01.06.2013 Views

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SADDLE POINT SHAPES OF NUCLEI<br />

Poenaru, Gherghescu, W. Greiner,Complex fission phenomena, Nucl. Phys. A 747 (2005) 182.<br />

Poenaru, W. Greiner, De<strong>for</strong>mation energy minima at finite mass asymmetry, EPL 64 (2003) 164<br />

Poenaru, W. Greiner, Nagame, Gherghescu, Nuclear <strong>shapes</strong> in fission phenomena, J. Nucl.<br />

Radiochem. Sci. Japan 3 (2002) 43<br />

Dorin Poenaru


OUTLINE<br />

• Nuclear <strong>shapes</strong> and mass asymmetry<br />

• Equilibrium and scission configurations<br />

• Examples <strong>of</strong> <strong>shapes</strong> (given<br />

parametrization)<br />

• David L. Hill’s method<br />

• Integro-differential equation (no param.)<br />

• Phenomenological shell effects<br />

• Fission into 2, 3, and 4 fragments<br />

• Experimental attempts<br />

• Conclusions<br />

Dorin Poenaru


SCIENTISTS and INSTITUTES<br />

NSTITUTES<br />

Walter GREINER, FIAS<br />

Joseph H. HAMILTON, DPA<br />

Yuichiro NAGAME, ASRC<br />

FIAS = <strong>Frankfurt</strong> <strong>Institute</strong> <strong>for</strong> <strong>Advanced</strong> <strong>Studies</strong>, J. W. Goethe University,<br />

<strong>Frankfurt</strong> am Main, http://www.fias.uni-frankfurt.de<br />

DPA = Department <strong>of</strong> Physics & Astronomy, Vanderbilt<br />

University, Nashville, TN, USA, http://www.vanderbilt.edu<br />

IFIN-HH = H. Hulubei National <strong>Institute</strong> <strong>of</strong> Physics & Nuclear Engineering,<br />

Bucharest, http://www.theory.nipne.ro<br />

ASRC = <strong>Advanced</strong> Science Research Center, Japan Atomic Energy Research<br />

