30.07.2015 Views

Crop Production in the East of Scotland - SASA

Crop Production in the East of Scotland - SASA

Crop Production in the East of Scotland - SASA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Crop</strong><strong>Production</strong><strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>1


AcknowledgementsThe compilers are grateful to Simon Oxley and Andy Evans <strong>of</strong> SAC, for <strong>in</strong>formation on cropprotection (Chapter 5); to Ian Anderson <strong>of</strong> RAD, John Hillman <strong>of</strong> SCRI, Donald MacKerron<strong>of</strong> SCRI, Keith Smith <strong>of</strong> <strong>the</strong> University <strong>of</strong> Ed<strong>in</strong>burgh, and Kerr Walker <strong>of</strong> SAC for read<strong>in</strong>g<strong>the</strong> f<strong>in</strong>al draft text very thoroughly at short notice; and to <strong>the</strong> Rural Affairs Department <strong>of</strong><strong>the</strong> Scottish Executive for f<strong>in</strong>ancial assistance <strong>in</strong> <strong>the</strong> pr<strong>in</strong>t<strong>in</strong>g <strong>of</strong> this booklet. The BritishGeological Survey k<strong>in</strong>dly provided <strong>the</strong> orig<strong>in</strong>al for Figure 3.1. The photographs are from<strong>the</strong> <strong>SASA</strong> collection ma<strong>in</strong>ta<strong>in</strong>ed by Sylvia Bresl<strong>in</strong>.4


PrefacePrefaceIn April 2000, I launched a discussiondocument, <strong>in</strong>vit<strong>in</strong>g all <strong>in</strong>terested parties toconsider “A Forward Strategy for ScottishAgriculture”, and to deliver <strong>the</strong>ir views tome at <strong>the</strong> Rural Affairs Department notlater than 22 September. It is clear to methat, at a time when <strong>the</strong> Scottish ruraleconomy faces such a range <strong>of</strong> threats andopportunities, it is important to evaluate all<strong>of</strong> <strong>the</strong> relevant strengths and weaknesses,and to be adventurous <strong>in</strong> explor<strong>in</strong>g possiblestrategies.I, <strong>the</strong>refore, welcome this more detailedanalysis <strong>of</strong> <strong>the</strong> cropp<strong>in</strong>g side <strong>of</strong> ScottishAgriculture, and I will be <strong>in</strong>terested toreceive a full report <strong>of</strong> <strong>the</strong> proceed<strong>in</strong>gs <strong>of</strong><strong>the</strong> scientific workshop “<strong>Crop</strong> <strong>Production</strong>under Cool Long Days” as part <strong>of</strong> <strong>the</strong>consultation.In <strong>the</strong> contexts <strong>of</strong> strategy and change, it issignificant that <strong>the</strong> workshop is to be heldat Newbattle Abbey: eight hundred yearsago, <strong>the</strong> monks <strong>of</strong> <strong>the</strong> Cistercian order, whowere probably <strong>the</strong> world leaders <strong>in</strong>agricultural technology <strong>of</strong> <strong>the</strong>ir time, first<strong>in</strong>troduced <strong>in</strong>tensive arable agriculture andlivestock production to Sou<strong>the</strong>rn <strong>Scotland</strong>.Successive abbots <strong>of</strong> Newbattle, whocontrolled much <strong>of</strong> <strong>the</strong> best land <strong>of</strong> <strong>the</strong>Lothians, brought about dramatic changes<strong>in</strong> land use whose traces survive to today.I wish you a successful and pr<strong>of</strong>itableworkshop.Ross F<strong>in</strong>nieM<strong>in</strong>ister for Rural Affairs5


6<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


Introduction1. INTRODUCTIONThe ICSC Satellite Workshop on “<strong>Crop</strong><strong>Production</strong> under Cool Long Days” atNewbattle <strong>in</strong> August 2000, was planned tostimulate discussion and study <strong>of</strong> strategiesfor <strong>the</strong> future use <strong>of</strong> such areas, tak<strong>in</strong>g <strong>the</strong><strong>East</strong> <strong>of</strong> <strong>Scotland</strong> as a case-study, and toexplore <strong>the</strong> roles crop scientists might play<strong>in</strong> <strong>the</strong>se strategies. Although this handbookwas <strong>in</strong>itially compiled to provide a contextfor <strong>the</strong> workshop, and to ensure thatdelegates could make good use <strong>of</strong> <strong>the</strong> dayvisit, it was <strong>in</strong>tended from <strong>the</strong> outset that itshould be used more widely as an<strong>in</strong>troduction to <strong>the</strong> cropp<strong>in</strong>g systems <strong>of</strong> <strong>the</strong>area.W<strong>in</strong>ter Wheat on alluvial soil (former saltmarshes),Duffus Castle, near Forres, Laich <strong>of</strong> MorayIn Nor<strong>the</strong>rn Europe, <strong>the</strong>re are substantialagricultural areas north <strong>of</strong> 55ºN which,ow<strong>in</strong>g to <strong>the</strong> warm<strong>in</strong>g <strong>in</strong>fluence <strong>of</strong> <strong>the</strong>North Atlantic Drift, experience cool (notcold) long days dur<strong>in</strong>g <strong>the</strong> grow<strong>in</strong>g season,and <strong>the</strong> absence <strong>of</strong> severe stress. Forexample, <strong>in</strong> <strong>Scotland</strong>, temperatures dur<strong>in</strong>g<strong>the</strong> grow<strong>in</strong>g season are generally below20ºC, and photoperiod exceeds 15h for atleast 5 months. These factors, and agenerally high plant health status, cancomb<strong>in</strong>e to give very high yields <strong>of</strong> adaptedspecies. Although not very extensive on aglobal scale, <strong>the</strong>se productive areas could,and should, make an important contributionto <strong>the</strong> <strong>in</strong>creased levels <strong>of</strong> crop productionwhich will be needed to support a greatly<strong>in</strong>creasedworld population <strong>in</strong> <strong>the</strong> 21stcentury. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>progressive effects <strong>of</strong> global climaticchange may have a serious impact onproductivity; and <strong>the</strong>re will, undoubtedly, bemajor changes <strong>in</strong> <strong>the</strong> conditions <strong>of</strong> regionaland world trade.The <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>: The Scope<strong>of</strong> <strong>the</strong> HandbookWe have chosen to concentrate on <strong>the</strong>near-cont<strong>in</strong>uous coastal strip from <strong>the</strong>English Border to Inverness, with alandward boundary where <strong>the</strong> mean annualra<strong>in</strong>fall exceeds 1200 mm (Francis, 1981;Figure 1.1). In 1997, this geographic areasupported 94.4% <strong>of</strong> <strong>the</strong> total arablecropp<strong>in</strong>g area <strong>of</strong> <strong>Scotland</strong>, 90.2% <strong>of</strong> <strong>the</strong>set-aside, and 46.2% <strong>of</strong> <strong>the</strong> improvedgrassland (Table 4.2). The total area <strong>of</strong> landstudied here exceeds 1 million ha. The o<strong>the</strong>reconomically-important areas <strong>of</strong> arablecropp<strong>in</strong>g <strong>in</strong> <strong>Scotland</strong> are ma<strong>in</strong>ly <strong>in</strong> Orkney,Caithness, <strong>East</strong>er Ross and Ayrshire, but<strong>the</strong>se represent a small fraction <strong>of</strong> overallproduction.Start<strong>in</strong>g from <strong>the</strong> English Border, <strong>the</strong> valley<strong>of</strong> <strong>the</strong> Tweed (<strong>the</strong> Merse) is separated from<strong>the</strong> lowlands <strong>of</strong> <strong>East</strong> Lothian by <strong>the</strong>Lammermuir Hills which reach <strong>the</strong> coastnear Dunbar. The strip <strong>of</strong> arable agriculturecont<strong>in</strong>ues through Mid- and West Lothian,with a limited extension westwards along<strong>the</strong> Midland Valley. Northwards lie <strong>the</strong>7


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Figure 1.1 The distribution <strong>of</strong> predom<strong>in</strong>ant farm types <strong>in</strong> <strong>Scotland</strong> by parish; <strong>the</strong> bestarable areas are mapped as “general cropp<strong>in</strong>g” or horticulturefrom: A Forward Strategy for Scottish Agriculture, Scottish Executive, Ed<strong>in</strong>burgh, 20008


