26.12.2012 Views

Nuclear Fragmentation Reactions from Research to Applications

Nuclear Fragmentation Reactions from Research to Applications

Nuclear Fragmentation Reactions from Research to Applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

NUFRA2011, Kemer, Turkey, Oc<strong>to</strong>ber 2, 2011<br />

<strong>Nuclear</strong> <strong>Fragmentation</strong> <strong>Reactions</strong><br />

<strong>from</strong> <strong>Research</strong> <strong>to</strong> <strong>Applications</strong><br />

Igor N. Mishustin<br />

Frankfurt Institute for Advanced Studies (FIAS),<br />

J.W. Goethe Universität, Frankfurt am Main<br />

National <strong>Research</strong> Center “Kurcha<strong>to</strong>v Institute”, Moscow<br />

Niels Bohr Institute, University of Copenhagen


�Introduction:<br />

<strong>Nuclear</strong> disintegration processes<br />

�Part 1:Basic <strong>Research</strong><br />

Contents<br />

Statistical description of nuclear break-up<br />

Multifragmentation of nuclei<br />

<strong>Nuclear</strong> L-G phase transition<br />

�Part 2: <strong>Applications</strong><br />

Propagation of heavy ions through extended medium<br />

Cancer therapy with heavy-ion beams<br />

Transmutation of radioactive waste<br />

�Conclusions


Centenary of <strong>Nuclear</strong> Physics<br />

Planetary Model<br />

In 1911, analyzing results of famous<br />

experiment on α scattering off gold<br />

foil (Geiger and Marsden, 1909),<br />

Rutherford came <strong>to</strong> the conclusion<br />

that the so-called "plum pudding<br />

model" of J. J. Thomson was wrong,<br />

and proposed a new planetary model<br />

of the a<strong>to</strong>m.: tiny electrons circling<br />

around a heavy nucleus (red).<br />

In 1913 Niels Bohr has introduced<br />

quantum mechanics in<strong>to</strong> this model<br />

by postulating stationary electron<br />

orbits<br />

R(a<strong>to</strong>m)~1Å=10 -10 m, ΔE~1 eV<br />

R(nucleus)~10 fm, ΔE~1 MeV<br />

Ernest Rutherford<br />

(1871 – 1937)<br />

1908 Nobel Prize in<br />

Chemistry “for his<br />

investigations in<strong>to</strong> the<br />

disintegration of the<br />

elements, and the<br />

chemistry of radioactive<br />

substances"


<strong>Nuclear</strong> disintegration processes:<br />

his<strong>to</strong>rical remarks


Anticipation of nuclear “explosions”<br />

Nobel prize in Physics (1922) “for his services in<br />

the investigation of the structure of a<strong>to</strong>ms and of<br />

the radiation emanating <strong>from</strong> them"<br />

Niels Bohr (1885 – 1962)


Evaporation/fission of compound nucleus<br />

t=0 fm/c<br />

p A<br />

CN<br />

low excitation<br />

� � �0<br />

t>1000 fm/c<br />

fission<br />

Compound Nucleus (CN) is an equilibrated hot nucleus whose excitation energy<br />

is distributed over many microscopic d.o.f. (introduced by Niels Bohr in 1936-39)<br />

Sequential evaporation model—Weiskopf 1937,<br />

Statistical fission model—Bohr-Wheeler 1939, Frenkel 1939


<strong>Nuclear</strong> break-up: multifragmentation<br />

t=0 fm/c<br />

p<br />

pA collision<br />

A<br />

peripheral<br />

AA collision<br />

A<br />

A ,<br />

moderate excitation<br />

� � P � 0<br />

0<br />

slow expansion<br />

�<br />

t>100 fm/c<br />

equilibrated system<br />

at freeze-out<br />

Power-low fragment mass distribution around critical point, Y(A)~A -τ<br />

Can be well unders<strong>to</strong>od within an equilibrium statistical approach<br />

Early 80s: Randrup&Koonin, D.H.E. Gross et al, Bondorf-Mishustin-Botvina, Hahn&S<strong>to</strong>ecker;<br />

Later: S. Das Gupta et al., Gulminelli et al, Raduta et al,...


t = 0 fm/c<br />

Explosive disintegration of nuclei<br />

central<br />

AA collision<br />

E>50 AMeV<br />

compression+heating<br />

fast expansion<br />

t ≈ R/v f < 50 fm/c<br />

collective flow<br />

of fragments<br />

Typically, exponential fragment mass distributions, Y(A)~exp(-bA)<br />

The stronger is flow-the smaller are fragments-mechanical rupture<br />

Dynamical modeling is required: QMD, IQMD, NMD, AMD, ...


