 4736947. 916 1318. 739<br />

R071317B Qal 3: cutoff to nor t h of cave 699587. 548 4739034. 83 1318. 925<br />

R071318A Qal 5: E ast i ntersect of 17B r oad 701607. 231 4739326. 384 1324. 45<br />

R071319A Qal 6: 6134 i ntersect ion 699160. 48 4739573. 814 1326. 732<br />

R071319B Qal 7 sam pl ing l ocat i on 698534. 134 4740895. 736 1321. 801<br />

R071319C DP1, DP 2 697993. 036 4742344. 532 1326. 242<br />

R071320A DP3, DP 4: Loco Lake Cutof f 697338. 625 4743566. 853 1316. 971<br />

R071321A T MR-nor t h dune point A 696151. 25 4745822. 983 1322. 004<br />

R071321B T MR-sout h dune point t 696174. 381 4745759. 853 1330. 414<br />

R071321C T MR-sout h dune point A 696183. 445 4745736. 331 1331. 44<br />

R071323A N t ur nof f to PH / | 697875. 67 4742599. 263 1331. 038<br />

R071323B cor ner of squar e west of PH 697273. 831 4741592. 359 1327. 718<br />

42


4. 4 Ge om e t r i c Co r r ect i o n of th e Aer i al P ho t og r a phs<br />

Com merci al ly avai lable r emote sensing sof tware such as Clark Labs’ "idri si32"<br />

( East man, 1999a) can be used to ort hographi call y cor r ect aer ial photogr aphs and<br />

sat el li t e im agery and to determ i ne t he spat i al di st ri but ion of feat ures in those<br />

photogr aphs. T he i m age fil es were conver ted i nt o windows byt e- or der bit m aps usi ng<br />

Adobe P hot oshop and im por ted int o Idr isi usi ng t he "BMP I DRIS " i mpor t uti l it y<br />

( East man, 1999a). Or thocorr ect ion of photogr aphs requi res the l ocati on of t he gr ound<br />

contr ol point s both in "r eal" space (through GPS or other means) and i n the I dr i si -f orm at<br />

i mage f i le t o be cor rect ed. Thi s is accompl ished by com pari son among fi eld m aps,<br />

not es, the hard-copy aer i al phot ographs, and t he Idri si form at im age f il es.<br />

T he phot ographs wer e cor r ected usi ng the "Resampl e" m odule i n I dr isi ( East man,<br />

1999c). The modul e projects each pixel in the im age using a minim um of t hree contr ol<br />

poi nt s. T he li near root - mean-square corr ect ion requi res t hat t he boundi ng li mi t s of the<br />

cor rect ed fi l e be specif i ed i n the coor di nat es i n whi ch the fil e is being cor rected. I t is<br />

f requent ly necessar y t o re- corr ect a fi le m ult ipl e ti mes i n order t o arr i ve at a set of<br />

boundar i es which com pl et ely encl ose the geom et ri cal ly corr ect ed f il e.<br />

Onl y four of the aer ial photogr aphs contained an adequat e num ber of gr ound<br />

contr ol point s for geomet ri c cor rect i on ( contr ol point locat i ons ar e i ncl uded on t he<br />

photogr aphs in Appendi x C). The r em aining 14 photogr aphs wer e corr ect ed using<br />

disti nct ive features t hat are vi si bl e i n the cor r ected photographs and i n t heir uncor rect ed<br />

nei ghbor -phot ographs. T he UT M coordi nates from the cor r ected photos wer e speci f ied<br />

as the "tr ue" geogr aphic locati ons f or the featur es. T hese 2nd or higher order deri ved<br />

43


ground contr ol point s ar e l isted i n Table 4. 3. Thi s pr ocedur e worked wel l for the<br />

photogr aphs of ar eas wit h l it tl e r el i ef but led to di st ort ion of the phot ographs of hil ly or<br />

slopi ng ar eas t wo or m or e photographs away from the GPS - corr ect ed i m ages. The<br />

ort hocor rect ed phot ogr aphs in Appendi x C wer e al l ori gi nal ly square.<br />

T he phot om osaic ( Fi gur e 4.3) was created in a mul ti -step process. I export ed t he<br />

cor rect ed photogr aphs fr om Idri si to Phot oshop i n bit map f or m at . I m age dat a wer e<br />

ext ract ed fr om Idri si’ s "zero" val ue backgr ound in each fi le. The 18 fi l es wer e t hen<br />

assem bl ed int o one mosai c. T he mosai c was saved as a bi tm ap, i mpor t ed back i nt o<br />

I DRIS I, and ort hocor rect ed agai n ( poi nt s shown on F igur e 4.3) , using t he Resampl e<br />

m odul e wit h a com bi nat ion of tr ue and der ived gr ound contr ol points.<br />

4. 5 Re m ot e Sen si ng Me t h ods<br />

T he r esoluti on of t he mosai c is appr oxi matel y ten m et er s on the ground per pi xel .<br />

T hi s resol ut i on i s insuf f icient for det ecti on and analysis of pat ches of desert pavem ent<br />

whi ch m ay be less t han f i ve m et ers wi de. T o det ect such features the r emote sensing<br />

analysi s had to be per for med usi ng t he raw imager y. For t hi s pur pose I sel ected one<br />

photogr aph ( 7101- 194) whi ch covers t he most intensely st udied por ti on of the fi eld si te<br />

( shown on Fi gur e 4. 3). The pixel si ze for the uncorr ect ed phot ograph is one met er on<br />

t he ground.<br />

44


Table 4. 3: UTM Locations of Orthocorrection Points. The first seven locations<br />

were obtained using a Trimble GPS unit. All others were derived from comparison of<br />

the location of known objects in corrected and uncorrected photos.<br />

F il e Quali ty easti ng nor thing Descr ipt ion<br />

R071317A 1 700001. 127 4736947. 916 Qal 2 si t e: 5m i cave turnoff<br />

R071317B 1 699587. 548 4739034. 830 cut of f to N of cave +/ - int er secti on<br />

R071318A 1 701607. 231 4739326. 384 E ast int er sect same road as 17B<br />

R071319A 1 699160. 480 4739573. 814 6134 int er secti on<br />

R071320A 1 697338. 625 4743566. 853 L oco Lake Cut of f<br />

R071323A 1 697875. 670 4742599. 263 N t ur nof f to PH / |<br />

R071323B 1 697273. 831 4741592. 359 cor ner of fenced ar ea E of PH<br />

Der ived01 2 701744. 5763 4741568. 261 S cat waterhole S W cor ner<br />

Der ived02 2 701849. 8341 4746599. 971 playa 5078T bet ween dark spot s<br />

Der ived03 2 699680. 8217 4746538. 727 m ini pl aya N of L oco L ake<br />

Der ived04 2 699552. 314 4744582. 244 E cor ner ,L oco L ake empoundm ent<br />

Der ived05 2 691506. 9176 4740810. 139 S E corner of dune<br />

Der ived06 2 691882. 6009 4741370. 064 j unct ion of 2 l obes of r i dge<br />

Der ived07 3 693809. 8201 4745859. 059 upper l eft serr at ion, TMR playa<br />

Der ived08 3 693934. 0999 4745817. 607 I sl and in TMR playa<br />

Der ived09 3 684397. 83 4742659. 382 oakleaf st ream fan -mi ddl e fi nger<br />

Der ived10 3 702444. 4164 4748295. 032 S W Bail ey em pd.<br />

Der ived11 3 704668. 472 4750994. 598 i n end of st r ipe, pl aya NE of Bail ey<br />

Der ived12 4 699577. 9762 4754582. 315 I sl and in lonel y mi d97 pl aya<br />

Der ived13 4 694010. 429 4751450. 868 t ip of ridge, at channel out of TMR<br />

Der ived14 4 701194. 4083 4754664. 132 center, lower left pl aya in chai n<br />

Der ived15 4 696609. 1243 4750655. 624 confl uence of deep str eam s mi d 96<br />

Der ived16 4 701030. 2623 4751134. 837 l ower r t of 197, li ght ni ng bolt<br />

str eam, SE corner<br />

Der ived17 2 691954. 8369 4735900. 101 S -t ip, diamond ri dge, lower l ef t 246<br />

Der ived18 4 682401. 5045 4746883. 199 2nd str eam - del icat e- cr ossing pluv.<br />

L ine fr om S of 243<br />

Der ived19 5 679193. 6516 4750496. 874 f eather - fan spi ke underneat h isl and<br />

Der ived20 5 680193. 2835 4753146. 968 confl uence of snaky st reams - mi d<br />

l ef t of phot o 242<br />

Der ived21 5 687250. 695 4750366. 968 Middl e of photo 243 channel<br />

confl uence ( m id-playa)<br />

Der ived22 5 677464. 3211 4745225. 54 shoreli ne spi ke, base of 253<br />

Der ived23 6 673753. 5435 4751269. 568 S hore-spike w of NE - fl owi ng spr i ng<br />

Der ived24 2 692900. 3764 4743861. 645 str eam int o SE TMR playa<br />

45


Figure 4.3: Orthographically corrected photo-mosaic of the study area. This mosaic was constructed from eighteen aerial photographs<br />

which were each individually ortho-corrected (Appendix C). The ground control points used in the orthocorrection process<br />

are shown as dots. The most accurate ground control points are in black and were acquired using a Trimble GPS unit in the field.<br />

Other "ground control points " were derived from the photographs corrected using the GPS data. NAPP photo "194" is located in the<br />

area shown in the red box. This is the portion of the study area used in remote sensing analysis.<br />

46


Classif i cati on of surf ace f eatur es was made using characteri sti c br i ghtness<br />

signatur es. Char act er ist ic bri ght ness si gnatures are determ i ned em pir icall y usi ng<br />

“tr ai ni ng si t es” that have been gr ound tr ut hed and ar e representati ve of the feature of<br />

i nt er est ( Cam pbel l 1996) . Tr ai ning sit es ar e used by i m age processi ng soft ware to buil d<br />

a signat ur e that can be classif i ed automati cal ly. Sever al t r ai ni ng si tes wer e est abl ished<br />

f or f ive sur f ace types: deser t pavem ent , pl ayas, sand dunes, al luvi um, and bedr ock.<br />

I dr isi’ s signat ur e devel opm ent sof tware package, MAKE SI G ( East man, 1999b) was<br />

used to establi sh t he range of spect r al val ues covered by each of t hese features. Whi le<br />

t he r esult ing bri ght ness values for all uvium , bedrock, and desert pavement ar e sim il ar,<br />

t hey ar e dist inct ( F igur e 4.4).<br />

Aft er establ i shing signat ur es ( F igur e 4.4) for t he fi ve di st i nct types of sur face<br />

cover r epr esent ed i n t he aeri al phot ogr aph, I at t em pt ed to cl assi fy the photogr aph using<br />

t hese si gnat ures. Idr isi i s capable of m any kinds of supervi sed cl assif i cati on of i m ager y<br />

( cl assi f icat i on based on pr e- def ined spectr al si gnatures). Thr ee of t hese methods use<br />

har d cl assif i cati on, or classif i cati on that absol ut el y assigns a pi xel t o a cat egory.<br />

Because I am interested in the per cent of ar ea covered by deser t pavem ent , I chose t o<br />

l im it m y anal ysis t o t hese three m et hods.<br />

T he f ir st and m ost sim pl e m et hod of har d cl assif i cati on is t he "m ini mum- distance-<br />

t o- means" technique. In this cl assi f icat ion scheme, pi xel s are classi fi ed accor di ng to t he<br />

distance f rom t hat pixel ’ s br ightness val ue to t he mean value of each of the tr aining<br />

sit es. This appr oach can be modif ied t o take int o account spectr al gr oups that span a<br />

47


Figure 4.4: Spectral patterns of surficial deposits. Desert pavement can be easily<br />

distinguished from bedrock and from alluvium in the field, but it is challenging to do so<br />

remotely. Desert pavement’s spectral pattern falls entirely within the range of values<br />

covered by bedrock and includes a large portion of the left-hand tail of alluvium’s spectral<br />

signature. The spectral signatures of sand dunes and playas are not included here. Playas<br />

are distinct in their high brightness values, and the peak of the sand dune curve is similar<br />

to that of alluvium. This plot was prepared from training site analysis done in Idrisi, in<br />

which the areas of each feature were refined so they are nearly (within 20 pixels of 1600)<br />

equal. The mean values for the three features shown above are distinct, as are the shapes<br />

of the curves for each of the five features described in the text.<br />

48


ange of val ues by standardizing t he pr e- def ined gr oups based on the standard devi at i on<br />

of values wi t hi n that gr oup ( Eastm an, 1996b) . F i gure 4. 4 shows t he br ightness val ues<br />

f or bedr ock, desert pavem ent, and al l uvium, deter mi ned by tr aining sit e ident if i cati on.<br />

Deser t pavem ent covers a very narr ow spectr al range, com pared t o ei t her bedrock or<br />

all uvium . Using the standardized mi nim um -di st ance- to-m eans technique, I dri si should<br />

i dent if y substant ial ly l ess desert pavement than bedr ock.<br />

T he "par al lel epiped" m et hod of har d classif i cati on ident if ies dat a based on t he<br />

spect ral val ue of each cl ass as well as t he si ze of each class of t r ai ni ng si te. In remote<br />

sensi ng of m ult iple- band satell i te i m ager y it di sregards t he si ze of t he cl ass in favor of<br />

com pari son between two bands of im agery. T hese two var i ables l ead to the creat i on of<br />

r ectangular shapes or par al lelepipeds sur rounding pixel s of known value. Unknown<br />

pixel s in nearby ar eas ar e ar bi t rari l y assi gned int o these boxes. The si ze of the boxes<br />

m ay be det er m ined ei ther by t he mi ni m um and maxi m um val ues f ound in the class<br />

dur ing signat ur e devel opm ent (r eferr ed to i n F igure 4.5 as “r aw”) or by som e num ber of<br />

standar d devi at ions fr om the mean val ue f or the class ( nor mal ized). I t is a fast but<br />

f requent ly i naccurat e technique and is rarel y used ( East man, 1999b).<br />

T he t hi r d met hod usi ng hard classi fi cat ion is the "maxi m um l i keli hood" pr ocedur e.<br />

I t is t he most mathemati cal ly r obust of t he three har d classi fi cati on rem ot e sensi ng<br />

t echniques. This t echni que uses t he mean spectr al value f or each cl ass to calculate the<br />

probabi l it y that a pixel belongs t o a class. Thi s technique is specif icall y ai m ed at r em ot e<br />

sensi ng of m ult i- band sat el li te im agery, as the probabi l it y is deter mi ned t hr ough<br />

cal culat ion of vari ance and covari ance of spectr al gr oups bet ween di ff er ent<br />

49


Figure 4.5: Results of Remote Sensing Analyses. The three types of analysis and two<br />

variations on them discussed in the text are compared based on the percentage of each<br />

type of surface deposit they predict to exist in the Summer Lake sand dunes. The method<br />

that identified the majority of the bedrock in the study area as ‘bedrock’ is the<br />

"normalized paralellepiped" method. The distribution of these results on the aerial<br />

photograph on which these analyses were performed (number 7101-194) can be seen in<br />

Appendix D.<br />

50


ands of an image ( East man, 1999b). Si nce I was anal yzi ng a si ngl e- band panchromat ic<br />

i mage, thi s technique was not expect ed to work as wel l as it woul d for a mult i- band<br />

i mage.<br />

4. 6 Re sul t i ng La nd f or m Di s t r i b ut i on<br />

I per for med five cl assif i cati ons of the study ar ea using t he methods descri bed<br />

above: the r aw and the norm al ized mi nim um di st ance techniques, the maxim um<br />

l ikel ihood t echni que, and t he r aw and t he norm al i zed par al lel epiped technique<br />

( Appendi x D) . The resul t s show the per cent of t he st udy area i dent i fi ed in each<br />

l andcover cl ass ( Fi gur e 4.5). The r un that pr oduced the m ost accur ate r esult s for t he<br />

study ar ea ( assessed based on t he locat ion of two l ar ge bedr ock r idges i n t he m i ddle of<br />

t he phot ograph) was the nor mali zed parall el epi ped t echni que. Bot h par al l el epiped<br />

t echniques i denti fi ed the bedrock ri dges as bedr ock, rat her than as deser t pavem ent, but<br />

t he r aw paral lelepi ped t echni que did not ident if y deser t pavement anywher e in t he<br />

photogr aph.<br />

T he nor m al ized paral lelepiped t echni que i denti fi ed ten per cent of t he photogr aph<br />

as deser t pavem ent, and seventy percent of the phot ograph as al luvi um. Many of the<br />

pixel s it ident if ied as pavem ent are bedr ock, but m any of the act ual pavement pi xels ar e<br />

i dent if i ed as all uvi um ( Diggl es et al , 1990a). Thi s technique di d not i denti fy sand dunes<br />

ver y wel l, pr obably because t he mean spectr al val ues of sand dunes and al luvi um ar e<br />

ver y si m il ar (F igur e 4.5) . T hi s t echni que was t he most successful in di f ferent i at ing<br />

deser t pavem ent f rom bedr ock. Thi s was t he second- most chal l engi ng cl assif icat i on, as<br />

51


t he spectr al range for desert pavement fall s com pletely wi thi n that for bedrock, t hough<br />

t he m ean val ues are di st i nct.<br />

Whi le none of t he supervi sed rem ot e sensi ng techniques are accurate for all l and<br />

cover t ypes, the nor mali zed par all el epi ped techni que pr ovi des t he m ost accurate<br />

disti nct ion of deser t pavem ent from bedrock. The t en percent deser t pavement cover<br />

predi ct ed by this t echni que cor r el at es well wi th my f iel d obser vati ons i n t he ar ea<br />

cover ed by t he anal yzed photogr aph ( t hi s is appr oxi matel y the sam e area cover ed by<br />

P late One) .<br />

52


CH AP T E R 5: OWY HE E HAR VE S T E R AN T P OP UL A T I ON DE NS I T Y I N<br />

T H E SU MME R LAK E SA ND DU NE S<br />

5. 1 An t s<br />

I t has been est im at ed that ther e i s a l ar ger biom ass of ants than of any ot her<br />

t er rest r ial ani mal ( Holl dobler and Wil son, 1990) . Ants evol ved i n the t r opics, and it is<br />

sti ll not possi bl e to fi nd a gener a of ant that does not i ncl ude speci es that l i ve i n t he<br />

t ropi cs ( MacKay, 1991). The range of t he Am er i can seed- har vest ing ant genera<br />

P ogonomyrmex ( Fi gure 5. 1) extends f rom T ierr a del Fuego, the souther n t ip of<br />

Argenti na, i nto Bri t ish Col um bi a ( Taber, 1998) , but t he gr eat est diver sit y of speci es<br />

wit hi n thi s gener a can be f ound at m i d- low lat it udes ( Br ian, 1974) . The ear li est known<br />

ant i s from the l ower Cr etaceous, in Aust ral ia ( Holl dobler and Wil son, 1990) . T aber<br />

( 1998) beli eves that the P ogonomyrmex genera evol ved i n the l ate Cret aceous, when he<br />

says Nor th and Sout h Amer ica wer e a singl e conti nent (I ’ ve t r aced t his t o Wegener’ s<br />

conti nental dri ft t heory ( Dott and Pr other o, 1994) ) . MacKay ( 1991) concur s wit h t he<br />

dat e, but not t he paleogeography. T he two conti nents were not connect ed at t hat t im e by<br />

eit her conti nental dri ft or t he pr esent -day landm ass that is Cent ral Amer ica (F owl er ,<br />

1990) . Holl dobler and Wi lson ( 1990) assert that the radiati on of ant speci es ar ound the<br />

globe t ook pl ace at the beginni ng of the Ter ti ar y, 65 m i ll ion years ago. Brues ( 1951), on<br />

t he other hand, descri bes 70 mi l li on year ol d Bal ti c am ber cont ai ni ng mor e ant speci es<br />

t han exi st t oday.<br />

53


Figure 5.1: This map of the global distribution of the Pogonomyrmex genera of ants<br />

is from Taber (1998). Harvester ants probably do not follow the shown political<br />

boundaries in the Carribbean, but the absence of ants in Central America can be<br />

accounted for by the paleogeography discussed in the text. Harvester ants are found<br />

as far south as Tierra del Fuego (Argentina) and at least as far north as British<br />

Columbia.<br />

54


P ogonomyrmex are seed-har vesti ng ants. They li ve in t he gr ound, and many<br />

speci es li ve only i n t he desert . The Cal if ornian har vester (P . cali f orni cus) gat her s seeds<br />

and pebbles in temperatur es as high as 55˚ C, and t he bear ded har vester (P .<br />

l ongi barbi us) can survive bel ow fr eezing tem perat ur es at 4267 m elevat ion i n the<br />

Andes. Most harvest er ants, however , usual l y st ay in t hei r nests at t em per at ur es bel ow<br />

22˚ C ( T aber , 1998) . They requi re very l it t le water, which they obt ai n from seeds,<br />

r at her than dir ectl y dri nki ng i t ( Gor don, 1999).<br />

T he l if espan of a harvest er ant colony is determ i ned by it s queen. For the wel l -<br />

studi ed speci es P ogonomyrmex rugosus, considerabl y l ess than one per cent of al l<br />

sexuall y f uncti onal femal e ants (capabl e of becom ing queens) ar e abl e to found a<br />

col ony. S exual ly f uncti onal fem al es make up appr oxim at ely one percent of t he t otal<br />

popul at i on of a col ony. Only 20-50 per cent of t he colonies sur vi ve thei r f ir st wi nt er,<br />

and about 90 percent of the second-year col oni es at tain matur it y. A col ony i s<br />

consi der ed m ature once i t has buil t a subst ant ial m ound of pebbles (Fi gur e 5. 2) and<br />

ceased to increase in popul at ion. T his usuall y occur s approxim at el y f ive years af ter a<br />

queen f ounds a colony. A col ony t ypi call y lives over 15 year s af ter i t reaches matur it y<br />

( Gordon, 1999), but harvest er queens have been observed t o l ive f or l onger than 40<br />

years ( Taber, 1998) . Maxi m um colony populat ion rar el y exceeds 10,000 indi vidual s<br />

( Gordon, 1999).<br />

I n gener al , Ameri can har vester ant s are a well -st udied speci es. Par ti cul ar att ent ion<br />

has been pai d t o the r ed (P ogonomyrmex rugosus) and t he western ( P ogonomyrmex<br />

occident al is) har vesters, t hat dwell in t he deser t sout hwest and in the midwest ern st at es<br />

55


Figure 5.2: Pogonomyrmex owyheei anthill. The size and cleared disc around this anthill<br />

indicate that the colony residing here has attained maturity and is at least five years old.<br />

This particular hill ("anthill 5" on Plate 1) is located towards the northern end of the study<br />

area where the surface deposits are a mixture of sand dunes and desert pavements.<br />

56


espect i vely. Gordon’ s ( 1999) work wi th r ed harvest er s i n the Ari zona deser t is the<br />

m ost com pr ehensive study of an indivi dual species. However, she has not been<br />

concerned wi t h soil / sur face constr uct ion.<br />

T he ant s discussed in thi s st udy wer e classi fi ed as P . owyheei based on t hei r si ze,<br />

physi cal appear ance, and geographi c locat ion, but t hese ar e not absolute determ i ni ng<br />

f actors for har vest er ant s ( Taber, 1998) . No ot her species of har vest er ant has been<br />

r epor ted dwel li ng i n t he st at e of Or egon, but it is possible that ot her speci es than<br />

P ogonomyrmex owyheei may li ve in the st ate and may be the ant s in the f ield ar ea.<br />

5. 2 An t hi l l s<br />

Har vest ers ar e unique am ong ant s i n that al l species of P ogonomyrmex dwel l in<br />

t he ground ( Taber, 1998) . Most speci es constr uct m ounds of rock and soi l above thei r<br />

nests, that may or may not cont ain t unnel s and cham bers. The bel ow- gr ound nest<br />

consi st s of tunnels and chamber s wit h smoot h wal l s which T aber ( 1998) suggest s ar e<br />

"pl aster ed i n sal iva". These cham ber s ar e present in hi gh concentr ati ons f or a dept h<br />

equival ent t o t he above- ground hil l’ s width ( Gordon, 1999) but ar e present in lower<br />

concent r at ions to a dept h of as much as six meter s ( Taber, 1998) . Because pr evious<br />

studi es of t he st ructure of ant hil ls have f ocused on the t ypes of acti vi t ies taking place i n<br />

t he cham bers, r at her t han on their ar chit ect ur e (e. g. MacKay, 1988) , there i s no<br />

def init i ve sour ce noti ng tunnel and chamber or ientati on in a sub- hor izont al ( ver y low<br />

slope) dir ect ion.<br />

P ogonomyrmex hi ll s are r ecognizabl e in the field by t hei r pebbl e mounds. T hese<br />

are alm ost univer sal ly accompani ed by a cleared area of sever al m et ers i n diamet er<br />

57


( Fi gure 5. 3) , whi ch consi st s of fi ne- gr ai ned sand or sandy soil ( Taber, 1998) . Sever al<br />

r esearcher s have st udi ed the densi ty of ant hil ls in var i ous regions in t he west ern Unit ed<br />

S tates (Tabl e 5.1). T hei r st udi es have f ound bet ween t hree and 104 anthi ll s per hect ar e,<br />

wit h the onl y pri or st udy of P . owyheei result i ng i n a densit y of 40 hi ll s per hect ar e.<br />

Most of these studi es have focused on i nt er act ions between coloni es. Dugas ( 2001)<br />

m apped the densit y of P . rugosus nest s in rel at ion to ar r oyo edges i n New Mexi co and<br />

f ound t hat t he ants pr ef erent ial ly l ocate near st ream s.<br />

5. 3 An t hi l l De ns i t y Det er m i n at i on Met h od s<br />

I m apped ant hil l densi ty in t he Summ er Lake sand dunes at 13 si tes, using t wo<br />

dif ferent techniques, in two di f ferent fi el d sessions. In August of 1999 t hr ee pr eci se<br />

sur veys were made of t he locati ons of ant hi l ls on sand dunes on T en Mi le Ri dge and at<br />

t he "pai nt ed hi ll s" si te at t he sout her n end of the dune sheet (P lat e 1) . In October of<br />

2000 ant hi ll di st ri but ion was m apped in det ail i n t en 30.5 m eter (100 foot) nor t h- south<br />

squar es, l ocati ng one cor ner wi t h GP S , and quali t at ivel y plot ted the l ocati ons of ant hi ll s<br />

wit hi n each of the squar es.<br />

T o deter mi ne the concent r at ion of ant hi ll s on two T en Mi le Ri dge cr escent ic sand<br />

dunes and in the vi cinit y of the pai nted hi l ls si te r oad i nt ersecti on, I init ial ly r ecorded the<br />

l ocat ions of the ant hi ll s wit hi n a sm al l geogr aphic area usi ng a Gar mi n GPS uni t ( June<br />

19, 1999). Unf or tunat el y, the GPS posi ti on er ror s were of ten m or e than 100m ( Letham ,<br />

1998) . GP S- sur veyed ant hil ls and dune boundar ies wer e m ar ked wit h basal t cobbles<br />

pai nt ed wi th br ight or ange spray pai nt. The orange cobbles wer e re- surveyed in August<br />

of 1999 using Brunt on com passes and a 30. 5 m ( 100 f oot) st eel m easur ing tape<br />

58


Figure 5.3: Owyhee harvester anthill with cleared disc surrounding it. Anthills of<br />

this size represent mature colonies, of at least five years history. The reasons for the<br />

cleared disc are unknown, but it is certainly advantageous to the ants, as it prevents<br />

predators from hiding close to the hill. This anthill is at the "Painted Hills" site.<br />

59


Table 5.1: Density of Pogonomyrmex colonies in other locales. Only one prior<br />

study (Porter and Jorgensen, 1988) has reported the density of Owyhee harvester ants.<br />

The majority of these data are from a long-term study of one species, Pogonomyrmex<br />

barbatus, in New Mexico (Gordon, 1999). All values in this table are reported in<br />

anthills per hectare. Some of these were calculated from reports of an overall census<br />

in a specified area. Most studies of anthill density report nearest-neighbor distance<br />

and were therefore unusable for comparison with my results.<br />

G eograp h ic<br />

Ant S pecies H il ls p er Ref eren ce<br />

Area<br />

h ectare<br />

Col or ado P ogonomyrmex occi dentali s 6 t o 16 ( Cr ist and Wi ens, 1996)<br />

Col or ado P ogonomyrmex occi dentali s 48 ( Wi er nasz and Col e, 1995)<br />

New Mexi co P ogonomyrmex rugosus 3 t o 25 ( Dugas, 2001)<br />

Ari zona P ogonomyrmex rugosus 22 ( Whit for d et al ., 1976)<br />

New Mexi co P ogonomyrmex barbat us 9.8 ( Gordon, 1991)<br />

New Mexi co P ogonomyrmex barbat us 11. 8 ( Gordon, 1991)<br />

New Mexi co P ogonomyrmex barbat us 14. 9 ( Gordon, 1991)<br />

New Mexi co P ogonomyrmex barbat us 21. 9 ( Gordon, 1991)<br />

New Mexi co P ogonomyrmex barbat us 14. 5 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 19. 9 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 21. 8 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 26. 6 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 27. 4 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 29. 8 ( Gordon and Kul ig, 1998)<br />

New Mexi co P ogonomyrmex barbat us 29 ( Gordon and Kul ig, 1998)<br />

S outh Caroli na P ogonomyrmex badi us 46 ( Harr ison and Gentr y, 1981)<br />

Wyomi ng P ogonomyrmex occi dentali s 30 ( Haef ner and Cr ist, 1994)<br />

Cal if or nia P ogonomyrmex cali forni cus 104 ( De Vit a, 1979)<br />

Ari zona P ogonomyrmex rugosus 25 ( Ri ssing, 1988)<br />

Cal if or nia P ogonomyrmex cali forni cus 17 ( Ryti and Case, 1984)<br />

I daho P ogonomyrmex owyheei 40 ( Port er and Jor gensen, 1988)<br />

New Mexi co P ogonomyrmex barbat us 30 ( Wagner et al ., 1997)<br />

60


( Fi gure 5. 4) . They were relocat ed, num bered, and t he di st ances and angl es between<br />

t hem wer e measured ( Compton, 1985) .<br />

I det er m ined the locat ions of t he ten densi t y st udy sit es for t he October 2000 study<br />

usi ng aeri al phot ogr aphs to i denti fy several geom or phicall y disti nct sit es (P lat e 1) . Four<br />

of the sit es ar e locat ed on all uvi um , t wo on desert pavement surf aces, and four on sand<br />

dunes of var ying degrees of act i vi ty. At each si te I l ocated and subj ect ivel y placed 30. 5<br />

m by 30. 5 m plots ( 930 m 2 ) whi ch were unif or m ly r epr esent at ive of the geom or phic<br />

sur face. We pl anted bri ght yel l ow shovel s and pr obes i n each cor ner of the square,<br />

whi ch was pl att ed using a Brunt on com pass and 30. 5 m (100 foot) m easur ing t ape. My<br />

f ield assi st ant and I each walked the squar e usi ng the "lawnm owing" technique ( Gordon,<br />

1999; Holl dobler and Wil son, 1994; P ott s and Wil l mer, 1998). I wal ked nor th al ong the<br />

western edge of t he squar e, on reachi ng t he nort her n boundar y I t ook a f ew st eps t o the<br />

east, t hen walked sout h, turned east , t hen wal ked nor th agai n, gr adual ly coveri ng the<br />

ent ir e squar e. My field assi st ant f oll owed the sam e pat tern on an east- west course. We<br />

m ar ked the anthil l locat i ons in our field notebooks, com pared not es and re- checked hi ll<br />

l ocat ions toget her. E ach squar e was pr ecisely l ocated usi ng a Tr im ble GP S unit as<br />

descr ibed in Chapter 4. The GP S l ocati on i s m ar ked on each plot (Appendi x E) .<br />

T here ar e sever al i m port ant sour ces of uncer taint y in m apping t he densit y of<br />

ant hi ll s. T her e ar e ant hil ls i n all di ff er ent st ages of developm ent present in the field ar ea<br />

( Fi gure 5. 5) , so I cat egori zed each ant hi ll as ei ther "m at ur e" (a l arge gravel coated<br />

m ound) or "young" ( signs of ant acti vit y wi t hout the wel l- devel oped coni cal m ound) . I<br />

also sought confi rm ati on that ants were usi ng each of t he ant hi ll s. T hi s was not al ways<br />

61


Figure 5.4: Surveying anthill densities in the Summer Lake sand dunes. The desert<br />

pavement shown in this photograph does provide a home for anthills, although they prefer<br />

to live in sand or alluvium. Anthills were surveyed using the "lawnmowing" technique<br />

described in the text.<br />

62


Figure 5.5: Anthills at different stages of development. These hills all belong to colonies of Owyhee harvester ants. The<br />

colonies shown increase in maturity and development from upper left to lower right. The colony in the upper left photo may<br />

be in its second year, while the colony in the lower right picture is at least five years of age.<br />

63


possi bl e, as ther e are days when har vester ant coloni es deci de for one r eason or anot her<br />

not t o leave the mound ( Gordon, 1999). Ever y ant hil l was i ncl uded i n t he invent ory.<br />

T hose hi ll s that di d not have ants on t hem wer e mapped as quest ion mar ks, as wer e hi l l-<br />

l ike features swarm i ng wi th ant s t hat we wer e unabl e to locat e entr ances for.<br />

5. 4 Re sul t s<br />

Owyhee har vester ant hi ll s i n the study ar ea ar e bui lt of sim i larl y sized al luvi al<br />

pebbl es on al l obser ved geomorphic surf aces. Al l uvial pebbl es ar e sel ect ed f or<br />

const ructi on even at l ocati ons, such as t he paint ed hil l s si t e, wher e there i s no deser t<br />

pavem ent or all uvium at the sur f ace for over a ki lometer i n any dir ect ion. Ant hil ls occur<br />

on deser t pavem ents, dem onstr at i ng t hat har vester ant hi l ls ar en’t al ways surr ounded by<br />

clear ed di scs. Young ant hi ll s tend to be char act er ized by patches of pebbl es of t he<br />

approxi m at e width of a m ature anthil l , but wit h ver y li t tl e ver ti cal expr essi on.<br />

Chamber s and tunnel s observed i n har vester ant hi l ls t end t o be near hori zontal in<br />

ori entat ion.<br />

T he 1999 sur veying wor k resul ted i n an aver age anthil l densi t y of appr oxi mately<br />

20 hi ll s per hect ar e ( Table 5.2) . T hat study measured onl y the act i ve m ature hi ll s and<br />

consequent ly mi s- represents t he actual concent rat ion of anthi ll s by a lar ge amount . The<br />

presence of sever al addi t ional gravel -coated ant hil ls i n t he painted hil l s ar ea in October<br />

2000 pr oves that we negl ect ed t o i ncl ude “young” (second-year ) colonies in our 1999<br />

i nventor y. A second year col ony coul d easi l y be over looked because it doesn’ t have a<br />

gravel- cover ed mound, onl y a pi l e of seed husks mixed wi th a few pebbl es and a swarm<br />

of busy workers ( Fi gur e 5.6).<br />

64


Table 5. 2: Anthill surveying results from 1999. Density is reported as the number<br />

of hills per hectare. Only mature anthills were included in the surveying in 1999.<br />

Maps of anthill distribution at these three sites can be found in Appendix E.<br />

S it e Nam e G eomorp h ol ogy Ant hi ll Densi ty<br />

P ai nt ed Hi ll s S and Dunes 22<br />

T en Mil e Ridge Nort h Dune S and Dunes 18<br />

T en Mil e Ridge Sout h Dune S and Dunes 17<br />

Average 19<br />

65


Figure 5.6: An anthill mapped as "questionable". There is a slight concentration of<br />

pebbles at the surface of this sand dune just below the orange rock. There were several<br />

ants in the area but no entrance was found. The presence of ants and pebbles suggest that<br />

this is a second year colony, but the lack of an entrance to the anthill meant that it had to<br />

be mapped as a question mark.<br />

66


T he Oct ober 2000 inventor y (T abl e 5. 3) pl aces the average num ber of anthi ll s per<br />

hectare in t he Summ er Lake sand dunes at 66 (T abl e 5. 4) . T he densit y i ncr eases to 70<br />

per hect ar e wit h the r em oval of the deser t pavem ent sit es and could be as high as 87 if<br />

t he questi onabl e ant hi ll s are i ncl uded. These densit ies are hi gher than al l but one st udy<br />

f rom ot her l ocati ons ( Table 5.1) .<br />

5. 5: Di sc us si o n of An t h i l l Den si t i e s<br />

Har vest er ant s pr ef er al l uvium (73-100 colonies per hect ar e) to sand dunes (67- 75<br />

col onies per hect ar e), and ei ther is pr ef er abl e to deser t pavem ent (48-59 col oni es per<br />

hectare) . What i s sur pr i si ng i s t hat t here ar e ant col oni es li vi ng in patches of deser t<br />

pavem ent i n my fi el d area. P revious resear chers ( Anderson and MacMahon, 2001;<br />

Bri an, 1974; Gordon, 1984; Holl dobler and Wi lson, 1990; Laundre, 1990; MacKay,<br />

1991; Mandel and Sor enson, 1982; P isarski , 1974; Taber, 1998; Wang et al . , 1995) have<br />

all i ndi cated t hat har vester ant hi ll s are general ly l ocated in the center of cl ear ed patches<br />

of soil . Thi s is not necessari l y the case in the S um mer L ake sand dunes, where they ar e<br />

f requent ly f ound in patches of deser t pavem ent .<br />

T he val ues r eport ed in T abl es 5. 2 and 5.3 f all wi thin t he range r eport ed for ot her<br />

har vest er ant com munit ies i n Table 5. 1. The onl y pri or st udy whi ch repor ted the densit y<br />

of P . owyheei coloni es ( Port er and Jor gensen, 1988) records a densit y of 40 per hectare,<br />

whi ch i s consider abl y lower t han t hat r epor t ed i n m y resul ts fr om t he sum mer of 2000<br />

( 63-78 hil ls per hectare) . T he aver age densit y of anthi ll s per hect ar e repor ted by other<br />

studi es is 25. My resul t s fr om the sum mer of 1999 (T abl e 5. 2) ar e the cl osest to thi s<br />

average harvest er ant densi ty, however my values only i ncl ude l ar ge acti ve colonies.<br />

67


Table 5. 3: Anthill surveying results from 2000. The results are reported both as the<br />

number of hills in each 930 m 2 plot and as number of hills per hectare. Both mature<br />

and questionable anthills were included in the surveying in 2000. Maps of anthill<br />

distribution at these sites can be found in Appendix E. “Site Name” refers to Plate 1.<br />

S it e Nam e G PS S it e G eomorp h ol ogy Def in it e P er Q uest ion ab le P er<br />

Nam e<br />

Ant hi ll s H ectare Ant hi ll s H ectare<br />

Densi ty 3 R100618A All uvium 9 97 2 22<br />

Densi ty 4 R100618B All uvium 9 97 0 0<br />

Densi ty 5 R100619A All uvium 4 43 6 65<br />

Densi ty 6 R100619B All uvium 5 54 2 22<br />

Densi ty 1 R100523A S and Dunes 4 43 1 11<br />

Densi ty 7 R100620A S and Dunes 9 97 0 0<br />

Densi ty 8 R100620B S and Dunes 8 86 2 22<br />

Densi ty 10 R100622B S and Dunes 4 43 0 0<br />

Densi ty 9 R100622A Deser t Pavem ent 7 75 1 11<br />

Densi ty 2 R100523B Deser t Pavem ent 2 22 1 11<br />

68


Table 5. 4: Anthill densities on various geomorphic surfaces. The values presented<br />

here come from the 2000 anthill density surveys presented in Table 5.3, and are in<br />

anthills per hectare format. The error is one standard deviation.<br />

G eomorp h ol ogy Average An th i ll s Average Qu est ions Tot al P ossib l e An th i ll s<br />

All uvium 72. 7 +/ - 28 26. 9 +/ - 27 99. 6 +/ - 55<br />

S and Dunes 67. 3 +/ - 28 8.1 +/- 10 75. 4 +/ - 39<br />

Deser t Pavem ent 48. 4 +/ - 38 10. 8 +/ - 0 59. 2 +/ - 38<br />

Overall 66 +/ - 28 16 +/ - 19 82 +/ - 47<br />

No Pavem ent 70 +/ - 26 17 +/ - 21 87 +/ - 48<br />

69


S mall er younger col oni es, t hose which m ay have st ayed i ndoor s on the day of t he<br />

census, and swarm s of ant s wi thout obvi ous hil l- ent rances ar e m or e dif fi cul t to map.<br />

T hi s does not m ean that the other st udi es were f l awed. It m ay mean that the Sum mer<br />

L ake sand dunes provide an unusual ly ri ch envi ronment f or har vest er ants.<br />

70


CH AP T E R 6: PE B BL E TRA NS P OR T BY AN T S<br />

6. 1 An t hi l l Ch ar ac t er i s t i c s an d t he Ca r r yi ng Ca pac i t y of Ha r ve st er An t s<br />

Whi le ants ar e of ten shown in cart oons carr ying lar ge object s ( Fi gur e 6. 1), studies<br />

of the rol e of ants in soil f or m at ion have concl uded that ant s ar e onl y capable of<br />

t ranspor ti ng very sm al l soi l par ti cl es ( Aalder s et al. , 1989; Baxt er and Hol e, 1967;<br />

Mandel and S orenson, 1982). Johnson ( 1990) demonst rated t hat ant s are capabl e of<br />

bur yi ng a br i ck pat i o wi t h soil wi thi n 20 year s. His observati ons have led t o conjectures<br />

about t he ani mal or i gi n of buri ed st one hor i zons which are occasi onall y found i n soi l s in<br />

m any di f ferent envi r onments ( Butl er , 1995).<br />

T he S um m er L ake sand dunes ar e popul ated by Owyhee harvest er ants<br />

( P ogonomyrmex owyheei ) , whose char acteri sti c hom es ar e lar ge ( roughly one met er<br />

wide) , gravel -coated m ounds, wi t h deep (up to 6. 5m repor ted in the lit er ature)<br />

subsurf ace networ ks of cham bers ( Scot t, 1950) . These t unnel s and cham bers appear to<br />

be roughly hori zont al (Chapter 5).<br />

Har vest er ant s ar e small anim al s ( approxi mat el y thr ee m m l ong by two m m high) ,<br />

t hus it is i nterest i ng t o consi der how they coul d possi bly t r anspor t gravel s ont o their<br />

m ounds. Do they li f t the gravel s and car ry them ther e, as suggested by Franks and<br />

