01.06.2013 Views

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

saddle point shapes of nuclei - Frankfurt Institute for Advanced Studies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SADDLE POINT SHAPES OF NUCLEI<br />

Poenaru, Gherghescu, W. Greiner,Complex fission phenomena, Nucl. Phys. A 747 (2005) 182.<br />

Poenaru, W. Greiner, De<strong>for</strong>mation energy minima at finite mass asymmetry, EPL 64 (2003) 164<br />

Poenaru, W. Greiner, Nagame, Gherghescu, Nuclear <strong>shapes</strong> in fission phenomena, J. Nucl.<br />

Radiochem. Sci. Japan 3 (2002) 43<br />

Dorin Poenaru


OUTLINE<br />

• Nuclear <strong>shapes</strong> and mass asymmetry<br />

• Equilibrium and scission configurations<br />

• Examples <strong>of</strong> <strong>shapes</strong> (given<br />

parametrization)<br />

• David L. Hill’s method<br />

• Integro-differential equation (no param.)<br />

• Phenomenological shell effects<br />

• Fission into 2, 3, and 4 fragments<br />

• Experimental attempts<br />

• Conclusions<br />

Dorin Poenaru


SCIENTISTS and INSTITUTES<br />

NSTITUTES<br />

Walter GREINER, FIAS<br />

Joseph H. HAMILTON, DPA<br />

Yuichiro NAGAME, ASRC<br />

FIAS = <strong>Frankfurt</strong> <strong>Institute</strong> <strong>for</strong> <strong>Advanced</strong> <strong>Studies</strong>, J. W. Goethe University,<br />

<strong>Frankfurt</strong> am Main, http://www.fias.uni-frankfurt.de<br />

DPA = Department <strong>of</strong> Physics & Astronomy, Vanderbilt<br />

University, Nashville, TN, USA, http://www.vanderbilt.edu<br />

IFIN-HH = H. Hulubei National <strong>Institute</strong> <strong>of</strong> Physics & Nuclear Engineering,<br />

Bucharest, http://www.theory.nipne.ro<br />

ASRC = <strong>Advanced</strong> Science Research Center, Japan Atomic Energy Research<br />