Introduction“heartlands” <strong>of</strong> Fife, Perth and Stirl<strong>in</strong>g, withwide river valleys; here <strong>the</strong> carselands(recent estuar<strong>in</strong>e deposits, <strong>in</strong> some areasstripped <strong>of</strong> lowland peat) are a majorfeature. The coastal strip develops <strong>in</strong>to awedge through <strong>the</strong> red soils <strong>of</strong> Angus and<strong>the</strong> Mearns (K<strong>in</strong>card<strong>in</strong>e), reach<strong>in</strong>g itsnarrowest po<strong>in</strong>t around Stonehaven where<strong>the</strong> Grampian Mounta<strong>in</strong>s meet <strong>the</strong> NorthSea. North <strong>of</strong> Aberdeen, arable cropp<strong>in</strong>g isdistributed through <strong>the</strong> essentiallylivestock-produc<strong>in</strong>g areas <strong>of</strong> Banff andBuchan, where <strong>the</strong> Aberdeen Angus breed<strong>of</strong> cattle orig<strong>in</strong>ated; but <strong>the</strong>re is one lastextensive area <strong>of</strong> arable land between Elg<strong>in</strong>and Nairn (<strong>the</strong> Laich, or sheltered land, <strong>of</strong>Moray) <strong>in</strong> <strong>the</strong> ra<strong>in</strong>shadow <strong>of</strong> <strong>the</strong> mounta<strong>in</strong>s<strong>of</strong> <strong>the</strong> West and Nor<strong>the</strong>rn Highlands.As we shall see <strong>in</strong> Chapter 4, <strong>the</strong> pr<strong>in</strong>cipalproducts <strong>of</strong> Scottish arable farms are barley(for livestock feed and malt<strong>in</strong>g), wheat(pr<strong>in</strong>cipally used for <strong>the</strong> production <strong>of</strong> gra<strong>in</strong>spirits) and grass (<strong>in</strong> <strong>the</strong> form <strong>of</strong> silage orgraz<strong>in</strong>g), with significant areas <strong>of</strong> oilseedrape and potatoes (seed and ware). Thereare also small areas <strong>of</strong> specialist crops suchas s<strong>of</strong>t fruit, vegetables and oats for humanconsumption.Similar Areas Elsewhere <strong>in</strong> <strong>the</strong>WorldTo place <strong>Scotland</strong> <strong>in</strong> a global context, Table1.1 presents data from a range <strong>of</strong> o<strong>the</strong>rcountries experienc<strong>in</strong>g cool long days(boundary set at 55ºN). There are nocomparable areas <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rnhemisphere. It should be noted that cerealyields <strong>in</strong> <strong>Scotland</strong> and Fenno-Scand<strong>in</strong>aviaare well above <strong>the</strong> world mean. The figuresfor Estonia, Latvia and Lithuania are forcountries <strong>in</strong> economic transition, and areconsiderably below <strong>the</strong>ir potential.Brief History <strong>of</strong> <strong>the</strong> Agriculture<strong>of</strong> Lowland <strong>Scotland</strong>The recent history <strong>of</strong> agriculture <strong>in</strong> <strong>the</strong> UK,<strong>in</strong>clud<strong>in</strong>g <strong>Scotland</strong>, has been dom<strong>in</strong>ated by<strong>the</strong> Common Agricultural Policy <strong>of</strong> <strong>the</strong>European Union, which is evolv<strong>in</strong>g atpresent under “Agenda 2000”.Never<strong>the</strong>less, some aspects <strong>of</strong> Scottishagriculture, notably its farm structure, landtenure, rural population density and <strong>the</strong>extent <strong>of</strong> forest cover, cannot beunderstood without understand<strong>in</strong>g itsTable 1.1Mean yields <strong>of</strong> all cereals <strong>in</strong> areas experienc<strong>in</strong>g “Cool Long Days”(t/ha at 15% dm)Country 1994-96 1984-86 1974-76<strong>Scotland</strong> 6.91 6.08 3.95Norway 3.81 3.91 3.08Sweden 4.40 4.06 3.69Denmark 5.93 5.18 3.71F<strong>in</strong>land 3.48 2.97 2.58Estonia 1.76Latvia 1.85Lithuania 2.02Mean 3.77 4.44 3.40World Mean 2.82 2.55 1.87Source : United Nations, Food and Agricultural Organisation <strong>Production</strong> Yearbooks9


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>history. As this history is dist<strong>in</strong>ctlydifferent from that <strong>of</strong> o<strong>the</strong>r Europeancountries, a brief guide follows.Orig<strong>in</strong>s<strong>Scotland</strong> was entirely encased <strong>in</strong> ice up to20,000 years ago, and <strong>the</strong> land surface wasnot f<strong>in</strong>ally exposed for a fur<strong>the</strong>r 10,000years. Some important arable areas, forexample <strong>the</strong> Laich <strong>of</strong> Moray and <strong>the</strong>carselands <strong>of</strong> Perth and Stirl<strong>in</strong>g, did notfully emerge from <strong>the</strong> sea until around1,000 years ago, as a result <strong>of</strong> <strong>the</strong> slowrebound <strong>of</strong> surfaces depressed by hugeweights <strong>of</strong> ice. As no soils from previous<strong>in</strong>terglacial periods survive, virtually all <strong>of</strong><strong>the</strong> soils <strong>of</strong> <strong>Scotland</strong> date from around10,000 years ago (Chapter 3).As <strong>the</strong> climate improved, <strong>the</strong> advance <strong>of</strong>vegetation culm<strong>in</strong>ated <strong>in</strong> dense forest andscrub (vary<strong>in</strong>g proportions <strong>of</strong> birch, p<strong>in</strong>e,hazel and oak, depend<strong>in</strong>g on habitat, withalder and willows <strong>in</strong> wet areas). The earlyhunters would have had little impact on <strong>the</strong>environment but, by <strong>the</strong> start <strong>of</strong> <strong>the</strong>Second Millennium BC, a surpris<strong>in</strong>glysophisticated neolithic society (f<strong>in</strong>e goldjewellery, elaborate pottery and complexfunerary arrangements) had emerged <strong>in</strong> <strong>the</strong>lowlands <strong>of</strong> <strong>Scotland</strong>; <strong>the</strong>se people were atleast partly sedentary and partly dependentupon small-scale cropp<strong>in</strong>g <strong>of</strong> cereals andfibres, and livestock rear<strong>in</strong>g. They wereattracted by light, well-dra<strong>in</strong>ed soils,particularly <strong>in</strong> treeless areas such asOrkney but, on <strong>the</strong> ma<strong>in</strong>land, <strong>the</strong>y began<strong>the</strong> onerous work <strong>of</strong> fell<strong>in</strong>g <strong>the</strong> forest andclear<strong>in</strong>g stones and boulders. Laterneolithic/Bronze Age achievements, notablymegalithic build<strong>in</strong>g (e.g. Maes Howe) andcomplex stone circles (e.g. at Callanish),show that <strong>the</strong>re was a cont<strong>in</strong>u<strong>in</strong>g surplus <strong>of</strong>food beyond subsistence needs.Up to <strong>the</strong> medieval period, <strong>the</strong> rate <strong>of</strong>progress <strong>in</strong> clear<strong>in</strong>g <strong>the</strong> forest andcultivat<strong>in</strong>g <strong>the</strong> soil <strong>of</strong> <strong>the</strong> lowlandsdepended upon a variety <strong>of</strong> factors (e.g.slowed by cooler, wetter conditions around1,000BC; accelerated by <strong>the</strong> advent <strong>of</strong> irontools around 500BC; <strong>in</strong>terrupted by periods<strong>of</strong> warfare). By 1200AD, it is likely thatmost <strong>of</strong> <strong>the</strong> potentially-productive lowlands<strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> had been cleared <strong>of</strong>forest. The uplands also began to lose <strong>the</strong>irforest cover at that time ow<strong>in</strong>g to <strong>the</strong><strong>in</strong>tensive sheep rear<strong>in</strong>g <strong>in</strong>troduced by <strong>the</strong>monasteries; graz<strong>in</strong>g pressure and timberexploitation over <strong>the</strong> follow<strong>in</strong>g 500 yearsensured that virtually all <strong>of</strong> <strong>the</strong> nativewoodland <strong>in</strong> <strong>the</strong> study area disappeared.The areas <strong>of</strong> arable agriculture (more<strong>in</strong>tensively-cultivated <strong>in</strong>field, and outfield,with complex subdivisions to ensure fairdistribution <strong>of</strong> land among tenants),devoted to <strong>the</strong> production <strong>of</strong> barley andoats for direct human consumption, wereislands <strong>of</strong> cultivation <strong>in</strong> a wider sea <strong>of</strong>common land, which was exploited forgraz<strong>in</strong>g, fuel (wood and peat) and build<strong>in</strong>gmaterials (stone and turf). The fraction <strong>of</strong><strong>the</strong> land area that was cultivated fluctuatedaccord<strong>in</strong>g to population and climaticchanges, but, at least from <strong>the</strong> seventeenthcentury onwards, an <strong>in</strong>creas<strong>in</strong>g proportion<strong>of</strong> <strong>the</strong> uncultivated land came <strong>in</strong>tocultivation.The Basis <strong>of</strong> Land TenureFrom around 1150, <strong>the</strong> rulers <strong>of</strong> <strong>Scotland</strong><strong>in</strong>troduced a feudal system <strong>of</strong> land tenureto <strong>the</strong> lowlands <strong>of</strong> <strong>Scotland</strong>, although moredist<strong>in</strong>ctly Celtic or Nordic arrangements didsurvive much longer <strong>in</strong> <strong>the</strong> West and North.In <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, as def<strong>in</strong>ed here, <strong>the</strong>changes were complete by 1250, after <strong>the</strong>military subjugation <strong>of</strong> <strong>the</strong> last Celtic rulers<strong>of</strong> Moray. Although formally styled K<strong>in</strong>g orQueen <strong>of</strong> Scots, <strong>the</strong> medieval rulers <strong>of</strong><strong>Scotland</strong> considered <strong>the</strong>mselves to beoutright owners <strong>of</strong> all <strong>of</strong> its land. Theconcept <strong>of</strong> feudal tenure was imposed onEngland by <strong>the</strong> <strong>in</strong>vad<strong>in</strong>g Normans (i.e. from10


