11.07.2015 Views

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

LA QUALITÉ EN BIOCHIMIE -PRÉCISION ET EXACTITUDE

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LA</strong> QUALITÉ <strong>EN</strong> <strong>BIOCHIMIE</strong> -PRÉCISION <strong>ET</strong> <strong>EXACTITUDE</strong>I. Incidences d'une mauvaise qualité dans le domaine industriel- Mise en vente de produits de mauvaise qualité.- Mécontentement des clients.- Perte de temps et d'argent.- Fermeture de l'entreprise.II. Les facteurs liés à une mauvaise qualité en biochimie2.1. Les erreurs liées au manipulateur (facteur humain)Ces erreurs sont plus ou moins grossières et évidentes. Par exemples :- non respect du protocole.- utilisation incorrecte du matériel.- lecture erronée d'un ménisque.- imperfection des sens du manipulateur...Ces erreurs peuvent et doivent être éliminées par un respect des "bonnes pratiques delaboratoire" à tous les stades :- Avant la manipulation :Lecture attentive du protocole : schématisation des étapes opératoires,organisation dans le temps, calcul des prise d'essais, identification des points critiquesde la manipulation...Evaluation des risques : inventaire et contrôle des réactifs employés (lecture despictogrammes, étiquetage, concentrations).- Pendant la manipulation :Choix et utilisation correcte du matériel et des appareils appropriés,Mesure des risques,Utilisation du carnet de laboratoire : noter les résultats expérimentaux, lesanomalies repérées (en cas d'anomalies, en rechercher les causes).- Après la manipulation :Exploitation et analyse critique des résultats,Expression correcte du résultat final de l'analyse.2.2. Les erreurs liées aux matériels et aux réactifs utilisésCes erreurs peuvent être :- aléatoires et inévitables.- systématiques et évitables si elles sont décelées à temps.Elles affectent la précision (ou fidélité) de l'analyse et d'autres part l'exactitude (ou justesse).2.2.1. Les erreurs aléatoires - notion de précisionExemples : incertitude sur la mesure d'un volume, instabilité du thermostat...Ces erreurs affectent la précision (ou fidélité) du dosage. Elles se caractérisent par une dispersiondes résultats expérimentaux lors de mesures répétées sur le même échantillon. Il s'agit doncRéalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20061


d'erreurs par excès ou par défaut qui se produisent accidentellement.Définition de la précision : C'est l'accord, dans une zone définie de valeurs à mesurer, entre desmesures répétées effectuées sur un même échantillon dans des conditions constantes etdéterminées.Signification : elle reflète la reproductibilité c'est-à-dire la concordance entre les mesureseffectuées sur un même échantillon dans les mêmes conditions, au cours d'une ou plusieurs sériesde mesures, d'un jour à l'autre ou dans la même journée.Deux paramètres permettent d'évaluer la précision :- l'écart-type (σ ou s) ou imprécision absolue = racine carrée de la variance (V), lavariance chiffrant la dispersion des résultats autour de la moyenne.σ = √Σ(Xi - Xmoy) 2 / (n-1)- le coefficient de variation (CV) ou imprécision relative = Ecart-type exprimé enpourcentage de la moyenne.Très utilisé en BiochCV = σ /Xmoy x100Plus la valeur du CV est petite, plus la précision d'une mesure est grande.Les limites de confiance d'un résultat sont situées dans la zone : moyenne ± 2σ .En effet, d'après le doc 1, 95% des résultats expérimentaux se trouvent dans l'intervalle ± 2σ.2.2.2. Les erreurs systématiques - notion d'exactitudeElles peuvent être liées :- A la méthode utilisée : indicateur coloré virant avant la neutralisation (changerd'indicateur), réaction incomplète (changer la méthode),...- Aux produits : produit impur (utiliser des produits purs ou dont on connaît la teneur enimpureté)...- Aux instruments défectueux : balances déréglées, volumes prélevés inexacts, burettesale (recalibrer, laver)...Ces erreurs affectent l'exactitude (ou justesse). Elles se caractérisent par une déviation desrésultats expérimentaux, toujours dans le même sens, entre les valeurs trouvées (ouexpérimentales ou mesurées) et les valeurs attendues (ou vraies, ou cibles). Ces erreurs sontévitables si elles sont décelées à temps par la qualification régulière des appareils (vérification sile fonctionnement est conforme).Définition de l'exactitude ou justesse : c'est la qualité de l'accord entre l'estimation de la valeurmesurée et la valeur vraie, en dehors des erreurs aléatoires.Elle nécessite d'inclure dans une série de mesure un contrôle connu traité dans les mêmesconditions.Réalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20062