<strong>Institute</strong>, Tokai, http://asr.tokai.jaeri.go.jp<br />

Dorin Poenaru<br />

Akunuri V. RAMAYYA, DPA<br />

Radu A. GHERGHESCU, IFIN-HH IFIN HH<br />

Dorin N. POENARU, IFIN-HH IFIN HH


HYSTORICAL MILE-STONES<br />

MILE STONES<br />

• 1929 Fine structure in α−decay<br />

• 1939 Induced fission<br />

• 1940 Spontaneous fission<br />

• 1946 Ternary (particle-accomp.) fission<br />

• 1980 Prediction <strong>of</strong> cluster Radioactivity<br />

• 1981 Cold binary fission<br />

• 1984 cR experimentally confirmed<br />

• 1998 Cold α and Be accompanied fission<br />

Dorin Poenaru


FISSION FRAGMENT MASS ASYMMETRY<br />

Symmetry <strong>for</strong> some<br />

Fm, Md, No<br />

isotopes when the<br />

most probable<br />

fragments are very<br />

close to the doubly<br />

magic 132 Sn<br />

Dorin Poenaru


EQUILIBRIUM QUILIBRIUM CONFIGURATIONS<br />

Nuclear gs de<strong>for</strong>mation and fission fragment<br />

mass asymetry are not explained within LDM.<br />

One should add shell corrections to calculate<br />

Potential Energy Surfaces, PES eg<br />

Equilibrium: ∂E<br />

∂E<br />

∂q<br />

1<br />

=<br />

∂q<br />

= 0<br />

• Minima (ground state, shape isomer)<br />

• Sadde-<strong>point</strong>s: maxima on fission valley<br />

2<br />

2<br />

(min.)<br />

∂ E ∂ E<br />

∂E<br />

∂q<br />

1<br />

∂E<br />

=<br />

∂q<br />

2<br />

= 0<br />

2<br />

Dorin Poenaru<br />

2<br />

∂q1<br />

2<br />

∂ E<br />

∂q<br />

∂q<br />

2<br />

1<br />

∂q1∂q<br />

2<br />

∂ E<br />

∂q<br />

E =<br />

2<br />

2<br />

2<br />

( 1, 2)<br />

q q E<br />

< 0


G STATE, VALLEYS, SADDLE POINTS<br />

Dorin Poenaru


POTENTIAL ENERGY SURFACE <strong>of</strong> 264Fm<br />

Symmetrical mass<br />

distributions<br />

GS=ground state<br />

SI=shape isomer<br />

SP1=<strong>saddle</strong> <strong>point</strong><br />

SP2=<strong>saddle</strong> <strong>point</strong><br />

— Fission valley<br />

at η = 0<br />

Dorin Poenaru<br />

264 Fm


TWO PATHS FROM SADDLE TO SCISSION<br />

Y. Nagame et al.<br />

J. Radioanalyt. and Nucl.<br />

Chemistry 239 (1999)<br />

97.<br />

Dorin Poenaru


THREE HREE DECAY MODES OF 234 234U LIGHT FRAGM.<br />

α<br />

28 Mg<br />

100 Zr<br />

SHAPES ALONG FISS. PATH<br />

Dorin Poenaru


252 Cf<br />

Cf 146 146Ba Ba + 96 96Sr Sr + 10 10Be Be<br />

Given parametrization and fission path<br />

Dorin Poenaru


GIVEN PARAMETRIZATION<br />

Möller, Madland, Sierk & Iwamoto, Nature 409 (2001)<br />

5 dimensional shape coordinates<br />

Dorin Poenaru


∇v r<br />

DAVID HILL’S HILL METHOD (I)<br />

Thesis (Princeton 1951) – large amplitude motion<br />

<strong>of</strong> an incompressible fluid with irrotational flow<br />

=<br />

0,<br />

∇ × v r<br />

mass density µ under bulk <strong>for</strong>ce<br />

=<br />

0<br />

<strong>of</strong> electrostatic nature and a pressure distr. p 1<br />

r<br />

dv<br />

r<br />

µ = χ − ∇ p<br />

dt<br />

1<br />

H µ<br />

2<br />

1<br />

≅<br />

Dorin Poenaru<br />

−∇<br />

p<br />

r<br />

F = −∇U<br />

∇<br />

2<br />

H = 0<br />

2<br />

= U + p1<br />

+ v p( z ) = U ( z ) + σΚ(<br />

z )<br />

Pseudopressure p, surf. tens. σ, and curvature K


DAVID HILL’S HILL METHOD (II)<br />

D.L. Hill: The Dynamics<br />

<strong>of</strong> Nuclear Fission,<br />

Proc. <strong>of</strong> the 2 nd United<br />

Nations International<br />

Conference on the<br />

Peaceful Uses <strong>of</strong> Atomic<br />

Energy, Vol. 15,Geneva,<br />

1958<br />

Dorin Poenaru


STATIC PATH ON PES<br />

Dorin Poenaru


STATIC PATH ON CONTOUR PLOT<br />

Dorin Poenaru


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (I)<br />

Κ(<br />

z ) =<br />

1<br />

ℜ<br />

a<br />

+<br />

1<br />

ℜ<br />

b<br />

=<br />

1<br />

ρ(<br />

1 + ρ'<br />

Dorin Poenaru<br />

2<br />

)<br />

1 / 2<br />

−<br />

ρ'<br />

'<br />

2<br />

( 1 + ρ'<br />

ρ = ρ (z) is the surface equation (cylindrical symm.)<br />

minimizing the de<strong>for</strong>mation energy<br />

E def<br />

LDM<br />

s C<br />

( α ) = E + δE<br />

= E + E + δE<br />

with constraints: const. de<strong>for</strong>mation α and<br />

α =<br />

z +<br />

c<br />

L<br />

z<br />

c<br />

R<br />

mass asymmetry η<br />

η<br />

=<br />

A1<br />

− A2<br />

A + A<br />

1<br />

2<br />

)<br />

3 / 2


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (II)<br />

The pressure at the surface<br />

r r<br />

ρ ( r ) + 2σΚ<br />

( r )<br />

eV<br />

s<br />

is in equilibrium. V s is the electrostatic potential<br />

ρ e is the charge density<br />

2<br />

ρρ'<br />

' −ρ' −[<br />

λ + λ z + ℑ(<br />

ρ,<br />

z )] ρ(<br />

1 + ρ'<br />

1<br />

2<br />

2<br />

)<br />

3 / 2<br />

ℑ = 10 XVs<br />

( z , ρ)<br />

Lagrange multipliers λ1,2 −1<br />

= 0<br />

X = fissility V s is expressed by a double integral<br />

Conditions<br />

ρ ( z1<br />

) = ρ(<br />

z 2 ) = 0<br />

dρ( z1<br />

, 2 )<br />

= ±∞<br />

Dorin Poenaru dz


INTEGRO-DIFFERENTIAL INTEGRO DIFFERENTIAL EQUATION (III)<br />

z 1,2 are the intercepts with z axis at the 2 tips.<br />

Symmetry: z 2 = z p = - z 1 . New function<br />

Vsd s<br />

2 2<br />

u( v)<br />

= Λ ρ [ z(<br />

v)];<br />

( v)<br />

= z −v<br />

/ Λ<br />

Dorin Poenaru<br />

z p<br />

1 2<br />

u'' = 2 + [ u'<br />

+ ( v − d + Vsd<br />

)( 4u<br />

+ u'<br />

u<br />

5X<br />

= V<br />

2Λ<br />

− a −vb;<br />

2<br />

)<br />

3/<br />

2<br />

u ( 0)<br />

= u'(<br />

vpn)<br />

= 0;<br />

u '( 0)<br />

= 1/<br />

d;<br />

d and n are input parameters related to elongation<br />

& number <strong>of</strong> necks. Runge-Kutta numerical meth.<br />

]