We with Jakob Bondorf started our theoretical<br />

work on multifragmentation in the NBI, inspired<br />

by impressive pho<strong>to</strong>-emulsion pictures<br />

B. Jakobsson et al., The disintegration of nuclei in violent heavy ion interactions<br />

at (55-110) AMeV 12 C+ArBr , Z. Phys. A307, 293 (1982).<br />

Jakob Bondorf first discussed the possibility of multifragmentation<br />

at the Bala<strong>to</strong>n conference in 1979


Arrtistic view of multifragmenattion<br />

W. Kandinsky “Several Circles” (1926), Guggenheim Museum, New York


Part 1.1:<br />

Statistical description of<br />

nuclear break-up


Statistical Multifragmentation Model (SMM)<br />

J.P. Bondorf, R. Donangelo, I.N. Mishustin, et al., Nucl. Phys. A443 (1985) 321; A444 (1985) 460;<br />

J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257 (1995) 133<br />

α<br />

IMF<br />

n<br />

HR<br />

IMF<br />

p<br />

IMF<br />

Ensemble of nucleons and fragments<br />

in thermal equilibrium characterized by<br />

neutron number N0 pro<strong>to</strong>n number Z0 ,<br />

N0 +Z0 =A0 excitation energy E * =E0-ECN break-up volume V=(1+κ)V0 All break-up channels are enumerated by the sets of<br />

fragment multiplicities or partitions, f={NAZ },<br />

Total fragment multiplicity Mf = ∑AZNAZ Volume available for the translational motion, Vf (M),<br />

grows with the fragment multiplicity, approximately<br />

following P=const condition


SMM: “micro-canonical” ensemble<br />

� Baryon number and charge conservation<br />

�∑N AZ A=A 0 , ∑�N AZ Z=Z 0<br />

� Statistical distribution of probabilities<br />

W f ~ exp {S f (A 0 , Z 0 , E * ,V)};<br />

� Equipartition of energy leading <strong>to</strong> a partition temperature T f<br />

∑�E AZ (T f )N AZ +1.5T f (M-1)+ U C f =E*<br />

� Phenomenological description of individual fragments as<br />

incompressible liquid drops (A>4)<br />

� �<br />

C<br />

� �<br />

� �<br />

5/4<br />

2 2 2 2 2 2<br />

T T - T (A - 2Z)<br />

2<br />

F = -(w + )A + 4πR β + γ<br />

AZ 0 0 2 2 1/3<br />

ε T + T 2A<br />

3eZ<br />

+<br />

5rA<br />

0 c 0<br />

S<br />

f<br />

�Ff<br />

��<br />

�T


Fragment mass partitions {N A }<br />

Euler's problem: find the number of ways, P(A 0 ,M), an integer A 0<br />

can be represented as a sum of M integers, A 0 =A 1 +A 2 +A 3 +..., ∑N A=M<br />

PAM ( , ) � PAM ( , �1) �PA ( �MM<br />

, )<br />

0 0 0<br />

Total number of partitions, P(A), can be found <strong>from</strong> the generating function<br />