IntroductionDenmark via Normandy and Brittany); itdiffused <strong>in</strong>to <strong>Scotland</strong> with <strong>the</strong> migration <strong>of</strong>Normans, <strong>in</strong>vited north by Scottish k<strong>in</strong>gswho were <strong>in</strong>tent on <strong>the</strong> Europeanisation <strong>of</strong><strong>the</strong>ir predom<strong>in</strong>antly Celtic country(<strong>in</strong>troduction <strong>of</strong> <strong>the</strong> Roman CatholicChurch; foster<strong>in</strong>g <strong>of</strong> trade and urbandevelopment; centralisation <strong>of</strong> authority).Under <strong>the</strong> evolv<strong>in</strong>g feudal system, parcels<strong>of</strong> land were granted <strong>in</strong>def<strong>in</strong>itely t<strong>of</strong>avoured <strong>in</strong>dividuals and <strong>the</strong>ir descendants,and to various <strong>in</strong>stitutions <strong>of</strong> <strong>the</strong> church.These grants were <strong>in</strong> return for acommitment to provide military support(men, arms and supplies) as required, butalso hospitality when <strong>the</strong> court or its<strong>of</strong>ficers were travell<strong>in</strong>g. Those who heldland directly from <strong>the</strong> crown <strong>in</strong> this way(<strong>the</strong> barons) were responsible for local lawand order, hold<strong>in</strong>g <strong>the</strong> power <strong>of</strong> life anddeath over <strong>the</strong> <strong>in</strong>habitants <strong>of</strong> <strong>the</strong>ir barony.The land could be repossessed by <strong>the</strong> k<strong>in</strong>gif <strong>the</strong> baron failed to perform;never<strong>the</strong>less, with <strong>the</strong> passage <strong>of</strong> time,barons came to consider <strong>the</strong>mselves asland owners, and a legal system developedto keep track <strong>of</strong> <strong>the</strong> buy<strong>in</strong>g and sell<strong>in</strong>g <strong>of</strong>land.Baronies varied enormously <strong>in</strong> size from afew hundred to many thousand hectares,and groups <strong>of</strong> baronies could be organised<strong>in</strong>to regalities held by major magnates.Normally, <strong>the</strong> baron was not actively<strong>in</strong>volved <strong>in</strong> agricultural production; hedistributed <strong>the</strong> land <strong>of</strong> <strong>the</strong> barony totenants (tackholders or tacksmen), <strong>in</strong> arange <strong>of</strong> legal arrangements, which, by <strong>the</strong>end <strong>of</strong> <strong>the</strong> seventeenth century, normally<strong>in</strong>volved a written legal contract, cover<strong>in</strong>gless than 20 years, which laid out <strong>the</strong>details <strong>of</strong> <strong>the</strong> rent to be paid (<strong>in</strong> <strong>the</strong> form <strong>of</strong>agricultural produce, pr<strong>in</strong>cipally gra<strong>in</strong>) and<strong>the</strong> services to be rendered (harvest labour,peat cutt<strong>in</strong>g, haulage, act<strong>in</strong>g asmessengers, ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> barony mill).Later, tacks <strong>in</strong>cluded options for payment <strong>in</strong>cash. The tacksman could manage <strong>the</strong>land himself or sublet to o<strong>the</strong>rs, but <strong>the</strong>considerable amount <strong>of</strong> manual labourrequired for <strong>the</strong> exist<strong>in</strong>g agricultural systemwas supplied by numerous landless cottars.This form <strong>of</strong> land distribution led toseparate nuclei <strong>of</strong> settlement occupied bysmall groups <strong>of</strong> families (fermtouns), ra<strong>the</strong>rthan larger villages, except <strong>in</strong> <strong>the</strong> Merseand <strong>East</strong> Lothian. Under <strong>the</strong> feudal system,land was a source <strong>of</strong> subsistence andlabour for <strong>the</strong> baron and, ultimately, <strong>the</strong>k<strong>in</strong>g; it was not, primarily, a source <strong>of</strong> cash<strong>in</strong>come. There was no tradition <strong>of</strong> smallscalelandownership; even <strong>the</strong> smallerlandhold<strong>in</strong>gs which were created out <strong>of</strong> <strong>the</strong>great religious baronies at <strong>the</strong> Reformationwere largely re-absorbed by larger estates<strong>in</strong> subsequent centuries.The ImprovementsMuch has been made <strong>of</strong> <strong>the</strong> very primitivestate <strong>of</strong> agriculture <strong>in</strong> <strong>Scotland</strong> before <strong>the</strong>Improvements, and <strong>the</strong> role <strong>of</strong> <strong>the</strong> Union <strong>of</strong><strong>Scotland</strong> and England (1707) <strong>in</strong> promot<strong>in</strong>gagricultural progress. Recent historicalresearch has shown that this is asimplification; <strong>the</strong> records <strong>of</strong> gra<strong>in</strong> exportsto cont<strong>in</strong>ental Europe through east coastports <strong>in</strong> <strong>the</strong> seventeenth century show thatparts <strong>of</strong> <strong>the</strong> country were already wellabove <strong>the</strong> subsistence level, andimplement<strong>in</strong>g new knowledge from <strong>the</strong>Dutch as well as from England. A run <strong>of</strong>very poor harvests immediately before 1707has served to distort <strong>the</strong> record.Never<strong>the</strong>less, start<strong>in</strong>g around 1700 <strong>in</strong> <strong>the</strong>South <strong>of</strong> <strong>Scotland</strong>, and mov<strong>in</strong>g <strong>in</strong> anirregular wave through <strong>the</strong> lowlands, an“agricultural revolution” did reach mostparts <strong>of</strong> <strong>the</strong> North-<strong>East</strong> lowlands by around1820. The rate <strong>of</strong> change accelerated after1750. This revolution was facilitated bymajor changes <strong>in</strong> <strong>the</strong> legal system, <strong>in</strong> socialorganisation, and <strong>in</strong> national politics, whichtended to alter <strong>the</strong> world view <strong>of</strong>landowners; <strong>the</strong>y changed from be<strong>in</strong>g <strong>the</strong>11


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>leader <strong>of</strong> <strong>the</strong> baronial community (<strong>in</strong>clud<strong>in</strong>g<strong>the</strong> role <strong>of</strong> dispenser <strong>of</strong> justice) to <strong>the</strong>controller <strong>of</strong> natural and human resourceswhich could be exploited for cash. TheImprovements <strong>in</strong>volved numerous changes,<strong>in</strong>clud<strong>in</strong>g:• direct <strong>in</strong>volvement <strong>of</strong> <strong>the</strong> owner or hisfactor <strong>in</strong> farm<strong>in</strong>g and farm management• reduction <strong>in</strong> <strong>the</strong> number <strong>of</strong> tenants• consolidation and rationalisation <strong>of</strong>hold<strong>in</strong>gs, and <strong>the</strong> creation <strong>of</strong> walls,fences and hedges to control livestock• division and enclosure <strong>of</strong> common land• technical advances <strong>in</strong> crop production(e.g. lim<strong>in</strong>g; <strong>in</strong>troduction <strong>of</strong> newrotations, featur<strong>in</strong>g new species such asturnips, pasture legumes and sowngrasses; improved varieties and seedquality; <strong>the</strong> change from grass-fed ox togra<strong>in</strong>-fed horse power; improvedimplements; some dra<strong>in</strong>age)• technical advances <strong>in</strong> livestockproduction, <strong>in</strong>clud<strong>in</strong>g better <strong>in</strong>tegration<strong>of</strong> crop and livestock production (e.g.improved breed<strong>in</strong>g; higher productivity;<strong>in</strong>troduction <strong>of</strong> forage crops, andconservation <strong>of</strong> grass as hay, permitt<strong>in</strong>goverw<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> greater numbers <strong>of</strong>livestock; more, and higher-qualitymanure)Subsequent major improvements <strong>in</strong> <strong>the</strong>n<strong>in</strong>eteenth century <strong>in</strong>volved underdra<strong>in</strong>age,<strong>the</strong> use <strong>of</strong> imported m<strong>in</strong>eralfertilisers such as guano, and progressivemechanisation. Ano<strong>the</strong>r importantdevelopment <strong>in</strong> <strong>the</strong> seventeenth andeighteenth centuries was <strong>the</strong> reclamation <strong>of</strong>fertile coastal areas and carselands byextensive dra<strong>in</strong>age systems and <strong>the</strong>removal <strong>of</strong> vast quantities <strong>of</strong> lowland peat.Modern TimesThe Improvements laid <strong>the</strong> foundation for<strong>the</strong> major <strong>in</strong>ter-related features <strong>of</strong> Scottishagriculture <strong>in</strong> modern times: large units (byNor<strong>the</strong>rn European standards), low ruralpopulation, <strong>in</strong>tensive production systems(but with functional connections betweencrop and livestock production), and an<strong>in</strong>dustry tuned to national and world trendsra<strong>the</strong>r than local or subsistence priorities.The consolidation and rationalisation <strong>of</strong> <strong>the</strong>land with<strong>in</strong> large estates led to <strong>the</strong> rise <strong>of</strong> aclass <strong>of</strong> major tenants, farm<strong>in</strong>g areas <strong>of</strong> <strong>the</strong>scale <strong>of</strong> 40 hectares (100 acres),occasionally more, with a substantial stonebuilthouse and stead<strong>in</strong>g. These tenantspaid cash rents and marketed <strong>the</strong>irproducts <strong>in</strong>dependently. They had security<strong>of</strong> tenure and could normally pass <strong>the</strong>tenancy to <strong>the</strong> next generation. Dur<strong>in</strong>g <strong>the</strong>twentieth century, consolidation cont<strong>in</strong>ued,and a high proportion <strong>of</strong> <strong>in</strong>dividual farmsbecame owner-occupied: at <strong>the</strong> 1998agricultural census, <strong>the</strong> mean area <strong>of</strong> cropsand grass per hold<strong>in</strong>g <strong>in</strong> <strong>the</strong> study area was68 ha (170 acres) (see Tables 1.3 and 1.4).In <strong>the</strong> course <strong>of</strong> <strong>the</strong> eighteenth centuryImprovements, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tacksmen andcottars were relegated to <strong>the</strong> status <strong>of</strong> farmservants (engaged for periods <strong>of</strong> months,and housed on <strong>the</strong> farm) or day labourers.The fermtouns were largely destroyed <strong>in</strong><strong>the</strong> process <strong>of</strong> consolidation, anddisappeared entirely from <strong>the</strong> landscape; <strong>in</strong>some areas, even <strong>the</strong>ir names have beenforgotten. They were replaced by sufficientcottages to house <strong>the</strong> labourers required by<strong>the</strong> farm. This pattern was not uniformthroughout <strong>the</strong> area. For example, <strong>in</strong> <strong>the</strong>North-<strong>East</strong>, it was common for improv<strong>in</strong>glandlords to create small hold<strong>in</strong>gs at <strong>the</strong>boundary <strong>of</strong> <strong>the</strong> <strong>in</strong>tensively-managed land;tenants were <strong>of</strong>fered generous <strong>in</strong>itial termsto <strong>in</strong>duce <strong>the</strong>m to br<strong>in</strong>g <strong>the</strong> land <strong>in</strong>tocultivation. In <strong>the</strong> n<strong>in</strong>eteenth century, <strong>the</strong>re12