<strong>Institute</strong>, Tokai, http://asr.tokai.jaeri.go.jp<br />

Dorin Poenaru<br />

Akunuri V. RAMAYYA, DPA<br />

Radu A. GHERGHESCU, IFIN-HH IFIN HH<br />

Dorin N. POENARU, IFIN-HH IFIN HH


HYSTORICAL MILE-STONES<br />

MILE STONES<br />

• 1929 Fine structure in α−decay<br />

• 1939 Induced fission<br />

• 1940 Spontaneous fission<br />

• 1946 Ternary (particle-accomp.) fission<br />

• 1980 Prediction <strong>of</strong> cluster Radioactivity<br />

• 1981 Cold binary fission<br />

• 1984 cR experimentally confirmed<br />

• 1998 Cold α and Be accompanied fission<br />

Dorin Poenaru


FISSION FRAGMENT MASS ASYMMETRY<br />

Symmetry <strong>for</strong> some<br />

Fm, Md, No<br />

isotopes when the<br />

most probable<br />

fragments are very<br />

close to the doubly<br />

magic 132 Sn<br />

Dorin Poenaru


EQUILIBRIUM QUILIBRIUM CONFIGURATIONS<br />

Nuclear gs de<strong>for</strong>mation and fission fragment<br />

mass asymetry are not explained within LDM.<br />

One should add shell corrections to calculate<br />

Potential Energy Surfaces, PES eg<br />

Equilibrium: ∂E<br />

∂E<br />

∂q<br />

1<br />

=<br />

∂q<br />

= 0<br />

• Minima (ground state, shape isomer)<br />

• Sadde-<strong>point</strong>s: maxima on fission valley<br />

2<br />

2<br />

(min.)<br />

∂ E ∂ E<br />

∂E<br />

∂q<br />

1<br />

∂E<br />

=<br />

∂q<br />

2<br />

= 0<br />

2<br />

Dorin Poenaru<br />

2<br />

∂q1<br />

2<br />

∂ E<br />

∂q<br />

∂q<br />

2<br />

1<br />

∂q1∂q<br />

2<br />

∂ E<br />

∂q<br />

E =<br />

2<br />

2<br />

2<br />

( 1, 2)<br />

q q E<br />

< 0


G STATE, VALLEYS, SADDLE POINTS<br />

Dorin Poenaru


POTENTIAL ENERGY SURFACE <strong>of</strong> 264Fm<br />

Symmetrical mass<br />

distributions<br />

GS=ground state<br />

SI=shape isomer<br />

SP1=<strong>saddle</strong> <strong>point</strong><br />

SP2=<strong>saddle</strong> <strong>point</strong><br />

— Fission valley<br />

at η = 0<br />

Dorin Poenaru<br />

264 Fm


TWO PATHS FROM SADDLE TO SCISSION<br />

Y. Nagame et al.<br />

J. Radioanalyt. and Nucl.<br />

Chemistry 239 (1999)<br />

97.<br />

Dorin Poenaru


THREE HREE DECAY MODES OF 234 234U LIGHT FRAGM.<br />

α<br />

28 Mg<br />

100 Zr<br />

SHAPES ALONG FISS. PATH<br />

Dorin Poenaru


252 Cf<br />

Cf 146 146Ba Ba + 96 96Sr Sr + 10 10Be Be<br />

Given parametrization and fission path<br />

Dorin Poenaru


GIVEN PARAMETRIZATION<br />

Möller, Madland, Sierk & Iwamoto, Nature 409 (2001)<br />

5 dimensional shape coordinates<br />

Dorin Poenaru


∇v r<br />

DAVID HILL’S HILL METHOD (I)<br />

Thesis (Princeton 1951) – large amplitude motion<br />

<strong>of</strong> an incompressible fluid with irrotational flow<br />

=<br />

0,<br />

∇ × v r<br />

mass density µ under bulk <strong>for</strong>ce<br />

=<br />

0<br />