Deux paramètres définissent l'exactitude :- l'inexactitude absolue = X valeurs expérimentales - X vraie- l'inexactitude relative = X valeurs expérimentales - X vraie x 100X vraieExactitude et précision sont donc des paramètres différents : des mesures peuvent être trèsprécises mais inexactes suite au défaut d'un appareil par exemple.III- L'incertitude dans les mesuresSuivant le matériel dont on dispose, la mesure d'une même grandeur peut être réalisée avec uneimprécision plus ou moins grande. Cette imprécision est due à la fabrication de l'instrument demesure et ne dépend pas du manipulateur.3.1. Précision du matériel de laboratoireLes limites de précision d'un instrument de mesure sont indiquées par le fabricant.Par exemple pour la verrerie, elles dépendent de la classe A ou B, du volume délivré, de lagraduation...(Cf. doc.2)3.2. Notions sur les incertitudes3.2.1. DéfinitionsL'incertitude absolue (ou erreur absolue) : on appelle incertitude absolue sur la mesure de lagrandeur A (∆A), la valeur maximale "a" dont on peut se tromper (par excès ou par défaut). C'estun nombre concret qui s'exprime avec l'unité de la grandeur mesurée.valeur mesurée - a < A < valeur mesurée + aA = valeur mesurée ± aA = valeur mesurée ± ∆AExemple : on veut prélever 10 mL avec une pipette jaugée de 10 mL.- elle présente une incertitude absolue de 0,02 mL- l'incertitude absolue sur la pipette s'écrit : ∆V = 0,02 mL- le volume réel prélevé avec cette pipette est compris dans l'intervalle suivant :(10 – 0,02) mL < volume réel < (10 + 0,02)soit 9,98 mL < V < 10,02 mLou V = 10,00 ± 0,02 mLRéalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20063


- la mesure est donnée avec le même nombre de décimales que l'incertitude absolue,car elle porte sur le dernier chiffre significatif.- les deux nombres sont donnés dans la même unité.L'incertitude relative ( ou erreur relative) est le rapport de l'erreur absolue a sur la grandeur Aque l'on veut mesurée : a / A. C'est un nombre abstrait que l'on donne en %. C'est de cetteincertitude relative que dépend la précision.Incertitude relative = (∆A/A) x 100Exemple : Plusieurs mesures faites à la burette de 25 mL, classe A, ont donné les résultatssuivants :V1 = 0,5 mL V2 = 6,35 mL V3 = 16,90 mL.Calculer l'incertitude relative de chacun des volumes en %.∆V = 0,03mL∆V/V1 = 6% ∆V/V2 = 0,5% ∆V/V3 = 0,2%On remarque que plus le volume mesuré est grand, plus l'incertitude relative est faible.L'incertitude renseigne sur l'imprécision de la mesure. Plus la mesure est imprécise, plusl'incertitude relative est forte. Par conséquent, il faut éviter de mesurer des volumes tropfaibles avec une burette de 25 mL.3.2.2. Théorème sur les incertitudesThéorème de l'incertitude absolue sur les sommes et les différences :L'incertitude absolue sur une somme ou une différence est la somme des incertitudes absolues dechacun des termes.X = X1 + X2Y = Y1 - Y2∆X = ∆X1 + ∆X2∆Y = ∆Y1 + ∆Y2Théorème de l'incertitude relative sur les produits et les quotients :L'incertitude relative sur les produits et les quotients est la somme des incertitudes relative dechacun des termes.Z = Z1 x Z2W = W1/W2∆Z/Z = ∆Z1/Z1 + ∆Z2/Z2∆W/W = ∆W1/W1 + ∆W2/W2Application au choix du matériel utilisé :Exercice : Quel matériel choisir pour réaliser une dilution au 1/5 d'un jus de fruit ?Vous avez à votre disposition :- des fioles jaugées de 5, 10 et 50 mL.- des pipettes jaugées de 1, 2 et 10 mL.Réalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20064


Pour cela, on va calculer l'incertitude relative pesant sur cette dilution pour chaque fiole jaugée,on les compare et on choisira le matériel le plus précis.d = dilutionV1 = volume de jus de fruit prélevéV2 = volume de la fiole jaugée utilisée d = V1/V2 => ∆d/d = ∆V1/V1 + ∆V2/V2∆V1 = incertitude absolue sur la pipette utilisée∆V2 = incertitude absolue sur la fiole utiliséeCas 1 : fiole jaugée de 5 mL et pipette jaugée de 1 mLV1 = 1 mLV2 = 5 mL∆V1 = 0,007 mL => ∆d/d = 1,2%∆V2 = 0,025 mLCas 2 : fiole jaugée de 10 mL et pipette jaugée de 2 mLV1 = 2 mLV2 = 10 mL∆V1 = 0,01 mL => ∆d/d = 0,75%∆V2 = 0,025 mLCas 3 : fiole jaugée de 50 mL et pipette jaugée de 10 mLV1 = 10 mLV2 = 50 mL∆V1 = 0,02 mL => ∆d/d = 0,32%∆V2 = 0,06 mLPlus la mesure est imprécise, plus l'incertitude relative est forte. Par conséquent, pourréaliser cette dilution, il vaut mieux utiliser le matériel du cas 3.IV- Expression d'un résultat avec l'imprécisionL'imprécision peut être fournie par :- l'incertitude relative : ne peut s'appliquer qu'aux dosages simples ne comptant qu'unpetit nombre de mesures physiques.- le coefficient de variation : donnée la plus utilisée.Dans les deux cas, la démarche est la même.4.1.Expression du résultat en fonction de l'imprécision fournie par lecoefficient de variation (99,99 % des TP de BTS!) donc à connaître parSoit 2 résultats R1 = 0,05051 mol/L et R2 = 0,05060 mol/LCV = 0,5%1-Calculer l'écart-type (2σ) :2σ = 2xCVxRmoyenne/100 2σ = 2x0,5x 0,050555/100 = 0,0005055 mol/LRéalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20065