Introductionwere no government policies for landredistribution, as <strong>in</strong> Denmark and Ireland,except <strong>in</strong> <strong>the</strong> cr<strong>of</strong>t<strong>in</strong>g areas <strong>of</strong> <strong>the</strong> westernseaboard, which are outside <strong>the</strong> scope <strong>of</strong>this handbook. However, <strong>the</strong> governmentdid purchase and distribute a substantialarea <strong>of</strong> land <strong>in</strong> <strong>the</strong> form <strong>of</strong> smallhold<strong>in</strong>gs(around 10 ha each) to return<strong>in</strong>gservicemen after 1918 and 1945. UnlikeNorway, <strong>the</strong> clear<strong>in</strong>g and reclamation <strong>of</strong>land did not confer “squatter’s rights” on<strong>the</strong> occupant.As a result <strong>of</strong> <strong>the</strong> Improvements andrelated changes, large numbers <strong>of</strong> displacedtacksmen and landless cottars began toleave <strong>the</strong> land early <strong>in</strong> <strong>the</strong> eighteenthcentury, and this flow <strong>in</strong>creased sharplytowards <strong>the</strong> end <strong>of</strong> <strong>the</strong> century. Thus“clearances” did occur <strong>in</strong> <strong>the</strong> lowlands,before <strong>the</strong> more spectacular events <strong>in</strong> somehighland areas, but gradually and lessviolently; <strong>the</strong>y also occurred at a timewhen non-agricultural employment <strong>in</strong>lowland areas was expand<strong>in</strong>g at <strong>the</strong>beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> “<strong>in</strong>dustrial revolution”(notably handloom weav<strong>in</strong>g, succeeded bymechanised textile <strong>in</strong>dustries, m<strong>in</strong><strong>in</strong>g andiron production). The early agriculturalimprovements gave higher yields andreturns to <strong>the</strong> tenant and owner, although<strong>the</strong>y still relied heavily on human labour,particularly at harvest. However, asmechanisation developed, <strong>the</strong> need forlabour decl<strong>in</strong>ed. The net result was that<strong>Scotland</strong>, one <strong>of</strong> <strong>the</strong> least urbanisedcountries <strong>in</strong> 1700, had <strong>the</strong> second lowestrural population <strong>in</strong> Europe (beh<strong>in</strong>d England)by 1850, and nearly <strong>the</strong> fastest recordedrise <strong>in</strong> urban population <strong>in</strong> <strong>the</strong> n<strong>in</strong>eteenthcentury (Table 1.2). No o<strong>the</strong>r country <strong>in</strong>Europe experienced such sharpdemographic changes <strong>in</strong> <strong>the</strong> eighteenthcentury. For reference, <strong>the</strong> proportion <strong>of</strong>Table 1.2Proportion (%) <strong>of</strong> <strong>the</strong> population <strong>of</strong> European countries liv<strong>in</strong>g <strong>in</strong> townswith more than 10,000 <strong>in</strong>habitants.1600 1650 1700 1750 1800 1850<strong>Scotland</strong> 3.0 3.5 5.3 9.2 17.3 32.0Scand<strong>in</strong>avia 1.4 2.4 4.0 4.6 4.6 5.8England & Wales 5.8 8.8 13.3 16.7 20.3 40.8Ireland 0 0.9 3.4 5.0 7.0 10.2Ne<strong>the</strong>rlands 24.3 31.7 33.6 30.5 28.8 29.5Belgium 18.8 20.8 23.9 19.6 18.9 20.5Germany 4.1 4.4 4.8 5.6 5.5 10.8France 5.9 7.2 9.2 9.1 8.8 14.5Switzerland 2.5 2.2 3.3 4.6 3.7 7.7N Italy 16.6 14.3 13.6 14.2 14.3C Italy 12.5 14.2 14.3 14.5 13.6 20.3S Italy 14.9 13.5 12.2 13.8 15.3Spa<strong>in</strong> 11.4 9.5 9.0 8.6 11.1 17.3Portugal 14.1 16.6 11.5 9.1 8.7 13.2Austria-Bohemia 2.1 2.4 3.9 5.2 5.2 6.7Poland 0.4 0.7 0.5 1.0 2.5 9.3Source: de Vries, J. (1984). European Urbanisation, 1500-1850. Harvard University Press.13


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>people <strong>in</strong> <strong>Scotland</strong> liv<strong>in</strong>g <strong>in</strong> towns largerthan 10,000 <strong>in</strong>habitants was 65.5% at <strong>the</strong>1991 census.Once <strong>the</strong>se changes had started, <strong>the</strong>re wasno go<strong>in</strong>g back, and <strong>the</strong> future <strong>of</strong> Scottishagriculture could lie only <strong>in</strong> <strong>in</strong>tensification.However, <strong>the</strong> topography <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>, with <strong>the</strong> arable areas constitut<strong>in</strong>ga coastal strip, bounded <strong>in</strong>land by relativelyhigh hills, did not lend itself to “prairie”cropp<strong>in</strong>g. There are also considerableareas <strong>of</strong> “difficult soils”, ow<strong>in</strong>g to texture orwater relations, where <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> agrass crop <strong>in</strong> <strong>the</strong> rotation is necessary toma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> soil structure; and <strong>the</strong>re areproblems <strong>of</strong> slope and ston<strong>in</strong>ess. This hasensured that, <strong>in</strong> contrast to England andcont<strong>in</strong>ental Europe, mixed farm<strong>in</strong>g,<strong>in</strong>tegrated with <strong>the</strong> livestock enterprises <strong>of</strong>adjacent upland areas, has persisted up totoday <strong>in</strong> most parts <strong>of</strong> <strong>the</strong> study area.F<strong>in</strong>ally, <strong>the</strong> abrupt and fairly completechange from subsistence to commercialcropp<strong>in</strong>g <strong>in</strong> <strong>the</strong> eighteenth century, hasmeant that Scottish farmers have been <strong>in</strong>competition with those <strong>in</strong> o<strong>the</strong>r countriesever s<strong>in</strong>ce. They benefitted from <strong>the</strong><strong>in</strong>crease <strong>in</strong> demand for food from <strong>the</strong>expand<strong>in</strong>g cities and from <strong>the</strong> generalboom conditions dur<strong>in</strong>g <strong>the</strong> NapoleonicWars, and suffered from <strong>the</strong> subsequentcollapse. Over <strong>the</strong> last two centuries, with<strong>the</strong> repeal <strong>of</strong> <strong>the</strong> Corn Laws (1846) and<strong>in</strong>creas<strong>in</strong>g supplies <strong>of</strong> cheap food from <strong>the</strong>British Empire, <strong>the</strong>re has been moredepression than boom, except <strong>in</strong> <strong>the</strong> waryears <strong>of</strong> <strong>the</strong> twentieth century. Although, <strong>in</strong>general, <strong>the</strong> years under <strong>the</strong> CommonAgricultural Policy <strong>of</strong> <strong>the</strong> EC/EU have beenones <strong>of</strong> prosperity and development, <strong>the</strong>late ‘n<strong>in</strong>eties have seen a sharp fall <strong>in</strong> farm<strong>in</strong>comes, <strong>in</strong>itiated by <strong>the</strong> collapse <strong>in</strong>livestock sectors and problems associatedwith currency exchange rates (see Table1.5).One important feature <strong>of</strong> modern times hasbeen <strong>the</strong> scientific leadership generated <strong>in</strong><strong>Scotland</strong>. The first chair <strong>in</strong> agriculture <strong>in</strong><strong>the</strong> English-speak<strong>in</strong>g world was established<strong>in</strong> Ed<strong>in</strong>burgh over 200 years ago and,particularly <strong>in</strong> <strong>the</strong> twentieth century, <strong>the</strong>organisations listed <strong>in</strong> Appendix 1 havecontributed strongly to advances <strong>in</strong>agriculture, food, <strong>the</strong> environment andbiotechnology, not only for <strong>Scotland</strong> and<strong>the</strong> UK, but also on <strong>the</strong> <strong>in</strong>ternational stage.Suggested read<strong>in</strong>g for fur<strong>the</strong>r historicbackground:Dev<strong>in</strong>e T.M. (1999). The Transformation <strong>of</strong>Rural <strong>Scotland</strong>. Ed<strong>in</strong>burgh: John DonaldPublishers;Dev<strong>in</strong>e T.M. (1999). The Scottish Nation1700-2000. London: Allen Lane;Fenton A. (1976). Scottish Country Life.Ed<strong>in</strong>burgh: John Donald Publishers;Sanderson M.H.B (1982). Scottish RuralSociety <strong>in</strong> <strong>the</strong> 16th Century. Ed<strong>in</strong>burgh:John Donald Publishers;Whitt<strong>in</strong>gton G.W. & Whyte I. (1983). AnHistorical Geography <strong>of</strong> <strong>Scotland</strong>. London:Academic Press;Whyte I. (1979). Agriculture and Society <strong>in</strong>Seventeenth Century <strong>Scotland</strong>. Ed<strong>in</strong>burgh:John Donald Publishers;Wightman A. (1996). Who Owns <strong>Scotland</strong>.Ed<strong>in</strong>burgh: Canongate.Many issues <strong>in</strong> relation to land tenure andrural populations can be explored bycompar<strong>in</strong>g <strong>the</strong> experiences <strong>of</strong> <strong>the</strong>characters <strong>in</strong> Growth <strong>of</strong> <strong>the</strong> Soil (KnutHamsun) with those <strong>in</strong> Sunset Song (LewisGrassic Gibbon) and Butcher’s Broom (NeilGunn).14