<strong>of</strong> electrostatic nature and a pressure distr. p 1<br />

r<br />

dv<br />

r<br />

µ = χ − ∇ p<br />

dt<br />

1<br />

H µ<br />

2<br />

1<br />

≅<br />

Dorin Poenaru<br />

−∇<br />

p<br />

r<br />

F = −∇U<br />

∇<br />

2<br />

H = 0<br />

2<br />

= U + p1<br />

+ v p( z ) = U ( z ) + σΚ(<br />

z )<br />

Pseudopressure p, surf. tens. σ, and curvature K


DAVID HILL’S HILL METHOD (II)<br />

D.L. Hill: The Dynamics<br />

<strong>of</strong> Nuclear Fission,<br />

Proc. <strong>of</strong> the 2 nd United<br />

Nations International<br />

Conference on the<br />

Peaceful Uses <strong>of</strong> Atomic<br />

Energy, Vol. 15,Geneva,<br />

1958<br />

Dorin Poenaru


STATIC PATH ON PES<br />

Dorin Poenaru


STATIC PATH ON CONTOUR PLOT<br />

Dorin Poenaru


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (I)<br />

Κ(<br />

z ) =<br />

1<br />

ℜ<br />

a<br />

+<br />

1<br />

ℜ<br />

b<br />

=<br />

1<br />

ρ(<br />

1 + ρ'<br />

Dorin Poenaru<br />

2<br />

)<br />

1 / 2<br />

−<br />

ρ'<br />

'<br />

2<br />

( 1 + ρ'<br />

ρ = ρ (z) is the surface equation (cylindrical symm.)<br />

minimizing the de<strong>for</strong>mation energy<br />

E def<br />

LDM<br />

s C<br />

( α ) = E + δE<br />

= E + E + δE<br />

with constraints: const. de<strong>for</strong>mation α and<br />

α =<br />

z +<br />

c<br />

L<br />

z<br />

c<br />

R<br />

mass asymmetry η<br />

η<br />

=<br />

A1<br />

− A2<br />

A + A<br />

1<br />

2<br />

)<br />

3 / 2


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (II)<br />

The pressure at the surface<br />

r r<br />

ρ ( r ) + 2σΚ<br />

( r )<br />

eV<br />

s<br />

is in equilibrium. V s is the electrostatic potential<br />

ρ e is the charge density<br />

2<br />

ρρ'<br />

' −ρ' −[<br />

λ + λ z + ℑ(<br />

ρ,<br />

z )] ρ(<br />

1 + ρ'<br />

1<br />

2<br />

2<br />

)<br />

3 / 2<br />

ℑ = 10 XVs<br />

( z , ρ)<br />

Lagrange multipliers λ1,2 −1<br />

= 0<br />

X = fissility V s is expressed by a double integral<br />

Conditions<br />

ρ ( z1<br />

) = ρ(<br />

z 2 ) = 0<br />

dρ( z1<br />

, 2 )<br />

= ±∞<br />

Dorin Poenaru dz


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (III)<br />

z 1,2 are the intercepts with z axis at the 2 tips.<br />

Symmetry: z 2 = z p = - z 1 . New function<br />

Vsd s<br />

2 2<br />

u( v)<br />

= Λ ρ [ z(<br />

v)];<br />

( v)<br />

= z −v<br />

/ Λ<br />

Dorin Poenaru<br />

z p<br />

1 2<br />

u'' = 2 + [ u'<br />

+ ( v − d + Vsd<br />

)( 4u<br />

+ u'<br />

u<br />

5X<br />

= V<br />

2Λ<br />

− a −vb;<br />

2<br />

)<br />

3/<br />

2<br />

u ( 0)<br />

= u'(<br />

vpn)<br />

= 0;<br />

u '( 0)<br />

= 1/<br />

d;<br />

d and n are input parameters related to elongation<br />

& number <strong>of</strong> necks. Runge-Kutta numerical meth.<br />

]