REFLECTION ASYMMETRICAL SHAPES<br />

Equations <strong>for</strong> left hand side (L) and right h.s. (R).<br />

Matching ρ L(0) = ρ R(0)<br />

2π<br />

M L = ( 1+<br />

η)<br />

= πΛ<br />

3<br />

−3<br />

L<br />

And similarly <strong>for</strong> right hand side.<br />

∫<br />

vp<br />

0<br />

n ≠<br />

u<br />

L<br />

,<br />

Alternatively: and continuity <strong>of</strong> ρ’’(0)<br />

L<br />

1/<br />

2<br />

L<br />

n<br />

R<br />

1/<br />

2<br />

L<br />

Dorin Poenaru<br />

u ( v ) / Λ = u ( v ) / Λ<br />

( v)<br />

dv;<br />

( d −v<br />

) u ( v ) = ( d − v<br />

L<br />

pL<br />

pL<br />

R<br />

p<br />

L<br />

1/<br />

2<br />

R<br />

⎧3<br />

Λ 0 = ⎨ ∫ 2 0 ⎩<br />

p v<br />

L u<br />

pR<br />

) u<br />

1/<br />

2<br />

R<br />

( v<br />

pR<br />

)<br />

L<br />

p<br />

R<br />

⎫<br />

( v)<br />

dv⎬<br />

⎭<br />

1/<br />

3


DEFORMATION ENERGY<br />

Liquid Drop Model (LDM)<br />

E<br />

LDM<br />

X =<br />

0<br />

= E − E<br />

0<br />

0<br />

= Es<br />

( Bs<br />

−1)<br />

+ EC<br />

( BC<br />

0 0<br />

E /( 2E<br />

) - fissility<br />

C<br />

s<br />

De<strong>for</strong>mation dependent surface energy<br />

y(x) = surface equation with (–1,+1) intercepts on x axis<br />

Dorin Poenaru<br />

−1)<br />

0<br />

2 2/<br />

3<br />

0 2 −1/<br />

3<br />

Es = as(<br />

1−κI<br />

) A ; I = ( N − Z)<br />

/ A;<br />

EC<br />

= aCZ<br />

A<br />

B s<br />

1/<br />

2<br />

2 + 1<br />

2<br />

2<br />

d ⎡<br />

2 1 ⎛ dy ⎞ ⎤ z2<br />

− z<br />

= ∫ ⎢y<br />

+ ⎥ dx;<br />

d =<br />

2 4 ⎜<br />

dx ⎟<br />

2R<br />

−1⎢⎣<br />

⎝ ⎠ ⎥⎦<br />

0<br />

1


B c<br />

COULOMB ENERGY<br />

Assume uni<strong>for</strong>m charge density ρ0e = ρ1e = ρ2e 5 + 1 + 1<br />

5d<br />

= ∫dx∫dx' F(<br />

x,<br />

x')<br />

;<br />

F(<br />

x,<br />

x')<br />

= { yy1[(<br />

K − 2D)<br />

/ 3]<br />

•<br />

8π<br />

−1<br />

−1<br />

2 2<br />

⎡<br />

⎤<br />

2 2<br />

2 3 ⎛ dy ⎞<br />

1 dy<br />

⎢2(<br />

y + y − x − x + x − x ⎜ − ⎟<br />

1 ) ( ')<br />

( ')<br />

⎥ +<br />

⎣<br />

2 ⎝ dx'<br />

dx ⎠⎦<br />

2<br />

2<br />

⎧ 2 2 ⎡ 2 x − x'<br />

dy ⎤⎡<br />

2 x − x'<br />

dy ⎤⎫<br />

1 −1<br />

K − K'<br />

K⎨y<br />

y1<br />

/ 3+<br />

⎢y<br />

− ⎥⎢y<br />

1 − ⎥⎬}<br />

aρ<br />

; D = 2<br />

⎩ ⎣ 2 dx ⎦⎣<br />

2 dx'<br />

⎦⎭<br />

k<br />

K, K’ are complete elliptic integrals <strong>of</strong> 1st and 2nd<br />

kind. After scission E =<br />

2<br />

e Z Z / R<br />

Dorin Poenaru<br />

C<br />

∑<br />

i≠<br />

j<br />

i<br />

j<br />

ij


PHENOMENOLOGICAL SHELL CORRECTIONS<br />

Adapted after Myers & Swiatecki. Number <strong>of</strong> nucleons<br />

Ζ , N proportional to the volume.<br />