IntroductionThe Pattern <strong>of</strong> Farm<strong>in</strong>g TodayTables 1.3 and 1.4 give a snapshot <strong>of</strong>farm<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, us<strong>in</strong>g datafrom <strong>the</strong> 1998 Agricultural Census (AEFD,1999a) for: Scottish Borders, Lothian, <strong>East</strong>Central, Fife, Tayside and North-<strong>East</strong><strong>Scotland</strong>. Detailed analyses <strong>of</strong> cropp<strong>in</strong>gand crop yields are presented <strong>in</strong> Chapter 4.Unlike <strong>the</strong> areas used for <strong>the</strong> calculations <strong>in</strong>chapters 2 and 4, <strong>the</strong>se census data also<strong>in</strong>corporate a substantial proportion <strong>of</strong>upland farm<strong>in</strong>g, with a greaterconcentration on livestock production andforestry.The census data confirm:• <strong>the</strong> relatively large mean arable area perhold<strong>in</strong>g;• <strong>the</strong> low (less than 4% <strong>of</strong> <strong>the</strong> agriculturalarea) but expand<strong>in</strong>g area <strong>of</strong> woodland;Table 1.3Characteristics <strong>of</strong> farms <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, 1998 (AEFD, 1999a).All data, except glasshouses, are expressed per hold<strong>in</strong>g.Area Arable area a , Total area b , Woodland c Glass-houses d , Totalha ha ha m 2 workforce bScottish Borders 94.7 110.6 15.6 7,386 3.1Lothians 81.7 81.9 10.9 56,502 3.4<strong>East</strong> Central 41.3 57.1 13.7 21,127 2.6Fife 83.0 82.3 8.8 27,270 3.2Tayside 72.0 78.0 18.6 92,766 2.8North-<strong>East</strong> 58.2 60.6 11.9 41,466 2.3a: mean over farms with arable; c: mean over farms with woodland;b: mean over all farms, exclud<strong>in</strong>g rough graz<strong>in</strong>g; d: total for area.Table 1.4 Characteristics <strong>of</strong> livestock production <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, 1998(AEFD, 1999a). All data, except total cattle and sheep, are expressedper hold<strong>in</strong>gArea Dairy Beef Total Sheep d Total Pigs e Poultry fcows a cows b cattle c sheep cScottish Borders 94.5 76.7 153,744 1476 1.482m 456 2,908Lothians 73.2 63.9 54,385 891 0.273m 1,548 16,508<strong>East</strong> Central 74.2 43.6 66,379 963 0.428m 136 10,040Fife 81.3 57.9 60,765 532 0.116m 873 23,081Tayside 82.5 54.1 129,824 937 0.816m 1,087 12,514North <strong>East</strong> 91.3 54.1 387,422 410 0.751m 1,131 3,353a: mean over dairy farms; d: mean over sheep-rear<strong>in</strong>g farms;b: mean over beef-rear<strong>in</strong>g farms; e: mean over pig-rear<strong>in</strong>g farms;c: total number for area; f: mean over poultry enterprises15


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>• <strong>the</strong> fairly limited area <strong>of</strong> <strong>in</strong>tensivehorticulture, concentrated near <strong>the</strong> cities<strong>of</strong> Ed<strong>in</strong>burgh, Dundee and Aberdeen – asare <strong>in</strong>tensive dairy, pig and poultryproduction;• <strong>the</strong> small workforce (60,148 for <strong>the</strong>whole <strong>of</strong> <strong>Scotland</strong>, equivalent to 29.3 ha<strong>of</strong> crops and grass per worker),<strong>in</strong>dicat<strong>in</strong>g a high degree <strong>of</strong><strong>in</strong>tensification and mechanisation (andefficiency <strong>in</strong> terms <strong>of</strong> output per unit <strong>of</strong>labour);• <strong>the</strong> <strong>in</strong>tegration <strong>of</strong> crop and livestockagriculture (much <strong>of</strong> <strong>the</strong> cereal producedgoes to support <strong>in</strong>tensive dairy, beef, pigand poultry production; and lowlandgrassland supports <strong>the</strong> dairy <strong>in</strong>dustry,and <strong>the</strong> fatten<strong>in</strong>g and overw<strong>in</strong>ter<strong>in</strong>g <strong>of</strong>cattle and sheep);• <strong>the</strong> large size <strong>of</strong> <strong>the</strong> units <strong>of</strong> livestockproduction (on a European scale).In spite <strong>of</strong> <strong>the</strong> high yield potential <strong>of</strong> arablecropp<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, <strong>the</strong> tradedagricultural products <strong>of</strong> <strong>the</strong> area arepredom<strong>in</strong>antly livestock and <strong>in</strong>dustrialproducts. This reality is reflected, forexample, <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> resourcesfor education and research <strong>in</strong> <strong>Scotland</strong> onanimal and veter<strong>in</strong>ary science (seeAppendix 1).The contribution <strong>of</strong> agriculture to <strong>the</strong>Scottish economy is summarised <strong>in</strong> Table1.5. The ma<strong>in</strong> features <strong>of</strong> <strong>the</strong> analysis are:• <strong>the</strong> decl<strong>in</strong><strong>in</strong>g <strong>in</strong>come from agriculture(Income <strong>in</strong> 1998 = 31% <strong>of</strong> that <strong>in</strong> 1995),ow<strong>in</strong>g to a range <strong>of</strong> factors <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>depression <strong>of</strong> prices caused by <strong>the</strong>strength <strong>of</strong> <strong>the</strong> pound and <strong>the</strong> sharpdecl<strong>in</strong>e <strong>in</strong> <strong>the</strong> livestock sector (BSE andoverproduction <strong>in</strong> <strong>the</strong> sheep/pig sectors)• <strong>the</strong> predom<strong>in</strong>ance <strong>of</strong> livestock products(63.4% <strong>of</strong> output <strong>in</strong> 1994; 60.1% <strong>in</strong> 1998)• <strong>the</strong> very small direct contribution thatagriculture (employ<strong>in</strong>g 60,000) makes to<strong>the</strong> Scottish economy (GDP = ca £60bn,employ<strong>in</strong>g 1.3m)Table 1.5The F<strong>in</strong>ancial Status <strong>of</strong> Scottish Agriculture by Sector (£m)16Output 1994 1995 1996 1997 1998Cereals 320 423 432 340 296O<strong>the</strong>r <strong>Crop</strong>s 184 284 179 133 178Horticulture 75 84 92 87 95F<strong>in</strong>ished Livestock 942 1036 1033 968 858Store Livestock 54 53 48 47 36Livestock Products 327 331 341 307 274Gross Output 2,087 2,409 2,318 2,111 1,943Gross Input a 1,054 1,091 1,177 1,124 1,095Gross Value Added b 1,033 1,318 1,142 987 848Total Income from Farm<strong>in</strong>g c 493 743 555 365 231Source: Economic Report on Scottish Agriculture. (AEFD, 1999b)a: seeds, fertilisers, feed, mach<strong>in</strong>ery etc.; c: Gross value added – fixed capital costs,b: Gross output – gross <strong>in</strong>put; subsidies, hired labour, <strong>in</strong>terest and rent.