� � 1<br />

� � � �<br />

N � �<br />

A<br />

Z x = � � c x = � = �P�A�x<br />

1�<br />

cx<br />

A A<br />

N<br />

1<br />

, N<br />

2<br />

, N<br />

A<br />

, �=<br />

0 A= 1 A= 1 A= 0<br />

A<br />

At large A 0 the result is well approximated by Hardy-Ramanujan formula<br />

1 � 2A �<br />

� � 0<br />

P A = exp ,<br />

0<br />

�π� 48A<br />

3<br />

0 � �<br />

A A<br />

1 3A 6A<br />

0 0<br />

M = ln<br />

� �<br />

� 2 �<br />

π 2 � bπ �<br />

where . Total number of partitions is huge for A0 ~100<br />

P(50)=2*105 , P(100)= 2*108 , P(200)= 4*1012 b= 0.3150<br />

Monte Carlo sampling is required - Markov Chain +Metropolis<br />

A.S. Botvina, A.D. Jackson, I.N. Mishustin, Phys. Rev. E62 (2000) R64


Exact formula derived by Ramanajan


Part 1.2: Multifragmentation of<br />

nuclei


Multifragmentation of relativistic<br />

projectile specta<strong>to</strong>rs<br />

ALADIN against SMM<br />

W. Trautmann, A.S.Botvina,<br />

I.N. Mishustin et al., Nucl.Phys.<br />

A584(1995)737;<br />

H.Xi et al., Z.Phys. A359 (1997)<br />

397<br />

SMM gives excellent<br />

description of data<br />

Main conclusion:<br />

Stat. quilibrium is<br />

reached in these<br />

reactions


Evolution of partitions with E *<br />

° experiment his<strong>to</strong>grams – SMM<br />

fission<br />

CN<br />

- �<br />

A , �<br />

2<br />

critical events?<br />

Peripheral Au+Au collisions at 35 AMeV<br />

M. D’Agostino et al., Nucl. Phys. A650, 329 (199)


Isoscaling and symmetry energy<br />

ALADIN: 12 C+ 112,124 Sn A. Le Fevre et al., Phys.Rev.Lett 94, 162701 (2005)<br />

S(N)=Y( 124 Sn)/Y( 112 Sn)=C·exp(N·α+Z·β)<br />

S(N)<br />

10<br />

1<br />

10 -1<br />

peripheral<br />

mid-central<br />

central<br />

300 MeV<br />

0 1 2 3 4 5 6 7<br />

Z<br />

1<br />

2<br />

3<br />

4<br />

peripheral<br />

mid-central<br />

central<br />

5 0 0.2 0.4 0.6 0.8 1<br />

600 MeV<br />

0 1 2 3 4 5 6 7<br />

N<br />

α·T ≈ -4γ (Z 1 2 /A1 2 -Z2 2 /A2 2 )<br />

α<br />

(MeV)<br />

HeLi<br />

T<br />

(MeV)<br />

app<br />

γ<br />

0.6<br />

0.4<br />

0.2<br />

10<br />

8<br />

6<br />

4<br />

25<br />

20<br />

15<br />

E/A (MeV)<br />

300<br />

600<br />

112<br />

Sn<br />

124<br />

Sn<br />

0 0.2 0.4 0.6 0.8 1<br />

10<br />

0 0.2 0.4 0.6 0.8 1<br />

1-b/b max<br />

Most recent analysis: R. Ogul, A. Botvina, Atav, N. Buyukcizmeci et al.,<br />

PRC 83, 023608 (2011)


Part 1.3: <strong>Nuclear</strong> liquid-gas<br />

phase transition


Liquid-gas phase transition in<br />

nuclear matter<br />

B.J.Strack, Phys. Rev. C35, 691 (1987)


Gas<br />

Multifragmentation as manifestation of<br />

a Liquid-Gas p. t. in finite nuclei<br />

t<br />

3 H<br />

e<br />

Li<br />

T<br />

T c<br />

T*<br />

0<br />

G<br />

HR<br />

L-G<br />

C<br />

L-G<br />

coexistence<br />

2d<br />

0.5<br />

slow expansion<br />

1<br />

t SI


<strong>Nuclear</strong> caloric curve<br />

Predicted in 1985 within the SMM<br />

Bondorf, Donangelo, Mishustin, Schulz<br />

NPA 444 (1985) 460<br />

Experimental discovery<br />

Pochodzalla and ALADIN collaboration,<br />

PRL 75 (1995) 1040


Part 2.1: Propagation of heavy ions<br />

through extended media


Bragg discovery in 1904<br />

�W.H. Bragg, R. Kleeman, On the ionization curves of radium,<br />

Philosophical Magazine, S.6, 8 (1904) 726.<br />

� W.H. Bragg, R. Kleeman, On the alpha particles of radium, and<br />

their loss of range in passing through various a<strong>to</strong>ms and molecules.<br />