Deneubourg ( 1997) for lar ge ( eight m m l ength) ant s and small (0.5 mm ) sand gr ains?<br />

Or, do they push the gravel s, as r eport ed by F or el ( 1929), who watched Ameri can<br />

har vest er ant s in capt ivi ty push pebbles up sl opes? Si nce F orel, nobody has repor ted<br />

71


Figure 6.1: Ant Cartoon. Ants in cartoons are often represented<br />

carrying impossibly large objects. This cartoon by Gary Larson also<br />

exaggerates the carrying capacity of ants (Larson, 1984).<br />

72


obser vi ng such behavior. Dr. Deborah Gor don, a har vest er ant speci ali st , bel ieves t hat<br />

har vest er ant s only tr ansport object s wit h their mout hs, whet her by li ft i ng and carr ying<br />

or by dr aggi ng whil e backing up (Gor don, per sonal com municat i on, Decem ber 2000) .<br />

P . owyheei , whi ch ar e hal f the size of the ant s Gor don studies, m ove si mi larl y sized<br />

pebbl es. Thi s suggest s a dif fer ent transpor t mechani sm , possibly r oll ing.<br />

T hi s chapt er di scusses anthil ls at t he sout her n edge of the dune sheet i n a l ocati on<br />

r ef er red t o in this thesi s as t he "painted hil ls" sit e (Pl at e 1). I chose this locat ion<br />

because, whi l e ther e are abundant ant hi ll s, ther e i s no deser t pavem ent present at t he<br />

sur face of t he dunes wit hin a ki lomet er i n any di rect ion. T he al luvium is at a dept h of<br />

approxi m at el y 1.5 m eters here ( det er m ined f r om cori ng r esult s discussed in Chapt er 3) ,<br />

r at her than the 10 met er s r epor t ed el sewher e i n the study ar ea ( Di ggles et al. , 1990b).<br />

T he closest source of pebbl es f or incor porat ion int o ant hi ll s i s thi s al l uvium.<br />

6. 2 Wh y do har ve st er s bui l d pe bbl e cov er ed mo un ds?<br />

T he classi c explanat ion for t he const ruct ion of ant hi ll s i s that pebbl es ar e in the<br />

way when ant s are buil di ng tunnels underground, so they ar e brought out to the sur face<br />

and dum ped, event ual ly buil di ng up a hi ll . Wheel er ( 1910) used t his t heory t o expl ai n<br />

t he r el ati ve st abil i ty of ant hi l ls’ size af t er coloni es reach t heir maxi m um populati ons.<br />

He theor ized that t he ant s woul d no longer requi r e addi t ional space under gr ound for a<br />

growi ng popul at ion, thus they woul d stop excavat i ng, and t he hi ll -si ze woul d be at<br />

steady state. This si mpl e expl anati on does not take int o account t he regrowt h of ant hi ll s<br />

aft er t hey have been dest royed. As dem onst r at ed in t hi s t hesis and in ot her li t er at ure ( e.<br />

73


g. T schi nkel, 1999), har vester ant s wi l l col lect pebbles t o bui ld a new hi l l if thei r<br />

ori gi nal hil l has been r emoved, even if t hey have alr eady reached m aturi t y as a colony.<br />

Gor don ( 1984) pr oposes that each ant col ony has a di st incti ve sm el l, and that the<br />

hil l is a reposit or y f or that ar om a. Most ant s don’t see ver y well and tend to navi gat e by<br />

smell r ather than si ght ( Holl dobler and Wil son, 1990) . When harvest er ants f orage f or<br />

seeds, they find their way home not by recogni zi ng the var ious shrubs and boulders t hey<br />

passed on their way, but by f ol l owing scent tr ai l s. Thi s is why ant s can f requent ly be<br />

f ound r unning around i n cir cl es or f oll owing str angel y meanderi ng paths. Gor don<br />

( 1984) suggest s that harvest er ants select porous pebbl es such as pum ice or charcoal and<br />

i nj ect them wit h pheromones bef ore pl acing them on the hil l, so t hat ant s f rom<br />

nei ghbor ing col onies don’ t acci dental ly wal k i nt o t he wr ong ant hi ll .<br />

An al ter nati ve expl anati on for pebbl ed anthi ll constr uct ion is that harvest er ants<br />

m ay bui l d pebbl e- coated hil ls t o prot ect their homes fr om wi nd er osi on. The Sum mer<br />

L ake sand dune ecosyst em is a very hi gh ener gy, windy envi ronment . Most harvest er<br />

ant s choose to li ve in l oose sandy soil , li ke dunes ( Taber , 1998) . In m y study ar ea, an<br />

act ive dune field, ant hi l ls wit hout pebbl e coati ngs coul d er ode away bef ore t he colony’ s<br />

l if e cycle was compl et e.<br />

6. 3 Th e Mec han i c s of Pe bbl e Pu shi ng<br />

An im por tant issue in the pebbl e t ranspor t is the physi cal abil it y of ant s to perf or m<br />

t he t ask. T he largest pebbles found in ant hil ls in t he st udy area are f i ve m il l im et ers i n<br />

diameter and near ly spher ical . A thr ee m il l im et er- long ant cannot car ry such a pebbl e in<br />

i ts m out h, but may transpor t it by r oll ing the pebble t hrough t unnel s beneath t he ant hi ll<br />

74


( Fi gure 6. 2) . The fol lowing par agraphs i nt r oduce a m echanical anal ysi s of this mode of<br />

pebbl e transpor t.<br />

An object has a body f or ce Wz equal to the product of it s mass and t he acceler at ion<br />

due t o gravi t y (F igure 6. 3) . T he mass of t he obj ect is it s vol um e, V, t i mes it s densit y, ρ.<br />

A pebbl e of diameter 5 m m has a volum e of 65.5 m m 3 . If t he pebbl e has t he same<br />

densi ty as quar tz, (ρ=2. 65 m g/m m 3 ) , it s mass is roughly 175 mg, and t he weight (body<br />

f or ce) of the pebbl e i s 1700 mg m/ s 2 .<br />

T he f or ces acti ng on an obj ect resti ng on a sl ope m ay be r esolved i nto sl ope-<br />

par al lel and sl ope- per pendi cular com ponents. The com ponent of the body for ce acti ng<br />

par al lel t o the slope (W//) i s Wz si nα wher e α i s the slope angl e. T hus, when the slope i s<br />

zer o, W// is zer o. T he component of t he body force act ing per pendi cul ar t o the sl ope is<br />

Wz cosα . Gr avi ty, act ing thr ough the body for ce, tends to m ove t he object downhil l but<br />

t hi s is opposed by fri ct i on ( and eventual ly by t he ant) . If the obj ect is at r est , for ce<br />

bal ance requi res that the f ri ct i on f orce Ff , which i s the slope- per pendicular com ponent<br />

of the body for ce t i mes the coef fi ci ent of stati c f ri ct i on, µ s , be equal t o t he sl ope par al lel<br />

com ponent W//. The for ce necessary t o m ai nt ain m oti on i s l ower than that to i nduce<br />

m ot ion, as t he coef f icient of st at ic fr icti on µ s is r epl aced by t he coef f icient of ki neti c<br />

f ri ct ion µ k .<br />

W = W sinα<br />

//<br />

z<br />

F = µ W cosα<br />

f s z<br />

E quat ions 6. 1<br />

T he obj ect under di scussi on i s a spheri cal pebbl e exert i ng a body f orce Wz of<br />

1700m g m/s 2 . Befor e an ant can m ove t hi s pebbl e up a slope of α degr ees, it must exer t<br />

75


Figure 6.2: Scale Drawing of Pebble-Pushing. This figure attempts to provide a<br />

sense of the relative sizes of an Owyhee harvester ant and a five millimeter wide<br />

pebble.<br />

76


F ant<br />

W //<br />

α<br />

W<br />

z<br />

Figure 6.3: Forces acting on a pebble in air. This figure demonstrates the physical<br />

basis for the parameters used in equations in the text. This image is adapted from<br />

Allen (1970).<br />

F<br />

f<br />

77


a f or ce gr eat er t han or equal t o t he sum of the other f orces tending t o move the pebble<br />

downhil l . T he mi ni m um value for t hi s f or ce, F a nt, i s therefor e Ff + W//.<br />

Fant = W// + Ff= Wz(sinα<br />

+ µ scos<br />

α) E quat ion 6.2<br />

T he coef fi ci ent of stati c f ri ct i on depends on the m at er i al pr oper ti es of the pebbl e<br />

and t he surf ace over whi ch it i s t o be tr ansport ed. Pebbl es found in ant hi ll s in the study<br />

area com e fr om al luvium and have smooth sur f aces due to the fluvi al tr ansport t hat<br />

deposit ed them ther e. T unnel wall s inside ant hi l ls also t end t o be very sm ooth ( Sudd,<br />

1967; T aber, 1998; Wheel er, 1910). This may be due to sal iva coati ng or other<br />

cem enti ng of the wal ls, whi ch has been repor ted for other speci es of ant s but not<br />

speci fi cal ly st udied f or harvest er ants ( Br anner , 1910; Holl dobler and Wi lson, 1990) .<br />

T he r oughness of the t unnel wal l s is less t han t he part i cl e size of the fine sand<br />

com posi ng the wal ls. T hi s r oughness is sever al or ders of m agnit ude less than the size of<br />

t he pebbles (Fi gure 6. 4) . The ant s must move the pebbl es over this surf ace i f they are<br />

dredging t hem f rom the al luvi um beneath t hei r mounds. Because both surf aces (t he<br />

pebbl e and t he tunnel wal l) are sm oot h, t he coef f icient of f r icti on wi ll be ver y l ow.<br />

Once the pebble i s in mot ion, t he coeff icient of ki neti c f ri cti on m ay be as l ow as 0. 002, a<br />

coeff ici ent suggest ed for bal l beari ngs. T he coeff icient of st at ic fr ict ion wi l l be sl ight l y<br />

higher.<br />

Wor ker ant s col lect ed fr om the “PH” area have a dry wei ght of bet ween 1. 2 and<br />

1.5 m g (6 ant s weighed 8 ± 1 mg). I f an ant is 50% wat er (as suggest ed by Sudd, 1967) ,<br />

t hen it s wei ght m ay be as m uch as 3 mg. Thi s wei ght com pares wel l wit h har vest er ant<br />

78


Tunnel Wall<br />

Ant<br />

Pebble<br />

Figure 6.4: Thin section showing ants, pebbles, and fine-grained chamber wall.<br />

The pebble is far larger in size than the sand grains composing the tunnel wall it rests on.<br />

The smoothness of the tunnel walls facilitates the movement of pebbles over them. The<br />

harvester ant, seen in cross section, is three and a half millimeters long.<br />

79


wei ghts repor ted el sewher e ( Abel l et al . , 1999; L ighton and Bar t holemew, 1988;<br />

MacKay, 1985; Wagner and Gordon, 1999). This is one si xt i et h the wei ght of t he<br />

m axim um si ze rock f ound in anthi ll s in the area. Wiggl eswor t h (1984) st ates that ant s<br />

can l if t obj ect s many ti m es t hei r own wei ght ( he doesn't specif y how many t i mes) , due<br />

t o thei r uni que m uscle constr uct ion. L eaf- cut ter ant s (genus A tt a) t ranspor t lar ge<br />

( cent im eters long) pieces of leaves by using t hem l ike sai ls and or i enti ng them relat ive<br />

t o wi nd curr ent s ( Holl dobler and Wil son, 1990) . It i s physical ly unreasonabl e f or an ant<br />

t o pi ck up a spheri cal object 60 t im es it s own weight .<br />

I n the absence of data r egarding t he load bear ing capaci ty of har vester ant s, we<br />

m ay assume t hat t he ant can appl y a maxim um force on the pebble t hat i s equal t o t he<br />

ant 's own wei ght. This is a very conser vat ive est im at e. An ant wi th a mass of t hr ee<br />

m il li gr ams weighs 29.4 m g m /s 2 . T he f or ce Fa nt needed to begi n rol li ng a pebbl e on a<br />

hor izont al surf ace, α = 0, i s str ongly dependent on the coef fi ci ent of stati c f ri cti on.<br />

I f the ant appl ies a f or ce equal t o its body f or ce to t he pebbl e, equati on (6.2)<br />

i ndicat es that the maxim um µ s it can over com e is 0. 017. Once t he part icl e is in m ot i on<br />

t he coef fi ci ent of fri ct i on i s reduced. Applying a f orce of 29.4 mg m /s 2 to a pebble wi th<br />

a coeff i ci ent of ki net ic fr icti on µ k of 0. 002 wil l m ove the pebble up a sl ope of sl ightl y<br />

l ess than one degree.<br />

T he ant is pr obably capable of applyi ng a l everi ng force t o the pebble, alt hough<br />

t he exact magni tude of such a f orce is unknown. I calculated t he f orce necessar y to roll<br />

pebbl es up sl opes between 0˚ and 90˚ wi th µ k equal to 0. 002. I f t he ant can exer t a for ce<br />

of fi ve ti mes i ts body f orce, i t can move t he 5 mm di am eter pebbl e up a slope of 4.8˚ . I f<br />

80


t he ant is capabl e of applying a f or ce ten tim es it s wei ght, the maxim um sl ope angle is<br />

9.7˚.<br />

Ant s in the Sum mer Lake sand dunes, assum ing t hat t he worker s all weigh thr ee<br />

m il li gr ams or l ess, pr obabl y cannot rol l fi ve mi l li meter r ocks di rectl y up the ext er i or<br />

slopes of their hom es. The slope of an aver age ant hi ll ’ s si des i s about 12 degr ees ( Scot t,<br />

1950) . The mechanical anal ysi s shows t hat an ant coul dn’t r oll a rock di rect l y up such a<br />

steep sl ope. Rol li ng a rock up a ci r cuit ous l ower- sl ope pat h would al so be dif f icul t due<br />

t o the bum pi ness of the ant hi ll ’ s sur face. The fri ct ion coef fi ci ent f or the ext er ior slope<br />

of an anthil l would be f ar hi gher than that for a smoot h t unnel wal l . T his suppor ts the<br />

hypot hesis t hat t he ants ar e excavat i ng t he pebbl es f rom sedi ment s beneat h the ant hi l l.<br />

6. 4 Fi el d and La bo r at or y Met ho ds: Ant h i l l Reg r o wt h<br />

Dur ing the June 1999 visi t to t he fi eld area I knocked down sever al anthi ll s<br />

( Fi gure 6. 5) in order to observe t he rate at whi ch they were rebuil t . T he anthi ll i s onl y<br />

t he sur f ace manif est at ion of an ant col ony so it s r em oval is merely an annoyance, not<br />

t he dest ruct i on of the colony. Ni ne anthil l s wer e compl et el y l evel ed and t wo were<br />

par ti al l y dem ol ished, by removi ng the sur face layer s fr om ant hi ll #2 and shovel i ng away<br />

onl y hal f of anthil l #18. One of the l evel ed ant hi ll s was select ed for an addi t ional<br />

pai nt ing t reatm ent.<br />

T o deter mi ne the locat ions fr om which ant s col lect rocks, pebbl es f r om anthil l #1<br />

( Fi gure 6. 6) were cl eaned dur ing r em oval fr om the m ound by wi nnowing t he shovel s<br />

f ul l of anthi ll f rom a height of around one meter ont o newspaper. Thi s all owed most of<br />

81


8<br />

18<br />

7<br />

N<br />

2<br />

9<br />

1<br />

Figure 6.5: Locations of anthills at the "PH" site. The eleven anthills discussed in<br />

the text in this chapter are located in relation to the road intersection which is also<br />

visible on Plate One. Anthill #1, which was selected for painting, is located below the<br />

'road' in the middle of the image. The other anthills (6, 11, 12, 13, 15, 16, 17, etc.) at<br />

this site were left off of this figure for clarity, but they are included on the "PH" map<br />

in Appendix E.<br />

3<br />

5<br />

4<br />

14<br />

10<br />

82


Figure 6.6: Winnowing and distributing painted pebbles for anthill-regrowth study.<br />

While removing the surface of a mature anthill at the "painted hills" site, we winnowed<br />

the fine sands out of the pebbles as demonstrated by Bar Johnson in the left-hand picture.<br />

We painted the pebbles, then spread them around the former location of the anthill (as<br />

modeled by my advisor Scott Burns, in the right-hand picture) to observe whether these<br />

pebbles were re-incorporated into the anthill when it was rebuilt.<br />

83


t he f ine m at eri al t o blow away, whil e t he pebbles l anded on the paper. The pebbles<br />

wer e spr ay-painted in a var iety of colors and each color was pl aced in a di ff er ent<br />

l ocat ion around t he anthi ll . Al l unpai nt ed pebbl es wer e r em oved fr om the sur face<br />

sur rounding the f or m er anthil l bef or e sur veying the areas of colored pebbles (F i gure<br />

6.7).<br />

I n August 1999 and in Oct ober of 2000 I r evi si ted t he anthil l s to m easur e t heir<br />

r egrowt h and to det erm ine whether the ant s wer e usi ng t he pai nt ed pebbles, and if so,<br />

f rom whi ch ar ea and di st ance. The volume of t he rebuil t ant hil ls was det er mi ned by<br />

m easuri ng the cir cum ference, di ameter , and slope di st ance of the di ameter usi ng a pi ece<br />

of twine m ar ked as a m easur ing tape. F or f i ve of t he hi ll s (number s 1-4 and 18) I<br />

conduct ed det ai led sur veys (m aps of each hi l l ar e shown in Appendix F) t o cal cul at e the<br />

hei ght of the ant hi l l usi ng t ri gonom etr y. For t he ot her dest royed hil ls (5, 7, 8, 9, 10, and<br />

14) hei ght s wer e est im at ed as t he rebui lt hi ll s wer e less than 10 cm t al l .<br />

I n August of 1999 and Oct ober of 2000 sam pl es wer e coll ect ed fr om t he center of<br />

t he pai nted hil l (anthil l #1) f or lab analysis of t he quanti t y and size of the pai nt ed and<br />

unpai nt ed pebbl es i ncorporated int o the hil l ’s r econstr uct ion. T he sampl es wer e placed<br />

i n beakers f ull of wat er to f loat of f seed- husks and dead ant par ts, t hen gentl y washed i n<br />

a #20 ( 0.841 mm ) U. S . st andar d sieve and lef t to ai r dr y. T he pebbl es were r em oved<br />

f rom the sieve, wei ghed, and hand sor ted under i ncandescent light . Ever y pebbl e was<br />

exami ned closel y, and those wit h any tr ace of pai nt wer e i ncl uded wi th t he pebbl es<br />

pai nt ed in each col or. Aft er t he sam pl es were sort ed t he resul ti ng di vi sions were<br />

wei ghed to calcul at e t he weight percent of pebbl es paint ed i n each col or .<br />

84


Red<br />

Gold<br />

Blue<br />

Yellow<br />

Gray<br />

Purple<br />

Blue<br />

Orange<br />

Green<br />

Figure 6.7: Surveyed Locations of Painted Pebbles surrounding Anthill #1. The<br />

patches of color surrounding the black dot (anthill #1) represent the surveyed locations<br />

over which painted pebbles were spread. The gray patch is included to represent<br />

the road where unpainted pebbles were dumped. The white area is fine-medium sand,<br />

with scattered sagebrush and other vegetation. The grid is in one-meter squares.<br />

85


6. 5 Re sul t s<br />

All of the anthil ls dest r oyed i n June 1999 wer e in the rebui l di ng pr ocess i n August<br />

of 1999. Ant hi ll s #7 and #8 wer e rebui lt t o som e ext ent , but appear t o have been<br />

subsequent ly abandoned. Tabl e 6.1 r eport s the October 2000 measurem ents of all of t he<br />

com pl et ely dest royed ant hil ls, whi le Tabl e 6.2 has measurements f rom t he same date f or<br />

ant hi ll s #2 and #18, whi ch were not com pl et ely dest royed. Onl y the sur face hori zon of<br />

ant hi ll #2 was removed, and ant hil l #18 was cut in half for str at igr aphi c study. The<br />

average rebui lt ant hil l is 7 cm tall (+/- 3 cm ), 82 cm wide (+/ - 16 cm ), and has a volume<br />

of 0. 012 +/- 0. 009 m 3 . This can be compared wit h ant hi ll #2, a ful l- sized anthil l t hat is<br />

18 cm t all , 110 cm wide, and has a volume of 0.058 m 3 . The regrowth of all hi ll s is<br />

sum mari zed i n T able 6. 3, which includes t he appr oxi mate pr e- disrupt i on di mensions for<br />

each ant hi ll . The average pr e- disrupti on si ze i s t hr ee ti mes t he aver age r ebui l t ant hi ll<br />

vol um e as of October 2000.<br />

T able 6. 4 pr esent s the ar ea of deser t pavem ent r epr esent ed by t he pebbles i n each<br />

of the rebui l t hi ll s usi ng an aver age ant hi l l pebbl e si ze of 2. 5 mm di am eter. I est i mated<br />

t he num ber of pebbl es by di vi di ng 50% of the t ot al volum e of the ant hi ll by t he volum e<br />

of a 2. 5 m m diameter pebble, then di viding that num ber of pebbl es by t he quanti t y that<br />

would f i t in a one centi m et er cube wi th a cubi c (large voi d rat io) packi ng st ructure (64<br />

pebbl es) . T he resul ts show t hat t he aver age r ebuil t ant hi ll cont ai ns enough pebbl es to<br />

pave 2 squar e m et er s t o a depth of 1 cm . T he equival ent r at e of pebbl e- excavat i on i s<br />

one square m eter of pavem ent per ant hil l per year . P avement s are f r equentl y thi nner<br />

t han one cent im et er , so thi s is a conservat i ve esti mate.<br />

86


Table 6.1: Reconstructed Anthill Volumes. Calculated through various methods<br />

including direct measurements of the circumference and radii. Values for height are<br />

calculated from radius and slope distance at points around the anthill, or estimated.<br />

These values are based on measurements taken in October 2000, sixteen months after<br />

the anthills were destroyed.<br />

H il l Nu m ber Typ e of Determi nati on rad iu s (m) h ei gh t (m) vol um e (m3)<br />

one m easured f rom A 0.48 0.08 0.019<br />

m easured f rom B 0.36 0.10 0.013<br />

m easured f rom C 0.52 0.14 0.038<br />

Cir cumf erence and aver age 0.46 0.10 0.023<br />

hei ght<br />

average radi us and hei ght 0.45 0.10 0.022<br />

t hr ee m easured f rom A 0.41 0.10 0.018<br />

m easured f rom B 0.24 0.06 0.003<br />

m easured f rom C 0.41 0.10 0.018<br />

m easured f rom D 0.33 0.06 0.007<br />

Cir cumf erence and aver age 0.38 0.07 0.010<br />

hei ght<br />

average radi us and hei ght 0.35 0.07 0.008<br />

f our m easured f rom A 0.43 0.15 0.029<br />

m easured f rom B 0.24 0.08 0.005<br />

m easured f rom C 0.34 0.09 0.012<br />

Cir cumf erence and aver age<br />

hei ght<br />

0.38 0.11 0.016<br />

average radi us and hei ght 0.35 0.11 0.014<br />

f ive Cir cumf erence and<br />

est im at ed hei ght<br />

0.34 0.04 0.005<br />

seven Cir cumf erence and<br />

est im at ed hei ght<br />

0.51 0.03 0.007<br />

eight Cir cumf erence and<br />

est im at ed hei ght<br />

0.50 0.08 0.020<br />

nine Cir cumf erence and<br />

est im at ed hei ght<br />

0.33 0.05 0.006<br />

t en Cir cumf erence and<br />

est im at ed hei ght<br />

0.41 0.05 0.009<br />

f ourt een Cir cumf erence and<br />

0.45 0.10 0.021<br />

est im at ed hei ght<br />

Averages 0.41 0.07 0.012<br />

S tandar d devi at ions 0.08 0.03 0.009<br />

87


Tab le 6. 2: Resu rf aced An t hi ll Volu mes. Cal culat ed t hrough var ious methods<br />

i ncludi ng di r ect measurem ents of t he ci rcum f er ence and radii . Al l val ues f or height ar e<br />

cal culat ed f r om r adi us and sl ope dist ance at poi nts around t he anthi ll .<br />

h il l nu m ber t yp e of determi nati on rad iu s (m) h ei gh t (m) vol um e (m3)<br />

t wo m easured f rom A 0.46 0.16 0.034<br />

m easured f rom B 0.53 0.24 0.071<br />

m easured f rom C 0.58 0.17 0.062<br />

m easured f rom D 0.53 0.17 0.050<br />

Cir cumf erence and aver age 0.64 0.18 0.080<br />

hei ght<br />

average radi us and hei ght 0.55 0.18 0.058<br />

eight een m easured f rom A 0.45 0.22 0.045<br />

m easured f rom B 0.48 0.20 0.048<br />

m easured f rom C 0.36 0.14 0.018<br />

m easured f rom D 0.53 0.17 0.050<br />

Cir cumf erence and aver age 0.47 0.18 0.042<br />

hei ght<br />

average radi us and hei ght 0.46 0.18 0.039<br />

S tandar d devi at ions 0.08 0.03 0.017<br />

88


Table 6.3: Pre- and Post-Rebuilding Anthill Volumes. The pre-destruction measurements are from June of 1999, and are not of<br />

the same quality of measurement as the October 2000 values. They are presented here for comparison purposes only.<br />

hill number Pre-destruction Pre-destruction Pre-destruction<br />

measured measured volume (m<br />

height (m) radius (m)<br />

3 October 2000 October 2000 October 2000<br />

) calculated calculated volume (m<br />

radius (m) height (m)<br />

3 Volume<br />

) Difference<br />

(m 3 )<br />

one 0.19 0.54 0.058 0.45 0.10 0.022 0.036<br />

two 0.21 0.57 0.070 0.55 0.18 0.058 0.012<br />

three 0.15 0.50 0.039 0.35 0.07 0.008 0.031<br />

four 0.17 0.56 0.056 0.35 0.11 0.014 0.042<br />

five 0.19 0.52 0.053 0.34 0.04 0.005 0.048<br />

seven 0.14 0.57 0.048 0.51 0.03 0.007 0.041<br />

eight 0.21 0.46 0.047 0.50 0.08 0.020 0.026<br />

nine 0.13 0.41 0.023 0.33 0.05 0.006 0.017<br />

ten 0.14 0.59 0.051 0.41 0.05 0.009 0.042<br />

fourteen 0.2 0.60 0.075 0.45 0.10 0.021 0.054<br />

eighteen 0.46 0.18 0.039<br />

Average of<br />

All Hills 0.17 0.53 0.052 0.43 0.09 0.017 0.035<br />

Standard<br />

Deviation 0.03 0.06 0.015 0.08 0.05 0.016 0.013<br />

89


Table 6.4: Desert Pavement Areas. The area of desert pavement which can be created from each of the disrupted anthills at the<br />

painted hills site in the Summer Lake sand dunes. Hills #2 and #18 are full-sized; the others are currently re-building.<br />

Hill Values used to determine volume Radius Height Volume V-voids Number of Area of<br />

Number<br />

(m) (m) (m3) (50%) 2.5mm pebbles pavement (m2)<br />

one Average radius and height 0.45 0.10 0.022 0.011 169239 2.6<br />

two Average radius and height 0.55 0.18 0.058 0.029 444059 6.9<br />

three Average radius and height 0.35 0.07 0.0084 0.0042 63957 1.0<br />

four Average radius and height 0.35 0.11 0.014 0.0068 104552 1.6<br />

five Circumference and estimated height 0.34 0.04 0.0046 0.0023 35146 0.5<br />

seven Circumference and estimated height 0.51 0.03 0.0068 0.0034 51886 0.8<br />

eight Circumference and estimated height 0.50 0.08 0.020 0.010 153178 2.4<br />

nine Circumference and estimated height 0.33 0.05 0.0058 0.0029 44657 0.7<br />

ten Circumference and estimated height 0.41 0.05 0.0089 0.0044 67749 1.1<br />

fourteen Circumference and estimated height 0.45 0.10 0.021 0.011 163658 2.6<br />

eighteen Average radius and height 0.46 0.18 0.039 0.020 300708 4.7<br />

Average 0.43 0.09 0.019 0.0095 145344 2.3<br />

Standard Deviation 0.08 0.05 0.017 0.0083 126357 2.0<br />

90


Ant hi ll #1 was part i cular ly wel l sur veyed because i t was chosen f or the pebbl e<br />

pai nt ing experi ment . In the two m ont hs f ol l owing t he i nit ial destr uct ion of the ant hil l<br />

t he ant s r ebuil t to a depth of over two cent im et ers, acr oss the ent i re or iginal wi dt h of the<br />

ant hi ll . The pebbl es used for rebui l di ng were 74.6 % unpaint ed ( Fi gur e 6.8). By<br />

Oct ober of 2000 t he anthi ll began to resembl e a cone, t hough it was not yet as tal l as the<br />

ori gi nal pre- demoli t ion ant hi ll . In 2000 t he ant hi ll cont ai ned 77. 8 % unpainted pebbles<br />

( Fi gure 6. 9) .<br />

Another im por tant observati on i s t hat t he ants don’ t appreci ate havi ng pebbles<br />

dropped in t he entr ance to the ant hi l l. I obser ved ant s car r yi ng sm al l (2m m) pebbles out<br />

of an anthil l , pi cked one up, and dr opped i t back i nt o the anthil l’ s ent r ance. The pebbl e<br />

was i mm edi at ely car r ied out of the entr ance and deposit ed on the hi l l’ s slope.<br />

6. 6 Di scu ss i on<br />

T he dif f er ence in volume between ant hil l #2, whi ch is cl ose in si ze to i t s<br />

undistur bed state ( 0.058m 3 ) , and ant hi l l #1 ( 0.022m 3 ) , which has been r e-constr ucted<br />

since June of 1999, is 0. 036 m 3 . This does not seem li ke a lar ge di ff er ence in si ze unti l<br />

one consider s t he quanti t y of pebbles t hat thi s represents. Anthil l #2, in i ts October<br />

2000 si ze, r epr esent s a one-cent im et er thick l ayer of pebbles cover i ng an area of al m ost<br />

seven square meters, whi l e anthi ll #1 could only pave a 2. 6 m 2 ar ea.<br />

T he ant hil l growt h measur em ents repr esent acti vi t y over two years. Harvest er ants<br />

are m ost act i ve dur i ng t he summ er ( Gordon, 1999), and t he per iod bet ween June 1999<br />

and Oct ober 2000 includes t he m ajori t y of t wo sum mers. Using t hi s fai rl y conser vati ve<br />

val ue f or the t im e over whi ch t he pebbl es were excavated and a conservat i ve val ue for<br />

91


Red Gold<br />

Blue<br />

Orange<br />

Green<br />

Yellow<br />

74.6 % Unpainted<br />

Purple<br />

Figure 6.8: Painted pebble percentages, August 1999. The ants have incorporated<br />

pebbles with paint on them into the rebuilding of their hill but have used far more<br />

unpainted pebbles than pebbles with paint on them. The majority of the painted<br />

pebbles are purple, which is the closest colored patch to the anthill (Figure 6.7). The<br />

unpainted pebbles are probably coming from alluvium, present under the anthill at<br />

approximately 1.5 meters depth. Other possible sources of unpainted pebbles could<br />

be the road or the occasional pebble which may have escaped being spray-painted but<br />

was included in a painted patch.<br />

92


Red Gold Blue Orange<br />

77.8 % Unpainted<br />

Green Yellow<br />

Purple<br />

Figure 6.9: Painted pebble percentages, October 2000. The anthill contains fewer<br />

painted pebbles than in August of 1999. The decline in the quantity of purple pebbles<br />

may be due either to sampling irregularities between years, or to a change in foraging<br />

patterns which directed the ants towards the green patch of pebbles.<br />

93


t he voi d-r at i o of t he ant hi ll ( 50% ), I ar ri ve at an aver age val ue of 95, 000 pebbles per<br />

ant hi ll per year. Thi s cor responds to a net 1 cm t hi ck deser t pavem ent cover ing 1 m 2 .<br />

T he amount of wor k done to excavat e these pebbles i s det er mi ned by mul ti plying<br />

t he f or ce used to t r ansport t he pebbl es by the di st ance over which the pebbles wer e<br />

t ranspor ted. T he f orce necessar y to excavat e the average ant hi ll ’s wort h of pebbl es is<br />

equal t o t hei r mass (25. 2 kg for t he aver age ant hil l) t i mes gravi ty, or 247 N appl ied over<br />

t wo year s. The dist ance over which these pebbles wer e moved is t he dept h f rom the<br />

ground sur face to t he al l uvium, roughly 1.5 meter s. Thus, i n one year , a har vester ant<br />

col ony at the pai nt ed hi l ls sit e expends 185 J of energy excavati ng pebbl es. T her e is no<br />

publi shed val ue f or the amount of energy taken i n by an Owyhee harvest er ant col ony in<br />

a year, but P . mont anus has an ener gy intake of 697 kJ, and P . subni ti dus has an ener gy<br />

i nt ake of 4613 kJ ( MacKay, 1985) . MacKay f ound that 82- 94 % of t hi s ener gy went<br />

t owar ds worker ant met aboli sm , whi le the rem ai ni ng 8- 16 % went towar ds pr oducing<br />

new wor ker s. He does not disti nguish pebbl e t ranspor t from other acti vi t ies as a<br />

var iabl e i n energy consum pt ion. T he ener gy expended on pebbl e excavat ion r epresents<br />

a t iny fract i on of a col ony’s ener gy intake.<br />

T he r esult s from the pai nti ng pr oj ect are encour agi ng. The ant s def init ely pref er t o<br />

bui ld wi th unpainted pebbles. Thi s may be due t o t he "wrong" smell of t he paint , as Dr .<br />

Gor don suggested, al though one fourt h of the pebbles ini ti al l y incor porat ed i nt o t he<br />

ant hi ll were painted. T he anthi ll gr ew back at a sim il ar rat e to t he ot her unpainted<br />

ant hi ll s, wi t h si mi l ar part icle si ze gr avel s i ncorpor at ed in the rebui ldi ng process. I t<br />

seems unli kel y that the ant s fr om hi l l #1 were t r avel ing great di st ances over land to fi nd<br />

94


unpai nt ed pebbl es but wer e inst ead quar rying t hem f rom the al luvi um beneath t hei r<br />

hom e. Whi le we att empted t o cover al l pebbl es duri ng spray- pai nt ing, som e of t he<br />

“painted” pebbl es m ay not have recei ved enough paint to be i denti fi ed in the sor ti ng<br />

process.<br />

T he decl ine in the num ber of pai nt ed pebbles i ncorpor at ed in the ant hi ll af ter the<br />

second sum mer suggests t hat t he ants pr ef er unpai nt ed pebbles. I hypothesi ze t hat t he<br />

ant s used mor e paint ed pebbles in the f ir st summ er because t hey wer e m or e convenient<br />

f or r api d rebui lding. T he major it y of the pai nt ed pebbl es ( 15. 8% ) wer e pur pl e (Fi gur es<br />

6.8, 6. 9). The pur ple pebbles wer e the closest pat ch of pebbles to the for mer ant hi l l<br />

l ocat ion ( Fi gur e 6. 7). Thi s pr oxi mi t y meant t hat t hey wer e the easi est pebbl es to<br />

i ncor por at e int o the r ebuil di ng pr ocess. T her e wer e st i ll painted pebbl es on t he gr ound<br />

sur face ar ound the ant hi l l in October 2000, so t he decl i ne i n pai nt ed pebbl e use was not<br />

due t o exhausti on of t he avai lable supply.<br />

95


CH AP T E R 7: ANT HI L L MI CR OMO RP HO L OG Y<br />

7. 1 An t hi l l St r u ct ur a l Cha r a ct er i st i cs<br />

Biologi sts have i nspected t he st ruct ure of ant hi l ls t o det er m ine the per centage of<br />

t he str uct ur e devot ed to di ff er ent t asks: gr ai n storage, t unnel s, or brood- raisi ng ( Br anner ,<br />

1910; F r anks and Deneubourg, 1997; T schinkel , 1999; Wang et al. , 1995) . Most of<br />

t hese st udies have not r eport ed speci fi c inf or mat ion about t he st ructure or t he<br />

const ructi on st yl e of ant hi ll s. T hi s study is concer ned wit h whether the ant s are br ingi ng<br />

pebbl es fr om deep undergr ound i n order to buil d their hi ll s, or whet her they ar e sim ply<br />

concent r at ing pebbl es al r eady pr esent at the ground sur f ace. T he sand dunes ar e<br />

com posed of hom ogeneousl y f ine- grained sand, so any pebbles present in t he anthi ll ’s<br />

sub-sur f ace must have been br ought t her e ei t her from the sur f ace or fr om the under lyi ng<br />

all uvium .<br />

T he f or ce- bal ance anal ysi s pr esent ed in Chapter 6 dem onstr at es that ants can<br />

t ranspor t pebbl es up shal lowl y slopi ng, smooth-wall ed t unnel s. T hi s suggesti on can<br />

onl y be pr oved by st udyi ng the slope angl e and r oughness of act ual ant hi l l tunnel wal ls,<br />

whi ch i s com pli cated by the f act t hat ant hi l ls i n t he f i el d are ver y f ri abl e and chal lenging<br />

t o obser ve. Though a dynam ic st udy based upon l aborator y obser vati ons of ant s was<br />

consi der ed, it is extr em ely dif f icul t t o capture a harvest er ant queen and to r e-est abl ish a<br />

col ony in the l abor atory ( Holl dobler and Wil son, 1990) . An al ternati ve adopted her e is<br />

96


t o devel op a techni que f or pr eserving t he st ruct ure of an ant hi ll i n place in t he fi eld t hat<br />

all ows it to be r et urned to a l aborat or y for m or e det ai l ed st udy.<br />

T wo m et hods have been used in pr ior ent om ol ogi c studi es of anthil l str uct ur e.<br />

Mar ki n ( 1964) pour ed molt en lead into the ant hi ll , all owed it to har den, and t hen<br />

excavat ed t he lead cast , a procedur e t hat ill ust rated the t unnel and chamber st ruct ure.<br />

Wang et al .( 1995) st udied smal l anthi ll s of L asius neoni ger by f il l ing the t unnel s wit h<br />

dental gypsum and anal yzi ng t he resul ti ng cast s of the int er i or of the t unnel s. Nei t her of<br />

t hese m ethods preser ves the ant hil l itsel f, si nce bot h creat e casts of t he holl ow spaces<br />

i nside the anthil l, which are only r ecovered aft er the com pl ete dest ruct i on and removal<br />

of the grains whi ch make up t he anthi ll . One of my goal s was t o st udy t he sedi m ents<br />

associat ed wi th t he tunnel wall s, som et hi ng which t hese methods coul d not accom pli sh.<br />

T he m et hod descri bed i n thi s st udy pr ovided a means t o preser ve com plete<br />

secti ons of an anthi ll . This m ethod was adapt ed fr om a pr ocedure used t o preser ve<br />

wooden sai lboat planks. Wooden sail boats of hist or ical im por tance are occasi onall y<br />

preserved by inject i ng surf boar d r esi n into each indi vi dual wooden plank and leavi ng it<br />

t o harden, pr eser vi ng the ori gi nal st ruct ur e and appear ance of the wood whi ch m akes up<br />

t he boat , but hal ti ng the decayi ng pr ocesses of exposur e t o air and water ( Mate, 1996) .<br />

7. 2 Re si n I m pr eg na t i o n and Mi c r om or pho l o gi c S t u dy<br />

Resin i m pr egnat ion is com monl y used in the prepar at ion of por ous rock sam pl es<br />

f or pet r ol ogi c thin sect i on prepar at i on ( Raym ond, 1995) . Labor at or y-based techniques<br />

t hat use vacuum ovens ar e r outi nel y used to pr epare t hi n sect ions of por ous r ocks such<br />

as pumi ce or well i ndurat ed sandst one ( Mi nour a and Conl ey, 1971). Techniques f or t he<br />

97


preparat ion of unconsoli dat ed sedi ments and soil s f or t hin sect ion analysis are more<br />

nebul ous. Before sedi ment can be tr eat ed using the t echni ques devel oped for labor at ory<br />

i mpregnati on, i t must be tr ansport ed to a l ab. In- si tu sedi m entary envi r onment s are<br />

oft en cold, dam p, and dynam ical l y unstabl e, thus they ar e not conducive to labor at or y<br />

based t echni ques whi ch r equir e inj ect ion of resi ns into dr y sam pl es held perf ect ly st il l at<br />

war m ( 25˚ C) constant tem peratur es f or set per iods of t i me ( Murphy, 1986; Sm it h and<br />

Ander son, 1995) .<br />

S ever al methods have been est abl ished f or r esi n impregnati on of sedi ment s. All<br />

of them , i ncl uding previ ous m et hods usi ng surf board r esi n, such as those em pl oyed by<br />

t he Uni ver si t y of L ondon requir e l ong “gel” ti mes ( one week to mont hs) before samples<br />

can be transpor ted ( Belbin, 1994; Mooney et al ., 1998; Page and Richar d, 1990; A.<br />

Khatwa, personal com muni cat ion ,12-2000). These l ong per iods of ti me ar e necessary<br />

t o ensur e ful l im pr egnat i on of clay- r ich soi ls, and t o ensur e t hat there is no shear i ng of<br />

t he sam ple duri ng coll ect ion, which can adversel y i nf luence lat er m i cr ost ruct ur al<br />

analysi s of the soi l s ( Cumm ings and Arnot t , 1998; Car r and Lee, 1998).<br />

Microst r uctur al anal yses of soi l s or gl acial t il l s typi cal ly focus on the f abri c,<br />

str uctur e, and mi ner al assemblage ( Fi tzpat ri ck, 1993) . My anal ysi s of anthil l s focuses<br />

pri mari l y on the st r uctur e, par t icle si ze, and f abr ic of t he tunnel wall s. Because I was<br />

not concer ned wit h micro- scal e fabri cs em bedded wit hi n the dense fi ne- gr ained<br />

groundm ass, I could af for d to speed up the impregnati on pr ocess. T he technique<br />

descr ibed in the next secti on was devel oped for analyzi ng the sur faces of coarse grai ned<br />