Climate2. CLIMATEshadow effect). A “block<strong>in</strong>g” anticycloneover Scand<strong>in</strong>avia or <strong>the</strong> Bay <strong>of</strong> Biscay canpush <strong>the</strong> depressions fur<strong>the</strong>r west or north,result<strong>in</strong>g <strong>in</strong> generally drier, morecont<strong>in</strong>ental wea<strong>the</strong>r. In w<strong>in</strong>ter, climaticdifferences tend to run east-west whereas<strong>in</strong> summer <strong>the</strong>y run north-south. <strong>East</strong>-westdifferences also arise from <strong>the</strong> proximity to<strong>the</strong> coast, on <strong>the</strong> one hand, and mounta<strong>in</strong>son <strong>the</strong> o<strong>the</strong>r.August cereal harvest under optimal conditions,near North Berwick, <strong>East</strong> LothianThe climate <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> istemperate without extremes <strong>of</strong> temperatureor ra<strong>in</strong>fall but, although meteorologicalcatastrophes are rare, <strong>the</strong> success <strong>of</strong>agriculture is dom<strong>in</strong>ated by wea<strong>the</strong>r. Effectscan be direct, such as <strong>the</strong> destructive<strong>in</strong>fluence <strong>of</strong> freez<strong>in</strong>g temperatures, or<strong>in</strong>direct, through <strong>the</strong> vulnerability <strong>of</strong> wetland to compaction by heavy mach<strong>in</strong>ery. Itis common for crop yield to be <strong>in</strong>fluencedby <strong>in</strong>teractions between soil type and waterrelations, or temperature.The wea<strong>the</strong>r <strong>in</strong> <strong>Scotland</strong> is dom<strong>in</strong>ated by<strong>the</strong> particular air mass pass<strong>in</strong>g over, s<strong>in</strong>ce itlies close to <strong>the</strong> track <strong>of</strong> depressions from<strong>the</strong> North Atlantic. The prevail<strong>in</strong>g w<strong>in</strong>ds arepredom<strong>in</strong>antly from <strong>the</strong> south west,br<strong>in</strong>g<strong>in</strong>g humid air, which depositsprecipitation when forced to rise over <strong>the</strong>Western and Central Highlands, and <strong>the</strong>Sou<strong>the</strong>rn Uplands. By <strong>the</strong> time that suchairflows reach <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, much<strong>of</strong> <strong>the</strong> moisture content has been lost (ra<strong>in</strong>Francis (1981) classified <strong>the</strong> agriculturalareas <strong>of</strong> <strong>Scotland</strong> us<strong>in</strong>g mean annualra<strong>in</strong>fall, as soil water ra<strong>the</strong>r than grow<strong>in</strong>gseason length (based on temperature) is<strong>the</strong> dom<strong>in</strong>ant limit<strong>in</strong>g factor for cropp<strong>in</strong>g <strong>in</strong><strong>Scotland</strong>. He compiled tables <strong>of</strong> manymeteorological and agriculturally-relevantattributes for each area (Table 2.1).Although his calculations were based ondata from <strong>the</strong> period 1941-1970, currentfigures are broadly similar. However,variation from season to season is usuallymore important than long term averages:when decisions are be<strong>in</strong>g made aboutcapital <strong>in</strong>vestment <strong>in</strong> plant and mach<strong>in</strong>ery, abalance must be struck between <strong>the</strong> needs<strong>of</strong> <strong>the</strong> “average” season and <strong>the</strong> risksassociated with more extreme events; <strong>in</strong><strong>the</strong> shorter term, decisions on <strong>the</strong> rate andtim<strong>in</strong>g <strong>of</strong> <strong>in</strong>puts must be made <strong>in</strong> ignorance<strong>of</strong> <strong>the</strong> actual conditions to be encounteredby <strong>the</strong> crops.For land capability purposes (see Chapter3), <strong>Scotland</strong> has been mapped us<strong>in</strong>g <strong>the</strong>median value <strong>of</strong> <strong>the</strong> highest potential soilwater deficit and <strong>the</strong> lower quartile value <strong>of</strong>accumulated day-degrees above 0°C for <strong>the</strong>first six months <strong>of</strong> <strong>the</strong> year (Bibby et al.,1991; note that physiologists prefer to usedegree days). The former is really an <strong>in</strong>dex<strong>of</strong> how wet ra<strong>the</strong>r than how dry <strong>the</strong> site iswhereas <strong>the</strong> latter determ<strong>in</strong>es which cropscan be fitted <strong>in</strong>to <strong>the</strong> grow<strong>in</strong>g season17


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Table 2.1Selected climatic data for regions <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Borders Lothian Fife Angus & NE InvernessPerthshire <strong>Scotland</strong> & E RossGrow<strong>in</strong>g season (d) 215 225 225 220 210 215Mean w<strong>in</strong>ter temperature (°C) 5.1 4.3 5.0 4.5 3.7 4.7Mean summer temperature (°C) 12.0 11.2 12.0 11.7 10.7 11.4Last spr<strong>in</strong>g frost a Apr III Apr II Apr II Apr II May I Apr IIIAnnual ra<strong>in</strong>fall (mm) 813 675 825 912 888 803Mean PET b (mm) 465 500 473 440 415 443Access period c (d) 203 240 205 182 170 198First soil moisture deficit Mar I Mar I Mar I Mar I Mar II Mar IReturn to field capacity Oct II Nov II Oct II Oct II Oct II Oct IIIHighest summer SMD d (mm) 83 100 83 72 68 78Excess w<strong>in</strong>ter ra<strong>in</strong>fall (mm) e 310 195 320 395 368 303Source: Francis (1981);a I = first 10 days <strong>of</strong> <strong>the</strong> month etc.;b PET=potential evapotranspiration;c access for farm mach<strong>in</strong>ery;d SMD=soil moisture deficit;e ra<strong>in</strong>fall which must be removed by dra<strong>in</strong>age (i.e.allow<strong>in</strong>g for soil water recharge and evaporation)(based on temperature). W<strong>in</strong>ter wheat,barley, oilseed rape and potatoes aregenerally well-adapted to <strong>the</strong> climate <strong>of</strong> <strong>the</strong><strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, with pasture grassesthriv<strong>in</strong>g <strong>in</strong> <strong>the</strong> wetter parts. Adaptedspecies <strong>of</strong> coniferous and broadleaf treesgrow well, with high yield classes <strong>in</strong>favourable locations.TemperatureAnalysis <strong>of</strong> long term records shows thatair temperatures below -15ºC or above 30ºCare extremely rare. The mean annual airtemperature, as measured <strong>in</strong> standardmeteorological screens, is about 8.5ºC for<strong>the</strong> whole area, with lower temperatures<strong>in</strong>land and towards <strong>the</strong> altitud<strong>in</strong>al limit <strong>of</strong>cultivation. The range from <strong>the</strong> coldest(January) to <strong>the</strong> warmest (July) month istypically also 8.5ºC, which is slightlygreater than <strong>the</strong> mean diurnal temperaturerange <strong>of</strong> 7ºC. As <strong>the</strong> air temperature<strong>in</strong>creases on average by only 0.33ºC perday dur<strong>in</strong>g February, March and April, latefrosts and reversions to w<strong>in</strong>ter wea<strong>the</strong>r arecommon <strong>in</strong> early spr<strong>in</strong>g. In Table 2.1 <strong>the</strong>mean date <strong>of</strong> <strong>the</strong> last spr<strong>in</strong>g frost is given<strong>in</strong> months and dekads (ten day periods).The <strong>in</strong>ter-quartile range is about fourweeks, show<strong>in</strong>g <strong>the</strong> considerable variationamong grow<strong>in</strong>g seasons.Temperatures are too low to allowsuccessful commercial grow<strong>in</strong>g <strong>of</strong> maize,sunflower or soya, although <strong>in</strong> recent yearsforage maize has been grown <strong>in</strong> <strong>the</strong> slightlywarmer South-West <strong>of</strong> <strong>Scotland</strong>. For welladaptedspecies (wheat, barley, potatoes,grassland), temperatures are generally suboptimalfor growth rate (i.e.


Climateware potatoes to w<strong>in</strong>ter wheat can poseproblems if <strong>the</strong> potato harvest is late, as is<strong>of</strong>ten <strong>the</strong> case; and <strong>the</strong>re is a limited choice<strong>of</strong> crops to precede w<strong>in</strong>ter oilseed rape,which is normally drilled <strong>in</strong> August. (Theimplications <strong>of</strong> w<strong>in</strong>ter cereals for diseaseepidemiology are discussed <strong>in</strong> Chapter 5).The m<strong>in</strong>imum temperature for growth <strong>of</strong>many temperate crop species is around 0°Cbut growth rates are low below 6°C. Thegrow<strong>in</strong>g season for grassland species is,<strong>the</strong>refore, commonly def<strong>in</strong>ed as <strong>the</strong> number<strong>of</strong> days when <strong>the</strong> mean daily soiltemperature at a depth <strong>of</strong> 0.30 m is above6°C, giv<strong>in</strong>g typical values around 210 days,ris<strong>in</strong>g to 225 days <strong>in</strong> coastal parts <strong>of</strong> <strong>the</strong>Lothians (Table 2.1). Even at 6ºC,m<strong>in</strong>eralisation <strong>of</strong> nitrogen <strong>in</strong> <strong>the</strong> soil is<strong>in</strong>hibited, such that <strong>the</strong> onset <strong>of</strong> rapidgrowth is delayed <strong>in</strong> crops not supplied withfertiliser nitrogen. Mean air temperaturedecl<strong>in</strong>es by 0.6 to 1.0°C for each 100 m<strong>in</strong>crease <strong>in</strong> altitude, and, because <strong>of</strong> <strong>the</strong> lowrate <strong>of</strong> <strong>in</strong>crease <strong>in</strong> temperature with time <strong>in</strong>spr<strong>in</strong>g, <strong>the</strong> potential grow<strong>in</strong>g season falls<strong>of</strong>f rapidly with altitudeAgriculturally, <strong>the</strong> temperature <strong>of</strong> <strong>the</strong> top5 cm <strong>of</strong> soil is more important than <strong>the</strong> airtemperature, because, for example, <strong>the</strong>apical meristems <strong>of</strong> cereal and grass plantsrema<strong>in</strong> below <strong>the</strong> soil surface dur<strong>in</strong>gvegetative growth; never<strong>the</strong>less, air andsoil-surface temperatures are normally wellcorrelated(Hay, 1976, 1977; Hay et al., 1978).The temperature <strong>of</strong> soils which are<strong>in</strong>tr<strong>in</strong>sically wet (ow<strong>in</strong>g to texture, structureor dra<strong>in</strong>age), tends to lag beh<strong>in</strong>d airtemperature and <strong>the</strong> onset <strong>of</strong> rapid growthcan differ by more than a week betweenneighbour<strong>in</strong>g but contrast<strong>in</strong>g soils. In <strong>the</strong>case <strong>of</strong> grassland, this can be important for<strong>the</strong> turn<strong>in</strong>g out <strong>of</strong> livestock <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g.Raised beach soils <strong>in</strong> <strong>the</strong> Lothians weretraditionally used to grow early vegetablesbecause <strong>the</strong>ir sandy texture allowed <strong>the</strong>mto warm up quickly <strong>in</strong> spr<strong>in</strong>g, but <strong>the</strong>y werealso vulnerable to frost. Although cerealand grassland crops are resistant to <strong>the</strong>levels <strong>of</strong> freez<strong>in</strong>g stress experienced <strong>in</strong> <strong>the</strong><strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, frosts as late as 20 May(Figure 2.1) can delay <strong>the</strong> canopydevelopment <strong>of</strong> potato and sensitivevegetable crops, with consequent yieldlosses.WaterLong term average precipitation is fairlyevenly distributed throughout <strong>the</strong> year,Figure 2.1 Date <strong>of</strong> last spr<strong>in</strong>g frost (grass m<strong>in</strong>imum temperature) at threemeteorological stations <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, 1961 – 1999.19