Attention, 2σ a TOUJOURS une unité = la même que celle de R1 et R2.Rem : pour le calcul de 2σ, quand on écrit CV/100, cela signifie que l'on prend CV = 0,5 non0,5% sinon cela revient à diviser CV par 10 000!2- Arrondir 2σ avec 1 seul chiffre significatif par excès ou défaut :En effet, 95% des résultats expérimentaux se trouvent dans l'intervalle ± 2σ soit entre 0,0501 et0,0511 mol/L. Il serait donc aberrant d'exprimer le résultat avec plus de chiffres significatifs.Rappels de mathématiques:- On arrondit par excès quand le dernier chiffre du résultat est 5.- On arrondit par défaut quand le dernier chiffre du résultat est < 5.- le 0 n'est pas un chiffre significatif quand il est placé AVANT une chiffre unitaire.Ex : 0,005051 : les 3 premiers 0 ne sont pas significatifs.Conclusion : on peut utiliser la notation scientifique pour ne pas s'y perdre: 0, 0,005051 =5,051. 10 -3 .Pour notre exemple, 2σ 0,0005 mol/L3- Vérifier si les résultats sont concordants donc valides :Si | R1 - R2 | 2σ, les résultats sont incompatibles ou non concordants, il faut faire un troisièmeessai. Dans les cas où cela n'est pas possible (par manque de temps en général), proposer alorsune moyenne avec 2 chiffres significatifs seulement. Dans ce cas, R 5,1 . 10 -2 mol/L.Si | R1 - R2 | < 2σ , les résultats sont compatibles ou concordants, on peut faire la moyenne desrésultats.Ici, | R1 - R2 | = 1 10 -4 < 0,0005 donc concordants.Rem : en BTS QIABI, dans de nombreux sujets d'examen, ||||Quand vous rencontrerez cette formule, vous n'aurez pas besoin de revérifier si les résultats sontconcordants. Par contre, il vous faudra toujours calculer le 2σ pour l'expression finale du résultat.Si vous ne trouvez pas cette formule, vous effectuez la démarche classique.4- Expression finale des résultats en fonction de l'imprécision absolue (2σ) : LE PLUSIMPORTANT car c'est le résultat qui sera noté!- Faire la moyenne de R1 et R2.- Mettre le même nombre de chiffres après la virgule pour la moyenne que pour le 2σ et doncarrondir par excès ou par défaut la moyenne.- Donner le résultat final :R = 0,0506 ± 0,0005 mol/LRem : si le résultat a moins de chiffres que le 2σ, alors on rajoute un 0.Ex : R = 0,05 mol/L et 2σ = 0,0005 mol/L. Dans ce cas, on donne R = 0,0500 ± 0,0005 mol/LRéalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20066


4.2.Expression du résultat en fonction de l'imprécision fournie parl'incertitude relative (0,001% des cas rencontrés en TP de BTS) :Soit 2 résultats R1 = 0,054821 mol/L et R2 = 0,055574 mol/LIncertitude relative ∆R/R = 1%1- Calculer l'incertitude absolue (∆R) sur chaque résultat :∆R1= 0,000548 mol/L∆R2=0,000555 mol/L2- Arrondir ∆R par excès avec 1 seul chiffre significatif : ∆R = 0,0006 mol/L3- Ecrire chaque résultat en fonction de son incertitude absolue :- même nombre de chiffre après la virgule- arrondir par excès ou par défautR1 = 0,0548 mol/L ± 0,0006 mol/LR2 = 0,0556 mol/L ± 0,0006 mol/L4- Vérifier si les résultats sont concordants :Si | R1 - R2 | 2σ : les résultats sont incompatibles, il faut faire un troisième essai.Si | R1 - R2 | 2σ : les résultats sont compatibles, on peut faire la moyenne des résultats.Ici, | R1 - R2 | = 8 10 -4 < 2 x 0,0006 concordants.5- Expression finale des résultats :R = 0,0552 mol/L ± 0,0006 mol/LRéalisé par : S. DRZEVIECKI-R<strong>EN</strong>ARD et M. G<strong>EN</strong>SSE - 20067

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!