( larger than 63 µ m ) sedi m ents.<br />

98


7. 3 Re si n I m pr eg na t i o n Fi e l d Met h od s<br />

T he S um m er L ake sand dunes sampl ing sit e is locat ed i n a r em ote area wit hout<br />

elect ri cit y, ther ef ore i t was not possi bl e to im pregnat e t he samples under vacuum, as<br />

would be done i n a labor atory sett ing ( Murphy, 1986). Anthi ll s are t ypi call y m oi st<br />

com pared t o the sur r oundi ng desert dunes ( Laundr e, 1990) , and t he am bient ai r<br />

t em perat ur e fluct uat es between 33˚ C and 6˚C as a result of t he seasonall y war m days<br />

and col d evenings.<br />

T he r esi n im pregnat i on t echni que used her e is based on the use of a polyest er<br />

sur fboar d resin ( TAP P lasti cs “T ype A P ol yester Sur faci ng Resin”) , whi ch coul d be<br />

t hi nned wi th acet one t o a l ow vi scosi ty, and has a shor t -but - vari abl e gel -t im e (Technical<br />

Dat a Sheet i n Appendix G) . T he feat ures of the pol yest er resin m ake i t possi bl e t o<br />

t ranspor t sam pl es wi thin hour s of the i ni ti al im pregnat i on.<br />

T he t echni que was appl ied t o the study of an ant hil l const ructed by a mat ur e<br />

har vest er ant col ony. T his ant hil l was char acter ized by a l arge gr avel- coated mound<br />

sit uated on top of a sand dune at an el evat i on of r oughl y thr ee m et ers above the near by<br />

( perhaps t en meters away) pat ch of desert pavement of t he sam e pebbl e par ti cl e size<br />

( Fi gure 7. 1, Pl at e 1).<br />

L abor at ory experi ments were per f or med wit h resin and ant hi ll sedi ments before<br />

t he f iel d vi sit . T hese exper im ent s wer e conduct ed using synt heti c ant hi l ls constr uct ed<br />

f rom sedim ent s pr evi ousl y col lected from the study ar ea. Di f ferent mi xt ures of resi n<br />

wer e inj ected i nt o the synt heti c ant hil ls, int o a var iet y of si zes and shapes of cont ai ners<br />

pressed into the ant hi ll s i n sever al or ient ati ons. The resul t s of t hese exper im ent s<br />

99


Figure 7.1: Harvester Anthill Selected for Resin Impregnation. This hill is located<br />

near the "SD" core site described in chapter three, in the center of the dune field south of<br />

Ten Mile Ridge (Plate 1). This is a mature hill, as evidenced by its size and by the<br />

cleared disc surrounding it. There is a swiss army knife on the anthill for scale.<br />

Approximately nine meters behind and downhill from the photographer and is an area of<br />

desert pavement composed of pebbles of a similar size to those used in the anthill.<br />

100


i ndicat ed that the field samples should be col lected by tr enchi ng t hrough t he m i ddle of<br />

t he ant hil l, and inj ecti ng the resin into hori zontal containers pressed int o the cut face.<br />

We tr enched to a depth of approxim at ely one meter bel ow the sur rounding sand dune<br />

sur face (F igure 7.2) i n a nor th- sout h l ine, then cl eared a pi t to t he west of t he ant hi ll i n<br />

whi ch t o stand whil e i nj ect ing the r esi n. The newl y- exposed cut face (F i gure 7. 3) was<br />

sketched t o ident if y several di sti nct zones of i nterest for resin i m pr egnat ion.<br />

T o pr event t he resi n’s r api d di spersal in t he unconsoli dat ed sand and gr avel of the<br />

ant hi ll s 16 tin cans ( 5. 25 cm di am et er by 8. 5 cm long) wit h one end removed wer e<br />

i nser ted hor i zont al l y int o the ant hi l l, ori ent ed perpendicul ar to t he nor th-sout h cut f ace.<br />

E ach can was labell ed and l ocat ed on a map of the cut -f ace ( F igur e 7.4) bef or e<br />

proceedi ng. I used a lar ge syr i nge to inject the r esin through a sm al l hol e dr i ll ed in t he<br />

closed end of t he can, and the sam pl e was l eft t o pol ym eri ze and har den overnight.<br />

Aft er 20 hour s the sam pl es di d not cure com pletel y, as evi denced by thei r smell , but<br />

har dened enough t o be mar ked wi t h their geographi c or ientati on and transpor ted. T he<br />

i ncom pl ete cure was most li kely due to the wat er cont ent of the sedi ment s; the ambient<br />

air t em per at ure was warm enough to cure t he resi n but not hot enough t o dri ve t he wat er<br />

out of the samples. T he cans cont inued t o give off a chem ical ar om a unt i l they were<br />

heated in a labor at ory oven t o 60˚ C for approxi m at el y 30 mi nut es.<br />

7. 4 Re si n I m pr eg na t i o n Lab or at or y Met h od s<br />

T he sam ples wer e tr anspor ted to the Uni versi ty of Cal if ornia, S anta Cr uz and<br />

i mpregnated under vacuum using a new mi xt ur e of the pol yester r esin. Each ti n can was<br />

101


Figure 7.2: The anthill after trenching. The western half of the hill shown in Figure 7.1<br />

was shovelled away in order to impregnate the remaining half with resin for microstructural<br />

study in the laboratory. The portion of the anthill shown in this photograph is<br />

approximately two meters wide.<br />

102


Anthill<br />

Sand Horizon<br />

Pebble-CoveredSurface<br />

Fibrous Layer<br />

Dense Infrequently-Tunneled Sand<br />

Figure 7.3: Features in the trenched anthill. The anthill is layered in construction,<br />

with alternating fine-grained and pebbled horizons. At the approximate depth of the<br />

surrounding ground surface there is a fine sand horizon approximately 10cm deep.<br />

Below this is what at first we believed to be the root system of a deceased sage brush,<br />

but which appears to be the horizon in which seeds are stored, some of which have<br />

sprouted and died, leaving behind a fibrous mat. Below this matted horizon the<br />

sediment appears uniformly fine grained.<br />

103


B<br />

A<br />

E<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

Figure 7.4: Locations of cans in the anthill. The letters to the left of each can in this<br />

image correspond to the thin sections described in Table 7.1 and shown in Appendix H.<br />

M<br />

N<br />

O<br />

P<br />

104


placed in it s f ield or ientati on in a di sposabl e plast ic tub sli ghtl y l ar ger i n size than the<br />

can. T he tubs were compl et el y fil led wit h resin and pl aced int o the vacuum oven. T he<br />

sam pl es were left at a pr essure of 1824 kPa and a t em per at ur e of 60 ˚C f or<br />

approxi m at el y 5 hour s. Thi s har dened t he samples suf fi cient l y to al low them to be<br />

r em oved fr om the tubs and cans and sl iced i n hal f usi ng a 10- inch r oll ing t able tr im saw.<br />

T he sam ples wer e cut open along the ver ti cal east -west axi s. One of t hese sampl e<br />

spl it s was t hen sel ect ed for a hor izont al cut, and ei ther the upper or l ower pi ece f r om<br />

t hat cut was chosen for a hor izont al thin sect ion. T he geogr aphi c ori ent at ion of each of<br />

t hese t wo sam pl es was mar ked on addi t ional disposable pl asti c t ubs int o whi ch t he<br />

blocks wer e placed. I perf or med a surf ace impregnati on using a Buehler vacuum-<br />

i mpregnati on apparat us on each sli ce before poli shi ng i t and bonding i t to a gl ass sl ide<br />

f or t hi n sect ion pr eparat ion. The t hin sect ions were pr epar ed using an Ingram- War d<br />

Uni versal thi n- sect i on cut- of f saw and thin- sect i on gri nder, foll owed by three iterat ions<br />

of hand poli shi ng on 18 inch st eel gr indi ng laps using progr essivel y f iner si zed diam ond<br />

gri ts.<br />

7. 5 Di scu ss i on of Res i n Im pr eg nat i o n Met ho ds<br />

T he t echni que devel oped for t hi s study pr ovi des a f ast and i nexpensi ve m ethod f or<br />

creat ing t hi n secti ons f r om unconsol i dated sedim ent s. There appear s t o have been<br />

ext remel y good pr eservat i on of the st ruct ur e of the ant hil l tunnels. The onl y probl em<br />

wit h thi s technique is t hat t he resi n does not cure t o be as hard as m or e expensive resins.<br />

T hi s means t hat i t is easier to scrat ch or gouge, l eadi ng to potent i al i r regular it ies i n it s<br />

opt ical pr opert ies when inspect ed under pet r ographi c mi croscopes.<br />

105


P robl em s encountered wit h t hi s techni que include cr acki ng of the resin at<br />

pressur es above 1925 kPa in t he vacuum oven and shear ing of the sedi ment s when I<br />

i nser ted t he cans t oo qui ckly i n t he fi el d. S heari ng was ident if ied by inspect i on of t he<br />

gross m orphol ogy of the thi n secti ons, for exampl e, sect ion SLS D3EV (Appendix H) .<br />

7. 6 Co m pu t e r Ana l y si s of T hi n Sec t i ons<br />

T hough the ant tunnels coul d be ident if ied wit hout any magni f icat ion, obser vi ng<br />

var iati ons i n t he cl ast size of part i cl es i n t he tunnel wall s r equi r ed m agnif icati on. Each<br />

of the 32 thi n sect i ons was scanned usi ng a UMAX- Astr a flat bed scanner at 3200 dpi<br />

wit h no magni fi cati on. When scans ar e di spl ayed on a comput er screen usi ng a di gi tal<br />

i mage pr ocessing sof twar e such as Adobe P hot oshop, they appear hi ghl y magni fi ed<br />

because the scr een resol uti on i s onl y 300 dpi. Therefor e, each pixel is magnif i ed<br />

approxi m at el y eleven t im es on t he com puter scr een ( Rubi nst ei n, 1988). Using<br />

com puter s to anal yze t hi n secti ons m ay seem li ke a somewhat unconventi onal method,<br />

but has gained popul ar it y, as comput ers are far cheaper than hi gh-qual it y pet rographi c<br />

m icroscopes.<br />

7. 7 Re sul t s of Com put er An al ys i s of Th i n S ect i o ns<br />

A pri nt out of each thi n secti on and a bri ef di scussion of the f eatur es i t exhibi ts can<br />

be found i n Appendi x H. These analyses are summ ari zed in Table 7.1. The num ber ing<br />

schem e for t he thin sect i ons (i . e. , “SL SD3KV”) i ncl udes the study ar ea: “SL ”, t he<br />

l ocat ion “SD”, the ant hi l l’ s ident if i cati on number “3” the can number “K” and t he<br />

ori entat ion of the thi n secti on, i n thi s case ver ti cal “V”.<br />

106


Table 7. 1: Summary of Thin Section Analysis Results. Thin sections are<br />

numbered as described in the text.<br />

Thi n Secti on Dep th F eatu res O bserved i n Thi n S ecti on<br />

S LS D3AV Near top of S lopi ng layer s of pebbles and f i nes<br />

S LS D3AH Ant hi ll Many pebbl es ar e not m at r ix suppor ted<br />

S LS D3BV Hil l – Ground Mat ri x- suppor ted pebbl e layer s<br />

S LS D3BH I nt er face P ebbl es inter mi tt ent i n mat ri x<br />

S LS D3CV 15 cm below Many hor izont al t unnel s<br />

S LS D3CH Ground sur face L ar ge cham ber , more tunnels<br />

S LS D3DV 35 cm below Chamber s, tunnels, pebbl es in f i ne m atr ix<br />

S LS D3DH Ground S eed husks, som e pebbl es<br />

S LS D3EV 50 cm below P ossi bl e t unnel s, defi ni t el y pebbl es pr esent<br />

S LS D3EH Ground T unnels, possible l arge chamber<br />

S LS D3FV 60 cm dept h T unnels, l ar ge sand gr ai ns but no pebbl es<br />

S LS D3FH Off set to nor th T unnels, r ar e pebbl es<br />

S LS D3GV m id- face P ossi bl e t unnel s, defi ni t e pebbl es<br />

S LS D3GH Around 30 cm Def init e t unnel s and pebbles<br />

S LS D3HV Hil l- gr ound At least t wo im br icated- pebbl e- f il led t unnel s<br />

S LS D3HH I nt er face Bandi ng fr om NW t o SE of pebbles, fi nes<br />

S LS D3IV T op of the Ver y li t tl e mat ri x suppor t of pebbles<br />

S LS D3IH Ant hi ll Def init e t unnel s, an ant leg, pebbles<br />

S LS D3JV 20 cm below P ossi bl e t unnel ing: poor thin sect ion<br />

S LS D3JH Ground F ine gr ained wi th m any pebbles<br />

S LS D3KV 35 cm below S lopi ng tunnels i n fine mat ri x, some pebbles<br />

S LS D3KH ground L ot s of tunnels, mat ri x- support ed pebbl es<br />

S LS D3LV 50 cm below T unnels, pebbles in fi ne matr ix<br />

S LS D3LH Ground T unnels, seed-husks<br />

S LS D3MV Hil l – ground Ver y st r at if i ed, downwar d slope to east<br />

S LS D3MH I nt er face NW- SE st ri pi ng, pebbles not m at r ix suppor ted<br />

S LS D3NV I n the ant hi l l T unnels, pebbles in ai r, fi ne sand hori zons<br />

S LS D3NH Def init e t unnel s in conj uncti on wi th pebbles<br />

S LS D3OV Hil l- gr ound Ver y lar ge ( l ong) pebble in m iddle of sli de<br />

S LS D3OH I nt er face S ever al ants pr eser ved i n chamber<br />

S LS D3PV 45 cm deep S om e tunnels in f ine grai ned mat ri x<br />

S LS D3PH Uni form l y fi ne gr ai ned, no obvi ous t unnel s<br />

S LS D3QN Ver ti cal ly pl aced S tr ong layer i ng, includi ng seed- husks<br />

S LS D3QW S ur face can P ossi bl e ent r y way? (dip in sur f ace)<br />

S LS D3R S ur face sampl e Non-m at r ix suppor ted pebbles<br />

107


T he sedi ment s of the t unnel wal l s ar e m ade up of fi ner sedim ent s than the<br />

sedim ent groundmass and appear to be li ghtl y cem ent ed ( F igur e 7.5). Cem ent at ion of<br />

sedim ent s is comm on am ong t er mi t e mound deposi ts ( Br anner , 1910) and has been<br />

r epor ted t o occur i n t he tunnel wall s of ot her vari et ies of ant s ( Holl dobler and Wil son,<br />

1990; Wang et al. , 1995) , but i t has not been repor ted for harvester ant s.<br />

Many of the tunnels appear to be at low slopes r elati ve to t he hori zontal plane<br />

( Fi gure 7. 6) . Thus, i t is possi bl e for ant s t o push pebbl es up t he tunnels f rom t he buri ed<br />

pebbl e- beari ng sedi m entar y deposit s. P ebbl es wer e found at all dept hs wi thin t he<br />

ant hi ll , even t hough t hey wer e not f ound in the sur rounding sedim ent s (F i gure 7. 7) .<br />

T hi s does not prove that the ant s ar e m oving t he pebbles upwards or downwar ds t hrough<br />

t he soi l prof il e, but does demonst rat e that the pebbl es ar e bei ng t r ansport ed. Ants<br />

pushi ng or holding pebbl es were not preserved in any of the thi n secti ons.<br />

Whi le sheari ng of t he ant hi ll sedi ments was a com mon pr obl em duri ng can<br />

emplacem ent (Appendi x H) , shear i ng does not appear to have occurr ed duri ng tr ansport<br />

of the impregnated sam pl es. Fi gur e 7.8 shows thr ee har vester ant s that are sti l l int act,<br />

despi te being t ranspor ted sever al hundr ed m i les whi le t he sam pl e they rested in was<br />

onl y par ti al l y im pr egnat ed. Thi s is si mi lar t o the experi ence of T i ppkot ter and Rit z’<br />

( 1996) study, whi ch showed that gr ass r oot str uct ur e can be preserved in an<br />

i ncom pl etely im pr egnat ed sample.<br />

T he t hi n sect ion analysi s suppor ts t he fi el d observat ion t hat ant hi l ls ( above<br />

ground) ar e const ructed in layer s (F i gure 7. 9) . The ant s appear to pl ace a f lat l ayer of<br />

pebbl es, as dem onst r at ed by t he regr owt h exper im ent s di scussed in Chapter 6, then dust<br />

108


0mm 1� 2�� 4mm<br />

Figure 7. 5: Sediments in an anthill tunnel wall. The walls of the chamber (the light<br />

colored triangular feature dominating the figure) in this thin section (SLSD3EH) are<br />

much denser and finer-grained than the sediments in the area which surrounds the<br />

chamber. The scalebar is four millimeters in length.<br />

109


0mm 1 2 4<br />

Figure 7. 6: Sloping Anthill tunnels. This is a magnified (the scale bar is four millimeters<br />

in length) view of some sloping tunnels in thin section SLSD3KV. The top of<br />

the figure corresponds with the "up" direction for this thin section.<br />

110


0mm 1 2 4<br />

Figure 7. 7: Pebbles deep in the anthill. This thin section (SLSD3LV) is from 50cm<br />

below the ground level adjacent to the anthill, yet it contains pebbles (the scale bar at<br />

the upper left of the image is four millimeters in length).<br />

111


0mm 1 2 4<br />

Figure 7. 8: Owyhee harvester ants trapped in resin. This is thin section SLSD3OH.<br />

The presence of intact harvester ants (in the center of this image in an open chamber or<br />

tunnel) indicates that the field component of the resin impregnation was successful, and<br />

that the sample was not disrupted during subsequent transport. The scale bar on the left<br />

side of the image is four millimeters in length.<br />

112


0 1 2 4 mm<br />

Figure 7. 9: Layered anthill construction. This image is from thin section SLSD3QV.<br />

Can "Q" was inserted vertically into the top of the anthill, rather than horizontally from<br />

the trench shown in figure 7.3. The horizontal layering discussed in the text is particularly<br />

apparent in this sample. There is very little matrix support for the layer of large<br />

(4-5 mm) pebbles that is visible in the middle and at the bottom of this image. The scale<br />

bar at the upper right is four millimeters in length, and the top of the image corresponds<br />

with the top of the can during impregnation.<br />

113


eit her blows in or is pl aced on the pebbl e layer . A new l ayer of pebbles i s lai d in pl ace,<br />

t hen a new l ayer of dust , and so on. I t is not obvious what the fi ne- gr ained hori zons<br />

r epresent, but thin sect i ons MV and QV cl ear ly show t hese al t er nati ng layer s.<br />

7. 8 Re si n I m pr eg na t i o n Di s cu ss i on<br />

T he r esi n im pregnat i on t echni que I developed f or st udyi ng Owyhee har vest er<br />

ant hi ll s wor ks well for that pur pose. It woul d be pr oduct ive t o at t em pt a whol e-ant hil l<br />

i mpregnati on such as t hose of Wang et al. ( 1995) or Mar kin ( 1964) using a higher -<br />

viscosi t y mi xture of t hi s r esin for a m or e com pr ehensive pict ur e of the ori entat ion of<br />

t unnels and chamber s wit hin t he hi ll .<br />

T he r esult s show that those t unnel s that wer e sl i ced thr ough ar e mostl y hor izont al ,<br />

but t he thin sect ions pr ovi de only a li mi ted window i nt o t he anthil l . Wang et al. ( 1995)<br />

show that the ant s they wer e st udying bui ld networks of hori zontal chambers connected<br />

by vert i cal tunnels. Thi s may be pecul iar to the gener a of ant t hey studied, or possibly a<br />

r esul t of their t echni que. Unt i l the sam e met hod i s em ployed on a P . owyheei anthil l ,<br />

t heir r esult s cannot be rej ected f or Owyhee harvest er ants.<br />

T he smoothness of t he tunnel wal ls, whi ch was obser ved in the f ield and preserved<br />

i n the thi n secti ons, support s the assumpti ons i n Chapt er 6 that the r oughness of the<br />

t unnel wal ls is uni m port ant com par ed to t he si ze of t he part i cl es being transpor ted<br />

t hr ough them . Furt her , the observat i on t hat pebbles ar e f ound at al l depths in the ant hi ll<br />

support s t he hypothesi s that ant s ar e excavati ng the pebbl es fr om t he subsurf ace.<br />

114


CH AP T E R 8: DE S E R T PAV E M E NT AND AN T H I L L P E B BL E S<br />

8. 1 In t r o du ct i on t o t he Pe bb l e Qu es t i o n<br />

T he t er m "pebbl e" when used i n a t echni cal sense refers to a pi ece of gr avel that is<br />

bet ween f our and 64 m il l im et er s i n diameter , under t he Udden - Went wort h<br />

( Went wor th, 1922) part icl e si ze cl assif icati on scheme, or bet ween two and 64<br />

m il li met er s in di am eter usi ng t he Fr i edman and S ander s ( 1978) cl assi f icat i on scheme.<br />

T he f ir st of these classi fi cati ons call s the t wo to f our m il l im et er si ze range a granul e,<br />

r ef lect i ng t he fact that this si ze r ange is occasionall y t ranspor ted by the wind as bedload<br />

( Bl ai r and McPher son, 1999) whil e clast s great er than four mi ll i meters in di am et er ar e<br />

not . T he Fr i edman and S ander s ( 1978) scheme is adopted her e because the par ti cl es of<br />

i nt er est are in t he 2- 4 mm si ze range and i m medi ately above.<br />

P ebbl es and cobbl es in t he Summ er Lake sand dunes are ei ther pi eces of f r actured<br />

basal ti c bedr ock or al luvium fr om the Chewaucan River ( F igur e 8.1). T he two sources<br />

can m ost easi ly be disti nguished by the degr ee of r oundi ng of t he cl asts. Cl ast s der ived<br />

f rom al l uvium are well -r ounded, due to thei r t ranspor t over tens of ki lom et er s. Bedr ock<br />

f ragm ent s ar e ext rem el y angul ar . A secondar y di sti ncti on can be made based on<br />

l it hology: bedr ock fragm ent s ar e eit her basalt or basal t ic ci nder , whi le al luvi um cl ast s<br />

i nclude many colorf ul wel ded tuf fs. A thir d dist inct ion i s geogr aphic posi ti on relat ive to<br />

L ake Chewaucan’ s most recent pl uvi al shor el i ne. Bedr ock out crops ar e usual ly f ound at<br />

115


Figure 8.1: Gravel lithologies in the study area. These two photographs show the<br />

difference between gravel sized pieces of fractured bedrock and gravel sized pieces<br />

of alluvium present at the surface of the Summer Lake sand dunes. The upper photograph<br />

is a bedrock protrusion on Ten Mile Ridge which is being fragmented and is<br />

gradually turning into desert pavement. The lower photograph shows clasts derived<br />

from alluvium which underlies the sand dunes. The pen in the lower photo is 7 mm<br />

in diameter; the lens cap in the upper photo is 35 mm in diameter. 116


or above t he shor el i ne el evat ion, whi le t hey are extr em ely r are bel ow it . Al luvium<br />

deposit s out crop at the souther n end of t he st udy area, near Fi ve Mi le Cave ( Pl ate 1) .<br />

T he onl y all uvi um cl asts found at the sur face in the dune fi eld are pebbl es of less<br />

t han one cent im et er in di am et er . These all uvi al pebbles are pr esent bot h i n deser t<br />

pavem ent s and i n har vest er anthi ll s.<br />

T he f ull si ze r ange of al luvi um ranges fr om cl ay to<br />

cobbl es, all of whi ch can be found i n soi l pit s. Def lat ion, a cl assic m odel for desert<br />

pavem ent developm ent ( Gi l bert , 1875) , would requi re all coar se part i cl e sizes f ound in<br />

t he all uvi um to be present at t he sur face. Thei r absence in desert pavem ents i n t he dune<br />

f ield i m pl ies t hat a highly unusual and previousl y undocum ent ed sor t ing process must<br />

be at work i n t hi s area.<br />

8. 2 Me t ho ds of P eb bl e S i ze Ana l ys i s<br />

Accur at ely char acter izing t he si ze of sedim ent s lar ger than sand is chal l engi ng.<br />

AST M st andar ds requi re several kil ogr am s of sampl e and a special set of lar ge si eves.<br />

An al ter nate techni que f or repor ti ng the par ti cl e size of such sampl es i s t o sel ect the t en<br />

l ar gest cl ast s in t he sam pl e and r eport t he di mensi ons of their l ongest, shor test, and<br />

i nt er mediate di am et ers ( Li ndhol m, 1987). I chose t o disregar d AST M convent i on and<br />

t o si eve t he samples.<br />

T he l ar gest par ti cl e sizes encount er ed in f i ne-gr ai ned deser t pavem ent or ant hi l l<br />

sam pl es were pl at y rounded pebbl es of about one centi met er i n diamet er . Rather than<br />

usi ng several kil ogr am s, sample si zes wer e bet ween 200 and 400 gr am s. No<br />

pretr eat ment was appli ed to t he sampl es, ot her t han air - dr yi ng (usuall y accom pl i shed<br />

l ong bef or e the sam ples wer e col lect ed in t he ar i d envi r onment of t he Sum mer Lake<br />

117


sand dunes) overnight in the labor at ory. E ach sample was wei ghed before it was<br />

dum ped into a st ack of coarse U.S . Standar d sieves and shaken on a W. S . T yl er<br />

Cor porat ion RX- 86 S i eve Shaker for 15-20 mi nut es (L ewis and McConchi e, 1994;<br />

McManus, 1988). The sam ple t rapped on each si eve was weighed t o cal culat e the<br />

wei ght per cent of sample in each size cat egory.<br />

All uvium sam ples, which contained a much wi der r ange of part i cl e si zes, wer e<br />

analyzed i n mul ti pl e steps. Approxi m at el y 100 gr am s of sampl e was added to dist il led<br />

wat er wi th sodi um hexamet aphosphat e pri or t o wet - si eving t hr ough a #230 sieve. The<br />

sam pl e rem ai ning on this si eve was dr ied and passed t hr ough a nest of pebbl e and sand-<br />

sized si eves as above. The sol uti on passing t he #230 si eve was pour ed i nto a sett li ng<br />

col um n for pi pett e analysis of the cl ay and si lt component ( L indhol m , 1987) . T he<br />

dom inant par t icle si ze i n t hese sampl es i s sand. I used t wo coar se si eves at t he top of<br />

t he sand-sized si eve stack to char act er ize the f i ne and very fi ne pebbles.<br />

Because most natural ly occurr ing par t icles are not perf ect spheres, si eves only<br />

m easure thei r small est cr oss secti onal ar ea ( Li ndhol m, 1987). Matt hews ( 1991) report s<br />

t hat resul ts fr om si eve analysi s are al so dependent on the l ongest axi al length, as long<br />

par ti cl es ar e l ess likel y t o land in the si eve at an angle which would al low them to pass<br />

t hr ough. He st at es that si eving m ay not be an accept abl e met hod of part i cl e si ze<br />

det er mi nat ion because there i s a probabil it y t hat t he same part icle may be tr apped by<br />

m ul ti pl e sieves. Matt hews concl udes that , on average, sieves r et ai n oddl y shaped<br />

par ti cl es based on their interm edi at e axes, due to the com bi nat ion of the l ongest lengt h<br />

and smal lest cr oss secti onal ar ea ef f ects.<br />

118


Another si evi ng problem is hamm eri ng ( Dalsgaard et al. , 1991) . When sampl es<br />

wit h a wide range of par t icle si zes are m echanicall y si eved the l ar ge par ti cl es tr apped i n<br />

each si eve act as hamm er s on sm all er part icl es, and cause mor e part i cl es to be for ced<br />

t hr ough the sieve ( t hr ee weight percent m or e i n their r esult s) than in t he absence of<br />

coarse par ti cles. Thi s can l ead t o inf lated wei ght per centages f or the coarsest i n a sui te<br />

of si eves.<br />

A t hi rd potenti al sour ce of uncert ai nty i s the combinat i on of sieve and pipet te data.<br />

T he com binat i on of these two dat a types l eads to an apparent lack of m at eri al i n t he<br />

125-63 microm et er si ze r ange. Mat thews ( 1991) suggest s usi ng t he pi pet te m et hod f or<br />

analysi s of the 125 mi cr ometer and f i ner si ze fr act ion, rather than the 63 mi cr ometer and<br />

f iner si ze f r acti on. Thi s was not done her e.<br />

8. 3 Ch ar a ct er i st i c s of Al l uv i u m f r o m t he Chew au can Ri v er<br />

All uvium i s subaeri all y exposed to t he sout h of the dune sheet, m aki ng t his an<br />

att ract i ve ar ea t o sam pl e i t. The r esult s presented her e ar e f or 15 sam ples taken f r om<br />

seven si tes in this ar ea (P late 1) . These 15 sam pl es were select ed for present ati on here<br />

due t o the unif or m sam pl i ng t echni que whi ch was used to coll ect t hem : approxi mat el y 5<br />

kg of sample was col lect ed fr om 10 and 20 cm dept hs i n soi l pit s. All uvi um f rom a soil<br />

pit near T en Mi le Ri dge was col l ected speci f ical l y for the l argest clast s i t contained<br />

( upwards of 30 cm di am et er) , and sam ples fr om the m oder n Chewaucan River ar e<br />

com posed excl usivel y of gravels for lit hologic compar ison wi t h those f ound in t he st udy<br />

area.<br />

119


Unt il appr oxi mately 8000 year s bef or e present, t he Chewaucan Ri ver flowed nor th<br />

i nt o Sum mer Lake, r ather than t aki ng it s pr esent east er l y course. All ison ( 1982)<br />

postulat es t hat t he al luvial fan bui l t at t he ri ver ’s entr ance into the pluvi al lake basi n<br />

grew so large t hat when the l ake r et r eated, the river ’s cour se changed t o t he east , over<br />

what had previously been an i nsurm ountabl e rise. All uvi um f r om t he ri ver , in t he for m<br />

of di st i ncti ve gr een wel ded t uf f pebbles, can be found at least as far nort h as the town of<br />

S um mer Lake (Fi gure 1. 1) .<br />

F ield observati ons of the all uvi um i ndi cate that it i s a consistent l y poorl y sor ted<br />

deposit , wit h par ti cle si zes rangi ng fr om boul der s and lar ge cobbles t o clays and si l ts.<br />

L abor at ory st udy of al luvium deposit s confi r ms t his observat i on, al t hough par ti cles<br />

l ar ger than one cent im et er in di am et er were excl uded fr om the par ti cle si ze anal yses<br />

t hr ough use of a sam pl e spl it ter t hat did not accom modat e such part i cl es.<br />

T he all uvi um part icl e si ze anal ysi s yields two i nterest i ng r esult s. F ir st, t he part i cl e<br />

size fr equency curves (F i gure 8. 2, T abl e 8. 1, Appendi x I) indicat e that there m ay be<br />

sever al di ff erent sour ces of sedim ent f or t he al l uvium deposi ts. One of these is pr obabl y<br />

eol ian sil t der ived fr om the pl aya. Anot her i mport ant obser vat ion is that the fine<br />

pebbl es which are so com m on i n deser t pavem ent s and ant hil ls ar e at low concent r at ions<br />

i n these all uvi um samples.<br />

8. 4 Ch ar a ct er i st i c s of Des er t Pav em ent Cl a st s i n t he S um m er La ke S and Dune s<br />

P ebbl es in f i ne desert pavement s i n the f iel d ar ea ar e der ived fr om al luvial<br />

deposit s. T hey are well rounded, som ewhat flatt ened, and consi st of a wi de r ange of<br />

120


25<br />

20<br />

15<br />

Weight Percent<br />

10<br />

5<br />

1<br />

10<br />

100<br />

0<br />

10000<br />

1000<br />

Particle Size (microns)<br />

Figure 8.2: Alluvium Particle Size. Rather than presenting the individual data points for alluvium particle size analysis I<br />

averaged the weight percent in each size category (Table 8.1) and present the results with one standard deviation as an error bar for<br />

each point in the graph. There are two distinct peaks in this curve, at 5000 microns and 375 microns. There is an intriguing lack of<br />

2500 micron pebbles and 100 micron sand.<br />

121


Table 8.1: Alluvium Particle Sizes. The locations of the fifteen samples listed in column one can be found on Plate 1. Each of<br />

these samples’ detailed particle size analysis can be found in Appendix I. The particle size listed here is the median size between<br />

two sieves. The values are given in weight percent.<br />

Size (µm) 5000 3000 1495.5 745.5 375 200 137.5 115 97.5 82.5 69 46.85 23.4 11.7 5.85 2.925 1<br />

Qal-1a 25.15 4.85 5.74 8.30 18.89 12.27 4.50 2.47 1.85 1.77 1.59 3.45 1.74 1.44 1.38 1.26 2.63<br />

Qal-1b 13.01 4.46 5.41 7.79 19.28 16.24 7.03 3.23 2.47 2.28 1.99 3.64 1.87 1.77 1.96 1.23 4.73<br />

Qal-1c 39.28 3.89 3.61 6.17 15.28 10.72 3.98 1.99 1.52 1.23 1.33 2.39 1.40 1.52 1.44 2.57 1.09<br />

Qal-2a 13.65 25.44 16.57 15.30 8.77 4.00 1.17 0.68 0.58 0.78 0.78 3.03 2.31 1.95 1.63 1.06 1.99<br />

Qal-2b 7.84 13.42 13.65 18.10 11.01 4.98 1.66 1.06 0.83 1.13 1.21 4.61 4.89 4.92 3.56 2.65 3.88<br />

Qal-2c 9.71 7.71 9.80 18.55 12.18 5.71 1.81 1.14 1.05 1.14 1.33 5.29 5.56 5.57 3.94 3.38 4.43<br />

Qal-3a 14.49 10.46 5.23 10.29 25.90 13.46 3.34 1.72 1.20 0.43 2.23 3.40 1.39 1.37 1.07 0.80 1.50<br />

Qal-3b 7.82 1.67 2.02 12.07 30.43 17.38 4.33 2.44 1.88 1.81 1.81 3.89 2.00 2.20 2.06 2.12 2.70<br />

Qal-4a 22.71 10.43 12.42 7.24 10.86 5.39 2.06 1.35 0.99 1.28 1.63 5.99 5.07 3.81 3.22 1.81 1.88<br />

Qal-4b 8.12 10.82 12.53 8.66 13.07 5.77 2.16 1.44 1.17 1.53 1.80 7.94 6.98 6.82 4.12 2.37 1.47<br />

Qal-5a 20.08 4.30 14.85 16.46 11.14 5.91 2.28 1.60 1.18 1.52 1.60 5.51 3.30 2.60 1.81 1.57 2.07<br />

Qal-5b 0.71 5.76 23.03 20.61 11.31 5.66 2.22 1.52 1.21 1.52 1.72 7.94 4.45 3.29 2.49 1.58 2.24<br />

Qal-6a 1.44 3.49 9.54 10.48 22.74 15.75 3.99 1.83 1.16 1.33 1.16 3.54 3.29 4.16 5.07 3.64 4.86<br />

Qal-6b 0.55 2.70 7.60 9.33 22.11 15.69 3.94 1.59 1.31 1.17 1.17 2.77 3.16 4.77 5.93 6.50 7.64<br />

Qal-7 7.18 4.73 5.65 8.35 25.41 20.63 6.02 2.95 1.84 1.84 1.66 2.96 1.46 1.12 1.38 1.43 3.31<br />

mean 12.78 7.61 9.84 11.85 17.23 10.64 3.37 1.80 1.35 1.38 1.54 4.42 3.26 3.15 2.74 2.26 3.09<br />

Std. Dev. 10.51 6.03 5.69 4.70 6.80 5.59 1.68 0.71 0.48 0.45 0.37 1.77 1.76 1.77 1.49 1.44 1.75<br />

122


l it hologies whi ch ar e pr esent i n m odern deposi ts of t he Chewaucan Ri ver, as observed at<br />

t he t own of Pai sl ey. I sam pl ed deser t pavem ents in a vari et y of locat ions (P lat e 1) in t he<br />

dune sheet , most of them cl ose to Ten Mil e Ridge. Twel ve of these sam pl es ar e<br />

present ed her e (T abl e 8. 2, Appendi x J). The par t icle-si ze di st ri but ion of these pebbles is<br />

shown i n F igure 8.3. There are at l east thr ee di st inct peaks i n thi s pl ot, ( 5000µ m ,<br />

2800µ m , and 1200µ m ) as well as t wo obvi ous ‘ shoul ders’ whi ch may represent input<br />

f rom di f ferent sour ces. The 5000µ m peak (5 mi l li meter s) r epr esent s the upper li mi t of<br />

m y si eve anal ysis. These pebbl es tend to be ver y f latt ened, as t hough t hey have been<br />

par t of a deser t pavem ent deposi t for sever al thousand years (Whi tney and Dietr i ch,<br />

1973; L ewis and McConchie, 1994).<br />

8. 5 Ch ar a ct er i st i c s of Ant hi l l - P e bb l es i n the F i el d Ar ea<br />

Ant hi ll s on the sand dunes ar e const r ucted in layer s. The complete part i cl e si ze<br />

distr ibuti on of an ant hi l l incl udes fine sands i n t he l ayers between pebbles (F i gure 8. 4) .<br />

S ands f i ner than 0. 5 m m in di am eter wer e wi nnowed f rom the samples. I sampled<br />

ant hi ll s bot h on the dune sheet and in the area to the south of t he dune sheet where<br />

all uvium i s present near the sur face (P late 1) . These sit es were pair ed wi th near by<br />

deser t pavem ent sam pli ng si tes.<br />

T he par t icle si ze of ant hil l pebbl es (F igur e 8.5, T able 8. 3, Appendi x K) more<br />

nearl y approxim at es a nor mal Gaussian distr i buti on than any other sedi ments I have<br />

analyzed f rom t he S umm er Lake sand dunes. There ar e two smal l shoul ders on t hi s<br />

cur ve, bot h towar ds the fine si de of the mean. My result s show t hat ant s tend to use<br />

par ti cl es whi ch are extr emely well r ounded, somet im es very cl ose to spher ical i n shape.<br />

123


Table 8.2: Desert Pavement Particle Sizes. The locations of the twelve samples<br />

listed in column one can be found on Plate 1. Each of these samples’ detailed particle<br />

size analysis can be found in Appendix J. The particle size listed here is the median<br />

size between two sieves. Values are given in weight percent.<br />

S ize (µ m ) 5000 4060 2860 2180 1850 1550 1290 1195. 5 1015 745.5 300<br />

DP1-pave 28. 04 22. 94 25. 97 15. 42 3.31 2.47 1.29 0.39<br />

DP1-p99 6.31 17. 71 35. 62 16. 21 11. 87 7.40 4.13 0.38<br />

DP2-pave 60. 33 11. 41 8.30 3.35 2.44 1.96 1.76 10. 32<br />

DP3-pave 8.34 16. 11 20. 08 10. 56 9.71 10. 18 12. 90 11. 71<br />

DP4-pave 0.09 0.36 1.11 2.35 4.44 10. 61 25. 48 20. 46 34. 98<br />

DP5-pave 10. 02 25. 90 30. 41 9.77 6.57 4.90 5.26 7.32<br />

DS2-pave 63. 72 14. 72 3.59 0.87 0.82 0.87 1.36 13. 96<br />

S D4DP 15. 36 29. 07 31. 35 10. 42 7.13 3.84 1.37 1.01 0.27<br />

S D5DP 18. 34 32. 07 14. 32 8.15 5.88 4.02 2.21 2.44 1.22<br />

S D8DP 0.70 2.01 6.56 7.96 11. 02 12. 34 9.01 13. 91 36. 40<br />

S D10DP 8.62 3.13 21. 22 14. 62 14. 45 11. 24 6.42 7.35 7.52<br />

S am pl e 7sur<br />

face<br />

5.60 18. 90 39. 40 13. 60 9.80 5.30 2.10<br />

m ean 18. 79 16. 19 19. 83 8.90 8.30 6.33 4.22 7.62 6.18 10. 88 11. 32<br />

S td. Dev. 21. 61 10. 51 13. 04 5.04 4.56 3.90 3.33 8.80 5.83 13. 56 13. 00<br />

124


70.00<br />

60.00<br />

DP1-pave<br />

DP1-pave99<br />

DP2-pave<br />

DP3-pave<br />

DP4-pave<br />

DP5-pave<br />

DS2-pave<br />

DP-average<br />

50.00<br />

40.00<br />

SD4DP<br />

SD5DP<br />

SD8DP<br />

SD10DP<br />

30.00<br />

20.00<br />

10.00<br />

100<br />

1000<br />

Particle Size (microns)<br />

0.00<br />

10000<br />

Figure 8.3: Desert Pavement Particle Size. There are two peaks in this particle size plot: the largest is at 2500 microns, in the<br />

same position as the peak in the anthill particle size plot and the valley in the alluvium plot. Data from eleven desert pavements are<br />

shown in this figure. The average ( Table 8.2) is plotted as a line, with one-standard deviation error bars.<br />

125


18.00<br />

16.00<br />

14.00<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

10000<br />

1000<br />

particle size (microns)<br />

Figure 8.4: The complete particle size spectrum of an anthill. This sample is from<br />

anthill “SD3” which was dissected for resin impregnation and discussed in chapter<br />

seven. There are two very distinct modes in this distribution, as well as two shoulders<br />

in the fine sand range, which are similar to shoulders found in plots of samples from<br />

the “SD” core discussed in Chapter Three.<br />

100<br />

10<br />

126


70.00<br />

DP1-ant<br />

DP2-ant<br />

60.00<br />

DP3-ant<br />

DP4-ant<br />

DP5-ant<br />

DS2-ant<br />

Ant-Average<br />

50.00<br />

SD3ant<br />

SD9ant<br />

40.00<br />

30.00<br />

20.00<br />

10.00<br />

100<br />

1000<br />

0.00<br />

10000<br />

Particle Size<br />

Figure 8.5: Anthill Particle Size. The peak in this particle size plot is at 2500 microns, in the same position as the peak in the<br />

desert pavement particle size plot and the valley in the alluvium plot. Data from eight anthills are shown in this figure as points,<br />

while the average for each size fraction is plotted as a line, with one-standard deviation error bars.<br />