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Figure 2.2 Mean August and September ra<strong>in</strong>fall at three meteorological stations <strong>in</strong><strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, 1961 – 1999. The curve is fitted to five-year runn<strong>in</strong>gmeans.although <strong>the</strong>re is considerable variabilityfrom year to year (Table 2.1). There is atendency towards drier wea<strong>the</strong>r <strong>in</strong> Februaryto April, and <strong>the</strong> harvest months <strong>of</strong> Augustand September can be very wet (Figure2.2). The driest areas are those on <strong>the</strong>South-<strong>East</strong> and Moray Firth coasts where<strong>the</strong> average annual ra<strong>in</strong>fall is less than600 mm. Annual precipitation <strong>in</strong>creases to<strong>the</strong> west because <strong>of</strong> an <strong>in</strong>crease <strong>in</strong> altitudeand proximity to <strong>the</strong> wetter west coast. As arule <strong>of</strong> thumb, arable agriculture is notviable when annual ra<strong>in</strong>fall exceeds1000 mm.In <strong>Scotland</strong>, ra<strong>in</strong>fall per se is not usually <strong>the</strong>limitation to agriculture but ra<strong>the</strong>r soilwater status, which depends on <strong>the</strong> balancebetween precipitation on <strong>the</strong> one hand andlosses from evapotranspiration anddra<strong>in</strong>age on <strong>the</strong> o<strong>the</strong>r. Temperature sets <strong>the</strong>potential length <strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season forall crops, as outl<strong>in</strong>ed above; however, withmechanised agriculture, <strong>the</strong> actual grow<strong>in</strong>gseason is effectively restricted to <strong>the</strong> periodwhen <strong>the</strong>re is a soil water deficit (Table 2.1),so that <strong>the</strong> soil is sufficiently strong tosupport <strong>the</strong> weight <strong>of</strong> cultivat<strong>in</strong>g, plant<strong>in</strong>gand harvest<strong>in</strong>g mach<strong>in</strong>ery without suffer<strong>in</strong>gdamage. There is very considerable <strong>in</strong>terannualvariation <strong>in</strong> soil water content,superimposed on <strong>the</strong> annual cycle. Forexample, Francis (1981) estimated that, over<strong>the</strong> years 1957-75, <strong>the</strong> first soil moisturedeficit <strong>in</strong> spr<strong>in</strong>g occurred outside <strong>the</strong> period21 February to 20 March <strong>in</strong> half <strong>of</strong> <strong>the</strong>grow<strong>in</strong>g seasons; <strong>the</strong> correspond<strong>in</strong>g rangefor autumn return to field capacity was 20October to 30 November (Hay, 1993). Thedifference between <strong>the</strong> actual and potentialgrow<strong>in</strong>g season can, <strong>of</strong> course, be reducedby <strong>the</strong> use <strong>of</strong> w<strong>in</strong>ter-sown or perennialcrops, thus reduc<strong>in</strong>g <strong>the</strong> need for traffic <strong>in</strong>spr<strong>in</strong>g.Over <strong>the</strong> twenty year period up to 1999, <strong>the</strong>cumulative ra<strong>in</strong>fall from April to July (<strong>the</strong>ma<strong>in</strong> period <strong>of</strong> crop growth) ranged from50 to 150% <strong>of</strong> <strong>the</strong> mean, such that cropestablishment could be h<strong>in</strong>dered as muchby too little as by too much soil water.August and September ra<strong>in</strong>fall (Figure 2.2),which is important for <strong>the</strong> harvest <strong>of</strong>cereals, bulk<strong>in</strong>g <strong>of</strong> ma<strong>in</strong> crop potatoes and(October) drill<strong>in</strong>g <strong>of</strong> w<strong>in</strong>ter cereals, is alsora<strong>the</strong>r variable. W<strong>in</strong>ter ra<strong>in</strong>, which<strong>in</strong>fluences <strong>the</strong> leach<strong>in</strong>g <strong>of</strong> nutrients over<strong>the</strong> w<strong>in</strong>ter period and <strong>the</strong> degree <strong>of</strong>20


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>at lower latitudes. S<strong>in</strong>ce <strong>the</strong> rate <strong>of</strong> cropdevelopment and <strong>the</strong> duration <strong>of</strong> <strong>the</strong> cropare determ<strong>in</strong>ed by temperature, but yield isdeterm<strong>in</strong>ed by <strong>the</strong> total amount <strong>of</strong><strong>in</strong>tercepted radiation (Monteith, 1981; Hay &Walker, 1989), <strong>the</strong>se conditions areconducive to high yields <strong>of</strong> adapted species(see <strong>the</strong> comparison <strong>of</strong> cereal yields <strong>in</strong>England and <strong>Scotland</strong> <strong>in</strong> Chapter 3).W<strong>in</strong>d<strong>Scotland</strong> is generally exposed to high w<strong>in</strong>ds,and <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, although partlyprotected from <strong>the</strong> prevail<strong>in</strong>g southwesterlies, is very open to <strong>the</strong> North and<strong>East</strong>, except where <strong>the</strong>re is significantshelter from <strong>the</strong> topography. The strongestw<strong>in</strong>ds are, however, <strong>in</strong> w<strong>in</strong>ter when cropsare least vulnerable. Shelterbelts are acommon feature but were planted orig<strong>in</strong>allyfor reasons vary<strong>in</strong>g from protection <strong>of</strong>stock to enhancement <strong>of</strong> <strong>the</strong> landscape,ra<strong>the</strong>r than to <strong>in</strong>crease crop growth.Indeed, <strong>the</strong> benefits and disadvantages <strong>of</strong>shelter for arable agriculture are stilldebated. For cereals, prevention <strong>of</strong> gra<strong>in</strong>loss through ear loss or gra<strong>in</strong> shedd<strong>in</strong>g; andfor both cereals and oilseed rape,resistance to lodg<strong>in</strong>g; are very importantaspects <strong>of</strong> varietal selection for exposedareas.Local ClimatesTowards <strong>the</strong> marg<strong>in</strong>s <strong>of</strong> arable agriculture,relatively small differences <strong>in</strong> local climatemake a significant difference to <strong>the</strong> viability<strong>of</strong> agricultural enterprises. The importance<strong>of</strong> aspect is not as great as it would be if<strong>the</strong> diffuse component <strong>of</strong> solar radiationwere less. However, raspberries are grownon sheltered south-fac<strong>in</strong>g slopes such asthose <strong>of</strong> Strathmore near Blairgowrie.There are local effects <strong>of</strong> ra<strong>in</strong> shadowsparticularly <strong>in</strong> <strong>the</strong> lee <strong>of</strong> <strong>the</strong> GrampianMounta<strong>in</strong>s and a narrow coastal zone istypified by significantly higher solarradiation and lower ra<strong>in</strong>fall than locationseven only 10 km fur<strong>the</strong>r from <strong>the</strong> sea.Never<strong>the</strong>less, easterly w<strong>in</strong>ds can br<strong>in</strong>gwarm air that is chilled below its dew po<strong>in</strong>tby passage over <strong>the</strong> North Sea, result<strong>in</strong>g <strong>in</strong>a coastal blanket <strong>of</strong> mist (haar) up to 15 km<strong>in</strong>land. Although it frequently disappears bymid-day, it can persist for days at a time,with a consequent delay <strong>in</strong> <strong>the</strong> warm<strong>in</strong>g up<strong>of</strong> soils <strong>in</strong> spr<strong>in</strong>g, and reduction <strong>in</strong> receipts<strong>of</strong> solar radiation. Predom<strong>in</strong>antly a spr<strong>in</strong>gphenomenon, haar can also slow <strong>the</strong> dry<strong>in</strong>g<strong>of</strong> gra<strong>in</strong> at harvest.22