REFLECTION ASYMMETRICAL SHAPES<br />

Equations <strong>for</strong> left hand side (L) and right h.s. (R).<br />

Matching ρ L(0) = ρ R(0)<br />

2π<br />

M L = ( 1+<br />

η)<br />

= πΛ<br />

3<br />

−3<br />

L<br />

And similarly <strong>for</strong> right hand side.<br />

∫<br />

vp<br />

0<br />

n ≠<br />

u<br />

L<br />

,<br />

Alternatively: and continuity <strong>of</strong> ρ’’(0)<br />

L<br />

1/<br />

2<br />

L<br />

n<br />

R<br />

1/<br />

2<br />

L<br />

Dorin Poenaru<br />

u ( v ) / Λ = u ( v ) / Λ<br />

( v)<br />

dv;<br />

( d −v<br />

) u ( v ) = ( d − v<br />

L<br />

pL<br />

pL<br />

R<br />

p<br />

L<br />

1/<br />

2<br />

R<br />

⎧3<br />

Λ 0 = ⎨ ∫ 2 0 ⎩<br />

p v<br />

L u<br />

pR<br />

) u<br />

1/<br />

2<br />

R<br />

( v<br />

pR<br />

)<br />

L<br />

p<br />

R<br />

⎫<br />

( v)<br />

dv⎬<br />

⎭<br />

1/<br />

3


DEFORMATION ENERGY<br />

Liquid Drop Model (LDM)<br />

E<br />

LDM<br />

X =<br />

0<br />

= E − E<br />

0<br />

0<br />

= Es<br />

( Bs<br />

−1)<br />

+ EC<br />

( BC<br />

0 0<br />

E /( 2E<br />

) - fissility<br />

C<br />

s<br />

De<strong>for</strong>mation dependent surface energy<br />

y(x) = surface equation with (–1,+1) intercepts on x axis<br />

Dorin Poenaru<br />

−1)<br />

0<br />

2 2/<br />

3<br />

0 2 −1/<br />

3<br />

Es = as(<br />

1−κI<br />

) A ; I = ( N − Z)<br />

/ A;<br />

EC<br />

= aCZ<br />

A<br />

B s<br />

1/<br />

2<br />

2 + 1<br />

2<br />

2<br />

d ⎡<br />

2 1 ⎛ dy ⎞ ⎤ z2<br />

− z<br />

= ∫ ⎢y<br />

+ ⎥ dx;<br />

d =<br />

2 4 ⎜<br />

dx ⎟<br />

2R<br />

−1⎢⎣<br />

⎝ ⎠ ⎥⎦<br />

0<br />

1


B c<br />

COULOMB ENERGY<br />

Assume uni<strong>for</strong>m charge density ρ0e = ρ1e = ρ2e 5 + 1 + 1<br />

5d<br />

= ∫dx∫dx' F(<br />

x,<br />

x')<br />

;<br />

F(<br />

x,<br />

x')<br />

= { yy1[(<br />

K − 2D)<br />

/ 3]<br />

•<br />

8π<br />

−1<br />

−1<br />

2 2<br />

⎡<br />

⎤<br />

2 2<br />

2 3 ⎛ dy ⎞<br />

1 dy<br />

⎢2(<br />

y + y − x − x + x − x ⎜ − ⎟<br />

1 ) ( ')<br />

( ')<br />

⎥ +<br />

⎣<br />

2 ⎝ dx'<br />

dx ⎠⎦<br />

2<br />

2<br />

⎧ 2 2 ⎡ 2 x − x'<br />

dy ⎤⎡<br />

2 x − x'<br />

dy ⎤⎫<br />

1 −1<br />

K − K'<br />

K⎨y<br />

y1<br />

/ 3+<br />

⎢y<br />

− ⎥⎢y<br />

1 − ⎥⎬}<br />

aρ<br />

; D = 2<br />

⎩ ⎣ 2 dx ⎦⎣<br />

2 dx'<br />

⎦⎭<br />

k<br />

K, K’ are complete elliptic integrals <strong>of</strong> 1st and 2nd<br />

kind. After scission E =<br />

2<br />

e Z Z / R<br />

Dorin Poenaru<br />

C<br />

∑<br />

i≠<br />

j<br />

i<br />

j<br />

ij


PHENOMENOLOGICAL SHELL CORRECTIONS<br />

Adapted after Myers & Swiatecki. Number <strong>of</strong> nucleons<br />

Ζ , N proportional to the volume.<br />

= ∑ ∑<br />

δE<br />

( δE<br />

+ δEni)<br />

= C [ s(<br />

Zi<br />

) + s(<br />

i)];<br />

i pi N<br />

i<br />

Ni are magic numbers. C=6.2 MeV, c=0.2 from fit to<br />

exp. masses and def. Variation with de<strong>for</strong>mation:<br />

C ⎧<br />

L ⎫<br />

= ⎨∑<br />

i<br />

δE<br />

[ s(<br />

Ni<br />

) + s(<br />

Zi<br />

)] ⎬<br />

2 ⎩ i<br />

Ri<br />

⎭<br />

For magic nb. δE is minimum.<br />

L i are the lengths <strong>of</strong> fragments.<br />

Dorin Poenaru<br />

s −<br />

2/<br />

3<br />

1/<br />

3<br />

( Z)<br />

= Z F(<br />

Z)<br />

cZ<br />

−<br />

5/<br />

3 5/<br />

3<br />

3 ⎡ Ni<br />

− Ni<br />

5/<br />

3 5/<br />

3⎤<br />

−1 F( n)<br />

= ⎢ ( n − Ni−1)<br />

− n + Ni−1<br />

⎥;<br />

n∈<br />

( Ni−1,<br />

Ni<br />

) is Z or N<br />

5 ⎣ Ni<br />

− Ni−1<br />


CALCULATED SHAPES <strong>for</strong> X = 0.60<br />

X = 0.60 (e.g. 170 Yb) η = 0 n L = n R = 2<br />

d L = d R = 1.40, 1.50, 1.70, 1.91(SP) input parameters<br />

α/R 0 = 1.31, 1.64, 2.10, 2.30 de<strong>for</strong>mation<br />

Dorin Poenaru


CALCULATED SHAPES <strong>for</strong> X = 0.70<br />

X = 0.70 (e.g. 204 Pb) η = 0 n L = n R = 2<br />

d L = d R = 1.40, 1.70, 2.00 , 1.55(SP) input parameters<br />

(α/R 0 ) SP = 1.82 SP de<strong>for</strong>mation<br />

Dorin Poenaru


DEFORMATION and ENERGY vs input parameter<br />

X = 0.60 (e.g. 170 Yb)<br />

and 0.70 (e.g. 204 Pb)<br />

η = 0<br />

n L = n R = 2<br />