Philosophical Magazine, S.6, 10 (1905) 318.<br />

Sir William Henry Bragg<br />

(1862 – 1942)<br />

1915 Nobel Prize in Physics<br />

Experiments with 7.7 MeV α-particles in H, Al, Cu, Ag, Sn, Pt, Au and compounds<br />

Maximum energy deposition at the end of particle’s range in the medium!<br />

This remarkable property can be used <strong>to</strong> destroy deeply-sitting tumours.


Comparison of different beams


Ions can deliver significant fraction of<br />

energy <strong>to</strong> deeply-sitting tumour in brain ...<br />

12 C beam


...while sparing healthy tissues<br />

12 C beam<br />

and organs at risk


Ion-beam cancer therapy short his<strong>to</strong>ry<br />

�Pro<strong>to</strong>n beams are in clinical use since 1954<br />

�Heavy-ion beams were first tried in Berkeley (1975).<br />

�Since 1997 12 C beams are successfully used at GSI Prof. Kraft)<br />

�Two hospitals using HI beams are operating in Japan (Chiba<br />

and Hyogo), one is under construction in Italy (Pavia)<br />

�A new center in Heidelberg just started treatment with p, 3 He,<br />

12 C and 16 O beams- about 1000 partients/year, 18 k€/patient<br />

GSI, Darmstadt<br />

HIMAC, Chiba<br />

Heidelberg


12 C<br />

12<br />

C<br />

Main processes <strong>to</strong> be considered:<br />

1) Ionization energy losses, Bethe-Bloch formula<br />

-dE/dx ~ Z 2 /� � ~1/E<br />

Is used for unresolved electrons with mfp


Part 2.2: Cancer therapy with<br />

heavy-ion beams


Monte Carlo for Heavy Ion Therapy (MCHIT)<br />

GEANT4-based application created at FIAS<br />

� Uses FIAS expertise in heavy-ion physics (UrQMD and SMM).<br />

� Intended for validation of GEANT4 physical models with<br />

experimental data relevant <strong>to</strong> particle therapy.<br />

� Works with simple phan<strong>to</strong>ms and beam-line elements.<br />

� Simulations are done on event-by-event basis.<br />

MCHIT@FIAS<br />

FIAS group: Walter Greiner, Igor Pshenichnov, Alexander Botvina, Lucas Burigo, and INM


12 C nuclei<br />

fragmentation<br />

in tissue-like<br />

media<br />

12 C<br />

on hydrogen<br />

H<br />

9 B<br />

12 C<br />

12 C<br />

16 O<br />

on oxygen<br />

peripheral collision<br />

16 O<br />

central collision<br />

15 O<br />

�<br />

10 C<br />

Li<br />


Violent fragmentation reactions simulated<br />

12 C<br />

with MCHIT<br />

n<br />

n<br />

p<br />

n<br />

p<br />

n<br />

�<br />

� p


MCHIT simulation: importance of nuclear<br />

fragmentation reactions<br />

100 events of 12 C @ 330 AMeV in water cube (30 cm) 3<br />

fragments and pro<strong>to</strong>ns in blue, electrons in red, yellow dots are interaction points<br />