= ∑ ∑<br />

δE<br />

( δE<br />

+ δEni)<br />

= C [ s(<br />

Zi<br />

) + s(<br />

i)];<br />

i pi N<br />

i<br />

Ni are magic numbers. C=6.2 MeV, c=0.2 from fit to<br />

exp. masses and def. Variation with de<strong>for</strong>mation:<br />

C ⎧<br />

L ⎫<br />

= ⎨∑<br />

i<br />

δE<br />

[ s(<br />

Ni<br />

) + s(<br />

Zi<br />

)] ⎬<br />

2 ⎩ i<br />

Ri<br />

⎭<br />

For magic nb. δE is minimum.<br />

L i are the lengths <strong>of</strong> fragments.<br />

Dorin Poenaru<br />

s −<br />

2/<br />

3<br />

1/<br />

3<br />

( Z)<br />

= Z F(<br />

Z)<br />

cZ<br />

−<br />

5/<br />

3 5/<br />

3<br />

3 ⎡ Ni<br />

− Ni<br />

5/<br />

3 5/<br />

3⎤<br />

−1 F( n)<br />

= ⎢ ( n − Ni−1)<br />

− n + Ni−1<br />

⎥;<br />

n∈<br />

( Ni−1,<br />

Ni<br />

) is Z or N<br />

5 ⎣ Ni<br />

− Ni−1<br />


CALCULATED SHAPES <strong>for</strong> X = 0.60<br />

X = 0.60 (e.g. 170 Yb) η = 0 n L = n R = 2<br />

d L = d R = 1.40, 1.50, 1.70, 1.91(SP) input parameters<br />

α/R 0 = 1.31, 1.64, 2.10, 2.30 de<strong>for</strong>mation<br />

Dorin Poenaru


CALCULATED SHAPES <strong>for</strong> X = 0.70<br />

X = 0.70 (e.g. 204 Pb) η = 0 n L = n R = 2<br />

d L = d R = 1.40, 1.70, 2.00 , 1.55(SP) input parameters<br />

(α/R 0 ) SP = 1.82 SP de<strong>for</strong>mation<br />

Dorin Poenaru


DEFORMATION and ENERGY vs input parameter<br />

X = 0.60 (e.g. 170 Yb)<br />

and 0.70 (e.g. 204 Pb)<br />

η = 0<br />

n L = n R = 2<br />

Maximum energy at<br />

the Saddle Point<br />

Dorin Poenaru


CALCULATED SADDLE POINT SHAPES<br />

η= 0 n L = n R = 2 d L = d R = d<br />

X = 0.60, e.g. 170 Yb<br />

d=1.91 α/R 0 = 2.30<br />

X = 0.70, e.g. 204 Pb<br />

d=1.55 α/R 0 = 1.82<br />

X = 0.82, e.g. 252 Cf<br />

d=1.38 α/R 0 = 1.16<br />

Dorin Poenaru


η<br />

≠<br />

0<br />

ASYMMETRICAL SHAPES (I)<br />

Two ways to obtain: (1) n L = n R = n<br />

(1) n=2<br />

X = 0.77<br />

e.g. 238 U<br />

d R =1.4<br />

d L =1.4,<br />

1.45,<br />

1.5, 1.6<br />

n ≠<br />

(2) L R<br />

L L<br />

Dorin Poenaru<br />

n<br />

d ≠<br />

L<br />

d ≠<br />

d<br />

d<br />

L


η<br />

≠<br />

0<br />

ASYMMETRICAL SHAPES (II)<br />

(2) n L = 4, n R = 2, d L = 2.47, 2.44, 2.39<br />

X = 0.60, e.g. 170 Yb d R = 1.46, 1.43, 1.40<br />

α/R 0 = 2.06, 1.98, 1.84<br />

Dorin Poenaru


MASS ASYMMETRY AT THE 2 nd SADDLE POINT<br />

The 2 nd barrier height is<br />

lower at some finite<br />

mass asymmetry.<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (I)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry with and without shell effects.<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (II)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry <strong>for</strong> Th isotopes<br />