Maximum energy at<br />

the Saddle Point<br />

Dorin Poenaru


CALCULATED SADDLE POINT SHAPES<br />

η= 0 n L = n R = 2 d L = d R = d<br />

X = 0.60, e.g. 170 Yb<br />

d=1.91 α/R 0 = 2.30<br />

X = 0.70, e.g. 204 Pb<br />

d=1.55 α/R 0 = 1.82<br />

X = 0.82, e.g. 252 Cf<br />

d=1.38 α/R 0 = 1.16<br />

Dorin Poenaru


η<br />

≠<br />

0<br />

ASYMMETRICAL SHAPES (I)<br />

Two ways to obtain: (1) n L = n R = n<br />

(1) n=2<br />

X = 0.77<br />

e.g. 238 U<br />

d R =1.4<br />

d L =1.4,<br />

1.45,<br />

1.5, 1.6<br />

n ≠<br />

(2) L R<br />

L L<br />

Dorin Poenaru<br />

n<br />

d ≠<br />

L<br />

d ≠<br />

d<br />

d<br />

L


η<br />

≠<br />

0<br />

ASYMMETRICAL SHAPES (II)<br />

(2) n L = 4, n R = 2, d L = 2.47, 2.44, 2.39<br />

X = 0.60, e.g. 170 Yb d R = 1.46, 1.43, 1.40<br />

α/R 0 = 2.06, 1.98, 1.84<br />

Dorin Poenaru


MASS ASYMMETRY AT THE 2 nd SADDLE POINT<br />

The 2 nd barrier height is<br />

lower at some finite<br />

mass asymmetry.<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (I)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry with and without shell effects.<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (II)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry <strong>for</strong> Th isotopes<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (III)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry <strong>for</strong> U isotopes<br />

Dorin Poenaru


CONTRIBUTION OF SHELL EFFECTS<br />

Dorin Poenaru


MASS NUMBER OF THE HEAVY FRAGMENT<br />

Mass number <strong>of</strong> the heavy fragment corresponding<br />

to the minimum <strong>of</strong> the <strong>saddle</strong> <strong>point</strong> energy<br />

Nuclei X d L –d R η A 1<br />

238 U 0.769 0.04 .04988 124.93<br />

232 Th 0.754 0.06 .07517 124.72<br />

228 Th 0.758 0.08 .09512 124.84<br />

Dorin Poenaru


TERNARY FISSION (I)<br />

Binary fissility X = 0.60 e.g. 170 Yb n L = n R = 3<br />

d L = d R = 2.25, 2.80, 7.00 α/R 0 = 1.65, 2.31, 2.73<br />

Dorin Poenaru


TERNARY FISSION (II)<br />

Config. d = 7, E/E s 0 = 0.134 is not far from a<br />

true ternary fission 170 Yb 56 V + 56 V + 58 Cr,<br />

Q=83.64 MeV, (E t -Q)/ E s 0 = 0.239 <strong>for</strong> spherical<br />

<strong>shapes</strong> in touch<br />

For 170 Yb 10 Be + 80 As + 80 As<br />

Q=70.86 MeV, (E t -Q)/ E s 0 = 0.147<br />

For 170 Yb 4 He + 83 Se + 83 Se<br />

Q=87.48 MeV, (E t -Q)/ E s 0 = 0.103 — higher Q-value<br />

Dorin Poenaru<br />

and lower fission barrier


QUATERNARY FISSION<br />

Binary fissility X = 0.60 e.g. 170 Yb n L = n R = 4<br />

d L = d R = 2.3, 2.7, 4.00 α/R 0 = 2.14, 3.14, 3.23<br />

Config. d = 4, E/E s 0 = 0.214 is not far from a<br />

true quaternary fission<br />

Dorin Poenaru<br />

170Yb 42Cl+ 42Cl+ 43Ar+ 43Ar Q=53.17 MeV, (Et-Q)/ E 0<br />

s = 0.324 <strong>for</strong> touching<br />

spheres


EXPERIMENTAL ATTEMPTS<br />

• Theory: R. D. Present (Phys. Rev. 59 (1941) 466): Uranium<br />

tripartition would release about 20 MeV more energy than binary<br />

• Exp. Rosen & Hudson (1950): 235U + nth . Triple gas filled<br />

ionization chamber. Yield <strong>of</strong> 6.7 per 106 binary fission acts<br />

• Iyer & Coble (1968): 235U + He ions <strong>of</strong> intermediate energy.<br />

Also optimistic.<br />

• Schall, Heeg, Mutterer & Theobald (1987): spontaneous<br />

fission <strong>of</strong> 252Cf. Triple coincidences with detectors at 120o Pessimistic: yield under 10-8 per binary.<br />

Dorin Poenaru


CONCLUSIONS<br />

• One can obtain <strong>saddle</strong>-<strong>point</strong> <strong>shapes</strong> by solving<br />

an integro-differential equation<br />

• There is no limitation imposed by the space <strong>of</strong><br />

de<strong>for</strong>mation coordinates (no parametrization)<br />

• Fission barriers <strong>for</strong> true ternary and<br />

quaternary fission are lower than <strong>for</strong> aligned<br />

spherical fragments in touch<br />

• Mass-asymmetry in binary fission is explained<br />

by adding shell corrections to the LDM energy<br />

• Experimental confirmation <strong>of</strong> true ternary<br />

fission still needed<br />

Dorin Poenaru

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!