127


Tab le 8. 3: An th il l Parti cle S izes. T he l ocati ons of the ni ne sam ples listed in col um n<br />

one can be f ound on Pl at e 1. E ach of t hese sampl es’ det ai led par ti cle si ze anal ysis can<br />

be found i n Appendi x K, at the end of t hi s thesi s. T he part i cl e si ze li sted her e is the<br />

m edian size bet ween two sieves. Val ues are in weight percent .<br />

S ize (µ m ) 5000 4060 2860 2180 1850 1550 1290 1195. 5 1015 745.5 300<br />

DP1-ant 0.48 38. 58 53. 47 6.69 0.90 0.12 0.06<br />

DP2-ant 2.54 55. 46 26. 07 10. 79 3.51 0.98 0.65<br />

DP3-ant 0.38 3.63 56. 87 21. 63 9.87 3.63 2.53 1.63<br />

DP4-ant 0.05 0.54 28. 04 30. 75 20. 88 8.19 2.01 9.87<br />

DP5-ant 1.18 29. 85 24. 08 18. 09 10. 02 4.73 12. 04<br />

DS2-ant 0.78 5.77 62. 24 20. 18 7.62 2.00 0.54 0.84<br />

S D3ant 0.06 0.63 15. 94 18. 41 18. 86 9.78 2.73 2.22 30. 35<br />

S D9ant 0.17 4.22 52. 19 23. 19 13. 24 3.71 1.18 1.35 0.51<br />

Ant hi ll 5 0.8 22. 1 31. 6 27. 5 16. 1 4.5<br />

Mean 0.29 2.20 40. 14 24. 49 20. 03 7.07 2.80 1.95 1.79 0.12 6.99<br />

S td. Dev. 0.30 1.94 17. 01 4.75 14. 00 4.48 1.66 1.56 0.62 0.00 10. 53<br />

128


T hey al so pr eferent i al ly use dense part icles i n const ructi ng thei r hil ls. Even at t he<br />

"painted hil l s" sit e, where Mazama pumi ce i s abundant , ant hi l ls do not cont ai n pum ice<br />

par ti cl es.<br />

8. 6 St at i st i ca l Co m pa r i son of Peb bl es fr om Di f f er e nt S our ce s<br />

Det er mi nat ion of the sour ce of a deposi t fr om it s grain si ze is dif f icul t . T he best<br />

success in t his area has been achi eved through t he use of mom ent st ati st i cs, in which<br />

m ean gr ain si ze i s com par ed wit h skewedness to l ook f or cl ust er ing of dat a ( McManus,<br />

1988) . The ant hi l l part i cl e size di str ibuti ons are t he only ones that l end t hem selves to an<br />

analysi s of thi s sor t, as t hey are t he only gr oup wit h a near -gaussi an di st ri but ion. Rat her<br />

t han com pari ng the thr ee data sets t hrough thi s sor t of anal ysi s I decided to use chi -<br />

squar ed anal ysi s to at tem pt t o discr i mi nate between t hem .<br />

Chi -squared analysi s i s also based on a gaussi an di st ri but ion ( Lyons, 1991) and is<br />

i n consequence not a per f ect way t o study t hese dat a set s. I com pi l ed an average<br />

par ti cl e size distr i buti on for each of the thr ee types of deposit di scussed above,<br />

convert ed the val ues t o phi -scal e, and deter mi ned t he gr aphi c stati sti cs for each<br />

distr ibuti on. Next , t hese values wer e bi nned int o phi- scale part icl e si ze categor ies<br />

( Fr iedm an and S ander s, 1978) for chi -squared analysi s. T he fi ne component of t he<br />

deser t pavem ent s and ant hil ls ( whi ch landed in t he pan dur ing sieve anal ysi s) was<br />

cat egor i zed as "m edi um sand", and the m edium sand and coar ser val ues wer e ext racted<br />

f rom the all uvi um di st ri but ion so that I could compar e the di st ri but ions on t he same<br />

scale ( T able 8. 4, F i gure 8. 6) .<br />

129


Tab le 8. 4: Averaged Part i cl e Si zes. T he aver age par ti cle si zes at the bot tom of Tables<br />

8.1, 8. 2, and 8.3 ar e pr esent ed here by F ri edm an and Sanders (1978) si ze categor y. The<br />

t hr ee columns at the r ight cont ain data used i n chi -squared analysi s, di scussed in t he<br />

t ext. Num ber s ar e in wei ght per cent .<br />

All uvium Deser t Pavem ent Ant hi ll Pebbl es All uvium P ebbles<br />

F ine Pebbl e 12. 78 18. 79 0.29 21. 55<br />

V. Fi ne Pebbl e 7.61 44. 92 66. 83 12. 83<br />

V. Coar se Sand 9.84 26. 47 31. 86 16. 60<br />

Coarse Sand 11. 85 17. 05 1.91 19. 97<br />

Medium Sand 17. 23 11. 32 6.99 29. 04<br />

F ine Sand 14. 00<br />

V. Fi ne Sand 6.07<br />

V. Coar se Si l t 4.42<br />

Coarse Sil t 3.26<br />

Medium Sil t 3.15<br />

F ine Si l t 2.74<br />

Ver y Fi ne Si l t 2.26<br />

Clay 3.09<br />

130


80.00<br />

70.00<br />

60.00<br />

50.00<br />

40.00<br />

30.00<br />

20.00<br />

10.00<br />

0.00<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Desert Pavement<br />

Anthill Pebbles<br />

Alluvium Pebbles<br />

Fine Pebble V. Fine Pebble V. Coarse Sand Coarse Sand Medium Sand<br />

Alluvium<br />

Pavement<br />

Anthill<br />

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10<br />

Particle Size (phi)<br />

Figure 8.6: Pebble particle size comparison charts. These charts demonstrate<br />

similar results to the chi-squared analysis discussed in the text. Desert pavements and<br />

anthills are very similar in the very fine pebble and very coarse sand particle size<br />

fractions. The desert pavement and the alluvium are the most similar across the whole<br />

spectrum of analyzed size classes in the upper figure, but the lower figure shows the<br />

full spectrum of alluvium particle sizes, accentuating the difference between data sets.<br />

131


8. 7 St at i st i ca l Re sul t s<br />

Graphic st at i st ics for each of the t hree averaged par ti cle si ze dist ri but ions ar e<br />

shown i n T abl e 8. 5. T he desert pavem ent and ant hil l mat er ial s ar e ver y sim il ar in<br />

par ti cl e size, but not i n sor ti ng. The all uvi um and the desert pavement ar e si m il ar in<br />

sor ti ng, but not in part i cl e si ze. The all uvi um and the ant hil l sam pl es ar e not sim i lar at<br />

all .<br />

T he r esult s of Chi- squar ed anal ysi s of the thr ee types of pebbl es ar e shown i n<br />

T able 8. 6. None of the tests show si gnif icance at the 0.05 confi dence l evel. Som e<br />

t rends that wer e indicat ed by t he test resul ts f oll ow. The deser t pavem ent ’s di st ri but ion<br />

i s more si mi l ar t o the al luvi um di st r ibut ion t han t he anthil l ’s i s. T he anthil l i s far m or e<br />

sim il ar to desert pavement than it i s t o al l uvium . An impor t ant not e about m y resul t s is<br />

t hat chi squared tests ought to be perf or med on absol ut e val ues, not per cents ( Li ndhol m,<br />

1987) . The dat a I com par ed ar e in t he for m of aver aged weight per cent s and f ail t hi s<br />

cri teri a of Lindhol m ’s f or the appli cabil it y of a chi squared t est to par ti cl e analysis.<br />

Visual com par ison of t he gr aphi c val ues shown in Fi gure 8. 6 leads t o t he same<br />

r esul ts as t he chi squar ed test i ng. Anthil l and desert pavem ent pebbl es ar e most si m il ar<br />

i n the 1-4 m m ( very fi ne pebble and ver y coarse sand) part icl e si ze range, whil e desert<br />

pavem ent i s sim il ar to al luvi um at t he coar ser and fi ner ends of the displayed spect r um .<br />

8. 8 Di scu ss i on of Peb bl e S i z es<br />

T he preceding analysis can be used t o devel op a concept ual m odel for t he<br />

i ncor por at ion of al l uvial pebbl es int o deser t pavem ents (F igure 8.7) . 8200 year s bef or e<br />

132


Table 8.5: Graphic Statistics for Average Particle Sizes. The graphic values of the<br />

mean, median, mode, and standard deviation or sorting, in both phi and metric values.<br />

All uv iu m Des ert Pav eme nt Ant hi ll<br />

P arti cl e S ize P hi m icrons P hi m icrons P hi m icrons<br />

Mode 2 250 - 1. 25 2400 - 1. 25 2400<br />

Median 1.5 350 - 1. 3 2500 - 1. 2 2300<br />

Graphic Mean 1.4 380 - 1. 17 2250 - 1. 2 2300<br />

S or ti ng 3.18 1.07 0.41<br />

Ver y Poorl y Sor ted P oorl y Sor ted Wel l Sor ted<br />

133


Table 8.6: Chi-Squared Analysis Results<br />

Chi S qu ared A naly sis : Ar e A lluv ium an d Deser t Pav em en t P eb bles Similar ?<br />

O bs er ved F req uency Exp ected F req uency Chi-S qu ared Con tr ib u tion<br />

A lluv iu m P av em en t n A lluv iu m P av em en t A lluv iu m P av em en t<br />

F in e Peb ble 2 1.55 1 8.79 4 0.34 1 8.46 2 1.88 0 .5 2 0 .4 4<br />

V . Fine Pebb le 1 2.83 4 4.92 5 7.75 2 6.42 3 1.32 6 .9 9 5 .9 0<br />

V . Co ar s e San d 1 6.60 2 6.47 4 3.07 1 9.71 2 3.36 0 .4 9 0 .4 1<br />

Coars e S an d 1 9.97 1 7.05 3 7.03 1 6.94 2 0.09 0 .5 4 0 .4 6<br />

Med iu m S an d 2 9.04 1 1.32 4 0.36 1 8.47 2 1.89 6 .0 6 5 .1 1<br />

n 1 00 .0 0 1 18 .5 5 2 18 .5 5 1 4.60 1 2.32<br />

d eg rees of f r eedo m = 4 chi s qu are 2 6.92<br />

critical chi- sq uare valu e ( 0.05 sign ificance) 9 .4 9 N ot s im ilar<br />

Chi S qu ared A naly sis : Ar e A lluv ium an d An th ill P ebb les S im ilar?<br />

O bs er ved F req uency Exp ected F req uency Chi-S qu ared Con tr ib u tion<br />

A lluv iu m A nthill n A lluv iu m A nthill A lluv iu m A nthill<br />

F in e Peb ble 2 1.55 0 .2 9 2 1.84 9 .9 9 1 1.85 1 3.37 1 1.28<br />

V . Fine Pebb le 1 2.83 6 6.83 7 9.66 3 6.45 4 3.21 1 5.31 1 2.91<br />

V . Co ar s e San d 1 6.60 3 1.86 4 8.45 2 2.17 2 6.28 1 .4 0 1 .1 8<br />

Coars e S an d 1 9.97 1 .9 1 2 1.88 1 0.01 1 1.87 9 .9 1 8 .3 6<br />

Med iu m S an d 2 9.04 6 .9 9 3 6.04 1 6.49 1 9.55 9 .5 6 8 .0 6<br />

n 1 00 .0 0 1 07 .8 7 2 07 .8 7 4 9.55 4 1.80<br />

d eg rees of f r eedo m 4 chi s qu are 9 1.34<br />

critical chi- sq uare valu e ( 0.05 sign ificance) 9 .4 9 N ot S im ilar<br />

Chi S qu ared A naly sis : Ar e A nthill an d D es er t P av ement P ebb les S im ilar?<br />

O bs er ved F req uency Exp ected F req uency Chi-S qu ared Con tr ib u tion<br />

A nthill P av em en t n A nthill P av em en t A nthill P av em en t<br />

F in e Peb ble 0 .2 9 1 8.79 1 9.08 8 .7 3 1 0.35 8 .1 6 6 .8 8<br />

V . Fine Pebb le 6 6.83 4 4.92 1 11 .7 5 5 1.13 6 0.62 4 .8 2 4 .0 7<br />

V . Co ar s e San d 3 1.86 2 6.47 5 8.33 2 6.69 3 1.64 1 .0 0 0 .8 4<br />

Coars e S an d 1 .9 1 1 7.05 1 8.96 8 .6 8 1 0.28 5 .2 8 4 .4 6<br />

Med iu m S an d 6 .9 9 1 1.32 1 8.31 8 .3 8 9 .9 3 0 .2 3 0 .1 9<br />

n 1 07 .8 7 1 18 .5 5 2 26 .4 2 1 9.49 1 6.44<br />

d eg rees of f r eedo m 4 chi s qu are 3 5.93<br />

critical chi- sq uare valu e ( 0.05 sign ificance) 9 .4 9 N ot s im ilar<br />

134


Alluvium Anthill Pavement<br />

Figure 8.7: Pebble-Transfer Model. The three sketches above are an attempt to demonstrate the formation of desert<br />

pavement of mixed particle sizes. Alluvium contains all of the particle sizes found in desert pavements, but anthills contain<br />

only those particle sizes which it is within a harvester ant's capacity to transport. Pebbles larger than 5 mm in diameter are not<br />

incorporated into the anthills, although they are found in fine-grained desert pavements. This figure illustrates two distinct<br />

periods in time. The left-hand drawing of alluvium is suggested to be indicative of conditions in the study area immediately<br />

after pluvial Lake Chewaucan's retreat from its late glacial high-stand. The anthill and pavement sketches on the right both<br />

overlie fine-grained deposits and can be found in the modern environment. The majority of the pebbles in the pavement are of<br />

the same size as those in the anthill, but there are several larger pebbles, which are visible at the ground surface in the alluvium<br />

diagram, which have been flattened with exposure to thousands of years worth of blowing dust while they remained at the<br />

surface of the sand dunes.<br />

135


present the study ar ea was most l y under water . As t he l ake r eceded, it exposed all uvi um<br />

and l ake sedi ment s to wi nd er osi on. The sur face of t hi s newl y- exposed al luvi um<br />

contained som e pebbl e- si zed clasts. These clast s have rem ai ned at the surf ace, and aft er<br />

t housands of year s of exposur e to the wind, they have become very f l at ( i .e. 1- 2 m m<br />

t hi ck, whi le havi ng an i nterm edi at e axi s of 5- 10m m) . T he sam e wi nd that er oded the<br />

pebbl es br ought sedi ment s f rom the pl aya and other sour ces, such as Mount Mazam a.<br />

T hese f i ner- grained sedi m ents f orm ed the sand dunes. Harvest er ant s m oved fr om the<br />

sur rounding highl ands ont o the newly exposed plai n, bui l di ng anthil l s out of pebbl es<br />

t hat wer e mi ned f rom t he al luvi um beneath t he sand dunes, and are consequentl y<br />

r ounder than the subaeri all y exposed pebbles. When an ant hi l l is abandoned, the r ound<br />

pebbl es ar e incor por at ed into t he deser t pavem ent , which also contai ns l arger , flatt ened<br />

pebbl es.<br />

All uvium cont ai ns a far broader range of par ti cl e sizes than is f ound at the sur face<br />

i n the dune field t o t he east of S um m er L ake. I n par ti cul ar , m or e gravel s and mud-si zed<br />

par ti cl es ar e f ound in t he al luvium than in the moder n sur fi cial deposit s ( Appendi x A,<br />

B). The par t icle si ze di st ri but ions in F igure 8. 6 refl ect t his dif f er ence. Par ti cl es larger<br />

t han one cent im et er in di am et er were excl uded fr om the par ti cle size anal yses but wer e<br />

present in al l al luvium sam pl es. An intr iguing aspect of thi s anal ysi s is the rel at i ve l ack<br />

of 1- 4 mm pebbl es i n t he al luvi um. These ar e the m ost com mon sizes in anthil l and<br />

deser t pavem ent sam ples.<br />

F ine deser t pavem ent sam ples di scussed in t his chapter have a m odal si ze in t he<br />

ver y fi ne pebbl e (2- 4m m) range, but most sam pl es cont ai n l ar ger clasts. Larger cl ast s<br />

136


( not exceedi ng one centi m et er i n diam et er ) tend to be very f l at , suggest i ng t hat t hey<br />

have been pr esent at t he surf ace f or long peri ods of ti m e (Whit ney and Di et ri ch, 1973).<br />

T hese l arger cl asts compose bet ween 1 and 64 % of t he desert pavement sam pl es<br />

discussed her e (T abl e 8. 2). On aver age, 19 +/ - 22 weight per cent of a f i ne-grai ned<br />

deser t pavem ent consists of pebbles that ar e t oo large for ants t o move.<br />

T he ant hil l pebbl es ar e wel l- sor ted ( Lewi s and McConchi e, 1994) , uni que among<br />

t he sur f icial sedim ent t ypes di scussed here. They have only one mode, at approxim at ely<br />

2.5 m il l im et ers diam et er . The pebbl es cont ained in t hese sam pl es ar e mostl y round,<br />

suggest i ng t hat t hey have not been exposed to wi nd er osi on f or as l ong as t he f l at tened<br />

deser t pavem ent pebbles.<br />

T he t hr ee sur fi ci al sedi m ent gr oups (al luvi um, pavement , and anthil l ) ar e<br />

stati st i call y disti nct f r om one anot her i n the pebble si ze r ange. Deser t pavem ent s are<br />

m or e si m il ar to all uvi um than t o ant hil ls i n t hei r sort i ng because ant hi l ls occupy such a<br />

small r ange of the par ti cle size spectr um covered by the t wo ot her classes. Ant hi ll s and<br />

deser t pavem ent s ar e sim i lar to one another in t hei r par ti cl e size distr i buti ons because<br />

t he m ode of the desert pavement part i cl e si ze di str ibut i on i s i n the sam e posit i on as t hat<br />

f or ant hil ls, t hough i t is sm al l er i n m agni t ude. Anthi ll s and desert pavement s are not<br />

sim il ar to one anot her i n t heir sort i ng.<br />

Ver y fi ne pebbl es, the m ajor com ponent of anthil l s, m ake up ver y li t tl e of the<br />

m easured all uvi um pebble cont ent . T his m ight suggest t hat t he fi ne pebbl es have been<br />

r em oved fr om the al l uvium and i ncorporated int o ant hi ll s. T his i s a l ogi st ical l y si m pl e<br />

operati on at the souther n end of t he st udy area where t he al l uvium is exposed at t he<br />

137


sur face. The nor thern end of t he st udy area i s cover ed in sand dunes. Wit hout more<br />

sophi st i cated sam pl i ng ( i .e. a backhoe or ot her mechani cal devi ce f or rem oving the sand<br />

dunes t o access t he al luvium) i t i s not possible to know whet her thi s appar ent deplet ion<br />

of very fi ne pebbles f rom all uvi um i s characteri sti c of al l all uvium deposi ts i n t he<br />

r egion. T hus, it cannot be est abl ished t hat t hi s unusual feature of t he al luvi um par ti cl e<br />

size di str ibuti on i s sol ely due to bi ot ic sort ing.<br />

T he anal yses pr esent ed here suggest that at least t wo pr ocesses are responsible for<br />

t he char acter of fi ne deser t pavem ent s in t he moder n envir onm ent. The domi nant<br />

par ti cl e size m ay have been sel ect ively m ined fr om al luvium deposit s by har vest er ant s.<br />

L ar ger par ti cles found i n deser t pavement s are f l at tened, indicat ing t hat t hey have been<br />

i n thei r present hi gh- energy envir onm ent for a l ong t im e. The m echanism by whi ch<br />

t hese l arge, fl at pebbles wer e mai nt ained at t he surf ace of the developi ng sand dunes i s<br />

beyond the scope of this <strong>thesis</strong> but may be sim il ar to t he mechani sm which has al lowed<br />

t he developm ent of coarse deser t pavement s on Ten Mil e Ridge (Chapt er 3) .<br />

138


CH AP T E R 9: DI S CU S S I ON AND CO NC L US I O NS<br />

T hi s thesi s addressed thr ee questi ons i nt roduced in Chapter One. T hese wer e:<br />

charact eri zat ion of the physi cal envi ronm ent , the r ol e of ant s as bi ogeom or phic agent s,<br />

and t he relat ionshi p bet ween deser t pavem ent s and ant hi l ls.<br />

9. 1: Char ac t er i z at i on of t he S t ud y Ar e a<br />

P luvi al Lake Chewaucan l ast occupi ed the Sum mer Lake sand dunes<br />

approxi m at el y 8000 years ago. Since that t i me, sand dunes and fi ne- gr ai ned desert<br />

pavem ent have f or med on top of the al luvi al and lacustr i ne sedi ment s exposed by the<br />

l ake’ s ret reat. The sand dunes ar e predomi nantl y com posed of f ine sand (200- 300 µ m i s<br />

t he dom i nant mode). T he sand dunes are probably not com posed ent ir ely of Mazam a<br />

ash deposi ts, as has been suggested by some researchers (e.g. All ison, 1982), but fur ther<br />

speculat ion on thei r ori gin i s unwar r anted. Act ual sand dunes (dif f er ent iated from the<br />

sand sheet ) cover appr oxi mately 20% of the 150 hect ar e study ar ea shown in Pl at e 1.<br />

Deser t pavem ent has form ed over appr oxi matel y ten per cent of the Sum mer Lake<br />

sand dunes duri ng t he last 8000 year s. T hi s i ncl udes t wo types of deser t pavem ent<br />

( Fi gure 3. 3) . Coar se- gr ained pavements com posed of bedr ock fragm ent s lar ger than 3<br />

centi met er s in di am eter wit h wel l devel oped soil pr of il es occur at elevat ions above the<br />

8200- year b. p. shor el ine of pl uvi al Lake Chewaucan ( Fi gur e 3.4). These pavements<br />

appear to have been cr eat ed t hr ough processes descr ibed by S t eve Wel ls and Les<br />

McF adden ( McFadden et al ., 1998; McF adden et al. , 1987; Well s et al ., 1985; Wel ls and<br />

139


McF adden, 1990; Wel l s et al ., 1987). Fi ne- gr ai ned pavement s ( modal par t icle si ze of<br />

2.5 m il l im et ers) of pebbl es der i ved from al l uvium are pr esent i n int er dune ar eas bel ow<br />

t he 8200 year shorel ine, and have poorl y devel oped A- over- C soi l pr ofi les. T hi s second<br />

pavem ent t ype f or med t hr ough som e pr evi ousl y undocument ed pr ocess. Ther e have<br />

been mul ti pl e epi sodes of f ine pavem ent f or m at ion dur ing t he past 8000 year s,<br />

evi denced by four di st inct deser t pavem ent hor izons encounter ed i n a 3.2 meter deep<br />

cor e in the center of the dune field (F igur e 3.7; P late 1) .<br />

T he r em ote sensing analysis of the st udy ar ea di scussed in Chapter Four<br />

det er mi ned t hat appr oxim ately t en per cent of t he st udy area is cover ed wi th desert<br />

pavem ent . Of t he f i ve supervised cl assif icati on techni ques used in this st udy, the<br />

nor mali zed parall el epi ped t echni que was t he most ef fect i ve at dif fer enti ati ng desert<br />

pavem ent f rom other types of landf or m based on pi xel br i ghtness val ues. None of t he<br />

t echniques was able to di ff er ent iate sand dunes from al l uvium eff ect ivel y.<br />

9. 2: Owyh ee Ha r v es t er Ant s as Bi o ge om o r p hi c Age nt s<br />

T he dune f iel d support s an unusual ly large popul ati on of Owyhee har vester ant s.<br />

T he aver age ant hi ll densi ty i s 66 col onies per hect ar e. Ant hil ls ar e pr esent on sand<br />

dunes, all uvi um , and desert pavement s i n the study ar ea, but they exist at much hi gher<br />

concent r at ion on al l uvium ( 73-96 per hect ar e) and sand dunes (67- 75 per hectare) t han<br />

on deser t pavem ents (48- 59 per hectar e) . T hese resul ts ar e present ed in Tabl e 5.4.<br />

Regrowt h experi ment s on these anthil l s show that the ant s excavat e pebbl es at a<br />

r at e of appr oxi matel y 0. 01 cubi c m et ers per anthi ll per year (T able 6. 3) . This equat es t o<br />

an ar ea of desert pavement of appr oxi mately 1 m 2 / anthil l /year . Ant s excavate pebbles<br />

140


f rom al l uvium beneat h the sand dunes and incor por at e pebbl es found on the ground<br />

sur face into thei r hil ls. In t he regrowt h exper i ment conduct ed f or this st udy, 25 % of t he<br />

t ot al pebbles used in rebui lding wer e pai nt ed pebbl es f r om t he gr ound sur face ( F igur es<br />

6.8, 6. 9). Af ter two seasons of rebui lding, the ant hi l ls were appr oxim ately one thi rd<br />

t heir or iginal si ze.<br />

Gravel- coated ant hi l ls ar e only the sur face expr ession of a mat ur e har vester ant<br />

col ony. Ant s l ive and work i n gentl y slopi ng chamber s and t unnel s const r ucted in<br />

nat ur al l y occur ri ng fi ne dune sand beneat h the anthil l (Fi gur e 7. 6) . A col ony that has<br />

bui lt an ant hil l has exi sted for at least f i ve year s and wil l probably cont inue to exist for<br />

15- 20 m ore year s. The anthil l is const ruct ed of pair ed layer s of f i ne sand and very fi ne<br />

pebbl es (F igure 7.9) . T he largest pebbles incor por at ed into anthil l s ar e 5 m m in<br />

diameter . Whil e the sand dunes do not natur al ly cont ai n pebbles, aside from the bur i ed<br />

pavem ent hor i zons m ent ioned above, pebbles are pr esent at al l depths sam pled wi t hi n<br />

and beneat h the ant hil l that was dissected for m i cr om or phologic anal ysis (F igur e 7.7) .<br />

T he r esi n im pregnat i on t echni que developed for t his study (Chapter Seven) i s a<br />

f ast, i nexpensi ve, and ef fect ive m et hod f or cr eat ing thi n secti ons of por ous sedim ent ar y<br />

deposit s such as ant hi ll s. T he method may be less ef fecti ve for fi ne- gr ained or<br />

com pact ed sedim ents such as glacial til ls.<br />

A t heor eti cal analysis of t he physics i nvol ved when a 3 mm l ong ant tr ansport s a 5<br />

m m di am eter pebbl e suggests t hat ant s are r oll ing pebbl es of this si ze, rat her than lif ti ng<br />

t hem. Thi s process is f aci li tat ed by t he sm ooth wall s of ant hi ll t unnel s ( Fi gur e 6. 4).<br />

141


T he ant hil l const ructi on observed at the pai nt ed hi ll s sit e represents an annual ener gy<br />

expendi t ur e of 185 J per colony for pebbl e transpor t.<br />

T he biot ur bat ion rat e for Owyhee har vester ant s in the Sum mer L ake sand dunes i s<br />

approxi m at el y 0.0033 t onnes / hect ar e / year . T his num ber i s a f uncti on of t he volum e<br />

of sedi m ent transpor ted (appr oxi matel y 0. 01 m 3 / year / ant hi ll ), the densi ty of anthil ls in<br />

t he study ar ea (66 per hect ar e) , and the bul k densi ty of t he sedi ment bei ng t ranspor t ed.<br />

T he bul k densit y of an anthil l may vary bet ween 0.3 and 0. 8 kg / m 3 , causi ng the<br />

bioturbati on rate t o var y bet ween 0. 002 and 0. 0053 tonnes / hectare / year.<br />

9. 3: P ebb l e s i n An t hi l l s and Dese r t Pa ve m e nt s<br />

All uvium f rom t he Chewaucan River contains a wide r ange of part icle si zes f rom<br />

clays t o cobbles. Ant hi l ls and deser t pavem ents do not cont ain t he same range of<br />

par ti cl e sizes (Chapter 8). Al l uvium has a low concent r at ion of the f ine pebbl e par t icle<br />

size (2. 5 mm ) whi ch domi nat es anthil l deser t pavement s in the dune field (F igur e 8.2) .<br />

P ebbl es used in t he const ruct ion of ant hi ll s are al luvi al in or igin and are bot h wel l<br />

r ounded and nearl y equidi mensional . The par ti cl e size distr i buti on of f i ne-grai ned<br />

deser t pavem ent i s bim odal, wit h t he larger of t he two modes identi cal i n shape and<br />

l ocat ion (2. 5 mm ) to that of t he ant hi ll part icl e si ze di st r ibut ion ( Fi gur e 8. 6). The<br />

second mode consi st s of rounded al luvial pebbl es si mi lar t o those used i n ant hi l ls, but<br />

i ncludi ng pebbl es above five mi l li met er s in di am eter, which tend to be f l at tened. T his<br />

shape suggest s that they have been pr esent at the sur face and subject to eoli an poli shi ng<br />

f or l ong per i ods of ti me. Fi ne- gr ai ned desert pavement s i ncl ude bet ween 1 and 64<br />

142


wei ght per cent of t hese coarser than 5 mm pebbles, wi th an aver age of 19 +/ - 22 weight<br />

per cent per deser t pavem ent sam ple ( T able 8. 2) .<br />

T he ant hil ls ar e cover ed wi th pebbles up to 5 mm in diam et er , even in ar eas of the<br />

sand dunes wher e the near est deser t pavem ent on the ground surf ace is sever al hundreds<br />

of meter s away. The pebbles ar e l ikely bei ng excavat ed fr om al luvi um deposit s and<br />

t ranspor ted thr ough gent l y sl opi ng ( l ess than fi ve degr ees) tunnels on t he insi des of t he<br />

hil ls ( Chapt er 6) . When the ant col oni es di e of f or rel ocat e, the pebbl es ar e str anded at<br />

t he sur f ace of the sand dunes, to be incorporated i nt o deser t pavem ent s thr ough ot her<br />

m echani sms ( F igur e 9.1).<br />

9. 4: Over al l Con cl usi on s<br />

Deser t pavem ent s in the dune fi eld were not cr eat ed t hr ough the excl usive act ion<br />

of harvest er ants, alt hough t hi s i s a t em pt i ng anal ysis, due to t he rapi dit y wi t h whi ch t he<br />

f ine- gr ained desert pavem ents have developed ( less than 8000 year s) . Owyhee<br />

har vest er ant s oper ati ng at t hei r pr esent r ate ( 66 anthi ll s per hect ar e, 1 m 2 of pavement -<br />

equival ent per anthi ll per year ) coul d have excavat ed enough pebbles over t he l ast 8000<br />

years t o cover 264, 000 m 2 wi th desert pavement. Pebbl es that ants ar e capable of<br />

t ranspor ti ng (5 m m or sm all er ) make up appr oxi mat el y 80% of the m ass of fine- gr ained<br />

deser t pavem ent sam ples col lect ed in the st udy ar ea.<br />

S om e of the pebbl es incor porated i nt o deser t pavement s are t oo large f or the ant s<br />

t o move. These pebbles appear to have been at t he surf ace f or a longer per iod of ti m e<br />

t han pebbl es used i n ant hil l const ructi on, due t o t heir morphol ogy. I f sand dunes were<br />

present in t his envi ronm ent dur i ng t he Pl ei stocene (as might be i ndi cated by the coar se<br />

143


deser t pavem ent s above t he most recent pl uvi al shor el ine –Fi gur e 3. 4), t her e may have<br />

been pavem ent s composed of al luvial clast s whi ch form ed through t he same<br />

m echani sms as t hose above t he pl uvial shorel ine. T he coar sest al luvial clast s found in<br />

m oder n deser t pavem ent s may be rel ict s of t hese hypot het ical form er pavem ents.<br />

144


Figure 9.1: Anthill Decay Model. This is a cartoon representation of the life-cycle<br />

of an Owyhee harvester ant colony in the Summer Lake sand dunes. The colony is<br />

established and constructs a pebble-coated mound within two years. By the fifth year<br />

of the colony's existence the anthill has grown to a large size (approximately one<br />

meter in diameter) and is surrounded by a cleared disc one or two meters in radius.<br />

The colony continues to live in this mature anthill for as long as 25 years. When the<br />

harvester ant queen dies, the colony is abandoned and gradually flattened by other<br />

wildlife such as the jackrabbits depicted here walking or hopping across the mound.<br />

The pebbles are then available for incorporation into desert pavements.<br />

144


Ch ap t e r 10: Fu t u r e Wo r k<br />

One questi on that has com e up r epeat edl y dur ing discussi on of t hi s thesi s wit h<br />

other geom or phologi sts i s: “What i s the basi c def init ion of deser t pavem ent ?" It is a<br />

com monl y descri bed sur face feat ure, and m ost i nt r oductor y geomorphol ogy student s<br />

have som e pr ocess-based idea of what it i s, but researcher s do not agr ee on what t hat<br />

process is. A compr ehensive li t er at ure r evi ew and fi el d study of al l ‘publ ished’<br />

pavem ent s mi ght provide som e insight into t his pr oblem. P er haps deser t pavem ent i s<br />

t oo broad a ter m.<br />

Bef or e the i m pact of har vester ant s on deser t pavem ents in t he Summ er Lake sand<br />

dunes can be pr ecisely quanti fi ed, i t i s necessar y to know t he pavem ent area accur at ely.<br />

My remot e sensi ng st udy did not accom pl ish thi s goal. Onl y det ai led f iel d mappi ng i n<br />

com bi nat ion wit h hi gher resol ut i on aeri al phot ogr aphs wi ll m ake t hi s possible.<br />

Most peopl e wor ki ng in t his area wonder wher e the sand cam e from. All ison<br />

( 1982) proposed t hat t he dunes are t he pr oduct of r ewor king of Mazam a deposit s, and<br />

m any researcher s si nce have agr eed. The sandy ar ea t o the sout h of the dune fi eld<br />

consi st s of Mazam a deposi ts and al luvium, but bot h of t hese seem to have very di ff er ent<br />

charact eri st i cs f rom t he sand i n act i ve dunes. A com bi nat ion of chemi cal analysis and<br />

m or e det ai led par ti cle si ze r esear ch mi ght shed som e li ght on t hi s quest i on.<br />

T he pebble part icle si ze anal ysi s di scussed in Chapter Eight woul d benef i t fr om<br />

t he i ncl usion of addit ional sam ples from mor e br oadly di st ri but ed l ocati ons. T o acquir e<br />

all uvium f rom l ocat i ons beneath the dune fi eld r equir es ei ther backbreaki ng l abor or<br />

ear thmoving equipment.<br />

146


Another issue i s the age and charact er of t he bur ied deser t pavem ent hor i zons<br />

m enti oned in Chapter T hr ee. Their dept hs at t he SD sit e wer e det er m ined by augeri ng,<br />

but t hei r lat er al extent cannot be determ ined wi t hout f urt her f ield work, possi bly using<br />

geophysi cal techniques.<br />

T here ar e locat ions near the 8200- year shor eli ne wi th a combi nati on of coar se<br />

bedrock and fine al l uvium deser t pavement . These sit es shoul d be exam ined in gr eater<br />

det ai l to det er mi ne the soi l and var nish charact eri st ics of these pavements and thei r<br />

possi bl e ages and f orm at i on m echanism s.<br />

Many quest ions coul d be resol ved by consult i ng wi th an ent om ologi st at t he st udy<br />

sit e. The m ost i mport ant of these questi ons i s popul at i on densit y. Why ar e there so<br />

m any ant s in this ar ea, com pared t o other publ ished har vester ant hi l l densi ti es? Thi s<br />

begs the questi on of whet her the ant s I studied are act ual ly P . owyheei , an ext remel y<br />

com mon ant , wit h a publi shed densi ty cl oser to t wenty anthil l s per hectar e.<br />

T he r esi n im pregnat i on t echni que developed for t his t hesis appear s to wor k well<br />

but should be expanded upon. T his wi ll r equir e exami ni ng the exi st i ng t hin sect ions<br />

wit h mor e car e and great er detai l. To bett er det er mi ne the quali ty of t he im pr egnat i on<br />

t echnique requi res cut ti ng and analyzing mor e thi n sect i ons from the exi sti ng r esi n-<br />

i mpregnated sam pl es. The t echni que shoul d also be appl i ed t o other types of deposit s i n<br />

t he f iel d. It woul d also be pr oduct i ve t o att em pt a whole-anthil l impregnati on such as<br />

t hose of Wang et al . ( 1995) or Mar ki n ( 1964) usi ng this resi n, to determ i ne i ts<br />

appli cabil it y t o ent om ol ogi cal rat her t han geological st udy.<br />

147


F inal ly, I woul d love to establ i sh a bett er li nk between pebbles br ought to t he<br />

sur face of anthil ls and pebbl es incor porated i nt o pavem ent . Dr . Pet er Haff , of Duke<br />

Uni versi ty, has r eport ed observi ng anim al s kicki ng cl ast s ar ound in the deser t but hasn’t<br />

publi shed a quant it ati ve rate of clast movem ent thr ough these processes. E st abl ishi ng a<br />

quant it ati ve st udy of jack rabbi ts, lizar ds and abandoned ant hi ll s could pr ovide a r ate of<br />

r edistr i buti on of pebbles by thi s ot her biol ogical pr ocess.<br />

148


RE F E RE NCE S<br />

Aal ders, I . H., August inus, P . G. E. F. , and Nobbe, J. M., 1989, The cont ri buti on of ants<br />

t o soil er osi on: a reconnai ssance sur vey: Catena, v. 16, p. 449-459.<br />

Abell , A. J. , Col e, B. J. , Reyes, R. , and Wi er nasz, D. C., 1999, Sexual sel ecti on on body<br />

size and shape in t he western harvest er ant , P ogonomyrmex occi dentall i s<br />

Cresson: E vol ut ion, v. 53, no. 2, p. 535- 545.<br />

Abr aham s, A. D. , and P ar sons, A. J., 1994, Geomor phol ogy of Deser t Envir onm ents:<br />

L ondon, Chapm an and Hall .<br />

Adr ian, B. M. , Fey, D. L . , Ki ng, H. D., and Hagem an, P. L. , 1993, Anal yt i c resul ts and<br />

sam pl e local i ty m ap of st ream -sedi ment, heavy- mi ner al -concent rate, rock,<br />

veget at i on, lake- sedim ent , and evapor it e sam pl es fr om t he Di abl o Mount ai n<br />

Wil derness S t udy Ar ea (OR-001-058) , Lake Count y, Or egon, Open F il e Repor t :<br />

Denver, CO, U.S . Geologi cal S ur vey, 41 p.<br />

All en, J. R. L. , 1970, P hysical Pr ocesses of S edi ment at i on: New Yor k, Am eri can<br />

E lsevier P ubl ishi ng Company.<br />

All ison, I . S., 1945, Pum ice beds at Summ er Lake, Oregon: Geologi cal S oci et y of<br />

Ameri ca Bull eti n, v. 56, p. 789- 808.<br />

All ison, I . S., 1954, Pl uvi al l ake l evels of sout h- cent r al Or egon: Geological S oci et y of<br />

Ameri ca Bull eti n, v. 65, p. 1331.<br />

All ison, I . S., 1982, Geology of P luvial Lake Chewaucan, L ake Count y, Or egon, S t udies<br />

i n Geol ogy: Cor vall i s, Or egon S t at e Uni versi ty, 56 p.<br />

Ander son, C. J. , and MacMahon, J. A. , 2001, Gr ani vores, excl osures, and seed banks:<br />

har vest er ant s and rodent s in sagebr ush-steppe: Journal of Ar id E nvi ronm ent s, v.<br />

49, p. 343-355.<br />

Bacon, C. R. , 1983, Er upt ive hi story of Mount Mazam a and Crat er L ake cal der a,<br />

Cascade Range, U. S. A.: Jour nal of Vol canology and Geotherm al Resear ch, v.<br />

18, p. 57- 115.<br />

Bagnold, R. A., 1954, The P hysi cs of Bl own Sand and Desert Dunes: L ondon, Chapm an<br />

& Hal l.<br />

149


Baxter, F. P . , and Hol e, F. D., 1967, Ant ( F ormi ca ci nerea) P edot urbat i on i n a prai ri e<br />

soi l: S oil S cience Societ y of Am er ica P roceedi ngs, v. 31, p. 425- 428.<br />

Bel bi n, S. P . , 1994, A new st andar d met hod of im pregnat i on using cr yst ic resi n: , p. 673.<br />

Benson, L. V. , Curr ey, D. R., Dorn, R. I. , Laj oi e, K. R. , Ovi at t, C. G., Robi nson, S . W.,<br />

S mi th, G. I. , and S t ine, S. , 1990, Chronology of expansi on and cont r acti on of<br />

f our Gr eat Basi n lake systems duri ng the past 35, 000 years: Pal eogeogr aphy,<br />

P al eocl i matol ogy, P aleoecol ogy, v. 78, p. 241- 286.<br />

Bir keland, P . W., 1999, Soi ls and Geomorphol ogy: New Yor k, Oxford Univer sit y Pr ess.<br />

Blair , T. C. , and McPher son, J. G. , 1999, Gr ai n- size and t ext ur al cl assi f icat ion of coarse<br />

sedim ent ar y par ti cl es: Jour nal of Sedim entar y Research, v. 69, no. 1, p. 6- 19.<br />

Bradl ey, R., 1982, Mining Distr i ct s and Mineral Deposit s of the Basi n and Range<br />

P rovi nce of Oregon: Washi ngton, U. S . Geologic S urvey Open F i le Report 82-<br />

58, 14 p.<br />

Branner , J. C., 1910, Geologi c wor k of ants in t r opical Am er i ca: Bul leti n of the<br />

Geologi cal S oci et y of Am eri ca, v. 21, p. 449-496.<br />

Bri an, M. V. , 1974, Pr oduct ion Ecology of Ants and Term i tes: Cambri dge, Cam br idge<br />

Uni versi ty P r ess.<br />

Broecker , W. S. , and L iu, T ., 2001, Rock var ni sh: r ecor der of deser t wet ness?: GSA<br />

T oday, v. 11, no. 8, p. 4-10.<br />

Brues, C. T. , 1951, Insects i n Amber : S ci ent if ic Am er ican, v. 185, no. 5, p. 56- 61.<br />

Bul lard, J. E., T hom as, D. S. G. , Li vingstone, I . , and Wiggs, G. F. S. , 1995, Anal ysi s of<br />

l inear sand dune mor phol ogi c var iabi l it y, sout hwest er n Kal ahari desert :<br />

Geomorphol ogy, v. 11, p. 189- 203.<br />

Bunti ng, B. T., 1977, The occur r ence of vesi cular str uct ur es in arct ic and subar ct ic soil s:<br />