Dorin Poenaru


SP MINIMUM DUE TO SHELL EFFECTS (III)<br />

Binary cold fission. Saddle <strong>point</strong> energy vs mass<br />

asymmetry <strong>for</strong> U isotopes<br />

Dorin Poenaru


CONTRIBUTION OF SHELL EFFECTS<br />

Dorin Poenaru


MASS NUMBER OF THE HEAVY FRAGMENT<br />

Mass number <strong>of</strong> the heavy fragment corresponding<br />

to the minimum <strong>of</strong> the <strong>saddle</strong> <strong>point</strong> energy<br />

Nuclei X d L –d R η A 1<br />

238 U 0.769 0.04 .04988 124.93<br />

232 Th 0.754 0.06 .07517 124.72<br />

228 Th 0.758 0.08 .09512 124.84<br />

Dorin Poenaru


TERNARY FISSION (I)<br />

Binary fissility X = 0.60 e.g. 170 Yb n L = n R = 3<br />

d L = d R = 2.25, 2.80, 7.00 α/R 0 = 1.65, 2.31, 2.73<br />

Dorin Poenaru


TERNARY FISSION (II)<br />

Config. d = 7, E/E s 0 = 0.134 is not far from a<br />

true ternary fission 170 Yb 56 V + 56 V + 58 Cr,<br />

Q=83.64 MeV, (E t -Q)/ E s 0 = 0.239 <strong>for</strong> spherical<br />

<strong>shapes</strong> in touch<br />

For 170 Yb 10 Be + 80 As + 80 As<br />

Q=70.86 MeV, (E t -Q)/ E s 0 = 0.147<br />

For 170 Yb 4 He + 83 Se + 83 Se<br />

Q=87.48 MeV, (E t -Q)/ E s 0 = 0.103 — higher Q-value<br />

Dorin Poenaru<br />

and lower fission barrier


QUATERNARY FISSION<br />

Binary fissility X = 0.60 e.g. 170 Yb n L = n R = 4<br />

d L = d R = 2.3, 2.7, 4.00 α/R 0 = 2.14, 3.14, 3.23<br />

Config. d = 4, E/E s 0 = 0.214 is not far from a<br />

true quaternary fission<br />

Dorin Poenaru<br />

170Yb 42Cl+ 42Cl+ 43Ar+ 43Ar Q=53.17 MeV, (Et-Q)/ E 0<br />

s = 0.324 <strong>for</strong> touching<br />

spheres


EXPERIMENTAL ATTEMPTS<br />

• Theory: R. D. Present (Phys. Rev. 59 (1941) 466): Uranium<br />

tripartition would release about 20 MeV more energy than binary<br />

• Exp. Rosen & Hudson (1950): 235U + nth . Triple gas filled<br />

ionization chamber. Yield <strong>of</strong> 6.7 per 106 binary fission acts<br />

• Iyer & Coble (1968): 235U + He ions <strong>of</strong> intermediate energy.<br />

Also optimistic.<br />

• Schall, Heeg, Mutterer & Theobald (1987): spontaneous<br />

fission <strong>of</strong> 252Cf. Triple coincidences with detectors at 120o Pessimistic: yield under 10-8 per binary.<br />

Dorin Poenaru


CONCLUSIONS<br />

• One can obtain <strong>saddle</strong>-<strong>point</strong> <strong>shapes</strong> by solving<br />

an integro-differential equation<br />

• There is no limitation imposed by the space <strong>of</strong><br />

de<strong>for</strong>mation coordinates (no parametrization)<br />

• Fission barriers <strong>for</strong> true ternary and<br />

quaternary fission are lower than <strong>for</strong> aligned<br />

spherical fragments in touch<br />

• Mass-asymmetry in binary fission is explained<br />

by adding shell corrections to the LDM energy<br />

• Experimental confirmation <strong>of</strong> true ternary<br />

fission still needed<br />

Dorin Poenaru

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!