Electromagnetic interactions<br />

only<br />

EM interactions + hadronic elastic<br />

scattering and fragmentation reactions


Importance of nuclear fragmentation<br />

reactions in dose-depth distributions<br />

only electromagnetic losses<br />

nuclear fragmentation reactions are<br />

responsible for a) reduction of the peak<br />

height and b) the tail beyond the peak<br />

insufficient <strong>to</strong> explain the<br />

shape of the Bragg peak<br />

including nuclear fragmentation


Secondary fragments: models at work<br />

Evaporation<br />

Calculations with the<br />

Wilson abrasion model<br />

Yields of pro<strong>to</strong>ns are overestimated<br />

30 <strong>to</strong> 60% of beam ions are destroyed<br />

in nuclear fragmentation reactions<br />

Yields of Li, Be and B are <strong>to</strong>o low<br />

data: E. Haettner et al., Rad. Prot. Dosim. 122 (2006)48, within ��


Secondary fragments: models at work<br />

Evaporation<br />

Fermi break-up<br />

data: E. Haettner et al., Rad. Prot. Dosim. 122 (2006)48, within ��


Secondary neutrons in 12 C therapy<br />

MCHIT: 330A MeV 12 C in water<br />

100 events, only neutrons are shown<br />

Comparison with GSI data<br />

(D. Schardt et al.)<br />

The <strong>to</strong>tal dose <strong>from</strong> neutrons is predicted at 1% of the treatment dose for<br />

typical irradiation conditions. This was confirmed by GSI measurements,<br />

K. Gunzert-Marx, New J. of Phys. 10 (2008) 075003)<br />

I. Pshenichnov, I. Mishustin, W. Greiner, Neutrons <strong>from</strong> fragmentation of light nuclei in<br />

tissue like media: a study with the GEANT4 <strong>to</strong>olkit Phys. Med. Biol. 50 (2005) 5493; Proc.<br />

Int. Conf. on <strong>Nuclear</strong> Data for Science and Technology, Nice, France, 2007


<strong>Fragmentation</strong> reactions of 12 C leading <strong>to</strong><br />

positron-emitting nuclei for therapy moni<strong>to</strong>ring<br />

� e<br />

11<br />

C<br />

�<br />

e +<br />

detec<strong>to</strong>r<br />

e -<br />

�<br />

detec<strong>to</strong>r<br />

I. Pshenichnov, A. Larionov, I. Mishustin, W. Greiner, PET moni<strong>to</strong>ring of cancer therapy with<br />

3 He and 12 C beams: a study with the GEANT4 <strong>to</strong>olkit, Phys. Med. Biol. 52 (2007) 7295<br />

I. Pshenichnov, I. Mishustin, W. Greiner, Distributions of positron-emitting nuclei in pro<strong>to</strong>n<br />

and carbon-ion therapy studied with GEANT4, Phys. Med. Biol. 51 (2006) 6099


RBE<br />

Radiation effects on bio-molecular level<br />

Th. Haberer<br />

Depth in tissue cell [mm nucleus H2O] microscopic<br />

dose<br />

distributions<br />

Th


Heidelberg Ion-Therapy (HIT) center<br />

Officially in operation since December 2009. Up <strong>to</strong>1300 patients with specific<br />

cancers of brain and prostate will be treated annually.


Part 2.3: Transmutation of radio-<br />

active waste


Description of spallation reactions<br />

Many people have contributed <strong>to</strong> the models which are used now<br />