Z ei tschr if t fur Geom or phologi e, v. 21, no. 1, p. 87-95.<br />

But ler, D. R. , 1995, Z oogeomorphol ogy: Anim als as Geomor phic Agents: Cam bri dge,<br />

Cam br idge Uni versit y P ress, 231 p.<br />

Cam bell , J. B., 1996, Int roduct i on t o Rem ot e S ensing: New Yor k, T he Guil f or d Pr ess,<br />

622 p.<br />

150


Car r, S . J., and Lee, J. A. , 1998, T hin-sect ion product i on of diami cts: probl em s and<br />

sol ut ions: Jour nal of Sedim entar y Research, v. 68, p. 217- 220.<br />

Cohen, A. S. , P al aci os-F est , M. R. , Negri ni , R. M., Wigand, P. E. , and E r bes, D. B.,<br />

2000, A paleocl im at e r ecord f or the past 250,000 year s from Sum mer Lake,<br />

Oregon, US A: II . Sedim ent ol ogy, paleont ol ogy and geochem istr y: Jour nal of<br />

P al eoli m nology, v. 24, p. 151-182.<br />

COHMAP Mem ber s, 1988, Cl i mati c changes of t he last 18,000 years: obser vat ions and<br />

m odel si mulat ions: Sci ence, v. 241, p. 1043- 1052.<br />

Com pt on, R. R., 1985, Geology i n t he Fi el d: New Yor k, John Wi ley & Sons, 398 p.<br />

Cooke, R., Warr en, A., and Goudi e, A. , 1993, Desert Geom or phology: London,<br />

Uni versi ty Coll ege London P ress.<br />

Cooke, R. U. , 1970, St one pavem ent s in deser ts: Annal s of the Associ at ion of Am eri can<br />

Geogr apher s, v. 60, no. 1, p. 560- 577.<br />

Cri st , T. O. , and Wi ens, J. A., 1996, T he di st ri but ion of ant col oni es i n a sem i ar id<br />

l andscape: i m pl icat i ons for com m unit y and ecosyst em processes: Oi kos, v. 76,<br />

p. 301- 311.<br />

Cum mi ngs, D. , and Ar nott , R. W. C. , 1998, A quick and i nexpensi ve sample pr epar ati on<br />

m et hod for am s mi cr ofabr i c anal ysi s in fi ne- gr ai ned sedi ment : Journal of<br />

S edim ent ar y Research, v. 68, no. 4, p. 700- 701.<br />

Dal sgaar d, K. , Jensen, J. L ., and Sor enson, M. , 1991, Methodology of sieving sm all<br />

sam pl es and cal ibrat ion of si eve set , i n Syvi tski, J. P . M. , ed. , P ri nci pl es,<br />

Met hods, and Appl icati on of P ar t icle Si ze Anal ysi s: Cam bri dge, Cambr idge<br />

Uni versi ty P r ess, p. 64- 75.<br />

Davis, J. O. , 1985, Corr elati on of l ate Quat er nar y tephr a layer s in a long pl uvi al<br />

sequence near S um mer L ake, Or egon: Quat er nar y Research, v. 23, p. 38-53.<br />

De Vi ta, J., 1979, Mechanisms of i nt erf er ence and f or agi ng am ong col onies of the<br />

har vest er ant P ogonomyrmex Cali forni cus in t he Mojave Deser t: E col ogy, v. 60,<br />

no. 4, p. 729-737.<br />

Diggl es, M. F., Conr ad, J. E. , and S oreghan, G. A., 1990a, Geol ogical map of the Diablo<br />

Mount ai n wil der ness st udy area, Lake County Or egon: Depart ment of t he<br />

I nt er ior , U. S . Geol ogi cal S ur vey, scale 1:48,000.<br />

151


Diggl es, M. F., King, H. D. , Get ti ngs, M. E . , Conrad, J. E ., Sawatzky, D. L ., S oreghan,<br />

G. S. , Pet er s, T. J. , and Wil let t, S . L ., 1990b, Mi neral Resour ces of the Diabl o<br />

Mount ai n Wil der ness St udy Area, Lake County, Oregon: U. S . Geologi cal<br />

S ur vey Bul let in, v. 1738.<br />

Dixon, J. C. , 1994, Ar idi c soil s, pat terned gr ound, and deser t pavem ents, i n Abraham s,<br />

A. D. , and P arsons, A. J. , eds. , Geom or phol ogy of Deser t E nvi ronm ent s:<br />

L ondon, Chapm an and Hall , p. 64- 81.<br />

Donat h, F. A. , 1962, Anal ysis of Basi n- Range str uct ur e, sout h-centr al Or egon:<br />

Geologi cal S oci et y of Am eri ca Bull et i n, v. 73, no. 1, p. 1-15.<br />

Dor n, R. I ., 1986, Rock var ni sh as an i ndicator of aeol i an envi ronm ent al change, i n<br />

Nickl ing, W. G. , ed. , Aeoli an Geom or phology: Bost on, Al l en & Unwi n, p. 291-<br />

307.<br />

Dor n, R. I ., and Oberl ander , T. M. , 1981, Rock Varnish ori gi n, char act er i st ics, and<br />

usage: Zei tschr if t fur Geom or phologi e, v. 25, p. 420- 436.<br />

Dot t, R. H., and Pr other o, D. R. , 1994, E vol ut ion of the E ar t h: New York, McGraw-<br />

Hil l.<br />

Dugas, D. P. , 2001, The inf luence of ar royo edges on P ogonomyrmex rugosus nest<br />

distr ibuti on in t he Chihuahuan Deser t , New Mexico: Jour nal of Ari d<br />

E nvir onm ents, v. 47, p. 153-159.<br />

Dunkerl ey, D. L ., and Br own, K. J. , 1997, Desert soil s, i n Thom as, D. S. G. , ed. , Ari d<br />

Z one Geomorphol ogy: Pr ocess, For m and Change i n Drylands: New Yor k, John<br />

Wil ey & Sons, L td., p. 55-68.<br />

E astm an, J. R., 1999a, Guide to GI S and I mage Pr ocessing Vol ume 1: Wor cester, MA,<br />

Clark Univer sit y, 193 p.<br />

E astm an, J. R., 1999b, Guide to GI S and I mage Pr ocessing Vol ume 2: Wor cester, MA,<br />

Clark Univer sit y, 170 p.<br />

E astm an, J. R., 1999c, I dri si 32 Tutor ial: Worcest er , MA, Clar k Universit y, 298 p.<br />

E l- Shei kh, T . S ., and Syi am , M. M. , 1989, An eff i ci ent techni que for l it hol ogy<br />

classif i cati on: I EE E T ransact ions on Geosci ence and Rem ote S ensing, v. 27, no.<br />

5, p. 629- 632.<br />

E venari , M., Yaal on, D. H., and Gutt erm an, Y., 1974, Not e on soil s wit h vesicul ar<br />

str uctur e in desert s: Zei tschri f t fur Geomor phol ogi e, v. 18, no. 2, p. 162- 172.<br />

152


F it zpat r ick, E. A., 1993, S oi l Microscopy and Mi cromorphol ogy: Chichester E ngland,<br />

John Wi l ey & Sons, Ltd, 269 p.<br />

F or el , A., 1929, The S oci al Wor l d of the Ant s Com pared wit h That of Man: New Yor k,<br />

Alber t and Char les Boni.<br />

F owler, C. M. R., 1990, The S ol i d Ear th, An Intr oduct ion t o Global Geophysi cs:<br />

Cam br idge, Cambri dge Uni ver si ty Pr ess, 472 p.<br />

F ranks, N. R. , and Deneubourg, J.- L. , 1997, Self - or gani zing nest const ructi on i n ant s:<br />

i ndividual worker behavi our and the nest's dynam i cs: Ani mal Behaviour, v. 54,<br />

no. 4, p. 779-796.<br />

F ri edel , D. E., 1993, Chr onol ogy and cl im at i c contr ol s of Lat e Quat ernar y l ake level<br />

f luct uat ions in Chewaucan, Fort Rock, and Al kali Basi ns, S out h Cent r al Or egon<br />

[ Ph.D. disser tati on thesi s] : Uni versi ty of Oregon, 244 p.<br />

F ri edman, G. M. , and S ander s, J. E ., 1978, Pri nci pl es of S edi ment ol ogy: New Yor k,<br />

Wil ey.<br />

Gil bert , G. K., 1875, Repor t upon the geology of port ions of Nevada, Utah, Cali f or ni a<br />

and Ari zona, exam ined in the years 1871 and 1872, i n Ar my, E. D. U. S ., ed.,<br />

Geogr aphical and Geologi cal E xpl or at i ons and S ur veys West of the 100th<br />

Mer idian, Par t 1: Washington, D. C. , U. S. Ar my, p. 82-83.<br />

Glennie, K. W., 1970, Deser t Sedim ent ar y Envir onm ents, Devel opm ents in<br />

S edim ent ol ogy: Am st erdam , E lsevi er , 208 p.<br />

Gor don, D. , 1999, Ants at Wor k: How an Insect Society i s Organi zed: New Yor k, T he<br />

F ree Pr ess, 182 p.<br />

Gor don, D. M. , 1984, T he harvest er ant ( Pogonomyrmex badius) mi dden: r ef use or<br />

boundar y?: E col ogical Ent om ol ogy, v. 9, p. 403-412.<br />

Gor don, D. M. , 1991, Behavi or al fl exi bi li ty and the f or agi ng ecol ogy of seed- eat ing<br />

ant s: T he Am eri can Nat ur ali st , v. 138, no. 2, p. 379- 411.<br />

Gor don, D. M. , and Kul ig, A., 1998, The eff ect of nei ghbours on t he mort ali ty of<br />

har vest er ant col oni es: Journal of Anim al E col ogy, v. 67, p. 141- 148.<br />

Goudi e, A. S . , and Par ker , A. G. , 1998, E xperi mental si m ul at i on of rapid rock bl ock<br />

disintegrati on by sodi um chlori de in a foggy coastal deser t: Jour nal of Ari d<br />

E nvir onm ents, v. 40, p. 347-355.<br />

153


Grayson, D. K., 1993, The Deser t 's P ast , A Nat ur al Pr ehi st or y of the Great Basi n:<br />

Washi ngt on D. C. , Sm i thsonian Insti tut ion Pr ess, 356 p.<br />

Haefner , J. W., and Cr ist , T. O. , 1994, S pat ial model of m ovement and for aging in<br />

har vest er ant s (P ogonomyrmex) ( I) : The r oles of memor y and com municat ion:<br />

Journal of T heoreti cal Bi ol ogy, v. 166, p. 299-313.<br />

Haf f, P . K., and Wer ner, B. T ., 1996, Dynam i cal processes on desert pavem ents and the<br />

heali ng of surf icial dist ur bances: Quat er nar y Research, v. 45, p. 38-46.<br />

Har ri ngt on, C. D. , and Whit ney, J. W. , 1987, S canni ng el ectr on mi cr oscope m et hod f or<br />

r ock- var ni sh dati ng: Geol ogy, v. 15, p. 967- 970.<br />

Har ri son, J. S. , and Gent ry, J. B. , 1981, F oragi ng patt ern, col ony distr i buti on, and<br />

f or aging r ange of t he Fl ori da harvest er ant , P ogonomyrmex badi us: E cology, v.<br />

62, no. 6, p. 1467- 1473.<br />

Hedges, R. E . M., and Gowlett , J. A. J. , 1986, Radi ocar bon dati ng by accelerator m ass<br />

spect rom et ry: S ci ent if ic Am er ican, v. 254, no. 1, p. 100-107.<br />

Hol ldobl er , B., and Wi lson, E . O., 1990, The Ant s: Cambr idge, Massachuset ts, The<br />

Bel knap Pr ess of Har vard Univer sit y Press, 732 p.<br />

Hol ldobl er , B., and Wi lson, E . O., 1994, Journey to t he Ants, A S tor y of Scient i fi c<br />

E xplorat ion: Cambri dge, Massachusett es, T he Belknap P ress of Harvar d<br />

Uni versi ty P r ess, 228 p.<br />

Hooke, R. L. , 1966, Pr ocesses on ari d-r egion all uvi al f ans: Journal of Geol ogy, v. 75, p.<br />

438-460.<br />

Hooke, R. L. , 1990, Di scussion of "Use of m ult iparameter r el ati ve-age met hods f or age<br />

est im at i on and corr elati on of al luvi al fan sur faces on a desert piedmont , easter n<br />

Moj ave Deser t , Cali f or ni a": Quat er nar y Research, v. 34, p. 262.<br />

I ngli s, D. R. , 1965, P ar t icle sort ing and st one migrati on by fr eezi ng and t hawi ng:<br />

S ci ence, v. 148, p. 1616- 1617.<br />

Jacobber ger, P. A., Ar vi dson, R. E ., and Rashka, D. L ., 1983, Appli cat ion of Landsat<br />

m ul ti spect ral scanner dat a and sedim ent spectr al refl ect ance measur ement s t o<br />

m appi ng of t he Meat i q Dom e, E gypt: Geol ogy, v. 11, p. 587- 591.<br />

154


Jel li nek, A. M. , Madin, I. P. , and L angri dge, R. , 1996, Fi el d and st able isot ope<br />

i ndicat ors of geotherm al resour ce pot enti al , cent ral Lake Count y, Or egon:<br />

Oregon Geology, v. 58, no. 1, p. 3-9.<br />

Johnson, D. L., 1990, Bi omant le evol uti on and the r edist ri but ion of eart h m at er i al s and<br />

art if act s: S oil S ci ence, v. 149, no. 2, p. 84- 102.<br />

Kienzle, 1999, Soil Survey of L ake County, Oregon, Sout her n Par t, U. S . Depar tm ent of<br />

Agr icul t ur e, Nati onal Resources Conservat ion S er vice, Washington, D. C. .<br />

Krumbei n, W. E. , and Giel e, C., 1979, Cal ci f icat i on i n a coccoi d cyanobacteri um<br />

associat ed wi th t he form ati on of desert str omatol it es: Sedim ent ol ogy, v. 26, p.<br />

593-604.<br />

L ancast er, N. 1995, Geom orphology of Desert Dunes: London, Rout ledge, 290 p.<br />

L angr idge, R. M., P ezzopane, S. K. , and Wel don, R. J. , 2001, Sl ip r ate, recur rence<br />

i nt er val s and pal eoear thquakes for t he Ana River Faul t, cent r al Oregon, i n<br />

Negri ni , R., ed., Quat er nar y St udi es near S umm er Lake, Oregon, Fr iends of t he<br />

P leistocene Ninth Annual Paci fi c Nor t hwest Cel l Field T r ip Guidebook, p. RL 1-<br />

17.<br />

L ar son, G. , 1984, T he Far S ide Gal ler y: Kansas Ci ty, Andrews McMeel & Par ker.<br />

L aundre, J. W., 1990, Soi l moist ur e pat terns bel ow mounds of harvest er ants: Journal of<br />

Range Managem ent, v. 43, no. 1, p. 10-12.<br />

L aymon, C. , Quatt rochi , D., Mal ek, E . , Hi pps, L. , Boett i nger , J., and McCur dy, G.,<br />

1998, Remotel y- sensed regional- scale evapot r anspi rati on of a semi -ar id Gr eat<br />

Basin desert and it s r el ati onshi p to geom or phology, soi l s, and veget at ion:<br />

Geomorphol ogy, v. 21, p. 329- 349.<br />

L et ham, L. , 1998, GP S Made Easy: Usi ng Gl obal Posit ioni ng Systems i n t he Outdoor s:<br />

S eatt le, T he Mountai neer s, 208 p.<br />

L ewis, D. W. , and McConchie, D. , 1994, Pr act ical Sedi mentology: New York,<br />

Chapm an & Hal l, 213 p.<br />

L icci ar di, J. M., 2001, Chr onol ogy of l at est P lei st ocene l ake-l evel fl uct uati ons i n the<br />

pluvi al Lake Chewaucan basi n, Or egon, USA: Journal of Quat er nar y Sci ence, v.<br />

16, no. 6, p. 545-553.<br />

L ight on, J. R. B. , and Bart holem ew, G. A. , 1988, St andar d energy met abol i sm of a<br />

deser t har vester ant : P ogonomyrmex rugosus: E ff ect s of temper ature, body<br />

155


m ass, gr oup size, and hum idit y: Pr oceedings of t he Nati onal Academy of<br />

S ci ences, US A, v. 85, p. 4765-4769.<br />

L indhol m , R. C. , 1987, A Pr acti cal Appr oach to S edi ment ology: L ondon, Al l en and<br />

Unwin, 276 p.<br />

L iu, T. , and Br oecker, W. S ., 2000, How f ast does r ock var ni sh gr ow?: Geology, v. 28,<br />

no. 2, p. 183-186.<br />

L yons, L., 1991, A Pract i cal Gui de t o Dat a Analysis f or Physi cal Sci ence St udent s:<br />

Cam br idge, Cambri dge Uni ver si ty Pr ess, 95 p.<br />

Mabbutt , J. A., 1977, Deser t Landf or m s: Cam bri dge Massachuset ts, MI T P ress, 340 p.<br />

MacKay, W. P . , 1985, A compar ison of the energy budgets of t hree speci es of<br />

P ogonomyrmex harvest er ants ( Hym enopt er a: F orm ici dae) : Oecol ogi a, v. 66, p.<br />

484-494.<br />

MacKay, W. P . , 1991, T he role of ant s and t erm it es in desert comm uni ti es, i n Poli s, G.<br />

A., ed. , T he Ecol ogy of Deser t Com munit ies: Tucson, AZ, The Uni versi ty of<br />

Ari zona Pr ess, p. 113- 150.<br />

Mandel, R. D. , and Sor enson, C. J. , 1982, T he rol e of t he western harvest er ant<br />

( P ogonomyrmex occi dentali s) i n soi l for mati on: S oi l S ci ence Society of<br />

Ameri ca Jour nal , v. 46, p. 785- 788.<br />

Mar ki n, G. P . , 1964, A l ead-sol der al loy casti ng techni que f or st udying the str uct ur e of<br />

ant s' nest s: Annals of t he Entom ol ogi cal Society of Amer ica, v. 57, p. 360- 362.<br />

Mat e, F . , 1996, S hi pshape: The Art of S ai lboat Maintenance: New Yor k, W. W. Nor t on<br />

and Com pany, Inc. , 392 p.<br />

Mat suoka, N. , 1995, Rock weat her ing processes and l andf orm developm ent i n t he S or<br />

Rondane Mount ai ns, Ant ar cti ca: Geomor phol ogy, v. 12, p. 323- 339.<br />

Mat thews, M. D. , 1991, T he ef fect of gr ai n shape and densi ty on size m easur em ent , i n<br />

S yvit ski , J. P. M., ed., Pr inci ples, Methods, and Appli cat ion of Par ti cl e S ize<br />

Analysi s: Cam br idge, Cam bri dge Uni ver si ty P r ess, p. 22- 33.<br />

McCave, I. N. , and Syvit ski , J. P. M. , 1991, P ri nci pl es and met hods of geol ogical<br />

par ti cl e size analysis, i n Syvi tski, J. P . M. , ed. , P ri nci pl es, Met hods, and<br />

Appli cat ion of Part i cl e Size Analysi s: Cambr idge, Cam br i dge Uni versi ty P r ess,<br />

p. 3- 21.<br />

156


McF adden, L. D. , McDonal d, E. V. , Wel ls, S. G. , Ander son, K. , Quade, J., and For man,<br />

S . L. , 1998, The vesicul ar layer and carbonate coll ar s of deser t soi ls and<br />

pavem ent s: f orm at ion, age and r elati on to cl im at e change: Geomorphol ogy, v.<br />

24, p. 101-145.<br />

McF adden, L. D. , Wel ls, S. D. , and Jercinovi ch, M. J. , 1987, Infl uences of eoli an and<br />

pedogeni c pr ocesses on t he or igi n and evolut ion of deser t pavem ents: Geol ogy,<br />

v. 15, p. 504-508.<br />

McManus, J., 1988, Grain si ze determ i nati on and int er pr etati on, i n Tucker , M., ed.,<br />

T echniques i n S edim ent ol ogy: Oxf or d, Bl ackwell S cient if i c Publi cati ons, p. 63-<br />

85.<br />

Mehri nger, P . J., and Wi gand, P . E ., 1986, Hol ocene hist or y of Skul l Creek dunes,<br />

Cat low Val ley, sout heast ern Oregon, USA: Journal of Ari d E nvi ronm ent s, v. 11,<br />

p. 117- 138.<br />

Minoura, N., and Conley, C. D., 1971, T echni que for i mpr egnat ing por ous rock sam pl es<br />

wit h low-viscosit y epoxy resi n: , p. 858- 861.<br />

Mooney, S. J. , Holden, N. M., Coll ins, J. F . , and War d, S. M. , 1998, A suit abil i ty<br />

evaluat i on of sel ect ed i m pr egnants f or in si tu pr epar at i on of str uct ur al im ages of<br />

m il led peat: Geoder m a, v. 81, p. 241- 249.<br />

Mur phy, C. P . , 1986, T hi n S ecti on Pr eparati on of Soil s and S edi ment s: Ber kham st ed,<br />

Great Br it ai n, A. B. Academ ic P ubl isher s, 149 p.<br />

Negri ni , R., 2001, Quater nary S t udies near Sum mer L ake, Or egon, i n Fr iends of the<br />

P leistocene Ninth Annual Paci fi c Nor t hwest Cel l Field T r ip, Sum mer Lake, OR.<br />

Negri ni , R. M., and Davi s, J. O. , 1992, Dat i ng l ate P lei st ocene pluvial event s and<br />

t ephr as by corr el at i ng paleom agnet ic secular var i at ion recor ds fr om the western<br />

Great Basi n: Quat er nar y Research, v. 38, p. 46-59.<br />

Negri ni , R. M., E rbes, D. B., F aber, K. , Her rera, A. M. , Robert s, A. P ., Cohen, A. S . ,<br />

Wigand, P. E . , and Foi t, F. F ., 2000, A pal eocli m at ic r ecord for the past 250,000<br />

years f r om S umm er L ake, Oregon, US A: I. Chr onology and magnet ic proxies<br />

f or l ake l evel: Jour nal of Paleoli mnology, v. 24, p. 125-149.<br />

Negri ni , R. M., Ver osub, K. L ., and Davis, J. O. , 1988, The middl e to lat e Pl ei stocene<br />

geomagneti c field r ecorded in f i ne-gr ai ned sedim ent s fr om Sum mer Lake,<br />

Oregon, and Doubl e Hot S pri ngs, Nevada, U. S. A. : E ar th and Planetar y Sci ence<br />

L et ters, v. 87, p. 173-192.<br />

157


P age, F . , and Richar d, G. , 1990, A r api d met hod for m aki ng soil t hi n sect ions, i n<br />

Dougl as, L . A., ed. , S oi l Microm or phology: A Basi c and Appli ed Science:<br />

Amsterdam, E l sevi er , p. 627-630.<br />

P ezzopane, S . K., and II , R. J. W. , 1993, T ect oni c role of acti ve f aul ti ng in Cent ral<br />

Oregon: Tect oni cs, v. 12, no. 5, p. 1140- 1169.<br />

P hi ll ips, K. N. , and Denbur gh, A. S. V. , 1971, Hydr ol ogy and Geochem istr y of Abert ,<br />

S um mer, and Goose L akes, and Ot her Cl osed-Basi n Lakes i n S out h- Cent r al<br />

Oregon, Cl osed Basi n I nvest igat i ons: Washington, U. S . Geologic S ur vey, 86 p.<br />

P isar ski , B. , 1974, Compari son of var ious bi om es, i n Br ian, M. V. , ed., Pr oduct ion<br />

E cology of Ants and Term i tes: Cambri dge, Cam br idge Universit y P ress, p. 326-<br />

331.<br />

P or ter, S. D. , and Jor gensen, C. D., 1988, Longevit y of harvest er ant col onies in<br />

souther n I daho: Jour nal of Range Management , v. 41, no. 2, p. 104-107.<br />

P ot ts, S. G. , and Wi ll mer , P. , 1998, Compact housing in buil t -up ar eas: spati al<br />

pat terni ng of nests in aggr egat i ons of a gr ound- nesti ng bee: Ecol ogi cal<br />

E nt om ol ogy, v. 23, p. 427-432.<br />

P ye, K. , and Tsoar, H. , 1990, Aeol ian S and and S and Dunes: L ondon, Unwin Hyman,<br />

396 p.<br />

Quade, J., 2001, Deser t pavem ent s and associ at ed rock varnish i n the Moj ave Desert :<br />

how old can they be?: Geology, v. 29, no. 9, p. 855-859.<br />

Raymond, L . A., 1995, Pet rology: T he St udy of Igneous, Sedim ent ar y and Metamorphic<br />

Rocks: New York, Wi l li am C. Brown, 742 p.<br />

Rehei s, M. , 1999, Hi ghest pluvi al- lake shor eli nes and P l ei st ocene cl im at e of the west er n<br />

Great Basi n: Quat er nar y Research, v. 52, p. 196- 205.<br />

Rissi ng, S . W., 1988, Seed- harvest er ant associat ion wi t h shr ubs: compet i ti on f or wat er<br />

i n the Moj ave deser t ?: E col ogy, v. 69, no. 3, p. 809- 813.<br />

Rivar d, B. , Arvidson, R. E. , Duncan, I. J., Sult an, M., and Kal iouby, B. E. , 1992,<br />

Var ni sh, sedi ment , and r ock cont rols on spectr al refl ect ance of out crops in ari d<br />

r egions: Geol ogy, v. 20, p. 295- 298.<br />

Rubinst ein, R., 1988, Di git al T ypogr aphy: An I nt r oducti on to Type and Com posi ti on for<br />

Com puter S yst em Desi gn: New Yor k, Addison Wesl ey Longman, Inc., 320 p.<br />

158


Russell , I . C., 1885, Geologi c histor y of L ake L ahont an, a Quat er nar y lake of<br />

nor thwestern Nevada: U. S. Geol ogi cal S ur vey Monogr aph, v. 11.<br />

Ryt i, R. T ., and Case, T . J., 1984, Spati al ar rangement and diet overl ap between col oni es<br />

of deser t ant s: Oecologi a, v. 62, p. 401- 404.<br />

S char penseel , H. W. , 1979, Soil Fr act ion Dat ing, i n Berger , R., and Suess, H. E. , eds.,<br />

Radiocar bon Dat ing: Berkeley, Univer sit y of Cali f or ni a Press, p. 279-283.<br />

S cott , H. W. , 1950, The geologi cal work of the m ound- bui lding ant s in Western Unit ed<br />

S tates: Jour nal of Geology, v. 59, p. 173-175.<br />

S hi pm an, H., and Adams, J. B. , 1987, Detect abi li t y of m i neral s on desert al luvi al fans<br />

usi ng r efl ect ance spectr a: Jour nal of Geophysi cal Resear ch, v. 92, no. B10, p.<br />

10391-10402.<br />

S hl em on, R. J., 1978, Quaternar y soi l -geomor phic relati onshi ps, sout heast er n Moj ave<br />

Deser t, Cali f or ni a and Ar izona, i n Mahaney, W. C. , ed. , Quaternar y S oi l s, Geo<br />

Abstr act s Lt d., p. 187-207.<br />

S mi th, S. J. , and Anderson, R. S., 1995, A met hod f or i m pr egnat ing sof t sedim ent cor es<br />

f or t hi n-sect ion mi croscopy: Journal of S edi ment ary P et r ol ogy, v. A 65, p. 576-<br />

577.<br />

S oi l Sur vey Staff , 1999, Keys t o S oi l T axonomy: Blacksburg, Vir gi ni a, Pocahantas<br />

P ress I nc.<br />

S pr inger , M. E. , 1958, Desert pavement and vesicular layer of som e soi ls of t he deser t<br />

of the Lahont an Basi n, Nevada: Soi l Sci ence Soci ety P roceedi ngs, p. 63-66.<br />

S tewart , J. H., Wal ker , G. W. , and Kl ei nham pl, F . J., 1975, Oregon- Nevada l ineam ent:<br />

Geology, v. 3, p. 265- 268.<br />

S udd, J. H., 1967, An Int roduct i on t o t he Behavi or of Ants: New Yor k, St . Mar ti n's<br />

P ress.<br />

S yvit ski , J. P. M., Aspr ey, K. W., and Cl at t enbur g, D. A., 1991, Pr i ncipl es, design, and<br />

cal ibrat ion of sett l ing tubes, i n Syvi tski, J. P . M. , ed. , P ri nci pl es, Met hods, and<br />

Appli cat ion of Part i cl e Size Analysi s: Cambr idge, Cam br i dge Uni versi ty P r ess,<br />

p. 45-63.<br />

T aber , S. W. , 1998, The Wor ld of t he Harvest er Ants: Col lege St at ion, Texas, Texas<br />

A&M Uni ver si t y Pr ess, 213 p.<br />

159


T ipkott er, R. , and Rit z, K. , 1996, E val uati on of polyest er , epoxy and acr yl ic r esi ns for<br />

sui tabi l it y in pr eparati on of soil t hin sect ions for in si tu bi ol ogi cal studi es:<br />

Geoderm a, v. 69, p. 31-57.<br />

T rauger , F . D., 1958, Fault scar ps and age of fault ing in Lake Count y, Or egon:<br />

Geologi cal S oci et y of Am eri ca Bull et i n, v. 69, no. 12, p. 1747.<br />

T schi nkel, W. R., 1999, Sociomet ry and Soci ogenesis of Col ony-L evel At tr i butes of the<br />

F lori da Harvest er Ant (Hymenopt era: For mi ci dae): Ecol ogy and Populat ion<br />

Biology, v. 92, no. 1, p. 80- 89.<br />

Wagner, D. , Brown, M. J. F. , and Gor don, D. M. , 1997, Harvest er ant nest s: soil bi ot a<br />

and soi l chem istr y: Oecol ogia, v. 112, p. 232- 236.<br />

Wagner, D. , and Gor don, D. M. , 1999, Colony age, neighborhood densi t y and<br />

r eproducti ve potent i al i n har vester ant s: Oecologia, v. 119, p. 175- 182.<br />

Wai nwri ght , J., P ar sons, A. J., and Abr aham s, A. D. , 1995, A si mulat ion study of t he<br />

r ol e of raindrop er osi on in t he form ati on of desert pavement s: Eart h S ur f ace<br />

P rocesses and L andf orm s, v. 20, p. 277- 291.<br />

Wang, D. , McS weeney, K., Lowery, B., and Nor man, J. M., 1995, Nest str uct ur e of ant<br />

L asius neoni ger Em er y and i t s im pl i cati ons t o soi l modif icati on: Geoder ma, v.<br />

66, p. 259-272.<br />

Wei tz, C. M. , and F arr , T. G. , 1992, Ef fect s of sur fi ci al modif icat i on pr ocesses on<br />

t herm al infr ared si gnatur es i n the ar id sout hwest er n Uni ted States: Jour nal of<br />

Geophysi cal Research, v. 97, no. B4, p. 4649-4665.<br />

Wel ls, S. G. , Dohrenwend, J. C. , McF adden, L. D. , T ur ri n, B. D. , and Mahr er , K. D. ,<br />

1985, L ate Cenozoic landscape evol ut i on on lava flow sur faces of the Cim a<br />

vol cani c f iel d, Moj ave Desert , Cal if ornia: Geological S oci et y of Am eri ca<br />

Bul leti n, v. 96, p. 1518- 1529.<br />

Wel ls, S. G. , and McFadden, L . D., 1990, Reply t o R. LeB. Hooke's di scussion of "Use<br />

of mult i param et er r elati ve- age met hods for age esti mati on and cor rel at ion of<br />

all uvial f an surf aces on a deser t pi edm ont, east ern Moj ave Desert , Cal if ornia:<br />

Quaternary Resear ch, v. 34, p. 263-265.<br />

Wel ls, S. G. , McF adden, L. D. , and Dohr enwend, J. C., 1987, Inf luence of late<br />

Quaternary cl im at ic changes on geomor phic and pedogenic pr ocesses on a desert<br />

piedm ont , eastern Mojave Desert , Cal i fornia: Quat er nary Research, v. 27, p.<br />

130-146.<br />

160


Wel ls, S. G. , McF adden, L. D. , and S chult z, J. D. , 1990, E ol i an l andscape evolut ion and<br />

soi l for mati on in t he Chaco dune f iel d, sout hern Colorado Pl ateau, New Mexi co:<br />

Geomorphol ogy, v. 3, p. 517-546.<br />

Wendl and, W. M. , 1989, T he Deser t Shall Rej oice: Nature, v. 341, p. 21.<br />

Wentwor t h, C. K., 1922, A scale of gr ade and class term s f or cl asti c sedi ment s: Jour nal<br />

of Geol ogy, v. 30, p. 377-392.<br />

Wheel er , W. M., 1910, Ant s; T hei r St r ucture, Developm ent , and Behavi or : New Yor k,<br />

Col um bi a Uni ver si ty Pr ess.<br />

Whi tf or d, W. G. , Johnson, P ., and Ram ir ez, J., 1976, Com parat ive ecology of t he<br />

har vest er ant s P ogonomyrmex barbat us (F . Sm i th) and P ogonomyrmex rugosus:<br />

I nsectes S oci aux, v. 23, p. 117- 132.<br />

Whi tney, M. I., and Di et r ich, R. V., 1973, Venti f act sculptur e by wi ndbl own dust :<br />

Geologi cal S oci et y of Am eri ca Bull et i n, v. 84, p. 2561- 2582.<br />

Wiernasz, D. C. , and Col e, B. J. , 1995, S pat ial distr ibuti on of P ogonomyrmex<br />

Occident al is: r ecrui tm ent , mort ali ty and overdisper si on: Jour nal of Anim al<br />

E cology, v. 64, p. 519-527.<br />

Wigand, P. E . , 2001, L at e Quater nary vegetat ion history of t he Summ er Lake basi n: i n<br />

F ri ends of t he Pl ei stocene Ni nt h Annual P aci fi c Nor thwest Cel l Fi el d T ri p,<br />

S um mer Lake, OR.<br />

Wiggl eswor th, V. B. , 1984, Insect Physi ol ogy: New Yor k, Chapm an and Hall .<br />

Wil li am s, H. , and Goles, G. , 1968, Volume of t he Mazama ash- f al l and t he or igin of<br />

Crater Lake cal dera, i n Dole, H. M. , ed. , Andesi te Conf er ence Guidebook:<br />

P or tl and, St ate of Oregon Depar t ment of Geol ogy and Mineral Industr i es, p. 37-<br />

41.<br />

Wil li am s, S. H. , and Z im bleman, J. R. , 1994, Desert pavement evol ut i on: an exam ple of<br />

t he r ol e of sheet fl ood: Journal of Geol ogy, v. 102, p. 243-248.<br />

Z im belm an, J. R., and Wi l li am s, S. H. , 1996, Wind str eaks: geol ogical and bot ani cal<br />

eff ects on surf ace albedo contr ast : Geomorphol ogy, v. 17, p. 167- 185.<br />

161


A P P E N D I X A<br />

P ar ti cl e S ize Dat a Sheet s f or Core “S D”<br />

162


sample from SD surface sample + pan= 103.8<br />

pan= 8.9<br />

total sample weight = 94.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.3 718 8.7 9.17 9.17 9.17<br />

6 3360 4060 739.1 747.1 8 8.43 8.43 17.60<br />

8 2360 2860 716.4 734.2 17.8 18.76 18.76 36.35<br />

12 1700 2030 653.2 675.9 22.7 23.92 23.92 60.27<br />

16 1180 1440 674.8 688.4 13.6 14.33 14.33 74.60<br />

18 991 1085.5 686.3 690.5 4.2 4.43 4.43 79.03<br />

35 500 745.5 796.9 803.7 6.8 7.17 7.17 86.20<br />

45 335 417.5 602.2 615.3 13.1 13.80 13.80 100.00<br />

70 212 273.5 0 0.00 0.00 100.00<br />

100 150 181 0 0.00 0.00 100.00<br />

120 125 137.5 0 0.00 0.00 100.00<br />

170 90 107.5 0 0.00 0.00 100.00<br />

200 75 82.5 0 0.00 0.00 100.00<br />

230 63 69 0 0.00 0.00 100.00<br />


sample from 0.5 foot depth sample + pan= 280.7<br />

pan= 9.2<br />

total sample weight = 271.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.4 709.5 0.1 0.04 0.04 0.04<br />

6 3360 4060 739.1 739.4 0.3 0.11 0.11 0.15<br />

8 2360 2860 716.5 717.9 1.4 0.52 0.52 0.66<br />

12 1700 2030 653.2 658.1 4.9 1.80 1.81 2.47<br />

18 991 1345.5 686.3 699.5 13.2 4.86 4.87 7.33<br />

35 500 745.5 797 817.4 20.4 7.51 7.53 14.84<br />

45 335 417.5 602.2 623.6 21.4 7.88 7.90 22.73<br />

70 212 273.5 616.3 681.5 65.2 24.01 24.06 46.74<br />

100 150 181 628 695.1 67.1 24.71 24.76 71.45<br />

120 125 137.5 539.5 565.1 25.6 9.43 9.45 80.88<br />

170 90 107.5 528.7 551.4 22.7 8.36 8.38 89.24<br />

200 75 82.5 518.8 529.9 11.1 4.09 4.10 93.33<br />

230 63 69 510.1 518.4 8.3 3.06 3.06 96.39<br />


sample from 0.8 foot depth sample + pan= 120.4<br />

pan=<br />

total sample weight = 120.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.3 709.6 0.3 0.25 0.25 0.25<br />

6 3360 4060 739.1 739.7 0.6 0.50 0.75 0.75<br />

12 1700 2530 653.2 658.6 5.4 4.49 4.51 5.23<br />

18 991 1345.5 686.4 695.8 9.4 7.81 7.85 13.04<br />

20 841 916 602.2 604.8 2.6 2.16 2.17 15.20<br />

45 335 588 625.6 642.6 17 14.12 14.19 29.32<br />

70 212 273.5 616.4 639.1 22.7 18.85 18.95 48.17<br />

100 150 181 628.1 654.7 26.6 22.09 22.20 70.27<br />

120 125 137.5 641.9 653.2 11.3 9.39 9.43 79.65<br />

170 90 107.5 528.8 540.1 11.3 9.39 9.43 89.04<br />

200 75 82.5 518.8 523.3 4.5 3.74 3.76 92.77<br />

230 63 69 510.1 513.7 3.6 2.99 3.01 95.76<br />


sample from 1 foot depth sample + pan= 143.8<br />

pan= 9<br />

total sample weight = 134.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

10 2000 3380 680.2 682.9 2.7 2.00 2.01 2.00<br />

20 841 1420.5 729.9 743.3 13.4 9.94 9.98 11.94<br />

45 335 588 625.4 643.7 18.3 13.58 13.63 25.52<br />

70 212 273.5 616.3 644.1 27.8 20.62 20.70 46.14<br />

100 150 181 628 659.5 31.5 23.37 23.45 69.51<br />

120 125 137.5 539.5 553.6 14.1 10.46 10.50 79.97<br />

170 90 107.5 528.7 540.6 11.9 8.83 8.86 88.80<br />

200 75 82.5 518.8 523.9 5.1 3.78 3.80 92.58<br />

230 63 69 510.1 514.6 4.5 3.34 3.35 95.92<br />


sample from 1.2 foot depth sample + pan= 233.1<br />

pan= 9<br />

total sample weight = 224.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.9 1.7 0.76 0.76 0.76<br />

20 841 1420.5 729.9 743.1 13.2 5.89 5.91 6.65<br />

45 335 588 625.4 653.5 28.1 12.54 12.59 19.19<br />

70 212 273.5 616.3 672.5 56.2 25.08 25.18 44.27<br />

100 150 181 628 690 62 27.67 27.78 71.93<br />

120 125 137.5 539.5 560.2 20.7 9.24 9.27 81.17<br />

170 90 107.5 528.7 545.6 16.9 7.54 7.57 88.71<br />

200 75 82.5 518.8 527.8 9 4.02 4.03 92.73<br />

230 63 69 510.1 517.2 7.1 3.17 3.18 95.89<br />


sample from 1.5 foot depth sample + pan= 679.5<br />

pan= 576.1 112<br />

total sample weight = 103.4 112 orig<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.6 0.4 0.36 0.36 0.36<br />

20 841 1420.5 729.9 737.9 8 7.14 7.20 7.50<br />

45 335 588 625.5 640.7 15.2 13.57 13.69 21.07<br />

70 212 273.5 616.4 638.5 22.1 19.73 19.90 40.80<br />

100 150 181 628 651.8 23.8 21.25 21.43 62.05<br />

120 125 137.5 539.5 551.7 12.2 10.89 10.98 72.95<br />

170 90 107.5 528.7 538.6 9.9 8.84 8.91 81.79<br />

200 75 82.5 518.8 522.9 4.1 3.66 3.69 85.45<br />

230 63 69 510 514.1 4.1 3.66 3.69 89.11<br />


sample from 1.7 foot depth sample + pan= 165.7<br />

pan= 9.2<br />

total sample weight = 156.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.1 0.9 0.58 0.58 0.58<br />

20 841 1420.5 729.9 736.7 6.8 4.35 4.36 4.92<br />

45 335 588 625.4 642.6 17.2 10.99 11.04 15.91<br />

70 212 273.5 616.3 652.9 36.6 23.39 23.49 39.30<br />

100 150 181 628 676.6 48.6 31.05 31.19 70.35<br />

120 125 137.5 539.5 553.2 13.7 8.75 8.79 79.11<br />

170 90 107.5 528.7 543.6 14.9 9.52 9.56 88.63<br />

200 75 82.5 518.8 526.5 7.7 4.92 4.94 93.55<br />

230 63 69 510.1 515 4.9 3.13 3.15 96.68<br />


sample from 2 foot depth sample + pan= 751.1<br />

pan= 594.3<br />

total sample weight = 156.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.8 0.6 0.38 0.38 0.38<br />