(multi)fragmentation<br />

MCADS employs several cascade models for the fast initial stage and<br />

Evaporation/Fermi break-up/SMM for the slow de-excitation stage


Monte Carlo model for Accelera<strong>to</strong>r Driven<br />

Systems (MCADS) developed at FIAS<br />

Igor Pshenichnov, Igor Mishustin, Yury Malyshkin, Walter Greiner<br />

� Based on Geant4 <strong>to</strong>olkit<br />

(currently version 9.4 p01)<br />

� Includes secondary<br />

interactions of fast neutrons,<br />

pro<strong>to</strong>ns and fragments<br />

� Capability <strong>to</strong> visualize target<br />

volumes, his<strong>to</strong>ries of primary<br />

pro<strong>to</strong>ns and all secondary<br />

particles<br />

� Flexible scoring techniques <strong>to</strong><br />

calculate heat deposition and<br />

count outgoing particles<br />

600 MeV pro<strong>to</strong>n in uranium target,<br />

white: primary pro<strong>to</strong>n, green: neutrons,<br />

yellow: gammas


Simulations of the initial stage:<br />

fragment mass distributions<br />

Bertini cascade model<br />

Binary cascade model<br />

INCL/ABLA model<br />

of Geant4<br />

Better description of<br />

pro<strong>to</strong>n-induced<br />

fission of U reached<br />

with INCL/ABLA<br />

(A) (mb)<br />

σ<br />

(A) (mb)<br />

σ<br />

4<br />

10<br />

3<br />

10<br />

2<br />

10<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

238<br />

p (62.9 MeV) + U<br />

MCADS/BERT_HP<br />

MCADS/INCL_ABLA_HP<br />

Data Isaev et al.<br />

20 40 60 80 100 120 140 160 180 200 220 240<br />

A<br />

60 80 100 120 140 160 180<br />

A


Neutron interactions in W target<br />

all secondary<br />

interactions<br />

are considered<br />

Elastic scattering only<br />

Neutrons<br />

per<br />

pro<strong>to</strong>n<br />

Produced<br />

via<br />

(p,xn)<br />

Leaked<br />

forward N/A 0.2<br />

side-leaked N/A 4.4<br />

All interactions<br />

Neutrons<br />

per<br />

pro<strong>to</strong>n<br />

Produced<br />

via<br />

(p,xn),<br />

(n,xn)<br />

Leaked<br />

Forward N/A 0.1<br />

side-leaked N/A 6.<br />

backward N/A 2.4<br />

backward N/A 3.5<br />

<strong>to</strong>tal 8.3 7.<br />

<strong>to</strong>tal 30. 9.6<br />

In U target the number of produced neutrons is increased by a fac<strong>to</strong>r of 3!


Distribution of deposited heat<br />

Probability event-by-event<br />

10<br />

1<br />

-1<br />

10<br />

-2<br />

10<br />

p (600 MeV) + W<br />

p (600 MeV) + U<br />

MCADS/INCL_ABLA_HP<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5<br />

E /E<br />

In case of U target fission fragments contribute significantly<br />

beyond 1<br />

dep<br />

beam


Conditions in a fissile target (U)<br />

Maps of neutron flux<br />

Beam: E p=0.6 GeV,<br />

I=10 mA, Ø=70 mm<br />

Maps of heat deposition<br />

R (cm)<br />

R (cm)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2<br />

n/s/cm<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Z (cm)<br />

Total power, MW:<br />

13.751781<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Z (cm)<br />

16<br />

10<br />

15<br />

10<br />

3<br />

kW/cm<br />

10<br />

10<br />

1<br />

2<br />

-1<br />

10<br />

-2<br />

10<br />

-3<br />

10


A set-up design including fissile<br />

target and modera<strong>to</strong>r<br />

J. Galy, J. Magill, H. Van Dam, J.<br />

Valko, NIMA 485 (2002) 739<br />

With U target, neutron fluxes up <strong>to</strong> f=10 16 n/s/cm 2 can be reached.<br />

This opens a possibility of transmutation of long-lived radioactive waste,<br />

e.g. MA (Np, Am, Cm). These nuclei can be destroyed in (n,fission) process.<br />

Better data on fission cross sections are required.


� pro<strong>to</strong>n accelera<strong>to</strong>r of 600 MeV<br />

(current up <strong>to</strong> 4 mA, upgrade 20mA)<br />

● spallation target<br />

MYRRHAproject<br />

(Multi-purpose hybrid research reac<strong>to</strong>r for high-tech application)<br />

● multiplying core with MOX fuel,<br />

cooled by liquid Pb-Bi.<br />

●1 BEuro-scale European project<br />

Spallation target


Conclusions<br />

�Advanced basic research often leads <strong>to</strong> applications<br />

which are not anticipated in the beginning of studies<br />

� <strong>Nuclear</strong> fragmentation reactions play an important<br />

role in the medical and industrial applications.<br />

�Significant improvements in theoretical modeling and<br />

new experimental data are still needed for better<br />

understanding of nuclear break-up processes


Simulations of the initial stage:<br />

fragment mass distributions<br />

Bertini cascade model<br />

Binary cascade model<br />

INCL/ABLA model<br />

of Geant4<br />

Better description of<br />

pro<strong>to</strong>n-induced<br />

fission of U with<br />

INCL/ABLA model


Ionenquellen<br />

Injek<strong>to</strong>r<br />

Synchrotron<br />

HEST+Gantry<br />

Bestrahlung<br />

Schematic view of HIT facility


Gantry<br />

Heidelberg Ion-Therapy Center<br />

Injec<strong>to</strong>r<br />

Synchrotron

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!