20 841 1420.5 729.9 736.7 6.8 4.34 4.32 4.72<br />

45 335 588 625.4 642.9 17.5 11.16 11.12 15.88<br />

70 212 273.5 616.3 651.7 35.4 22.58 22.49 38.46<br />

100 150 181 628 668.9 40.9 26.08 25.98 64.54<br />

120 125 137.5 539.5 560.2 20.7 13.20 13.15 77.74<br />

170 90 107.5 528.7 544.5 15.8 10.08 10.04 87.82<br />

200 75 82.5 518.8 526.1 7.3 4.66 4.64 92.47<br />

230 63 69 510.1 516.2 6.1 3.89 3.88 96.36<br />


sample from 2.5 foot depth sample + pan= 114.5<br />

pan=<br />

total sample weight = 114.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.9 735.2 5.3 4.63 4.54 4.63<br />

45 335 588 625.4 637.9 12.5 10.92 10.70 15.55<br />

70 212 273.5 616.3 639.4 23.1 20.17 19.77 35.72<br />

100 150 181 628 658 30 26.20 25.68 61.92<br />

120 125 137.5 641.8 655 13.2 11.53 11.30 73.45<br />

170 90 107.5 528.6 542.8 14.2 12.40 12.15 85.85<br />

200 75 82.5 518.8 524.5 5.7 4.98 4.88 90.83<br />

230 63 69 510 514.8 4.8 4.19 4.11 95.02<br />


sample from 2.5+ foot depth sample + pan= 720.1<br />

pan= 621.8<br />

total sample weight = 98.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.8 0.6 0.61 0.61 0.61<br />

20 841 1420.5 729.9 733.7 3.8 3.87 3.84 4.48<br />

45 335 588 625.4 635.6 10.2 10.38 10.30 14.85<br />

70 212 273.5 616.3 636.6 20.3 20.65 20.51 35.50<br />

100 150 181 628 654.7 26.7 27.16 26.97 62.67<br />

120 125 137.5 539.5 553.4 13.9 14.14 14.04 76.81<br />

170 90 107.5 528.7 539.9 11.2 11.39 11.31 88.20<br />

200 75 82.5 518.8 523.5 4.7 4.78 4.75 92.98<br />

230 63 69 510.1 514 3.9 3.97 3.94 96.95<br />


sample from 2.8 foot depth sample + pan= 112.5<br />

pan=<br />

total sample weight = 112.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.9 735.4 5.5 4.89 4.86 4.89<br />

45 335 588 625.5 638.1 12.6 11.20 11.14 16.09<br />

70 212 273.5 616.2 638.8 22.6 20.09 19.98 36.18<br />

100 150 181 627.8 657.4 29.6 26.31 26.17 62.49<br />

120 125 137.5 641.9 654.5 12.6 11.20 11.14 73.69<br />

170 90 107.5 528.7 543 14.3 12.71 12.64 86.40<br />

200 75 82.5 518.7 523.4 4.7 4.18 4.16 90.58<br />

230 63 69 510 515.3 5.3 4.71 4.69 95.29<br />


sample from 3 foot depth sample + pan= 106.7<br />

pan=<br />

total sample weight = 106.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.9 733.4 3.5 3.28 3.27 3.28<br />

45 335 588 625.5 636.2 10.7 10.03 9.99 13.31<br />

70 212 273.5 616.3 637 20.7 19.40 19.33 32.71<br />

100 150 181 628 656.2 28.2 26.43 26.33 59.14<br />

120 125 137.5 641.9 655.1 13.2 12.37 12.32 71.51<br />

170 90 107.5 528.7 543 14.3 13.40 13.35 84.91<br />

200 75 82.5 518.8 524.3 5.5 5.15 5.14 90.07<br />

230 63 69 510.1 514.6 4.5 4.22 4.20 94.28<br />


sample from 3.1 foot depth sample + pan= 117.2<br />

pan=<br />

total sample weight = 117.2<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.9 733.3 3.4 2.90 2.90 2.90<br />

45 335 588 625.5 637.2 11.7 9.98 9.99 12.88<br />

70 212 273.5 616.4 640 23.6 20.14 20.15 33.02<br />

100 150 181 628 660.2 32.2 27.47 27.50 60.49<br />

120 125 137.5 641.9 655.5 13.6 11.60 11.61 72.10<br />

170 90 107.5 528.7 543.7 15 12.80 12.81 84.90<br />

200 75 82.5 518.8 524.9 6.1 5.20 5.21 90.10<br />

230 63 69 510.2 514.9 4.7 4.01 4.01 94.11<br />


sample from 3.2 foot depth sample + pan= 115.6<br />

pan= 9.2<br />

total sample weight = 106.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.7 733.4 3.7 3.48 3.48 3.48<br />

45 335 588 625.4 636.5 11.1 10.43 10.45 13.91<br />

70 212 273.5 616.3 638.9 22.6 21.24 21.28 35.15<br />

100 150 181 627.8 658 30.2 28.38 28.44 63.53<br />

120 125 137.5 641.8 653.3 11.5 10.81 10.83 74.34<br />

170 90 107.5 528.6 540.6 12 11.28 11.30 85.62<br />

200 75 82.5 518.7 524.3 5.6 5.26 5.27 90.88<br />

230 63 69 510 514.2 4.2 3.95 3.95 94.83<br />


sample from 3.5 foot depth sample + pan= 147.9<br />

pan= 9.1<br />

total sample weight = 138.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.7 736.2 6.5 4.68 4.69 4.68<br />

45 335 588 625.3 641.9 16.6 11.96 11.98 16.64<br />

70 212 273.5 616.2 646.6 30.4 21.90 21.93 38.54<br />

100 150 181 627.8 662.7 34.9 25.14 25.18 63.69<br />

120 125 137.5 641.8 658.1 16.3 11.74 11.76 75.43<br />

170 90 107.5 528.7 544.3 15.6 11.24 11.26 86.67<br />

200 75 82.5 518.6 523.7 5.1 3.67 3.68 90.35<br />

230 63 69 509.9 517.1 7.2 5.19 5.19 95.53<br />


sample from 3.7 foot depth sample + pan= 186.6<br />

pan= 9.2<br />

total sample weight = 177.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.8 739.3 9.5 5.36 5.38 5.36<br />

45 335 588 625.3 648.5 23.2 13.08 13.13 18.43<br />

70 212 273.5 616.3 658.8 42.5 23.96 24.05 42.39<br />

100 150 181 627.9 674.1 46.2 26.04 26.15 68.43<br />

120 125 137.5 641.8 659.4 17.6 9.92 9.96 78.35<br />

170 90 107.5 528.7 545.3 16.6 9.36 9.39 87.71<br />

200 75 82.5 518.8 526.1 7.3 4.11 4.13 91.83<br />

230 63 69 510.1 516.9 6.8 3.83 3.85 95.66<br />


sample from 4 foot depth sample + pan= 150.6<br />

pan= 9.1<br />

total sample weight = 141.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 0 0.00 0.00 0.00<br />

20 841 1420.5 729.8 739 9.2 6.50 6.51 6.50<br />

45 335 588 625.3 646.4 21.1 14.91 14.92 21.41<br />

70 212 273.5 616.2 644.5 28.3 20.00 20.01 41.41<br />

100 150 181 627.8 659.3 31.5 22.26 22.28 63.67<br />

120 125 137.5 641.8 655.7 13.9 9.82 9.83 73.50<br />

170 90 107.5 528.6 546.9 18.3 12.93 12.94 86.43<br />

200 75 82.5 518.7 524.6 5.9 4.17 4.17 90.60<br />

230 63 69 510 515.1 5.1 3.60 3.61 94.20<br />


sample from 4.2 foot depth sample + pan= 120.7<br />

pan= 9.1<br />

total sample weight = 111.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.1 681.3 1.2 1.08 1.08 1.08<br />

20 841 1420.5 729.8 738.2 8.4 7.53 7.53 8.60<br />

45 335 588 625.4 645.2 19.8 17.74 17.74 26.34<br />

70 212 273.5 616.2 641.3 25.1 22.49 22.49 48.84<br />

100 150 181 627.9 651.6 23.7 21.24 21.24 70.07<br />

120 125 137.5 641.8 652.5 10.7 9.59 9.59 79.66<br />

170 90 107.5 528.6 539.7 11.1 9.95 9.95 89.61<br />

200 75 82.5 518.6 522.2 3.6 3.23 3.23 92.83<br />

230 63 69 510 514.2 4.2 3.76 3.76 96.59<br />


sample from 4.4 foot depth sample + pan= 129.4<br />

pan= 9.1<br />

total sample weight = 120.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.1 680.7 0.6 0.50 0.50 0.50<br />

20 841 1420.5 729.9 737.5 7.6 6.32 6.33 6.82<br />

45 335 588 625.3 645.6 20.3 16.87 16.90 23.69<br />

70 212 273.5 616.2 641.8 25.6 21.28 21.32 44.97<br />

100 150 181 627.8 654.9 27.1 22.53 22.56 67.50<br />

120 125 137.5 641.8 653.2 11.4 9.48 9.49 76.97<br />

170 90 107.5 528.6 541.8 13.2 10.97 10.99 87.95<br />

200 75 82.5 518.7 523.4 4.7 3.91 3.91 91.85<br />

230 63 69 509.9 514.3 4.4 3.66 3.66 95.51<br />


sample from 4.5 foot depth sample + pan= 137.8<br />

pan= 9.2<br />

total sample weight = 128.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.1 681.2 1.1 0.86 0.84 0.86<br />

20 841 1420.5 729.8 738.6 8.8 6.84 6.75 7.70<br />

45 335 588 625.3 648.2 22.9 17.81 17.56 25.51<br />

70 212 273.5 616.2 643.1 26.9 20.92 20.63 46.42<br />

100 150 181 627.9 655.2 27.3 21.23 20.94 67.65<br />

120 125 137.5 641.7 655.4 13.7 10.65 10.51 78.30<br />

170 90 107.5 528.6 543.2 14.6 11.35 11.20 89.66<br />

200 75 82.5 518.7 523.9 5.2 4.04 3.99 93.70<br />

230 63 69 509.9 513.7 3.8 2.95 2.91 96.66<br />


sample from 4.7 foot depth sample + pan= 157.6<br />

pan= 9.2<br />

total sample weight = 148.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.3 681.4 1.1 0.74 0.74 0.74<br />

20 841 1420.5 730 741.7 11.7 7.88 7.88 8.63<br />

45 335 588 625.5 652.1 26.6 17.92 17.91 26.55<br />

70 212 273.5 616.4 645.1 28.7 19.34 19.33 45.89<br />

100 150 181 628 659.6 31.6 21.29 21.28 67.18<br />

120 125 137.5 539.5 553.9 14.4 9.70 9.70 76.89<br />

170 90 107.5 528.8 545.9 17.1 11.52 11.52 88.41<br />

200 75 82.5 518.8 524.2 5.4 3.64 3.64 92.05<br />

230 63 69 510 514.5 4.5 3.03 3.03 95.08<br />


sample from 5 foot depth sample + pan= 173.7<br />

pan= 9.3<br />

total sample weight = 164.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.5 1.3 0.79 0.79 0.79<br />

20 841 1420.5 730 738.2 8.2 4.99 4.99 5.78<br />

45 335 588 625.6 649.6 24 14.60 14.61 20.38<br />

70 212 273.5 616.5 663.2 46.7 28.41 28.42 48.78<br />

100 150 181 628.1 671.9 43.8 26.64 26.66 75.43<br />

120 125 137.5 539.5 554 14.5 8.82 8.83 84.25<br />

170 90 107.5 528.8 543.2 14.4 8.76 8.76 93.00<br />

200 75 82.5 518.9 523.7 4.8 2.92 2.92 95.92<br />

230 63 69 510.1 513.9 3.8 2.31 2.31 98.24<br />


sample from 5.5 foot depth sample + pan= 191.4<br />

pan= 9<br />

total sample weight = 182.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.6 0.4 0.22 0.22 0.22<br />

20 841 1420.5 730 736.2 6.2 3.40 3.41 3.62<br />

45 335 588 625.5 649.1 23.6 12.94 12.98 16.56<br />

70 212 273.5 616.4 668.9 52.5 28.78 28.88 45.34<br />

100 150 181 628 686.2 58.2 31.91 32.01 77.25<br />

120 125 137.5 539.5 553.2 13.7 7.51 7.54 84.76<br />

170 90 107.5 528.8 542.9 14.1 7.73 7.76 92.49<br />

200 75 82.5 518.9 525.1 6.2 3.40 3.41 95.89<br />

230 63 69 510.1 513.7 3.6 1.97 1.98 97.86<br />


sample from 5.7 foot depth sample + pan= 240.7<br />

pan= 9.2<br />

total sample weight = 231.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681 0.8 0.35 0.35 0.35<br />

20 841 1420.5 729.9 739.7 9.8 4.23 4.24 4.58<br />

45 335 588 625.4 662.4 37 15.98 16.01 20.56<br />

70 212 273.5 616.3 682.9 66.6 28.77 28.82 49.33<br />

100 150 181 628 686.9 58.9 25.44 25.49 74.77<br />

120 125 137.5 539.5 560.7 21.2 9.16 9.17 83.93<br />

170 90 107.5 528.7 547.4 18.7 8.08 8.09 92.01<br />

200 75 82.5 518.8 525.2 6.4 2.76 2.77 94.77<br />

230 63 69 510 515.9 5.9 2.55 2.55 97.32<br />


sample from 5.9 foot depth sample + pan= 138<br />

pan= 9.2<br />

total sample weight = 128.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.6 0.4 0.31 0.31 0.31<br />

20 841 1420.5 729.8 738.2 8.4 6.52 6.53 6.83<br />

45 335 588 625.4 648 22.6 17.55 17.56 24.38<br />

70 212 273.5 616.3 645.1 28.8 22.36 22.38 46.74<br />

100 150 181 628 662.4 34.4 26.71 26.73 73.45<br />

120 125 137.5 539.4 552.1 12.7 9.86 9.87 83.31<br />

170 90 107.5 528.7 539 10.3 8.00 8.00 91.30<br />

200 75 82.5 518.8 522.8 4 3.11 3.11 94.41<br />

230 63 69 510 512.8 2.8 2.17 2.18 96.58<br />


sample from 6 foot depth sample + pan= 179.6<br />

pan= 8.9<br />

total sample weight = 170.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 683.7 3.5 2.05 2.05 2.05<br />

20 841 1420.5 729.8 746.8 17 9.96 9.94 12.01<br />

45 335 588 625.4 653.1 27.7 16.23 16.19 28.24<br />

70 212 273.5 616.3 656.6 40.3 23.61 23.55 51.85<br />

100 150 181 627.8 672.9 45.1 26.42 26.36 78.27<br />

120 125 137.5 539.4 550.9 11.5 6.74 6.72 85.00<br />

170 90 107.5 528.7 540.6 11.9 6.97 6.95 91.97<br />

200 75 82.5 518.8 523.9 5.1 2.99 2.98 94.96<br />

230 63 69 510 513.6 3.6 2.11 2.10 97.07<br />


sample from 6.2 foot depth sample + pan= 190.5<br />

pan= 9.1<br />

total sample weight = 181.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 687.2 7 3.86 4.07 3.86<br />

20 841 1420.5 729.8 765.7 35.9 19.79 20.87 23.65<br />

45 335 588 625.4 654.8 29.4 16.21 17.09 39.86<br />

70 212 273.5 616.3 653.1 36.8 20.29 21.40 60.14<br />

100 150 181 628 661.4 33.4 18.41 19.42 78.56<br />

120 125 137.5 539.4 548.5 9.1 5.02 5.29 83.57<br />

170 90 107.5 528.7 537.3 8.6 4.74 5.00 88.31<br />

200 75 82.5 518.8 522.9 4.1 2.26 2.38 90.57<br />

230 63 69 510 513 3 1.65 1.74 92.23<br />


sample from 6.5 foot depth sample + pan= 259.2<br />

pan= 8.9<br />

total sample weight = 250.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.4 724.3 14.9 5.95 5.96 5.95<br />

6 3360 4060 739.1 744 4.9 1.96 1.96 7.91<br />

8 2360 2860 716.4 721.2 4.8 1.92 1.92 9.83<br />

10 2000 2180 680.2 686.2 6 2.40 2.40 12.23<br />

12 1700 1850 653.2 661.6 2.4 0.96 0.96 13.18<br />

18 991 1345.5 686.3 701.3 15 5.99 6.00 19.18<br />

20 841 916 729.8 738.6 8.8 3.52 3.52 22.69<br />

35 500 670.5 797 817.7 11.9 4.75 4.76 27.45<br />

45 335 417.5 625.4 650.4 25 9.99 9.99 37.44<br />

70 212 273.5 616.3 681.9 65.6 26.21 26.22 63.64<br />

100 150 181 628 679.4 51.4 20.54 20.54 84.18<br />

120 125 137.5 539.4 552.6 13.2 5.27 5.28 89.45<br />

170 90 107.5 528.7 539.8 11.1 4.43 4.44 93.89<br />

200 75 82.5 518.8 524.9 6.1 2.44 2.44 96.32<br />

230 63 69 510 514.6 4.6 1.84 1.84 98.16<br />


Sample from 6.5 foot depth, run as duplicate sample + pan= 172.9<br />

pan= 9.2<br />

total sample weight = 163.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 682.8 2.6 1.59 1.59 1.59<br />

20 841 1420.5 729.8 734.6 4.8 2.93 2.93 4.52<br />

45 335 588 625.4 645.3 19.9 12.16 12.14 16.68<br />

70 212 273.5 616.3 665.8 49.5 30.24 30.20 46.92<br />

100 150 181 628 679.6 51.6 31.52 31.48 78.44<br />

120 125 137.5 539.4 548.9 9.5 5.80 5.80 84.24<br />

170 90 107.5 528.7 541.2 12.5 7.64 7.63 91.88<br />

200 75 82.5 518.8 523.9 5.1 3.12 3.11 94.99<br />

230 63 69 510 513.8 3.8 2.32 2.32 97.31<br />


sample from 7 foot depth sample + pan= 163.3<br />

pan= 9.2<br />

total sample weight = 154.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.2 1 0.65 0.65 0.65<br />

20 841 1420.5 729.9 732.1 2.2 1.43 1.43 2.08<br />

45 335 588 625.4 638.8 13.4 8.70 8.70 10.77<br />

70 212 273.5 616.3 658.8 42.5 27.58 27.58 38.35<br />

100 150 181 628 679.3 51.3 33.29 33.29 71.64<br />

120 125 137.5 539.5 556.4 16.9 10.97 10.97 82.61<br />

170 90 107.5 528.7 541.7 13 8.44 8.44 91.04<br />

200 75 82.5 518.8 524.3 5.5 3.57 3.57 94.61<br />

230 63 69 510.1 513.2 3.1 2.01 2.01 96.63<br />


Sample from 7.2 foot depth, core one sample + pan= 214.9<br />

pan= 9.2<br />

total sample weight = 205.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.1 0.9 0.44 0.44 0.44<br />

20 841 1420.5 729.9 733.5 3.6 1.75 1.75 2.19<br />

45 335 588 625.4 646.3 20.9 10.16 10.17 12.35<br />

70 212 273.5 616.3 676.2 59.9 29.12 29.13 41.47<br />

100 150 181 628 691.2 63.2 30.72 30.74 72.19<br />

120 125 137.5 539.5 565 25.5 12.40 12.40 84.59<br />

170 90 107.5 528.7 545.2 16.5 8.02 8.03 92.61<br />

200 75 82.5 518.8 524.7 5.9 2.87 2.87 95.48<br />

230 63 69 510.1 513.9 3.8 1.85 1.85 97.33<br />


Sample from 7.5 foot depth, core SD-1 sample + pan= 248.7<br />

pan= 9.2<br />

total sample weight = 239.5<br />

Phi sieve # size (um)<br />

median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.9 1.7 0.71 0.71 0.71<br />

20 841 1420.5 729.9 740.3 10.4 4.34 4.34 5.05<br />

45 335 588 625.4 671.3 45.9 19.16 19.17 24.22<br />

70 212 273.5 616.3 688.7 72.4 30.23 30.24 54.45<br />

100 150 181 628 687.5 59.5 24.84 24.85 79.29<br />

120 125 137.5 539.5 562.1 22.6 9.44 9.44 88.73<br />

170 90 107.5 528.7 542.9 14.2 5.93 5.93 94.66<br />

200 75 82.5 518.8 523.9 5.1 2.13 2.13 96.78<br />

230 63 69 510.1 513.3 3.2 1.34 1.34 98.12<br />


Sample from 7.7 foot depth, core one sample + pan= 234<br />

pan= 9<br />

total sample weight = 225<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 686.9 6.7 2.98 2.97 2.98<br />

20 841 1420.5 729.9 746.1 16.2 7.20 7.19 10.18<br />

45 335 588 625.4 664.6 39.2 17.42 17.40 27.60<br />

70 212 273.5 616.3 681.7 65.4 29.07 29.03 56.67<br />

100 150 181 628 679.6 51.6 22.93 22.90 79.60<br />

120 125 137.5 539.5 554.9 15.4 6.84 6.84 86.44<br />

170 90 107.5 528.7 542.2 13.5 6.00 5.99 92.44<br />

200 75 82.5 518.8 524.5 5.7 2.53 2.53 94.98<br />

230 63 69 510.1 514.7 4.6 2.04 2.04 97.02<br />


Sample from 7.9 foot depth, core one sample + pan= 715.2<br />

pan=<br />

total sample weight = 91.6<br />

623.6 113.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.3 1.1 0.97 0.98 0.97<br />

20 841 1420.5 729.9 735.9 6 5.27 5.37 6.23<br />

45 335 588 625.4 637.9 12.5 10.97 11.19 17.21<br />

70 212 273.5 616.3 634 17.7 15.54 15.85 32.75<br />

100 150 181 628 649.4 21.4 18.79 19.16 51.54<br />

120 125 137.5 539.5 551.4 11.9 10.45 10.65 61.98<br />

170 90 107.5 528.7 539.2 10.5 9.22 9.40 71.20<br />

200 75 82.5 518.8 522.7 3.9 3.42 3.49 74.63<br />

230 63 69 510.1 512.9 2.8 2.46 2.51 77.09<br />


Sample from 8.2 foot depth, core one sample + pan= 697.3<br />

pan=<br />

total sample weight = 76.9<br />

620.4 105.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.2 1 0.95 0.97 0.95<br />

20 841 1420.5 729.9 737.3 7.4 7.02 7.18 7.97<br />

45 335 588 625.4 636.6 11.2 10.63 10.87 18.60<br />

70 212 273.5 616.3 632.2 15.9 15.09 15.42 33.68<br />

100 150 181 628 645.5 17.5 16.60 16.98 50.28<br />

120 125 137.5 539.5 548.2 8.7 8.25 8.44 58.54<br />

170 90 107.5 528.7 536.4 7.7 7.31 7.47 65.84<br />

200 75 82.5 518.8 521.9 3.1 2.94 3.01 68.79<br />

230 63 69 510.1 512.5 2.4 2.28 2.33 71.06<br />


Sample from 7.7 foot depth sample + pan= 193.2<br />

pan= 56.3<br />

total sample weight = 136.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 680.8 0.6 0.44 0.45 0.44<br />

20 841 1420.5 729.9 736.1 6.2 4.53 4.64 4.97<br />

45 335 588 625.5 640.8 15.3 11.18 11.46 16.14<br />

70 212 273.5 616.4 643.4 27 19.72 20.23 35.87<br />

100 150 181 628 657.8 29.8 21.77 22.32 57.63<br />

120 125 137.5 539.5 553.8 14.3 10.45 10.71 68.08<br />

170 90 107.5 528.7 538.9 10.2 7.45 7.64 75.53<br />

200 75 82.5 518.8 523 4.2 3.07 3.15 78.60<br />

230 63 69 510 513.4 3.4 2.48 2.55 81.08<br />


Sample from 8 foot depth sample + pan= 188.7<br />

pan= 57.2<br />

total sample weight = 131.5<br />

Phi sieve # size (um) median<br />

size<br />

Sieve<br />

weight<br />

Sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 681.5 1.3 0.99 1.03 0.99<br />

20 841 1420.5 729.9 736.5 6.6 5.02 5.22 6.01<br />

45 335 588 625.5 639.5 14 10.65 11.08 16.65<br />

70 212 273.5 616.4 637.4 21 15.97 16.62 32.62<br />

100 150 181 628 653.3 25.3 19.24 20.03 51.86<br />

120 125 137.5 539.5 552 12.5 9.51 9.90 61.37<br />

170 90 107.5 528.7 538.3 9.6 7.30 7.60 68.67<br />

200 75 82.5 518.8 522.4 3.6 2.74 2.85 71.41<br />

230 63 69 510 513.8 3.8 2.89 3.01 74.30<br />


Sample from 8.3 foot depth sample + pan= 157.2<br />

pan= 57.1<br />

total sample weight = 100.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.2 683.7 3.5 3.50 3.63 3.50<br />

20 841 1420.5 729.9 743.8 13.9 13.89 14.41 17.38<br />

45 335 588 625.5 634 8.5 8.49 8.81 25.87<br />

70 212 273.5 616.4 629.4 13 12.99 13.48 38.86<br />

100 150 181 628 642.4 14.4 14.39 14.93 53.25<br />

120 125 137.5 539.5 545.8 6.3 6.29 6.53 59.54<br />

170 90 107.5 528.7 534.2 5.5 5.49 5.70 65.03<br />

200 75 82.5 518.8 520.7 1.9 1.90 1.97 66.93<br />

230 63 69 510 511.7 1.7 1.70 1.76 68.63<br />


Sample from 8.5 foot depth sample + pan= 169.2<br />

pan= 56.7<br />

total sample weight = 112.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 684.6 4.2 3.73 3.81 3.73<br />

20 841 1420.5 730.1 751.4 21.3 18.93 19.31 22.67<br />

45 335 588 625.5 638.6 13.1 11.64 11.88 34.31<br />

70 212 273.5 616.4 632.8 16.4 14.58 14.87 48.89<br />

100 150 181 628.1 646.9 18.8 16.71 17.04 65.60<br />

120 125 137.5 539.5 547.3 7.8 6.93 7.07 72.53<br />

170 90 107.5 528.8 535 6.2 5.51 5.62 78.04<br />

200 75 82.5 518.9 521 2.1 1.87 1.90 79.91<br />

230 63 69 510.1 511.8 1.7 1.51 1.54 81.42<br />


Sample from 8.7 foot depth sample + pan= 289<br />

pan= 56.3<br />

total sample weight = 232.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 697.8 17.4 7.48 7.68 7.48<br />

20 841 1420.5 730.1 770.2 40.1 17.23 17.70 24.71<br />

45 335 588 625.5 652 26.5 11.39 11.70 36.10<br />

70 212 273.5 616.4 658 41.6 17.88 18.36 53.98<br />

100 150 181 628.1 667.9 39.8 17.10 17.57 71.08<br />

120 125 137.5 539.5 555.1 15.6 6.70 6.89 77.78<br />

170 90 107.5 528.8 540.1 11.3 4.86 4.99 82.64<br />

200 75 82.5 518.9 523 4.1 1.76 1.81 84.40<br />

230 63 69 510.1 513.9 3.8 1.63 1.68 86.03<br />


Sample from 8.9 foot depth sample + pan= 791.5 247.2<br />

pan= 623.4 56.2<br />

total sample weight = 168.1 191<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 691.8 11.4 5.97 6.17 5.97<br />

20 841 1420.5 730.1 755.9 25.8 13.51 13.95 19.48<br />

45 335 588 625.5 651.9 26.4 13.82 14.28 33.30<br />

70 212 273.5 616.4 654.7 38.3 20.05 20.71 53.35<br />

100 150 181 628.1 659.4 31.3 16.39 16.93 69.74<br />

120 125 137.5 539.5 553.7 14.2 7.43 7.68 77.17<br />

170 90 107.5 528.8 538.3 9.5 4.97 5.14 82.15<br />

200 75 82.5 518.9 522.2 3.3 1.73 1.78 83.87<br />

230 63 69 510.1 513 2.9 1.52 1.57 85.39<br />


Sample from 9 foot depth sample + pan= 729.3 177.3<br />

pan= 621.4 56.6<br />

total sample weight = 107.9 120.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 685 4.6 3.81 3.88 3.81<br />

20 841 1420.5 730 748.3 18.3 15.16 15.42 18.97<br />

45 335 588 625.5 659.9 34.4 28.50 28.99 47.47<br />

70 212 273.5 616.3 635.5 19.2 15.91 16.18 63.38<br />

100 150 181 627.9 643.4 15.5 12.84 13.06 76.22<br />

120 125 137.5 539.4 545.2 5.8 4.81 4.89 81.03<br />

170 90 107.5 528.6 533.6 5 4.14 4.21 85.17<br />

200 75 82.5 518.7 520.8 2.1 1.74 1.77 86.91<br />

230 63 69 510 511.5 1.5 1.24 1.26 88.15<br />


Sample from 9.2 foot depth sample + pan= 771.9 218.5<br />

pan= 621.5 55.6<br />

total sample weight = 150.4 162.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 683.8 3.4 2.09 2.18 2.09<br />

20 841 1420.5 730 759.6 29.6 18.17 18.94 20.26<br />

45 335 588 625.5 668.5 43 26.40 27.52 46.65<br />

70 212 273.5 616.3 643.6 27.3 16.76 17.47 63.41<br />

100 150 181 627.9 649.4 21.5 13.20 13.76 76.61<br />

120 125 137.5 539.4 548.7 9.3 5.71 5.95 82.32<br />

170 90 107.5 528.6 537.1 8.5 5.22 5.44 87.54<br />

200 75 82.5 518.7 521.6 2.9 1.78 1.86 89.32<br />

230 63 69 510 512.8 2.8 1.72 1.79 91.04<br />


Sample from 9.5 foot depth sample + pan= 849.6 299<br />

pan= 621.4 55.8<br />

total sample weight = 228.2 243.2<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 683.6 3.2 1.32 1.33 1.32<br />

20 841 1420.5 730 762.8 32.8 13.49 13.68 14.80<br />

45 335 588 625.5 698.8 73.3 30.14 30.58 44.94<br />

70 212 273.5 616.3 666 49.7 20.44 20.73 65.38<br />

100 150 181 627.9 660.3 32.4 13.32 13.52 78.70<br />

120 125 137.5 539.4 552.4 13 5.35 5.42 84.05<br />

170 90 107.5 528.6 539.2 10.6 4.36 4.42 88.40<br />

200 75 82.5 518.7 522.8 4.1 1.69 1.71 90.09<br />

230 63 69 510 513.4 3.4 1.40 1.42 91.49<br />


Sample from 9.7 foot depth sample + pan= 799.4 249.3<br />

pan= 620 56.6<br />

total sample weight = 179.4 192.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 681.8 1.4 0.73 0.74 0.73<br />

20 841 1420.5 730 760.3 30.3 15.72 16.09 16.45<br />

45 335 588 625.5 693.6 68.1 35.34 36.15 51.79<br />

70 212 273.5 616.3 646.5 30.2 15.67 16.03 67.46<br />

100 150 181 627.9 650.9 23 11.94 12.21 79.40<br />

120 125 137.5 539.4 549.4 10 5.19 5.31 84.59<br />

170 90 107.5 528.6 536.7 8.1 4.20 4.30 88.79<br />

200 75 82.5 518.7 521.9 3.2 1.66 1.70 90.45<br />

230 63 69 510 512.6 2.6 1.35 1.38 91.80<br />


Sample from 9.9 foot depth sample + pan= 784.6 152.1<br />

pan= 694 56.3<br />

total sample weight = 90.6 95.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0 0.00 0.00 0.00<br />

8 2360 2860 0 0.00 0.00 0.00<br />

10 2000 2180 680.4 681.8 1.4 1.46 1.46 1.46<br />

20 841 1420.5 730 748.4 18.4 19.21 19.21 20.67<br />

45 335 588 625.5 660.6 35.1 36.64 36.65 57.31<br />

70 212 273.5 616.3 632 15.7 16.39 16.40 73.70<br />

100 150 181 627.9 636.5 8.6 8.98 8.98 82.67<br />

120 125 137.5 539.4 542.7 3.3 3.44 3.45 86.12<br />

170 90 107.5 528.6 531.6 3 3.13 3.13 89.25<br />

200 75 82.5 518.7 519.6 0.9 0.94 0.94 90.19<br />

230 63 69 510 510.9 0.9 0.94 0.94 91.13<br />


Sample from 10.1 foot depth sample + pan= 784.6 262.6<br />

pan= 594 56.2<br />

total sample weight = 190.6 206.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 729.9 42.3 20.49 20.90 20.49<br />

10 2000 3000 633 649.3 16.3 7.90 8.05 28.39<br />

20 841 1420.5 729.9 770.3 40.4 19.57 19.96 47.97<br />

45 335 588 625.7 674.8 49.1 23.79 24.26 71.75<br />

70 212 273.5 616.5 632.8 16.3 7.90 8.05 79.65<br />

100 150 181 628 640.7 12.7 6.15 6.28 85.80<br />

120 125 137.5 539.5 544.5 5 2.42 2.47 88.23<br />

170 90 107.5 528.7 533.2 4.5 2.18 2.22 90.41<br />

200 75 82.5 518.8 520.2 1.4 0.68 0.69 91.09<br />

230 63 69 510 511.3 1.3 0.63 0.64 91.72<br />


Sample from 10.3 foot depth sample + pan= 987.1 199<br />

pan= 867.8 56.2<br />

total sample weight = 119.3 142.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 704.3 16.7 11.69 11.95 11.69<br />

10 2000 3000 633 663.5 30.5 21.36 21.82 33.05<br />

20 841 1420.5 729.9 755.7 25.8 18.07 18.45 51.12<br />

45 335 588 625.7 640.9 15.2 10.64 10.87 61.76<br />

70 212 273.5 616.5 626 9.5 6.65 6.80 68.42<br />

100 150 181 628 636.5 8.5 5.95 6.08 74.37<br />

120 125 137.5 539.5 543.6 4.1 2.87 2.93 77.24<br />

170 90 107.5 528.7 532.8 4.1 2.87 2.93 80.11<br />

200 75 82.5 518.8 520.4 1.6 1.12 1.14 81.23<br />

230 63 69 510 511.5 1.5 1.05 1.07 82.28<br />


Sample from 10.5 foot depth sample + pan= 757.6 211.4<br />

pan= 623.3 56.3<br />

total sample weight = 134.3 155.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 691.9 4.3 2.77 2.83 2.77<br />

10 2000 3000 633 650.2 17.2 11.09 11.31 13.86<br />

20 841 1420.5 729.9 755.4 25.5 16.44 16.77 30.30<br />

45 335 588 625.7 644.4 18.7 12.06 12.30 42.36<br />

70 212 273.5 616.5 638.3 21.8 14.06 14.33 56.42<br />

100 150 181 628 647.6 19.6 12.64 12.89 69.05<br />

120 125 137.5 539.5 549.2 9.7 6.25 6.38 75.31<br />

170 90 107.5 528.7 536.6 7.9 5.09 5.19 80.40<br />

200 75 82.5 518.8 521.6 2.8 1.81 1.84 82.21<br />

230 63 69 510 513.4 3.4 2.19 2.24 84.40<br />


Sample from 10.3 foot depth, run as a duplicate sample + pan= 787.8 250.6<br />

pan= 621.6 56.5<br />

total sample weight = 166.2 194.1<br />

phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 706.2 18.6 9.58 9.81 9.58<br />

10 2000 3000 633 666.3 33.3 17.16 17.56 26.74<br />

20 841 1420.5 729.9 761.8 31.9 16.43 16.82 43.17<br />

45 335 588 625.7 650.2 24.5 12.62 12.92 55.80<br />

70 212 273.5 616.5 634.2 17.7 9.12 9.33 64.91<br />

100 150 181 628 644.4 16.4 8.45 8.65 73.36<br />

120 125 137.5 539.5 547.7 8.2 4.22 4.32 77.59<br />

170 90 107.5 528.7 535.6 6.9 3.55 3.64 81.14<br />

200 75 82.5 518.8 521.6 2.8 1.44 1.48 82.59<br />

230 63 69 510 512.7 2.7 1.39 1.42 83.98<br />


A P P E N D I X B<br />

P ar ti cl e S ize Dat a Sheet s f or Core “P H”<br />

213


PH1 core, 0.3 foot depth sample + pan= 717.6 174.2<br />

pan= 620.2 55.9<br />

total sample weight = 97.4 118.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 689.3 1.8 1.52 1.54 1.52<br />

10 2000 3000 632.9 635.8 2.9 2.45 2.48 3.97<br />

18 991 1495.5 686 695.5 9.5 8.03 8.11 12.00<br />

35 500 745.5 571.5 583.9 12.4 10.48 10.59 22.49<br />

60 250 375 555.6 584.1 28.5 24.09 24.34 46.58<br />

100 150 200 628 651.7 23.7 20.03 20.24 66.61<br />

120 125 137.5 539.4 546.5 7.1 6.00 6.06 72.61<br />

140 105 115 626.3 629.5 3.2 2.70 2.73 75.32<br />

170 90 97.5 528.6 531.1 2.5 2.11 2.13 77.43<br />

200 75 82.5 518.8 520.9 2.1 1.78 1.79 79.21<br />

230 63 69 510 512.1 2.1 1.78 1.79 80.98<br />


PH1 core, 0.5 foot depth sample + pan= 720.5 170.7<br />

pan= 621.4 55.6<br />

total sample weight = 99.1 115.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 697.1 9.6 8.34 8.44 8.34<br />

10 2000 3000 632.9 643.5 10.6 9.21 9.32 17.55<br />

18 991 1495.5 686 693.7 7.7 6.69 6.77 24.24<br />

35 500 745.5 571.5 581.8 10.3 8.95 9.06 33.19<br />

60 250 375 555.6 582.8 27.2 23.63 23.93 56.82<br />

100 150 200 628 647.8 19.8 17.20 17.42 74.02<br />

120 125 137.5 539.4 544.8 5.4 4.69 4.75 78.71<br />

140 105 115 626.3 628.7 2.4 2.09 2.11 80.80<br />

170 90 97.5 528.6 530.4 1.8 1.56 1.58 82.36<br />

200 75 82.5 518.8 520.3 1.5 1.30 1.32 83.67<br />

230 63 69 510 511.5 1.5 1.30 1.32 84.97<br />


PH1 core, 0.8 foot depth sample + pan= 725.3 171.9<br />

pan= 622.7 55.6<br />

total sample weight = 102.6 116.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 692.4 4.9 4.21 4.34 4.21<br />

10 2000 3000 632.9 637 4.1 3.53 3.63 7.74<br />

18 991 1495.5 686 691.1 5.1 4.39 4.52 12.12<br />

35 500 745.5 571.5 583 11.5 9.89 10.19 22.01<br />

60 250 375 555.6 592.3 36.7 31.56 32.52 53.57<br />

100 150 200 628 652.9 24.9 21.41 22.07 74.98<br />

120 125 137.5 539.4 545.6 6.2 5.33 5.49 80.31<br />

140 105 115 626.3 629.1 2.8 2.41 2.48 82.72<br />

170 90 97.5 528.6 530.3 1.7 1.46 1.51 84.18<br />

200 75 82.5 518.8 520.4 1.6 1.38 1.42 85.55<br />

230 63 69 510 511.4 1.4 1.20 1.24 86.76<br />


PH1 core, 1 foot depth sample + pan= 689.5 162<br />

pan= 593.9 56.2<br />

total sample weight = 95.6 105.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 690 2.5 2.36 2.39 2.36<br />

10 2000 3000 632.9 636.3 3.4 3.21 3.25 5.58<br />

18 991 1495.5 686 691.2 5.2 4.91 4.98 10.49<br />

35 500 745.5 571.5 582 10.5 9.92 10.05 20.42<br />

60 250 375 555.6 590.4 34.8 32.89 33.31 53.31<br />

100 150 200 628 652.6 24.6 23.25 23.55 76.56<br />

120 125 137.5 539.4 545.9 6.5 6.14 6.22 82.70<br />

140 105 115 626.3 629.2 2.9 2.74 2.78 85.44<br />

170 90 97.5 528.6 530.6 2 1.89 1.91 87.33<br />

200 75 82.5 518.8 520.5 1.7 1.61 1.63 88.94<br />

230 63 69 510 511.5 1.5 1.42 1.44 90.36<br />


PH1 core, 1.2 foot depth sample + pan= 677.1 169.2<br />

pan= 575.9 56.2<br />

total sample weight = 101.2 113<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 692.5 5 4.42 4.53 4.42<br />

10 2000 3000 632.9 640.4 7.5 6.64 6.79 11.06<br />

18 991 1495.5 686 694.1 8.1 7.17 7.34 18.23<br />

35 500 745.5 571.5 580.7 9.2 8.14 8.33 26.37<br />

60 250 375 555.6 585.1 29.5 26.11 26.73 52.48<br />

100 150 200 628 654.2 26.2 23.19 23.74 75.66<br />

120 125 137.5 539.4 546.3 6.9 6.11 6.25 81.77<br />

140 105 115 626.3 629.6 3.3 2.92 2.99 84.69<br />

170 90 97.5 528.6 530.8 2.2 1.95 1.99 86.64<br />

200 75 82.5 518.8 520.6 1.8 1.59 1.63 88.23<br />

230 63 69 510 511.5 1.5 1.33 1.36 89.56<br />


PH1 core 1.5 foot depth sample + pan= 685.7 173.9<br />

pan= 584.7 56<br />

total sample weight = 101 117.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 690.5 3 2.54 2.62 2.54<br />

10 2000 3000 632.9 642.4 9.5 8.06 8.30 10.60<br />

18 991 1495.5 686 699.3 13.3 11.28 11.62 21.88<br />

35 500 745.5 571.5 582.7 11.2 9.50 9.79 31.38<br />

60 250 375 555.6 581.7 26.1 22.14 22.80 53.52<br />

100 150 200 628 652.5 24.5 20.78 21.40 74.30<br />

120 125 137.5 539.4 545.4 6 5.09 5.24 79.39<br />

140 105 115 626.3 629.1 2.8 2.37 2.45 81.76<br />

170 90 97.5 528.6 530.5 1.9 1.61 1.66 83.38<br />

200 75 82.5 518.8 520.3 1.5 1.27 1.31 84.65<br />

230 63 69 510 511.3 1.3 1.10 1.14 85.75<br />


PH1 core, 2 foot depth sample + pan= 707.3 159.7<br />

pan= 620 55.5<br />

total sample weight = 87.3 104.2<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 688.1 0.6 0.58 0.58 0.58<br />

10 2000 3000 632.9 635.5 2.6 2.50 2.53 3.07<br />

18 991 1495.5 686 692.5 6.5 6.24 6.32 9.31<br />

35 500 745.5 571.5 582.7 11.2 10.75 10.88 20.06<br />

60 250 375 555.6 582.2 26.6 25.53 25.85 45.59<br />

100 150 200 628 652 24 23.03 23.32 68.62<br />

120 125 137.5 539.4 545.9 6.5 6.24 6.32 74.86<br />

140 105 115 626.3 629.5 3.2 3.07 3.11 77.93<br />

170 90 97.5 528.6 530.7 2.1 2.02 2.04 79.94<br />

200 75 82.5 518.8 520.8 2 1.92 1.94 81.86<br />

230 63 69 510 511.9 1.9 1.82 1.85 83.69<br />


PH1 core, 2.2 foot depth sample + pan= 703.7 155.5<br />

pan= 621.6 55.6<br />

total sample weight = 82.1 99.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 687.8 0.3 0.30 0.30 0.30<br />

10 2000 3000 632.9 634.7 1.8 1.80 1.81 2.10<br />

18 991 1495.5 686 693 7 7.01 7.05 9.11<br />

35 500 745.5 571.5 580.3 8.8 8.81 8.86 17.92<br />

60 250 375 555.6 579 23.4 23.42 23.56 41.34<br />

100 150 200 628 652.1 24.1 24.12 24.27 65.47<br />

120 125 137.5 539.4 546.7 7.3 7.31 7.35 72.77<br />

140 105 115 626.3 629.5 3.2 3.20 3.22 75.98<br />

170 90 97.5 528.6 531 2.4 2.40 2.42 78.38<br />

200 75 82.5 518.8 520.9 2.1 2.10 2.11 80.48<br />

230 63 69 510 511.8 1.8 1.80 1.81 82.28<br />


PH1 core, 2.5 foot depth sample + pan= 711.7 158.9<br />

pan= 622.9 55.4<br />

total sample weight = 88.8 103.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 687.6 0.1 0.10 0.10 0.10<br />

10 2000 3000 632.9 635.2 2.3 2.22 2.25 2.32<br />

18 991 1495.5 686 696.3 10.3 9.95 10.08 12.27<br />

35 500 745.5 571.5 583.2 11.7 11.30 11.45 23.57<br />

60 250 375 555.6 584.8 29.2 28.21 28.57 51.79<br />

100 150 200 628 651.4 23.4 22.61 22.89 74.40<br />

120 125 137.5 539.4 544.9 5.5 5.31 5.38 79.71<br />

140 105 115 626.3 628.7 2.4 2.32 2.35 82.03<br />

170 90 97.5 528.6 530.5 1.9 1.84 1.86 83.86<br />

200 75 82.5 518.8 520.1 1.3 1.26 1.27 85.12<br />

230 63 69 510 511.2 1.2 1.16 1.17 86.28<br />


PH2 core, 2.5 foot depth sample + pan= 705.6 183.7<br />

pan= 594.1 55.9<br />

total sample weight = 111.5 127.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.5 694 6.5 5.09 5.08 5.09<br />

10 2000 3000 632.9 643.7 10.8 8.45 8.43 13.54<br />

18 991 1495.5 686 697.3 11.3 8.84 8.83 22.38<br />

35 500 745.5 571.5 582.2 10.7 8.37 8.36 30.75<br />

60 250 375 555.6 584.4 28.8 22.54 22.49 53.29<br />

100 150 200 628 653.8 25.8 20.19 20.15 73.47<br />

120 125 137.5 539.4 547.2 7.8 6.10 6.09 79.58<br />

140 105 115 626.3 630 3.7 2.90 2.89 82.47<br />

170 90 97.5 528.6 531.1 2.5 1.96 1.95 84.43<br />

200 75 82.5 518.8 520.9 2.1 1.64 1.64 86.07<br />

230 63 69 510 511.8 1.8 1.41 1.41 87.48<br />


PH1 core, 3 foot depth sample + pan= 708.7 201.1<br />

pan= 575.7 56<br />

total sample weight = 133 145.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 689.6 2 1.38 1.41 1.38<br />

10 2000 3000 633 637 4 2.76 2.82 4.14<br />

18 991 1495.5 686 696.7 10.7 7.37 7.53 11.51<br />

35 500 745.5 571.6 583.3 11.7 8.06 8.24 19.57<br />

60 250 375 555.6 589.9 34.3 23.64 24.15 43.21<br />

100 150 200 628.1 678.1 50 34.46 35.21 77.67<br />

120 125 137.5 539.5 549.6 10.1 6.96 7.11 84.63<br />

140 105 115 626.4 629.9 3.5 2.41 2.46 87.04<br />

170 90 97.5 528.7 530.8 2.1 1.45 1.48 88.49<br />

200 75 82.5 518.8 520.4 1.6 1.10 1.13 89.59<br />

230 63 69 510.1 511.1 1 0.69 0.70 90.28<br />


PH1 core, 3.2 foot depth sample + pan= 711.9 190.7<br />

pan= 584.6 56.3<br />

total sample weight = 127.3 134.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 689.3 1.7 1.26 1.30 1.26<br />

10 2000 3000 633 634.6 1.6 1.19 1.23 2.46<br />

18 991 1495.5 686 689.2 3.2 2.38 2.45 4.84<br />

35 500 745.5 571.6 581.1 9.5 7.07 7.28 11.90<br />

60 250 375 555.6 581.1 25.5 18.97 19.53 30.88<br />

100 150 200 628.1 692.3 64.2 47.77 49.18 78.65<br />

120 125 137.5 539.5 551.4 11.9 8.85 9.12 87.50<br />

140 105 115 626.4 630 3.6 2.68 2.76 90.18<br />

170 90 97.5 528.7 530.8 2.1 1.56 1.61 91.74<br />

200 75 82.5 518.8 520.1 1.3 0.97 1.00 92.71<br />

230 63 69 510.1 510.8 0.7 0.52 0.54 93.23<br />


PH1 core, 3.5 foot depth sample + pan= 724.4 201.9<br />

pan= 593.9 57.2<br />

total sample weight = 130.5 144.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 691.5 3.9 2.70 2.78 2.70<br />

10 2000 3000 633 636.3 3.3 2.28 2.36 4.98<br />

18 991 1495.5 686 692.5 6.5 4.49 4.64 9.47<br />

35 500 745.5 571.6 583.8 12.2 8.43 8.71 17.90<br />

60 250 375 555.6 582.1 26.5 18.31 18.92 36.21<br />

100 150 200 628.1 687.7 59.6 41.19 42.55 77.40<br />

120 125 137.5 539.5 550.2 10.7 7.39 7.64 84.80<br />

140 105 115 626.4 629.6 3.2 2.21 2.28 87.01<br />

170 90 97.5 528.7 530.5 1.8 1.24 1.29 88.25<br />

200 75 82.5 518.8 519.9 1.1 0.76 0.79 89.01<br />

230 63 69 510.1 510.7 0.6 0.41 0.43 89.43<br />


wet-seived before<br />

PH1 core, 3.8 foot depth sample + pan= 740.9 185.1<br />

pan= 621.4 55.8<br />

total sample weight = 119.5 129.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 718 30.4 23.51 23.99 23.51<br />

10 2000 3000 633 641.2 8.2 6.34 6.47 29.85<br />

18 991 1495.5 686 694.1 8.1 6.26 6.39 36.12<br />

35 500 745.5 571.6 580.9 9.3 7.19 7.34 43.31<br />

60 250 375 555.6 572.9 17.3 13.38 13.65 56.69<br />

100 150 200 628.1 659.8 31.7 24.52 25.01 81.21<br />

120 125 137.5 539.5 546.7 7.2 5.57 5.68 86.77<br />

140 105 115 626.4 629 2.6 2.01 2.05 88.79<br />

170 90 97.5 528.7 530.2 1.5 1.16 1.18 89.95<br />

200 75 82.5 518.8 519.9 1.1 0.85 0.87 90.80<br />

230 63 69 510.1 510.8 0.7 0.54 0.55 91.34<br />


PH2 core, 4 foot depth sample + pan= 784.3 226.8<br />

pan= 622.7 56.7<br />

total sample weight = 161.6 170.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 687.6 0 0.00 0.00 0.00<br />

10 2000 3000 633 633.8 0.8 0.47 0.48 0.47<br />

18 991 1495.5 686 689.1 3.1 1.82 1.86 2.29<br />

35 500 745.5 571.6 579.8 8.2 4.82 4.92 7.11<br />

60 250 375 555.6 592 36.4 21.40 21.82 28.51<br />

100 150 200 628.1 715.9 87.8 51.62 52.64 80.13<br />

120 125 137.5 539.5 554.8 15.3 8.99 9.17 89.12<br />

140 105 115 626.4 630.8 4.4 2.59 2.64 91.71<br />

170 90 97.5 528.7 531.1 2.4 1.41 1.44 93.12<br />

200 75 82.5 518.8 520.2 1.4 0.82 0.84 93.94<br />

230 63 69 510.1 510.9 0.8 0.47 0.48 94.42<br />


PH2 core, 4.2 foot depth sample + pan= 743.3 191.5<br />

pan= 619.9 56.9<br />

total sample weight = 123.4 134.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 723.1 35.5 26.37 27.14 26.37<br />

10 2000 3000 633 639.2 6.2 4.61 4.74 30.98<br />

18 991 1495.5 686 692.2 6.2 4.61 4.74 35.59<br />

35 500 745.5 571.6 577.6 6 4.46 4.59 40.04<br />

60 250 375 555.6 568.4 12.8 9.51 9.79 49.55<br />

100 150 200 628.1 667.7 39.6 29.42 30.27 78.97<br />

120 125 137.5 539.5 548.5 9 6.69 6.88 85.66<br />

140 105 115 626.4 629.4 3 2.23 2.29 87.89<br />

170 90 97.5 528.7 530.3 1.6 1.19 1.22 89.08<br />

200 75 82.5 518.8 519.9 1.1 0.82 0.84 89.90<br />

230 63 69 510.1 510.8 0.7 0.52 0.54 90.42<br />


A P P E N D I X C<br />

I ndividual Or thocor r ected Aer ial P hot ographs<br />

230


NAPP Photograph 7101-186 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northeastern corner of the<br />

area included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic, below.<br />

230


NAPP Photograph 7101-187 after orthocorrection.<br />

The colored circles on the photo are ground control<br />

points. This photograph was not included in the<br />

mosaic, due to the unfortunate distortion during the<br />

orthocorrection process. Its location relative to the<br />

other photographs is shown on the mosaic, below.<br />

231


NAPP Photograph 7101-188 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the eastern edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic, below.<br />

232


NAPP Photograph 7101-189 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northeastern edge of the<br />

area included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic, below.<br />

233


NAPP Photograph 7101-190 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the southeastern corner of the<br />

area included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic, below.<br />

234


NAPP Photograph 7101-193 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the southern edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic, below.<br />

235


NAPP Photograph 7101-194 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the center of the area included in<br />

the remote sensing analysis discussed in Chapter Four, and covers approximately the<br />

same area as Plate 1. Its location relative to the other photographs is shown on the<br />

mosaic below.<br />

236


NAPP Photograph 7101-195 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the center of the area included in<br />

the remote sensing analysis discussed in Chapter Four. Its location relative to the<br />

other photographs is shown on the mosaic below.<br />

237


NAPP Photograph 7101-196 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the center of the area included in<br />

the remote sensing analysis discussed in Chapter Four. Its location relative to the<br />

other photographs is shown on the mosaic below.<br />

238


NAPP Photograph 7101-197 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northern edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

239


NAPP Photograph 7101-242 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northern edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

240


NAPP Photograph 7101-243 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northern edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

241


NAPP Photograph 7101-244 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the central part of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

242


NAPP Photograph 7101-245 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the southern part of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

243


NAPP Photograph 7101-246 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the southern edgeof the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

244


NAPP Photograph 7101-252 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the southwestern corner of the<br />

area included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

245


NAPP Photograph 7101-253 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the western edge of the area<br />

included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

246


NAPP Photograph 7101-254 after orthocorrection. The colored circles on the photo<br />

are ground control points. This photograph is from the northwestern corner of the<br />

area included in the remote sensing analysis discussed in Chapter Four. Its location<br />

relative to the other photographs is shown on the mosaic below.<br />

247


A P P E N D I X D<br />

L andf or m Dist ri buti on Resul ts f r om Remote S ensing Analysis<br />

(Discussi on found in Chapt er 4)<br />

249


Maximum Likelihood Technique<br />

Pavement Playa Sand Dune Alluvium Bedrock<br />

249


Normalized Minimum Distance Technique<br />

Pavement Playa Sand Dune Alluvium Bedrock<br />

250


Minimum Distance Technique<br />

Pavement Playa Sand Dune Alluvium Bedrock<br />

251


Paralellepiped Technique<br />

Pavement Playa Sand Dune Alluvium Bedrock<br />

252


Normalized Paralellepiped Technique<br />

Pavement Playa Sand Dune Alluvium Bedrock<br />

253


A P P E N D I X E<br />

Ant hi ll Densi ty P lot s fr om 1999, 2000<br />

255


This anthill density plot is from the northern of two crescentic sand dunes on Ten<br />

Mile Ridge (Plate 1), and is referred to in the text as the Ten Mile Ridge North Dune.<br />

This plot was hand-surveyed in the summer of 1999, as discussed in the text. In this<br />

2<br />

11,000 m area, there are 20 anthills, corresponding to an anthill density of 18 per<br />

hectare. The top of the map is north, the grid increments are 50m.<br />

240


This anthill density plot is the southern of two crescentic sand dunes on Ten Mile<br />

Ridge (Plate 1), and is referred to in the text as the Ten Mile Ridge North Dune.<br />

This plot was hand-surveyed in the summer of 1999, as discussed in the text. In this<br />

2<br />

11,400 m area, there are 19 anthills, corresponding to an anthill density of 17 per<br />

hectare. The top of the map is north, the grid increments are 100m.<br />

241


�<br />

?<br />

�<br />

� �<br />

�<br />

R100523A<br />

2<br />

This 930m anthill density plot is located in active sand dunes slightly south of<br />

Ten Mile Ridge at 696466m E and 4744786m N in UTM zone 10 north. There<br />

are four definite anthills within the boundaries of this plot, as well as one pile of<br />

gravel with no ants in evidence, mapped as a question mark as described in the<br />

text in Chapter Five.<br />

242


�<br />

?<br />

R100523B<br />

�<br />

2<br />

This 930m anthill density plot is located in an area of desert pavement in the midst<br />

of active sand dunes slightly south of Ten Mile Ridge at 696501m E and 4744844m<br />

N in UTM zone 10 north. There is only one definite anthill within the boundaries of<br />

this plot, as well as one pile of seeds with concentrated ant activity, mapped as a<br />

question mark as described in the text in Chapter Five.<br />

�<br />

243


R100618A<br />

�<br />

�<br />

�<br />

?<br />

�<br />

?<br />

�<br />

2 This 930m anthill density plot is located in an area of alluvium to the south and east<br />

of the painted hills site discussed in the text, at 696177 m E and 4745734 m N in<br />

UTM zone 10 north. There are nine definite anthills within the boundaries of this<br />

plot, as well as two questionable anthills, as described in the text in Chapter Five.<br />

�<br />

�<br />

�<br />

�<br />

�<br />

244


�<br />

�<br />

R100618B<br />

�<br />

�<br />

2 This 930m anthill density plot is located in an area of alluvium to the south and east<br />

of the painted hills site discussed in the text, at 700847m E and 4739250m N in UTM<br />

zone 10 north. There are nine definite anthills within the boundaries of this plot.<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

245


�<br />

�<br />

?<br />

�<br />

R100619A<br />

6134 A roadsign<br />

?<br />

?<br />

�<br />

2<br />

This 930m anthill density plot is located in an area of alluvium and sand dunes near<br />

the intersection of roads 6134 and 6134A, to the south of the painted hills site<br />

discussed in the text, at 699177m E and 4739568m N in UTM zone 10 north. There<br />

are five definite anthills within the boundaries of this plot, as well as six questionable<br />

anthills, as described in the text in Chapter Five.<br />

?<br />

?<br />

?<br />

�<br />

�<br />

246


�<br />

�<br />

?<br />

�<br />

?<br />

�<br />

�<br />

?<br />

?<br />

R100619B<br />

�<br />

2<br />

This 930m anthill density plot is located in an area of alluvium and sand dunes<br />

near the intersection of roads 6134 and 6134A, to the south of the painted hills<br />

site discussed in the text, at 699144m E and 4739572m N in UTM zone 10 north.<br />

There are five definite anthills within the boundaries of this plot, as well as four<br />

questionable anthills, as described in the text in Chapter Five.<br />

247


�<br />

�<br />

�<br />

�<br />

R100620A<br />

�<br />

�<br />

�<br />

2<br />

This 930m anthill density plot is located in an area of low semi-stabilized sand<br />

dunes near the painted hills site discussed in the text, at 698412m E and 4741147m<br />

N in UTM zone 10 north. There are nine definite anthills within the boundaries of<br />

this plot.<br />

�<br />

�<br />

�<br />

248


�<br />

�<br />

?<br />

�<br />

�<br />

�<br />

�<br />

?<br />

�<br />

R100620B<br />

�<br />

2<br />

This 930m anthill density plot is located in an area of low semi-stabilized sand<br />

dunes near the painted hills site discussed in the text, at 698402m E and 4741134m<br />

N in UTM zone 10 north. There are nine definite anthills within the boundaries of<br />

this plot as well as three questionable anthills, as described in the text in Chapter<br />

Five.<br />

?<br />

�<br />

249


�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

R100622A<br />

2<br />

This 930m anthill density plot is located in sand dunes near the "SD" coring site<br />

discussed in Chapter Three of the text (Plate 1), at 697383m E and 4743407m N in<br />

UTM zone 10 north. There are seven definite anthills within this plot.<br />

250


R100622B<br />

�<br />

�<br />

�<br />

2<br />

This 930m anthill density plot is located in a patch of desert pavement in the midst<br />

of the sand dunes near the "SD" coring site discussed in Chapter Three (Plate 1) at<br />

697442m E and 4743388m N in UTM zone 10 north. There are four definite anthills<br />

within this plot, all located in desert pavement.<br />

�<br />

�<br />

252


The "painted hills" anthill density site (Plate 1), mapped in 1999. There are 20<br />

2<br />

anthills within a 9000 m area, corresponding to an anthill density of 22 per hectare.<br />

Only large gravel coated anthills were mapped in the 1999 density surveying. The<br />

top of the map is north, the grid increments are 100m.<br />

255


A P P E N D I X F<br />

Ant hi ll Volum e Calculati ons<br />

269


B<br />

Anthill One Regrowth<br />

A<br />

Circumference = 2.896m<br />

radius =<br />

C<br />

= 0.46m<br />

2π<br />

V� = πr h=0.023m<br />

anthill<br />

1<br />

3<br />

C<br />

hA<br />

hB<br />

hC<br />

h A =0.08m<br />

h B =0.10m<br />

h =0.14m<br />

Average radius r = 0.452m Average height h= 0.104<br />

C<br />

0.483m<br />

0.476m<br />

0.368m<br />

0.356m<br />

0.533m<br />

0.516m<br />

2 3<br />

Point A<br />

Point B<br />

Point C<br />

The rebuilt volume of Anthill One, determined from measurements taken in October<br />

2000. The anthill's circumference was determined using a piece of string marked as<br />

a measuring tape, and the slope and flat distance between points on this perimeter<br />

and the summit of the anthill were measured using a meterstick. The height of the<br />

anthill was determined by averaging the heights calculated from these slope and flat<br />

distances for each perimeter point. The radius was determined by averaging the flat<br />

distances for each point and the radius calculated from the circumference. The<br />

volume is estimated to be that of a cone.<br />

253


D<br />

Anthill Two Regrowth<br />

C<br />

A<br />

Circumference = 4.039m<br />

radius =<br />

C<br />

= 0.643m<br />

2π<br />

B<br />

hA<br />

hB<br />

hC<br />

hD<br />

h A =0.15m<br />

h B =0.24m<br />

h C =0.17m<br />

h =0.17m<br />

D<br />

0.483m<br />

0.457m<br />

0.584m<br />

0.533m<br />

0.61m<br />

0.584m<br />

0.559m<br />

0.533m<br />

Average radius = 0.550m Average height = 0.183<br />

1 2 3<br />

V� = πr h=0.058m<br />

anthill 3<br />

Hill Two was not completely destroyed in 1999, only the outer layers of the hill surface<br />

were removed. Its volume here was determined from measurements taken in<br />

October 2000. The anthill's circumference was determined using a piece of string<br />

marked as a measuring tape, and the slope and flat distance between points on this<br />

perimeter and the summit of the anthill were measured using a meterstick. The height<br />

of the anthill was determined by averaging the heights calculated from these slope<br />

and flat distances for each perimeter point. The radius was determined by averaging<br />

the flatdistances for each point and the radius calculated from the circumference. The<br />

volume is estimated to be that of a cone.<br />

254


Anthill Three Regrowth<br />

D<br />

C<br />

Circumference = 2.413m<br />

B<br />

radius =<br />

C<br />

= 0.384m<br />

2π<br />

A<br />

hA<br />

hB<br />

hC<br />

hD<br />

0.419m<br />

0.406m<br />

0.241m<br />

0.235m<br />

0.419m<br />

0.406m<br />

0.330m<br />

0.324m<br />

h A =0.10m<br />

h B =0.05m<br />

h C =0.10m<br />

h =0.06m<br />

Average radius = 0.351m Average height = 0.07<br />

1 2 3<br />

V� anthill = 3 πr h=0.0084m<br />

The rebuilt volume of Anthill Three, determined from measurements taken in October<br />

2000. The anthill's circumference was determined using a piece of string marked as<br />

a measuring tape, and the slope and flat distance between points on this perimeter<br />

and the summit of the anthill were measured using a meterstick. The height of the<br />

anthill was determined by averaging the heights calculated from these slope and flat<br />

distances for each perimeter point. The radius was determined by averaging the flat<br />

distances for each point and the radius calculated from the circumference. The<br />

volume is estimated to be that of a cone.<br />

255<br />

D


Anthill Four Regrowth<br />

A<br />

B<br />

Circumference = 2.362m<br />

radius =<br />

C<br />

= 0.376m<br />

2π<br />

C<br />

V� = πr h=0.014m<br />

anthill<br />

1<br />

3<br />

hA<br />

hB<br />

hC<br />

0.457m<br />

0.432m<br />

0.254m<br />

0.241m<br />

0.356m<br />

0.343m<br />

h A =0.15m<br />

h B =0.08m<br />

h =0.09m<br />

Average radius = 0.348m Average height = 0.108<br />

C<br />

2 3<br />

The rebuilt volume of Anthill Four, determined from measurements taken in October<br />

2000. The anthill's circumference was determined using a piece of string marked as<br />

a measuring tape, and the slope and flat distance between points on this perimeter<br />

and the summit of the anthill were measured using a meterstick. The height of the<br />

anthill was determined by averaging the heights calculated from these slope and flat<br />

distances for each perimeter point. The radius was determined by averaging the flat<br />

distances for each point and the radius calculated from the circumference. The<br />

volume is estimated to be that of a cone.<br />

256


Anthill Five Regrowth<br />

Circumference<br />

� = 2.134m<br />

radius =<br />

0.34m<br />

Approximate<br />

height = 0.04m<br />

This hill has not regrown to a height of more than<br />

4 cm and is located on a slightly sloping patch of<br />

ground, making precise measurements difficult.<br />

V� = πr h=0.0046m<br />

anthill<br />

1<br />

3<br />

2 3<br />

257


Anthill Seven Regrowth<br />

B<br />

C<br />

Circumference<br />

� = 3.175m<br />

A<br />

radius =<br />

0.505m<br />

D<br />

Approximate<br />

height = 0.03m<br />

This hill is less rebuilt than some others, and appears<br />

lumpy, as though it has been walked through. The dark<br />

hatched areas are piles of seeds, which were in active use.<br />

V� = πr h=0.0068m<br />

anthill<br />

1<br />

3<br />

2 3<br />

258


Anthill Eight Regrowth<br />

Circumference<br />

� = 3.15m<br />

radius =<br />

Approximate<br />

height = 0.08m<br />

C<br />

2π<br />

= 0.5m<br />

This hill appears to have been rebuilt and subsequently<br />

abandoned. There are no ants using the hill, and the<br />

surface is lumpy, though there are large piles of seed<br />

waste on its surface.<br />

V� = πr h=0.02m<br />

anthill<br />

1<br />

3<br />

2 3<br />

259


Anthill Nine Regrowth<br />

Circumference<br />

� = 2.083m<br />

radius =<br />

Approximate<br />

height = 0.05m<br />

C<br />

2π<br />

= 0.331m<br />

While small, this hill is very active, smooth-sided,<br />

pebble coated, and appears to be regrowing nicely.<br />

V� = πr h=0.0059m<br />

anthill<br />

1<br />

3<br />

2 3<br />

260


Anthill Fourteen Regrowth<br />

Circumference<br />

� = 2.82m<br />

radius =<br />

Approximate<br />

height = 0.12m<br />

C<br />

2π<br />

= 0.45m<br />

This hill has encompassed a small sagebrush<br />

which makes it difficult to determine whether<br />

the hill has actually regrown to a height of<br />

twelve cm or whether this is due to the shrub.<br />

V� = πr h=0.021m<br />

anthill<br />

1<br />

3<br />

2 3<br />

261


Anthill Eighteen Regrowth<br />

hA<br />

hB<br />

0.495m<br />

0.445m<br />

0.521m<br />

0.483m<br />

V� = πr h=0.039m<br />

anthill<br />

hC<br />

hD<br />

1<br />

3<br />

0.381m<br />

0.356m<br />

0.559m<br />

0.533m<br />

2 3<br />

B<br />

A<br />

s<br />

C<br />

D<br />

h A =0.22m<br />

h B =0.20m<br />

h C =0.14m<br />

h =0.17m<br />

Average radius = 0.458m Average height = 0.18<br />

Hill eighteen was not completely destroyed in 1999, only the western half of the hill<br />

was removed. Its volume here was determined from measurements taken in October<br />

2000. The anthill's circumference was determined using a piece of string marked as<br />

a measuring tape, and the slope and flat distance between points on this perimeter<br />

and the summit of the anthill were measured using a meterstick. The height of the<br />

anthill was determined by averaging the heights calculated from these slope and flat<br />

distances for each perimeter point. The radius was determined by averaging the flat<br />

distances for each point and the radius calculated from the circumference. The<br />

volume is estimated to be that of a cone.<br />

262<br />

D


A P P E N D I X G<br />

Resin T echni cal Dat a S heet<br />

280


the fantastic plastic place<br />

®<br />

TAP Plastics Type A Surfacing Resin<br />

Type • A prepromoted, medium reactive, medium viscosity, polyester for room temperature cure with MEKP catalyst<br />

adapted to comply with California’s new rule 1162.<br />

Recommended Use • A general purpose laminating resin characterized by its thorough cure and good fiberglass wet out.<br />

Typical Inspection of Liquid Resin<br />

Color Motor Oil<br />

Monomer Content, % 28 - 31<br />

Viscosity, Brookfield, @ 77 F, cps 1000 - 1200<br />

Thix Index, minimum N/A<br />

Specific Gravity, @ 77 F 1.120 - 1.150<br />

Pounds/Gallon 9.3 - 9.6<br />

Storage Stability @ 75 F, months 6<br />

Typical Reactivity - 100 gram (3.53 oz) casting @ 77 F<br />

Catalyst 1% MEKP-9%<br />

Gel Time, minutes 30 - 35<br />

Peak Exotherm, F 290 - 330<br />

Cure time from gel, minutes 10 - 15<br />

Typical Properties of 1 ⁄8" casting, post cured (heated) 4 hours @ 150 F<br />

Barcol Hardness (934-1) ASTM D-2583 40 - 45<br />

Flex Strength, psi ASTM D-790 15,000 - 17,000<br />

Flex Modulus, psi ASTM D-790 540,000 - 560,000<br />

Tensile Strength, psi ASTM D-638 9,000 - 10,000<br />

Elongation @ Break. % ASTM D-638 2.45<br />

HDT (264 psi), F ASTM D-648 155<br />

Typical Properties of 3-Ply (1 1 ⁄2 oz Chopped Strand Mat) Laminate, cured 4 hours @ 150 F<br />

Barcol Hardness (934-1) ASTM D-2583 50 - 55<br />

Flex Strength, psi ASTM D-790 32,000 - 36,000<br />

Flex Modulus, psi ASTM D-790 1,200,000 - 1,250,000<br />

Tensile Strength, psi ASTM D-638 15,000 - 17,000<br />

Elongation @ Break, % ASTM D-638 1.75<br />

Non-Combustibles, % ASTM D-2584 30.50<br />

Disclaimer and Limitation of Liability<br />

Since Seller exercises no control over Buyer’s application or use of the products sold and since materials used with the<br />

products may vary, it is understood that:<br />

1. There are no warranties expressed or implied, including any warranty of merchantability or fittness for any particular<br />

purpose.<br />

Technical Data<br />

2. While all data presented in Seller’s technical data sheet is based on the best information available to the Seller and is<br />

believed to be correct, such data is not to be construed as a warranty that the products will conform to such specifications.<br />

Such technical data sheets are subject to change without notice.<br />

3. The liability of the Seller shall not exceed the purchase price of the products and buyer shall not be entitled to nor shall<br />

be liable for any consequential, incidental, indirect or special damages resulting in any manner from the furnishing of the<br />

product or for any damages of any kind arising from the use of the products.<br />

TAP Plastics Inc • Corporate Office<br />

6475 Sierra Lane • Dublin California 94568 • (925) 829-4889<br />

264


A P P E N D I X H<br />

T hi n Secti ons f rom Ant hi l l SD3<br />

282


Thin Sections from Can "A"<br />

The two thin sections shown below are from can "A", which was collected from the<br />

upper northern part of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

0 1 2 4 mm<br />

H<br />

G<br />

0 1 2 4 mm<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3AV<br />

This thin sectionshows east-sloping layers of pebbles and fines . Some of the pebbles<br />

show a slight degree of imbrication, with the western edge of the thin section as the<br />

"down" direction.<br />

SLSD3AH<br />

The pebbles in this thin section are not all matrix supported, though many of them<br />

are partially to entirely surrounded by fine-grained sediments. There appear to be two<br />

bands of non-matrix supported pebbles which form a "v" shape across the thin section.<br />

282


Thin Sections from can "B"<br />

The two thin sections shown below are from can "B", which was collected from the<br />

upper northern part of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

SLSD3BV<br />

This thin section shows matrix-supported pebble horizons, typical of near-surface<br />

parts of the anthill. The open circle on the right side towards the top is an ant body.<br />

SLSD3BH<br />

This section includes randomly scattered pebbles and coarse sand grains, as well as<br />

a probably tunnel, to the left of the scale bar text.<br />

283<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P


Thin Sections from Can "C"<br />

The two thin sections shown below are from can "C", which was collected at a moderate<br />

depth from the northern part of the anthill. The image on the right is a sketch of<br />

the anthill's surface with the locations of cans below that surface, adapted from figure<br />

7.4. The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3CV<br />

This thin sections includes evidence of horizontal tunnels, in the thin white lines<br />

that run across it, between the larger chambers which appear vertical here.<br />

SLSD3CH<br />

The open area in the middle of this thin section is the upper part of a chamber, which<br />

may have contained seeds, eggs, or ants. Another chamber / tunnel structure is shown<br />

to the right. This one may have been abandoned, as it is partially filled with sand.<br />

284


Thin Sections from Can "D"<br />

0 1 2 4 mm<br />

A<br />

E<br />

The two thin sections shown below are from can "D", which was collected near the<br />

bottom of the northern part of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure<br />

7.4. The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

This thin section includes chambers, tunnels, and pebbles embedded in the fine sand<br />

around these excavated features.<br />

B<br />

C<br />

D<br />

0 1 2 4 mm<br />

There are at least two abandoned seed husks embedded in the fine sand of this thin<br />

section. This suggests that the ants have re-structured their tunnel - chamber network<br />

at some time since the seeds were consumed.<br />

285<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3DV<br />

SLSD3DH


Thin Sections from Can "E"<br />

The two thin sections shown below are from can "E", which was collected from the<br />

lower northern part of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3EV<br />

The lobes at the top of the section are all leaning in the direction in which the can was<br />

slid into the anthill, suggesting that they were sheared in that direction. There are<br />

pebbles present in this deepest of the collected thin sections.<br />

SLSD3EH<br />

The large open area on the lower right of this thin section may be a chamber, rather<br />

than a pocket of unimpregnated sediment. The walls of this empty space are smooth,<br />

unlike the rough right-hand edge of the thin section, which shows the perimeter of the<br />

resin's impregnation into the sediment. 286


Thin Sections from Can "F"<br />

The two thin sections shown below are from can "F", which was collected from the<br />

lower northern part of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

0 1 2 4 mm<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3FV<br />

This thin section contains at least one large chamber structure, and sevcral large sand<br />

grains, but did not capture any pebble sized (larger than 2mm diameter) grains.<br />

SLSD3FH<br />

The horizontal section does contain at least one pebble-sized grain, demonstrating<br />

that this size of grain is present, though at limited quantities, in the area where<br />

this can was collected. Tunnels are also present at the right side of this thin section.<br />

287


Thin Sections from Can "G"<br />

The two thin sections shown below are from can "G", which was collected near the<br />

bottom of the central part of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure<br />

7.4. The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3GV<br />

This thin section does not contain any obvious tunnels or chambers, but does contain<br />

many pebbles, suggesting that it is from an area of high ant-activity.<br />

SLSD3GH<br />

This thin section conains at least two tunnel or chamber structres, shown at the top of<br />

the image. There are several pebbles included in this thin section.<br />

288


Thin Sections from Can "H"<br />

The two thin sections shown below are from can "H", which was collected underneath<br />

the central dome of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

There are a number of places in this thin section where pebbles are present without<br />

obvious matrix support. These may or may not represent tunnels. This can was<br />

collected from the top of the fibrous matted layer in the anthill, but no root segments<br />

are visible in the thin section.<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

0 1 2 4 mm<br />

Pebbles are also abundant in this horizontal thin section, though there is also a finegrained<br />

area with no pebbles in the center of the thin section.<br />

289<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3HV<br />

SLSD3HH


Thin Sections from Can "I"<br />

The two thin sections shown below are from can "I", which was collected from inside<br />

the central dome of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections. Scalebars<br />

in the oriented image are distorted, but were approximately equal to one cm. in<br />

length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

0 1 2 4 mm<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3IV<br />

There is very little matrix support of the pebbles in this thin section. Several bubbles<br />

are present in the resin surrounding the sample, though there are very few obvious<br />

bubbles in the impregnated portion of the thin section.<br />

SLSD3IH<br />

This thin section also contains many areas of pebbles without matrix support, towards<br />

the lower right in this image. There are several cavities on the left, and a preserved<br />

ant leg in a cavity towards the top of the middle of the image.<br />

290


Thin Sections from Can "J"<br />

The two thin sections shown below are from can "J", which was collected at a medium<br />

depth beneath the middle of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure 7.4.<br />

The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3JV<br />

The fibrous matted layer, from which these thin sections come, is not preserved well<br />

in thin section. There are several objects in this image which may be related to the<br />

fibrous mat, but they are difficult to distinguish. This is another example of shearing<br />

of the anthill sediments during can emplacement.<br />

SLSD3JH<br />

Several pebbles and a possible tunnel are preserved in this thin section, which also<br />

includes several hair-like filaments, which are part of the fibrous mat described in<br />

the text in Chapter Seven.<br />

291


Thin Sections from Can "K"<br />

The two thin sections shown below are from can "K", which was collected at medium<br />

depth beneath the middle of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure 7.4.<br />

The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

0 1 2 4 mm<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3KV<br />

Several tunnels are preserved in this thin section, some of them sloping at far greater<br />

angles than would be predicted by the theory presented in Chapter Six. This thin<br />

section shows some evidence of shearing during can-emplacement, as the lobes at<br />

the top of the thin section are somewhat tilted in the direction of can movement.<br />

SLSD3KH<br />

This thin section demonstrates the typical smooth chamber walls discussed in the<br />

text in Chapter Seven in the tunnel segment on the left of the image.<br />

292


Thin Sections from Can "L"<br />

The two thin sections shown below are from can "L", which was collected from deep<br />

beneath the middle of the anthill. The image on the right is a sketch of the anthill's<br />

surface with the locations of cans below that surface, adapted from figure 7.4. The<br />

image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3LV<br />

The vertical tunnel-like structure at the eastern edge of this thin section is probably<br />

part of a larger chamber which was not captured in thin section.<br />

SLSD3LH<br />

The left edge of this thin section contains a lighter-colored band which is most likely<br />

a tunnel roof or floor. There are also several pebbles embedded in the fine-grained<br />

sand which makes up the majority of this thin section.<br />

293


Thin Sections from Can "M"<br />

The two thin sections shown below are from can "M", which was collected from the<br />

same depth as the surrounding ground beneath the southern edge of the anthill. The<br />

image on the right is a sketch of the anthill's surface with the locations of cans below<br />

that surface, adapted from figure 7.4. The image on the left demonstrates the in-situ<br />

orientation of the two thin sections. Scalebars in the oriented image are distorted, but<br />

were approximately equal to one cm. in length. Scalebars in the thin sections below<br />

are equal to four mm. in length. The upper thin section is a vertical slice from the<br />

center of the can. The lower thin section is a horizontal slice from one of the sample<br />

splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

This thin section shows several sloping layers of pebbles and fine sand. There is also<br />

an interesting vertical band of pebbles at the base of the thin section which cuts across<br />

several if these westward sloping layers.<br />

There are two distinct east-west bands of air-supported pebbles running through the<br />

middle of this thin section.<br />

294<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3MV<br />

SLSD3MH


Thin Sections from Can "N"<br />

The two thin sections shown below are from can "N", which was collected near the<br />

surface of the southern edge of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure 7.4.<br />

The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

0 1 2 4 mm<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3NV<br />

The steeply sloping tunnel on the right edge of this thin section contains a harvester<br />

ant's body. There are also several slightly sloping tunnel structures towards the left<br />

side of the thin section, air-supported pebbles, and layers of fine sand.<br />

SLSD3NH<br />

This thin section contains the continuation of the large tunnel / chamber structure<br />

seen in the vertical section, as well as two north-south bands of air-supported<br />

pebbles and some finer grained regions with matrix supported pebbles.<br />

295


Thin Sections from Can "O"<br />

The two thin sections shown below are from can "O", which was collected near the<br />

southern edge of the anthill-ground interface. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure 7.4.<br />

The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3OV<br />

An extremely long pebble is present in the middle of this thin section. Most pebbles<br />

moved by harvester ants are considerably smaller than this one.<br />

SLSD3OH<br />

Two complete harvester ants were trapped in the chamber in the middle of this thin<br />

section during resin impregnation. There are segments of at least one other ant with<br />

them in the chamber. The crack running through the middle of the chamber shows<br />

the effects of using too much pressure during secondary vacuum impregnation in<br />

the laboratory.<br />

296


0 1 2 4 mm<br />

Thin Sections from Can "P"<br />

The two thin sections shown below are from can "P", which was collected from deep<br />

beneath the southern edge of the anthill. The image on the right is a sketch of the<br />

anthill's surface with the locations of cans below that surface, adapted from figure 7.4.<br />

The image on the left demonstrates the in-situ orientation of the two thin sections.<br />

Scalebars in the oriented image are distorted, but were approximately equal to one cm.<br />

in length. Scalebars in the thin sections below are equal to four mm. in length. The<br />

upper thin section is a vertical slice from the center of the can. The lower thin section<br />

is a horizontal slice from one of the sample splits left after the vertical sectioning.<br />

A<br />

E<br />

B<br />

C<br />

D<br />

0 1 2 4 mm<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3PV<br />

This thin section is predominantly fine-grained sand, although some pebbles are<br />

present within this matrix. The light areas on the left side of this image suggest<br />

the presence of tunnels in this area.<br />

SLSD3PH<br />

This thin section is very uniform in appearance. There are some pebbles at the left<br />

side of the thin section, which suggest that ants have operated in that area.<br />

297


Thin Sections from Can "Q"<br />

The two thin sections shown below are from can "Q", which was inserted vertically<br />

into the anthill's surface, unlike all of the other cans which were inserted horizontally.<br />

The image on the right is a sketch of the anthill's surface with the locations of cans<br />

below that surface, adapted from figure 7.4. The image on the left demonstrates the<br />

in-situ orientation of the two thin sections. Scalebars in the oriented image are<br />

distorted, but were approximately equal to one cm. in length. Scalebars in the thin<br />

sections below are equal to four mm. in length. The upper thin section is a vertical<br />

slice from the center of the can. The lower thin section is a horizontal slice from one<br />

of the sample splits left after the vertical sectioning.<br />

0 1 2 4 mm<br />

0 1 2 4 mm<br />

A<br />

E<br />

B<br />

C<br />

D<br />

F<br />

H<br />

G<br />

I<br />

J<br />

L<br />

Q<br />

K<br />

M<br />

N<br />

O<br />

P<br />

SLSD3QV<br />

This thin section shows the distinctive horizontal layering of pebbles and fine sand<br />

which is typical of anthill construction.<br />

SLSD3QH<br />

Several large pebbles are shown in this thin section. The pebble in the upper right<br />

corner is one of the largest pebbles found in anthills in the study area.<br />

298


A P P E N D I X I<br />

P ar ti cl e S ize Dat a Sheet s f or Al luvi um Sampl es<br />

300


Qal 1a sample + pan= 723.2 169.6<br />

pan= 623.2 56.3<br />

total sample weight = 100 113.3<br />

Phi sieve # size (um) median<br />

size<br />

Sieve<br />

weight<br />

Sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 4380 687.6 716.1 28.5 25.15 25.34 25.15<br />

10 2000 3000 633.1 638.6 5.5 4.85 4.89 30.01<br />

18 991 1495.5 686 692.5 6.5 5.74 5.78 35.75<br />

35 500 745.5 571.6 581 9.4 8.30 8.36 44.04<br />

60 250 375 555.7 577.1 21.4 18.89 19.02 62.93<br />

100 150 200 628.1 642 13.9 12.27 12.36 75.20<br />

120 125 137.5 539.5 544.6 5.1 4.50 4.53 79.70<br />

140 105 115 626.4 629.2 2.8 2.47 2.49 82.17<br />

170 90 97.5 528.8 530.9 2.1 1.85 1.87 84.02<br />

200 75 82.5 518.8 520.8 2 1.77 1.78 85.79<br />

230 63 69 510.1 511.9 1.8 1.59 1.60 87.38<br />


Qal 1b sample + pan= 708.7 161<br />

pan= 620.1 55.7<br />

total sample weight = 88.6 105.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 701.3 13.7 13.01 13.22 13.01<br />

10 2000 3000 633.1 637.8 4.7 4.46 4.54 17.47<br />

18 991 1495.5 686 691.7 5.7 5.41 5.50 22.89<br />

35 500 745.5 571.6 579.8 8.2 7.79 7.91 30.67<br />

60 250 375 555.7 576 20.3 19.28 19.59 49.95<br />

100 150 200 628.1 645.2 17.1 16.24 16.50 66.19<br />

120 125 137.5 539.5 546.9 7.4 7.03 7.14 73.22<br />

140 105 115 626.4 629.8 3.4 3.23 3.28 76.45<br />

170 90 97.5 528.8 531.4 2.6 2.47 2.51 78.92<br />

200 75 82.5 518.8 521.2 2.4 2.28 2.32 81.20<br />

230 63 69 510.1 512.2 2.1 1.99 2.03 83.19<br />


Qal 1c sample + pan= 670.4 161.7<br />

pan= 575.9 56.3<br />

total sample weight = 94.5 105.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 729 41.4 39.28 39.51 39.28<br />

10 2000 3000 633.1 637.2 4.1 3.89 3.91 43.17<br />

18 991 1495.5 686 689.8 3.8 3.61 3.63 46.77<br />

35 500 745.5 571.6 578.1 6.5 6.17 6.20 52.94<br />

60 250 375 555.7 571.8 16.1 15.28 15.37 68.22<br />

100 150 200 628.1 639.4 11.3 10.72 10.78 78.94<br />

120 125 137.5 539.5 543.7 4.2 3.98 4.01 82.92<br />

140 105 115 626.4 628.5 2.1 1.99 2.00 84.91<br />

170 90 97.5 528.8 530.4 1.6 1.52 1.53 86.43<br />

200 75 82.5 518.8 520.1 1.3 1.23 1.24 87.67<br />

230 63 69 510.1 511.5 1.4 1.33 1.34 88.99<br />


Qal 2a sample + pan= 675.5 159.1<br />

pan= 584.8 56.5<br />

total sample weight = 90.7 102.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 701.6 14 13.65 13.69 13.65<br />

10 2000 3000 633.1 659.2 26.1 25.44 25.52 39.08<br />

18 991 1495.5 686 703 17 16.57 16.62 55.65<br />

35 500 745.5 571.6 587.3 15.7 15.30 15.35 70.96<br />

60 250 375 555.7 564.7 9 8.77 8.80 79.73<br />

100 150 200 628.1 632.2 4.1 4.00 4.01 83.72<br />

120 125 137.5 539.5 540.7 1.2 1.17 1.17 84.89<br />

140 105 115 626.4 627.1 0.7 0.68 0.68 85.58<br />

170 90 97.5 528.8 529.4 0.6 0.58 0.59 86.16<br />

200 75 82.5 518.8 519.6 0.8 0.78 0.78 86.94<br />

230 63 69 510.1 510.9 0.8 0.78 0.78 87.72<br />


Qal 2b sample + pan= 721.9 188.4<br />

pan= 621.5 55.8<br />

total sample weight = 100.4 132.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 698 10.4 7.84 7.89 7.84<br />

10 2000 3000 633.1 650.9 17.8 13.42 13.50 21.27<br />

18 991 1495.5 686 704.1 18.1 13.65 13.73 34.92<br />

35 500 745.5 571.6 595.6 24 18.10 18.21 53.02<br />

60 250 375 555.7 570.3 14.6 11.01 11.08 64.03<br />

100 150 200 628.1 634.7 6.6 4.98 5.01 69.00<br />

120 125 137.5 539.5 541.7 2.2 1.66 1.67 70.66<br />

140 105 115 626.4 627.8 1.4 1.06 1.06 71.72<br />

170 90 97.5 528.8 529.9 1.1 0.83 0.83 72.55<br />

200 75 82.5 518.8 520.3 1.5 1.13 1.14 73.68<br />

230 63 69 510.1 511.7 1.6 1.21 1.21 74.89<br />


Qal 2c sample + pan= 669.2 160.8<br />

pan= 594.1 55.7<br />

total sample weight = 75.1 105.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 697.8 10.2 9.71 9.87 9.71<br />

10 2000 3000 633.1 641.2 8.1 7.71 7.84 17.41<br />

18 991 1495.5 686 696.3 10.3 9.80 9.97 27.21<br />

35 500 745.5 571.6 591.1 19.5 18.55 18.88 45.77<br />

60 250 375 555.7 568.5 12.8 12.18 12.39 57.94<br />

100 150 200 628.1 634.1 6 5.71 5.81 63.65<br />

120 125 137.5 539.5 541.4 1.9 1.81 1.84 65.46<br />

140 105 115 626.4 627.6 1.2 1.14 1.16 66.60<br />

170 90 97.5 528.8 529.9 1.1 1.05 1.06 67.65<br />

200 75 82.5 518.8 520 1.2 1.14 1.16 68.79<br />

230 63 69 510.1 511.5 1.4 1.33 1.36 70.12<br />


Qal 3a sample + pan= 681.9 173.3<br />

pan= 575.8 56.7<br />

total sample weight = 106.1 116.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 704.5 16.9 14.49 14.75 14.49<br />

10 2000 3000 633.1 645.3 12.2 10.46 10.65 24.96<br />

18 991 1495.5 686 692.1 6.1 5.23 5.32 30.19<br />

35 500 745.5 571.6 583.6 12 10.29 10.47 40.48<br />

60 250 375 555.7 585.9 30.2 25.90 26.35 66.38<br />

100 150 200 628.1 643.8 15.7 13.46 13.70 79.85<br />

120 125 137.5 539.5 543.4 3.9 3.34 3.40 83.19<br />

140 105 115 626.4 628.4 2 1.72 1.75 84.91<br />

170 90 97.5 528.8 530.2 1.4 1.20 1.22 86.11<br />

200 75 82.5 518.8 519.3 0.5 0.43 0.44 86.54<br />

230 63 69 510.1 512.7 2.6 2.23 2.27 88.77<br />


Qal 3b sample + pan= 716.4 199.1<br />

pan= 594 55.8<br />

total sample weight = 122.4 143.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 698.8 11.2 7.82 7.92 7.82<br />

10 2000 3000 633.1 635.5 2.4 1.67 1.70 9.49<br />

18 991 1495.5 686 688.9 2.9 2.02 2.05 11.51<br />

35 500 745.5 571.6 588.9 17.3 12.07 12.24 23.59<br />

60 250 375 555.7 599.3 43.6 30.43 30.85 54.01<br />

100 150 200 628.1 653 24.9 17.38 17.62 71.39<br />

120 125 137.5 539.5 545.7 6.2 4.33 4.39 75.72<br />

140 105 115 626.4 629.9 3.5 2.44 2.48 78.16<br />

170 90 97.5 528.8 531.5 2.7 1.88 1.91 80.04<br />

200 75 82.5 518.8 521.4 2.6 1.81 1.84 81.86<br />

230 63 69 510.1 512.7 2.6 1.81 1.84 83.67<br />


Qal 4a sample + pan= 695.9 196.8<br />

pan= 584.7 55.9<br />

total sample weight = 111.2 140.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 719.6 32 22.71 23.14 22.71<br />

10 2000 3000 633.1 647.8 14.7 10.43 10.63 33.14<br />

18 991 1495.5 686 703.5 17.5 12.42 12.66 45.56<br />

35 500 745.5 571.6 581.8 10.2 7.24 7.38 52.80<br />

60 250 375 555.7 571 15.3 10.86 11.06 63.66<br />

100 150 200 628.1 635.7 7.6 5.39 5.50 69.06<br />

120 125 137.5 539.5 542.4 2.9 2.06 2.10 71.11<br />

140 105 115 626.4 628.3 1.9 1.35 1.37 72.46<br />

170 90 97.5 528.8 530.2 1.4 0.99 1.01 73.46<br />

200 75 82.5 518.8 520.6 1.8 1.28 1.30 74.73<br />

230 63 69 510.1 512.4 2.3 1.63 1.66 76.37<br />


Qal 4b sample + pan= 702.3 167.5<br />

pan= 623.1 56.6<br />

total sample weight = 79.2 110.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 696.6 9 8.12 8.38 8.12<br />

10 2000 3000 633.1 645.1 12 10.82 11.18 18.94<br />

18 991 1495.5 686 699.9 13.9 12.53 12.95 31.47<br />

35 500 745.5 571.6 581.2 9.6 8.66 8.94 40.13<br />

60 250 375 555.7 570.2 14.5 13.07 13.51 53.20<br />

100 150 200 628.1 634.5 6.4 5.77 5.96 58.97<br />

120 125 137.5 539.5 541.9 2.4 2.16 2.24 61.14<br />

140 105 115 626.4 628 1.6 1.44 1.49 62.58<br />

170 90 97.5 528.8 530.1 1.3 1.17 1.21 63.75<br />

200 75 82.5 518.8 520.5 1.7 1.53 1.58 65.28<br />

230 63 69 510.1 512.1 2 1.80 1.86 67.09<br />


Qal 5a sample + pan= 721 175.3<br />

pan= 621.4 56.8<br />

total sample weight = 99.6 118.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 711.4 23.8 20.08 20.54 20.08<br />

10 2000 3000 633.1 638.2 5.1 4.30 4.40 24.39<br />

18 991 1495.5 686 703.6 17.6 14.85 15.19 39.24<br />

35 500 745.5 571.6 591.1 19.5 16.46 16.83 55.70<br />

60 250 375 555.7 568.9 13.2 11.14 11.39 66.84<br />

100 150 200 628.1 635.1 7 5.91 6.04 72.74<br />

120 125 137.5 539.5 542.2 2.7 2.28 2.33 75.02<br />

140 105 115 626.4 628.3 1.9 1.60 1.64 76.62<br />

170 90 97.5 528.8 530.2 1.4 1.18 1.21 77.81<br />

200 75 82.5 518.8 520.6 1.8 1.52 1.55 79.32<br />

230 63 69 510.1 512 1.9 1.60 1.64 80.93<br />


Qal 5b sample + pan= 698.6 156.3<br />

pan= 619.9 57.3<br />

total sample weight = 78.7 99<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 688.3 0.7 0.71 0.73 0.71<br />

10 2000 3000 633.1 638.8 5.7 5.76 5.92 6.46<br />

18 991 1495.5 686 708.8 22.8 23.03 23.68 29.49<br />

35 500 745.5 571.6 592 20.4 20.61 21.19 50.10<br />

60 250 375 555.7 566.9 11.2 11.31 11.63 61.41<br />

100 150 200 628.1 633.7 5.6 5.66 5.82 67.07<br />

120 125 137.5 539.5 541.7 2.2 2.22 2.29 69.29<br />

140 105 115 626.4 627.9 1.5 1.52 1.56 70.81<br />

170 90 97.5 528.8 530 1.2 1.21 1.25 72.02<br />

200 75 82.5 518.8 520.3 1.5 1.52 1.56 73.54<br />

230 63 69 510.1 511.8 1.7 1.72 1.77 75.25<br />


Qal 6a sample + pan= 757.1 236.9<br />

pan= 621.6 56.6<br />

total sample weight = 135.5 180.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 690.2 2.6 1.44 1.48 1.44<br />

10 2000 3000 633.1 639.4 6.3 3.49 3.58 4.94<br />

18 991 1495.5 686 703.2 17.2 9.54 9.78 14.48<br />

35 500 745.5 571.6 590.5 18.9 10.48 10.75 24.96<br />

60 250 375 555.7 596.7 41 22.74 23.32 47.70<br />

100 150 200 628.1 656.5 28.4 15.75 16.15 63.45<br />

120 125 137.5 539.5 546.7 7.2 3.99 4.10 67.44<br />

140 105 115 626.4 629.7 3.3 1.83 1.88 69.27<br />

170 90 97.5 528.8 530.9 2.1 1.16 1.19 70.44<br />

200 75 82.5 518.8 521.2 2.4 1.33 1.37 71.77<br />

230 63 69 510.1 512.2 2.1 1.16 1.19 72.93<br />


Qal 6b sample + pan= 722.1 201.7<br />

pan= 623.1 57<br />

total sample weight = 9 9 144.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 688.4 0.8 0.55 0.56 0.55<br />

10 2000 3000 633.1 637 3.9 2.70 2.75 3.25<br />

18 991 1495.5 686 697 11 7.60 7.76 10.85<br />

35 500 745.5 571.6 585.1 13.5 9.33 9.53 20.18<br />

60 250 375 555.7 587.7 32 22.11 22.58 42.29<br />

100 150 200 628.1 650.8 22.7 15.69 16.02 57.98<br />

120 125 137.5 539.5 545.2 5.7 3.94 4.02 61.92<br />

140 105 115 626.4 628.7 2.3 1.59 1.62 63.51<br />

170 90 97.5 528.8 530.7 1.9 1.31 1.34 64.82<br />

200 75 82.5 518.8 520.5 1.7 1.17 1.20 66.00<br />

230 63 69 510.1 511.8 1.7 1.17 1.20 67.17<br />


Qal 7 sample + pan= 765.9 219.8<br />

pan= 621.4 56.9<br />

total sample weight = 144.5 162.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0.00 0.00 0.00<br />

5 4000 7000 687.6 699.3 11.7 7.18 7.34 7.18<br />

10 2000 3000 633.1 640.8 7.7 4.73 4.83 11.91<br />

18 991 1495.5 686 695.2 9.2 5.65 5.77 17.56<br />

35 500 745.5 571.6 585.2 13.6 8.35 8.53 25.91<br />

60 250 375 555.7 597.1 41.4 25.41 25.96 51.32<br />

100 150 200 628.1 661.7 33.6 20.63 21.07 71.95<br />

120 125 137.5 539.5 549.3 9.8 6.02 6.14 77.96<br />

140 105 115 626.4 631.2 4.8 2.95 3.01 80.91<br />

170 90 97.5 528.8 531.8 3 1.84 1.88 82.75<br />

200 75 82.5 518.8 521.8 3 1.84 1.88 84.59<br />

230 63 69 510.1 512.8 2.7 1.66 1.69 86.25<br />


A P P E N D I X J<br />

P ar ti cl e S ize Dat a Sheet s f or Desert Pavement Sam pl es<br />

316


Pavement DP1 sample + pan= 187.3<br />

pan= 9<br />

total sample weight = 178.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0 0 0 0 0<br />

4 4760 5000 709.4 759.4 50 28.04 28.20 28.04<br />

6 3360 4060 739.1 780 40.9 22.94 23.07 50.98<br />

8 2360 2860 716 762.3 46.3 25.97 26.11 76.95<br />

12 1700 2030 653.2 680.7 27.5 15.42 15.51 92.37<br />

14 1400 1550 685.9 691.8 5.9 3.31 3.33 95.68<br />

18 991 1195.5 686.3 690.7 4.4 2.47 2.48 98.15<br />

25 707 849 797 799.3 2.3 1.29 1.30 99.44<br />

45 335 521 0 0.00 0.00 99.44<br />

70 212 273.5 0 0.00 0.00 99.44<br />

100 150 181 0 0.00 0.00 99.44<br />

120 125 137.5 0 0.00 0.00 99.44<br />

170 90 107.5 0 0.00 0.00 99.44<br />

200 75 82.5 0 0.00 0.00 99.44<br />

230 63 69 0 0.00 0.00 99.44<br />


Pavement DP1-1999 sample + pan= 302.4<br />

pan= 9.3<br />

total sample weight = 293.1<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0 0 0 0 0<br />

4 4760 5000 709.4 727.9 18.5 6.31 6.34 6.31<br />

6 3360 4060 739.1 791 51.9 17.71 17.77 24.02<br />

8 2360 2860 716.6 821 104.4 35.62 35.75 59.64<br />

10 2000 2180 682.2 729.7 47.5 16.21 16.27 75.84<br />

12 1700 1850 653.3 688.1 34.8 11.87 11.92 87.72<br />

14 1400 1550 685.9 707.6 21.7 7.40 7.43 95.12<br />

18 991 1195.5 686.2 698.3 12.1 4.13 4.14 99.25<br />

20 841 916 0 0.00 0.00 99.25<br />

45 335 588 0 0.00 0.00 99.25<br />

70 212 273.5 0 0.00 0.00 99.25<br />

100 150 181 602.4 603.5 1.1 0.38 0.38 99.62<br />

120 125 137.5 0 0.00 0.00 99.62<br />

170 90 107.5 0 0.00 0.00 99.62<br />

200 75 82.5 0 0.00 0.00 99.62<br />

230 63 69 0 0.00 0.00 99.62<br />


Pavement DP2 sample + pan= 514.2<br />

pan= 9.3<br />

total sample weight = 504.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 709.4 1014 304.6 60.33 67.37 60.33 67.37<br />

6 3360 4060 739.1 796.7 57.6 11.41 12.74 71.74 80.12<br />

8 2360 2860 716.6 758.5 41.9 8.30 9.27 80.04 89.38<br />

10 2000 2180 682.2 699.1 16.9 3.35 3.74 83.38 93.12<br />

12 1700 1850 653.3 665.6 12.3 2.44 2.72 85.82 95.84<br />

14 1400 1550 685.9 695.8 9.9 1.96 2.19 87.78 98.03<br />

18 991 1195.5 686.2 695.1 8.9 1.76 1.97 89.54 100.00<br />

20 841 916 0 0.00 0.00 89.54 100.00<br />

45 335 588 0 0.00 0.00 89.54 100.00<br />

70 212 273.5 0 0.00 0.00 89.54 100.00<br />

100 150 181 0 0.00 0.00 89.54 100.00<br />

120 125 137.5 0 0.00 0.00 89.54 100.00<br />

170 90 107.5 0 0.00 0.00 89.54 100.00<br />

200 75 82.5 0 0.00 0.00 89.54 100.00<br />

230 63 69 0 0.00 0.00 89.54 100.00<br />


Pavement DP3 sample + pan= 329.2<br />

pan= 9<br />

total sample weight = 320.2<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 709.4 736.1 26.7 8.34 9.49 8.34 9.49<br />

6 3360 4060 739.1 790.7 51.6 16.11 18.34 24.45 27.83<br />

8 2360 2860 716.6 780.9 64.3 20.08 22.85 44.53 50.68<br />

10 2000 2180 682.2 716 33.8 10.56 12.01 55.09 62.69<br />

12 1700 1850 653.3 684.4 31.1 9.71 11.05 64.80 73.74<br />

14 1400 1550 685.9 718.5 32.6 10.18 11.58 74.98 85.32<br />

18 991 1195.5 686.2 727.5 41.3 12.90 14.68 87.88 100.00<br />

20 841 916 0 0.00 0.00 87.88 100.00<br />

45 335 588 0 0.00 0.00 87.88 100.00<br />

70 212 273.5 0 0.00 0.00 87.88 100.00<br />

100 150 181 0 0.00 0.00 87.88 100.00<br />

120 125 137.5 0 0.00 0.00 87.88 100.00<br />

170 90 107.5 0 0.00 0.00 87.88 100.00<br />

200 75 82.5 0 0.00 0.00 87.88 100.00<br />

230 63 69 0 0.00 0.00 87.88 100.00<br />


Pavement DP4 sample + pan= 234.4<br />

pan= 9.1<br />

total sample weight = 225.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 709.2 709.4 0.2 0.09 0.14 0.09 0.14<br />

6 3360 4060 738.9 739.7 0.8 0.36 0.55 0.44 0.68<br />

8 2360 2860 716.3 718.8 2.5 1.11 1.71 1.55 2.39<br />

10 2000 2180 682.2 687.5 5.3 2.35 3.63 3.91 6.02<br />

12 1700 1850 653 663 10 4.44 6.84 8.34 12.86<br />

14 1400 1550 685.5 709.4 23.9 10.61 16.35 18.95 29.21<br />

18 991 1195.5 685.7 743.1 57.4 25.48 39.26 44.43 68.47<br />

25 707 849 638.8 684.9 46.1 20.46 31.53 64.89 100.00<br />

45 335 521 0 0.00 0.00 64.89 100.00<br />

70 212 273.5 0 0.00 0.00 64.89 100.00<br />

100 150 181 0 0.00 0.00 64.89 100.00<br />

120 125 137.5 0 0.00 0.00 64.89 100.00<br />

170 90 107.5 0 0.00 0.00 64.89 100.00<br />

200 75 82.5 0 0.00 0.00 64.89 100.00<br />

230 63 69 0 0.00 0.00 64.89 100.00<br />


Pavement DP5 sample + pan= 290.4<br />

pan= 8.9<br />

total sample weight = 281.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 709.2 737.4 28.2 10.02 10.79 10.02 10.79<br />

6 3360 4060 738.9 811.8 72.9 25.90 27.90 35.91 38.69<br />

8 2360 2860 716.3 801.9 85.6 30.41 32.76 66.32 71.45<br />

10 2000 2180 682.2 709.7 27.5 9.77 10.52 76.09 81.97<br />

12 1700 1850 653 671.5 18.5 6.57 7.08 82.66 89.05<br />

14 1400 1550 685.5 699.3 13.8 4.90 5.28 87.57 94.34<br />

18 991 1195.5 685.7 700.5 14.8 5.26 5.66 92.82 100.00<br />

20 841 916 0 0.00 0.00 92.82 100.00<br />

25 707 774 0 0.00 0.00 92.82 100.00<br />

45 335 521 0 0.00 0.00 92.82 100.00<br />

70 212 273.5 0 0.00 0.00 92.82 100.00<br />

100 150 181 0 0.00 0.00 92.82 100.00<br />

120 125 137.5 0 0.00 0.00 92.82 100.00<br />

170 90 107.5 0 0.00 0.00 92.82 100.00<br />

200 75 82.5 0 0.00 0.00 92.82 100.00<br />

230 63 69 0 0.00 0.00 92.82 100.00<br />


sample + pan= 524.2<br />

Pavement, Density Site 2 pan=<br />

total sample weight = 515.1<br />

9.1<br />

Phi sieve # size (um) median<br />

10000<br />

size<br />

10000<br />

sieve<br />

weight<br />

0<br />

sieve +<br />

Sample<br />

0<br />

weight<br />

(g)<br />

0<br />

weight<br />

( % )<br />

0<br />

Normalized<br />

Percent<br />

0<br />

Normalize<br />

Cumulative<br />

d<br />

percent<br />

Cumulativ<br />

0 0<br />

4 4760 5000 709.2 1037.4 328.2 63.72 74.14 63.72 74.14<br />

6 3360 4060 738.9 814.7 75.8 14.72 17.12 78.43 91.26<br />

8 2360 2860 716.3 734.8 18.5 3.59 4.18 82.02 95.44<br />

10 2000 2180 682.2 686.7 4.5 0.87 1.02 82.90 96.45<br />

12 1700 1850 653 657.2 4.2 0.82 0.95 83.71 97.40<br />

14 1400 1550 685.5 690 4.5 0.87 1.02 84.59 98.42<br />

18 991 1195.5 685.7 692.7 7 1.36 1.58 85.94 100.00<br />

20 841 916 0 0.00 0.00 85.94 100.00<br />

25 707 774 0 0.00 0.00 85.94 100.00<br />

45 335 521 0 0.00 0.00 85.94 100.00<br />

70 212 273.5 0 0.00 0.00 85.94 100.00<br />

100 150 181 0 0.00 0.00 85.94 100.00<br />

120 125 137.5 0 0.00 0.00 85.94 100.00<br />

170 90 107.5 0 0.00 0.00 85.94 100.00<br />

200 75 82.5 0 0.00 0.00 85.94 100.00<br />

230 63 69 0 0.00 0.00 85.94 100.00<br />


Pavement SD4 sample + pan= 118.5<br />

pan= 9.1<br />

total sample weight = 109.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

10000 10000 0 0 0 0 0 0<br />

4 4760 5000 801 817.8 16.8 15.36 15.38 15.36<br />

6 3360 4060 830.6 862.4 31.8 29.07 29.12 44.42<br />

8 2360 2860 808.2 842.5 34.3 31.35 31.41 75.78<br />

10 2000 2180 771.7 783.1 11.4 10.42 10.44 86.20<br />

12 1700 1850 744.8 752.6 7.8 7.13 7.14 93.33<br />

14 1400 1550 777.6 781.8 4.2 3.84 3.85 97.17<br />

16 1180 1290 766.2 767.7 1.5 1.37 1.37 98.54<br />

20 850 1015 783.9 785 1.1 1.01 1.01 99.54<br />

60 250 550 0 0.00 0.00 99.54<br />

80 180 215 0 0.00 0.00 99.54<br />

100 150 165 622.3 622.6 0.3 0.27 0.27 99.82<br />

120 125 137.5 0 0.00 0.00 99.82<br />

140 106 115.5 0 0.00 0.00 99.82<br />

170 90 98 0.00 0.00 99.82<br />

200 75 82.5 0.00 0.00 99.82<br />

230 63 69 0.00 0.00 99.82<br />


Pavement SD5 sample + pan= 180.7<br />

pan= 8.9<br />

total sample weight = 171.8<br />

Phi sieve # size (um) median<br />

10000<br />

size<br />

10000<br />

sieve<br />

weight<br />

0<br />

sieve +<br />

Sample<br />

0<br />

weight<br />

(g)<br />

0<br />

weight<br />

(%)<br />

0<br />

Normalized<br />

Percent<br />

0<br />

Normalize<br />

Cumulative<br />

d<br />

percent<br />

Cumulati<br />

0 0<br />

4 4760 5000 801 832.5 31.5 18.34 20.68 18.34 20.68<br />

6 3360 4060 830.5 885.6 55.1 32.07 36.18 50.41 56.86<br />

8 2360 2860 808.2 832.8 24.6 14.32 16.15 64.73 73.01<br />

10 2000 2180 771.9 785.9 14 8.15 9.19 72.88 82.21<br />

12 1700 1850 744.7 754.8 10.1 5.88 6.63 78.75 88.84<br />

14 1400 1550 777.5 784.4 6.9 4.02 4.53 82.77 93.37<br />

16 1180 1290 766.3 770.1 3.8 2.21 2.50 84.98 95.86<br />

20 850 1015 784 788.2 4.2 2.44 2.76 87.43 98.62<br />

60 250 550 0 0.00 0.00 87.43 98.62<br />

80 180 215 0 0.00 0.00 87.43 98.62<br />

100 150 165 622.3 624.4 2.1 1.22 1.38 88.65 100.00<br />

120 125 137.5 0 0.00 0.00 88.65 100.00<br />

140 106 115.5 0.00 0.00 88.65 100.00<br />

170 90 98 0.00 0.00 88.65 100.00<br />

200 75 82.5 0.00 0.00 88.65 100.00<br />

230 63 69 0.00 0.00 88.65 100.00<br />


Pavement SD8 sample + pan= 123.2<br />

pan= 8.9<br />

total sample weight = 114.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 800.9 801.7 0.8 0.70 1.10 0.70 1.10<br />

6 3360 4060 830.6 832.9 2.3 2.01 3.17 2.71 4.27<br />

8 2360 2860 808 815.5 7.5 6.56 10.33 9.27 14.60<br />

10 2000 2180 772 781.1 9.1 7.96 12.53 17.24 27.13<br />

12 1700 1850 744.7 757.3 12.6 11.02 17.36 28.26 44.49<br />

14 1400 1550 777.5 791.6 14.1 12.34 19.42 40.59 63.91<br />

16 1180 1290 766.1 776.4 10.3 9.01 14.19 49.61 78.10<br />

20 850 1015 783.9 799.8 15.9 13.91 21.90 63.52 100.00<br />

60 250 550 0 0.00 0.00 63.52 100.00<br />

80 180 215 0 0.00 0.00 63.52 100.00<br />

100 150 165 0 0.00 0.00 63.52 100.00<br />

120 125 137.5 0.00 0.00 63.52 100.00<br />

140 106 115.5 0.00 0.00 63.52 100.00<br />

170 90 98 0.00 0.00 63.52 100.00<br />

200 75 82.5 0.00 0.00 63.52 100.00<br />

230 63 69 0.00 0.00 63.52 100.00<br />


Pavement, SD-10 sample + pan= 127.4<br />

pan= 9.1<br />

total sample weight = 118.3<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

(%)<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 800.8 811 10.2 8.62 9.90 8.62 9.90<br />

6 3360 4060 830.6 834.3 3.7 3.13 3.59 11.75 13.50<br />

8 2360 2860 808 833.1 25.1 21.22 24.37 32.97 37.86<br />

10 2000 2180 772 789.3 17.3 14.62 16.80 47.59 54.66<br />

12 1700 1850 744.7 761.8 17.1 14.45 16.60 62.05 71.26<br />

14 1400 1550 777.3 790.6 13.3 11.24 12.91 73.29 84.17<br />

16 1180 1290 766.3 773.9 7.6 6.42 7.38 79.71 91.55<br />

20 850 1015 783.9 792.6 8.7 7.35 8.45 87.07 100.00<br />

60 250 550 0 0.00 0.00 87.07 100.00<br />

80 180 215 0 0.00 0.00 87.07 100.00<br />

100 150 165 0 0.00 0.00 87.07 100.00<br />

120 125 137.5 0 0.00 0.00 87.07 100.00<br />

140 106 115.5 0.00 0.00 87.07 100.00<br />

170 90 98 0.00 0.00 87.07 100.00<br />

200 75 82.5 0.00 0.00 87.07 100.00<br />

230 63 69 0.00 0.00 87.07 100.00<br />


Pavement 7 sample + pan= 127.4<br />

pan= 9.1<br />

total sample weight = 1 0 0<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

(%)<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

10000 10000 0 0 0 0 0 0 0<br />

4 4760 5000 5.6 5.60 5.91 5.60 5.91<br />

6 3360 4060 18.9 18.90 19.96 24.50 25.87<br />

8 2360 2860 39.4 39.40 41.61 63.90 67.48<br />

10 2000 2180 13.6 13.60 14.36 77.50 81.84<br />

12 1700 1850 9.8 9.80 10.35 87.30 92.19<br />

14 1400 1550 5.3 5.30 5.60 92.60 97.78<br />

16 1180 1290 2.1 2.10 2.22 94.70 100.00<br />

20 850 1015 0.00 0.00 94.70 100.00<br />

60 250 550 0.00 0.00 94.70 100.00<br />

80 180 215 0.00 0.00 94.70 100.00<br />

100 150 165 0.00 0.00 94.70 100.00<br />

120 125 137.5 0.00 0.00 94.70 100.00<br />

140 106 115.5 0.00 0.00 94.70 100.00<br />

170 90 98 0.00 0.00 94.70 100.00<br />

200 75 82.5 0.00 0.00 94.70 100.00<br />

230 63 69 0.00 0.00 94.70 100.00<br />


A P P E N D I X K<br />

P ar ti cl e S ize Dat a Sheet s f or Anthil l S am pl es<br />

329


Anthill at site SD3 sample + pan= 166.5<br />

pan= 9<br />

total sample weight = 157.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

4 4760 5000 800.9 801 0.1 0.06 0.09 0.06 0.09<br />

6 3360 4060 830.6 831.6 1 0.63 0.93 0.70 1.02<br />

8 2360 2860 808 833.1 25.1 15.94 23.22 16.63 24.24<br />

10 2000 2180 771.9 800.9 29 18.41 26.83 35.05 51.06<br />

12 1700 1850 744.8 774.5 29.7 18.86 27.47 53.90 78.54<br />

14 1400 1550 777.6 793 15.4 9.78 14.25 63.68 92.78<br />

16 1180 1290 766.5 770.8 4.3 2.73 3.98 66.41 96.76<br />

20 850 1015 784.3 787.8 3.5 2.22 3.24 68.63 100.00<br />

60 250 550 0.00 0.00 68.63 100.00<br />

80 180 215 0.00 0.00 68.63 100.00<br />

100 150 165 0.00 0.00 68.63 100.00<br />

120 125 137.5 0.00 0.00 68.63 100.00<br />

140 106 115.5 0.00 0.00 68.63 100.00<br />

170 90 98 0.00 0.00 68.63 100.00<br />

200 75 82.5 0.00 0.00 68.63 100.00<br />

230 63 69 0.00 0.00 68.63 100.00<br />


Anthill at site SD9 sample + pan= 127.7<br />

pan= 9.1<br />

total sample weight = 118.6<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 800.9 801.1 0.2 0.17 0.17 0.17<br />

6 3360 4060 830.6 835.6 5 4.22 4.25 4.38<br />

8 2360 2860 808 869.9 61.9 52.19 52.59 56.58<br />

10 2000 2180 771.9 799.4 27.5 23.19 23.36 79.76<br />

12 1700 1850 744.9 760.6 15.7 13.24 13.34 93.00<br />

14 1400 1550 777.6 782 4.4 3.71 3.74 96.71<br />

16 1180 1290 766.3 767.7 1.4 1.18 1.19 97.89<br />

20 850 1015 784 785.6 1.6 1.35 1.36 99.24<br />

60 250 550 0 0.00 0.00 99.24<br />

80 180 215 0 0.00 0.00 99.24<br />

100 150 165 0 0.00 0.00 99.24<br />

120 125 137.5 0 0.00 0.00 99.24<br />

140 106 115.5 0.00 0.00 99.24<br />

170 90 98 0.00 0.00 99.24<br />

200 75 82.5 0.00 0.00 99.24<br />

230 63 69 0.00 0.00 99.24<br />


Anthill at site DP1 sample + pan= 174.9<br />

pan= 9<br />

total sample weight = 165.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.4 709.4 0 0.00 0.00 0.00<br />

6 3360 4060 739.1 739.9 0.8 0.48 0.48 0.48<br />

8 2360 2860 716 780 64 38.58 38.48 39.06<br />

12 1700 2030 653.2 741.9 88.7 53.47 53.34 92.53<br />

14 1400 1550 685.9 697 11.1 6.69 6.67 99.22<br />

18 991 1195.5 686.3 687.8 1.5 0.90 0.90 100.12<br />

25 707 849 797 797.2 0.2 0.12 0.12 100.24<br />

45 335 521 0 0.00 0.00 100.24<br />

70 212 273.5 0 0.00 0.00 100.24<br />

100 150 181 0 0.00 0.00 100.24<br />

120 125 137.5 0 0.00 0.00 100.24<br />

170 90 107.5 0 0.00 0.00 100.24<br />

200 75 82.5 0 0.00 0.00 100.24<br />

230 63 69 0 0.00 0.00 100.24<br />


Anthill at site DP2 sample + pan= 1 6 3<br />

pan= 9.2<br />

total sample weight = 153.8<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.4 709.4 0 0.00 0.00 0.00<br />

6 3360 4060 739.1 743 3.9 2.54 2.55 2.54<br />

8 2360 2860 716.6 801.9 85.3 55.46 55.82 58.00<br />

10 2000 2180 682.2 722.3 40.1 26.07 26.24 84.07<br />

12 1700 1850 653.3 669.9 16.6 10.79 10.86 94.86<br />

14 1400 1550 685.9 691.3 5.4 3.51 3.53 98.37<br />

18 991 1195.5 686.2 687.7 1.5 0.98 0.98 99.35<br />

20 841 916 0 0.00 0.00 99.35<br />

35 500 670.5 0 0.00 0.00 99.35<br />

45 335 417.5 0 0.00 0.00 99.35<br />

70 212 273.5 0 0.00 0.00 99.35<br />

100 150 181 0 0.00 0.00 99.35<br />

120 125 137.5 0 0.00 0.00 99.35<br />

170 90 107.5 0 0.00 0.00 99.35<br />

200 75 82.5 0 0.00 0.00 99.35<br />

230 63 69 0 0.00 0.00 99.35<br />


Anthill at site DP3 sample + pan= 298.1<br />

pan= 9.2<br />

total sample weight = 288.9<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.4 710.5 1.1 0.38 0.39 0.38<br />

6 3360 4060 739.1 749.6 10.5 3.63 3.69 4.02<br />

8 2360 2860 716.6 880.9 164.3 56.87 57.71 60.89<br />

10 2000 2180 682.2 744.7 62.5 21.63 21.95 82.52<br />

12 1700 1850 653.3 681.8 28.5 9.87 10.01 92.38<br />

14 1400 1550 685.9 696.4 10.5 3.63 3.69 96.02<br />

18 991 1195.5 686.2 693.5 7.3 2.53 2.56 98.55<br />

20 841 916 0 0.00 0.00 98.55<br />

25 707 774 0 0.00 0.00 98.55<br />

45 335 521 0 0.00 0.00 98.55<br />

70 212 273.5 0 0.00 0.00 98.55<br />

100 150 181 0 0.00 0.00 98.55<br />

120 125 137.5 0 0.00 0.00 98.55<br />

170 90 107.5 0 0.00 0.00 98.55<br />

200 75 82.5 0 0.00 0.00 98.55<br />

230 63 69 0 0.00 0.00 98.55<br />


Anthill at site DP4 sample + pan= 193.4<br />

pan= 9<br />

total sample weight = 184.4<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

(%)<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

4 4760 5000 709.2 709.3 0.1 0.05 0.06 0.05 0.06<br />

6 3360 4060 738.9 739.9 1 0.54 0.60 0.60 0.66<br />

8 2360 2860 716.3 768 51.7 28.04 31.00 28.63 31.65<br />

10 2000 2180 682.2 738.9 56.7 30.75 33.99 59.38 65.65<br />

12 1700 1850 653 691.5 38.5 20.88 23.08 80.26 88.73<br />

14 1400 1550 685.5 700.6 15.1 8.19 9.05 88.45 97.78<br />

18 991 1195.5 685.7 689.4 3.7 2.01 2.22 90.46 100.00<br />

20 841 916 0 0.00 0.00 90.46 100.00<br />

45 335 588 0 0.00 0.00 90.46 100.00<br />

70 212 273.5 0 0.00 0.00 90.46 100.00<br />

100 150 181 0 0.00 0.00 90.46 100.00<br />

120 125 137.5 0 0.00 0.00 90.46 100.00<br />

170 90 107.5 0 0.00 0.00 90.46 100.00<br />

200 75 82.5 0 0.00 0.00 90.46 100.00<br />

230 63 69 0 0.00 0.00 90.46 100.00<br />


Anthill at site DP5 sample + pan= 152.9<br />

pan= 9.2<br />

total sample weight = 143.7<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

Normalized<br />

Cumulative<br />

4 4760 5000 709.2 709.2 0 0.00 0.00 0.00 0.00<br />

6 3360 4060 738.9 740.6 1.7 1.18 1.34 1.18 1.34<br />

8 2360 2860 716.3 759.2 42.9 29.85 33.94 31.04 35.28<br />

10 2000 2180 682.2 716.8 34.6 24.08 27.37 55.11 62.66<br />

12 1700 1850 653 679 26 18.09 20.57 73.21 83.23<br />

14 1400 1550 685.5 699.9 14.4 10.02 11.39 83.23 94.62<br />

18 991 1195.5 685.7 692.5 6.8 4.73 5.38 87.96 100.00<br />

25 707 849 638.8 638.8 0 0.00 0.00 87.96 100.00<br />

45 335 521 0 0.00 0.00 87.96 100.00<br />

70 212 273.5 0 0.00 0.00 87.96 100.00<br />

100 150 181 0 0.00 0.00 87.96 100.00<br />

120 125 137.5 0 0.00 0.00 87.96 100.00<br />

170 90 107.5 0 0.00 0.00 87.96 100.00<br />

200 75 82.5 0 0.00 0.00 87.96 100.00<br />

230 63 69 0 0.00 0.00 87.96 100.00<br />


Anthill at Density Site 2 sample + pan= 343.4<br />

pan= 8.9<br />

total sample weight = 334.5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 709.2 711.8 2.6 0.78 0.78 0.78<br />

6 3360 4060 738.9 758.2 19.3 5.77 5.77 6.55<br />

8 2360 2860 716.3 924.5 208.2 62.24 62.26 68.79<br />

10 2000 2180 682.2 749.7 67.5 20.18 20.19 88.97<br />

12 1700 1850 653 678.5 25.5 7.62 7.63 96.59<br />

14 1400 1550 685.5 692.2 6.7 2.00 2.00 98.59<br />

18 991 1195.5 685.7 687.5 1.8 0.54 0.54 99.13<br />

20 841 916 0 0.00 0.00 99.13<br />

25 707 774 0 0.00 0.00 99.13<br />

45 335 521 0 0.00 0.00 99.13<br />

70 212 273.5 0 0.00 0.00 99.13<br />

100 150 181 602.1 604.9 2.8 0.84 0.84 99.97<br />

120 125 137.5 0 0.00 0.00 99.97<br />

170 90 107.5 0 0.00 0.00 99.97<br />

200 75 82.5 0 0.00 0.00 99.97<br />

230 63 69 0 0.00 0.00 99.97<br />


Anthill Five<br />

total sample weight = 1 0 5<br />

Phi sieve # size (um) median<br />

size<br />

sieve<br />

weight<br />

sieve +<br />

Sample<br />

weight<br />

(g)<br />

weight<br />

( % )<br />

Normalized<br />

Percent<br />

Cumulative<br />

percent<br />

4 4760 5000 0 0.00 0.00 0.00<br />

6 3360 4060 0.8 0.76 0.78 0.76<br />

8 2360 2860 22.1 21.05 21.54 21.81<br />

10 2000 2180 31.6 30.10 30.80 51.90<br />

12 1700 1850 27.5 26.19 26.80 78.10<br />

14 1400 1550 16.1 15.33 15.69 93.43<br />

16 1180 1290 4.5 4.29 4.39 97.71<br />

18 991 1085.5 0 0.00 0.00 97.71<br />

20 841 916 0 0.00 0.00 97.71<br />

25 707 774 0 0.00 0.00 97.71<br />

45 335 521 0 0.00 0.00 97.71<br />

70 212 273.5 0 0.00 0.00 97.71<br />

100 150 181 0 0.00 0.00 97.71<br />

120 125 137.5 0 0.00 0.00 97.71<br />

170 90 107.5 0 0.00 0.00 97.71<br />

200 75 82.5 0 0.00 0.00 97.71<br />

230 63 69 0 0.00 0.00 97.71<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!