3. GEOLOGY, SOILS AND LANDCAPABILITYGeology, Soils and Land CapabilityUndulat<strong>in</strong>g Class 3 arable land, formed on till andfluvioglacial material <strong>of</strong> ORS (Devonian) lavas andsediments, Lomond Hills near K<strong>in</strong>rossGeologyFor <strong>the</strong> purpose <strong>of</strong> this handbook, <strong>the</strong>geology <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> can besimplified <strong>in</strong>to three blocks: <strong>the</strong> MidlandValley, clearly demarcated from <strong>the</strong><strong>East</strong>ern Highlands by <strong>the</strong> HighlandBoundary Fault and, from <strong>the</strong> Sou<strong>the</strong>rnUplands, by <strong>the</strong> Sou<strong>the</strong>rn Upland Fault(Figure 3.1).• The Sou<strong>the</strong>rn Uplands, roll<strong>in</strong>g hills ris<strong>in</strong>gto altitudes around 600m, are relativelysimple geologically: predom<strong>in</strong>antlyshales and greywackes (metamorphosedabyssal f<strong>in</strong>e sandy sediments) <strong>of</strong> <strong>the</strong>Ordovician/Silurian (O/S) period, withsome sedimentary rocks <strong>of</strong> <strong>the</strong> Devonianand Carboniferous periods. The O/Srocks contribute little to <strong>the</strong> arable soils<strong>in</strong> Table 3.1.• The Midland Valley, is dom<strong>in</strong>ated bysandstones, calciferous sandstones,shales and limestones <strong>of</strong> <strong>the</strong>Carboniferous period (but without <strong>the</strong>thick Mounta<strong>in</strong> Limestone strata <strong>of</strong> <strong>the</strong>North <strong>of</strong> England). Between <strong>the</strong>se rocksand <strong>the</strong> Highland Boundary Fault aresandstones <strong>of</strong> <strong>the</strong> Devonian period (<strong>the</strong>“Old Red Sandstones” - ORS). There arealso very extensive <strong>in</strong>trusive andextrusive areas <strong>of</strong> igneous rocks,predom<strong>in</strong>antly basalt, notably <strong>in</strong> NorthFife, and <strong>the</strong> Lothians. Under glaciationand wea<strong>the</strong>r<strong>in</strong>g, <strong>the</strong>se rocks, and <strong>the</strong>Carboniferous rocks <strong>in</strong> particular, yieldedsoil-form<strong>in</strong>g materials <strong>of</strong> high basestatus and f<strong>in</strong>e texture. The ORS tendedto give coarser, typically dark red,materials <strong>of</strong> lower base status.• The <strong>East</strong>ern Highlands, more ruggedterra<strong>in</strong> ris<strong>in</strong>g to 1000m, are composedpredom<strong>in</strong>antly <strong>of</strong> ancient Dalradian(south) and Mo<strong>in</strong>ian (north)metamorphic rocks (various schists withgneisses, slates etc.: part <strong>of</strong> <strong>the</strong> landmass which <strong>in</strong>cluded much <strong>of</strong> N. Canada,Greenland, Norway & Sweden), withsubstantial areas <strong>of</strong> <strong>in</strong>trusive andextrusive igneous rocks (granite andgabbro). There is an important nor<strong>the</strong>rnfr<strong>in</strong>ge <strong>of</strong> ORS, which is <strong>in</strong>ternationallyfamousas a source <strong>of</strong> fossils <strong>of</strong>Devonian fish. Under glaciation andwea<strong>the</strong>r<strong>in</strong>g, <strong>the</strong> Dalradian and Mo<strong>in</strong>ianrocks yielded a great variety <strong>of</strong>predom<strong>in</strong>antly coarse and base-poor soilmaterials, but, <strong>in</strong> mixture with igneousrocks, could give base-rich materials.The last glaciation <strong>of</strong> <strong>Scotland</strong> wascomplete and extensive, leav<strong>in</strong>g deep layers23


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Figure. 3.1 Simplified geological map <strong>of</strong> <strong>Scotland</strong>Reproduced by permission <strong>of</strong> <strong>the</strong> British Geological Survey. ©2000 NERC. All rights reserved24


Geology, Soils and Land Capability<strong>of</strong> till/drift over <strong>the</strong> lowlands <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>. The orig<strong>in</strong> <strong>of</strong> <strong>the</strong> till dependsupon <strong>the</strong> direction <strong>of</strong> movement <strong>of</strong> <strong>the</strong> icesheets and glaciers. In <strong>the</strong> South <strong>of</strong><strong>Scotland</strong>, <strong>the</strong> direction <strong>of</strong> movement waspredom<strong>in</strong>antly west to east, with <strong>the</strong> resultthat much <strong>of</strong> <strong>the</strong> till cover<strong>in</strong>g <strong>the</strong> Lothians,<strong>the</strong> Merse and <strong>the</strong> sou<strong>the</strong>rn half <strong>of</strong> Fife is<strong>of</strong> Carboniferous orig<strong>in</strong>. Fur<strong>the</strong>r north, <strong>the</strong>direction was more north to south, suchthat <strong>the</strong> till cover<strong>in</strong>g Tayside (Perth andAngus) is ma<strong>in</strong>ly <strong>of</strong> ORS orig<strong>in</strong>, as shown by<strong>the</strong> dist<strong>in</strong>ct red soils <strong>of</strong> <strong>the</strong> area. There arealso significant areas where <strong>the</strong> till iscomposed <strong>of</strong> igneous material <strong>of</strong> ORS age(e.g. N. Fife). The lowlands <strong>of</strong> Banff andAberdeenshire are covered with till fromDalradian and igneous rocks carriedeastwards. There are pronounced localdifferences; for example, <strong>the</strong> fourextensive soil associations <strong>of</strong> arableAberdeenshire are formed on tills <strong>of</strong>contrast<strong>in</strong>g chemistry (Foudland: Dalradianschist; Insch: mixed till <strong>of</strong> gabbro andschist; Tarves: mixed till <strong>of</strong> acid and basicigneous rocks; Countesswells: granite till;Table 3.1), each relat<strong>in</strong>g to <strong>the</strong> “upstream”geology. F<strong>in</strong>ally, <strong>the</strong> direction <strong>of</strong> flow <strong>in</strong> <strong>the</strong>Moray Firth area was south west to nor<strong>the</strong>ast, such that <strong>the</strong> till is made up <strong>of</strong>Mo<strong>in</strong>ian schist and granite.Two o<strong>the</strong>r aspects <strong>of</strong> <strong>the</strong> glaciation <strong>of</strong> <strong>the</strong><strong>East</strong> <strong>of</strong> <strong>Scotland</strong> are important for soilformation. First, <strong>the</strong> mass <strong>of</strong> ice wasparticularly great on <strong>the</strong> Nor<strong>the</strong>rn and<strong>East</strong>ern Highlands, with <strong>the</strong> result thatfluvioglacial processes, which washed out<strong>the</strong> f<strong>in</strong>er components <strong>of</strong> <strong>the</strong> till, were veryactive and prolonged dur<strong>in</strong>g <strong>the</strong> period <strong>of</strong>deglaciation. Thus <strong>the</strong>re are moreextensive areas <strong>of</strong> fluvioglacial sands andsandy loams <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn half <strong>of</strong> <strong>the</strong>study area, and particularly <strong>in</strong> <strong>the</strong> Laich <strong>of</strong>Moray (Corby/Boyndie Soil Association;Table 3.1), than <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn half.Secondly, <strong>the</strong> weight <strong>of</strong> ice press<strong>in</strong>g onlodgement till, has tended to compress <strong>the</strong>material, with <strong>the</strong> result that most soils,even those with relatively coarse textures,have subsoils with lower hydraulicconductivities than would be predictedfrom <strong>the</strong>ir texture.SoilsThe soil types which have formed from thisvariety <strong>of</strong> parent materials over 10,000years depend upon <strong>the</strong> <strong>in</strong>teractions <strong>of</strong>several factors:• <strong>the</strong> texture <strong>of</strong> <strong>the</strong> parent material• its base status• its hydraulic conductivity• topography• annual precipitation• vegetation (mull or mor humus)which determ<strong>in</strong>e <strong>the</strong> degree and type <strong>of</strong>leach<strong>in</strong>g and/or waterlogg<strong>in</strong>g <strong>of</strong> <strong>the</strong> soilpr<strong>of</strong>ile. These processes have producedfour major arable soil types, to which mustbe added <strong>the</strong> more recent alluvial soils(Table 3.1; Figure 3.2):Brown Forest SoilKey factors lower<strong>in</strong>g <strong>the</strong> rate <strong>of</strong> leach<strong>in</strong>g,and prevent<strong>in</strong>g podzolisation orwaterlogg<strong>in</strong>g: high <strong>in</strong>itial base status,particularly with igneous components;sandy loam to loam texture; free but notexcessive dra<strong>in</strong>age; natural vegetationbroadleaf woodland with mull humus. Moreprevalent <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn half <strong>of</strong> <strong>the</strong> studyarea. (Carpow/Panbridge; Darleith; Darvel;Hobkirk; Insch; Sourhope; Tarves)Brown Forest Soil with Gley<strong>in</strong>gKey factors: high <strong>in</strong>itial base status(particularly Carboniferous till); medium to25


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>26f<strong>in</strong>e tex tu re, possibly with co m p resse d( i n d u ra ted) subsoil, lead<strong>in</strong>g to imperfe c td ra<strong>in</strong>age; low ra i nfall preve nt<strong>in</strong>g gley<strong>in</strong>g <strong>of</strong>upper horizions; natu ral ve g etation broa d l ea fwoodland with mull humus. Major soils <strong>of</strong><strong>the</strong> Lothians and Fife: pote ntially <strong>the</strong> mostfe rtile so i l s, under low annual ra i nfall, ow i n gto high ba se sta tus and high wa te r- h o l d i n gca pa c i ty). (Ba l rownie; Kilmarnock; Mount b oy ;Wi nton; Wh i teso m e)Humus Iron PodzolKey factors: low <strong>in</strong>itial base status(fluvioglacial deposits or coarseFigure 3.2 Schematic map <strong>of</strong> <strong>the</strong>major soil types <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Key:1. Humus Iron Podzols2. Brown Forest Soils,with Non-Calcareous Gleys3. Brown Forest Soils with Gley<strong>in</strong>g4. Brown Forest Soils, and BrownForest Soils with Gley<strong>in</strong>g(adapted from Coppock,1976)granite/schist till); sandy loam texturegiv<strong>in</strong>g very free dra<strong>in</strong>age; high ra<strong>in</strong>fall notnecessary; natural vegetation heath orconiferous woodland. Major soils <strong>of</strong> <strong>the</strong>North <strong>East</strong> but now effectively<strong>in</strong>dist<strong>in</strong>guishable from Brown Forest Soilsow<strong>in</strong>g to <strong>the</strong> mix<strong>in</strong>g <strong>of</strong> horizons byplough<strong>in</strong>g. (Corby/Boyndie; Countesswells;Forfar; Foudland).Non-Calcareous GleysSoils which we re wa terlogged until aro u n d1 ,000 yea rs ago or late r, now fre e l y- d ra i n i n g ,but natu ral so i l - form<strong>in</strong>g pro cesses have beena r rested by cu l t i vation. (St i r l i n g ) .A set <strong>of</strong> representative soil pr<strong>of</strong>iles ispresented <strong>in</strong> Appendix 2.Land CapabilityIn <strong>the</strong> UK, <strong>in</strong>formation on climate, soil,topography and o<strong>the</strong>r physical propertiesare comb<strong>in</strong>ed to give <strong>the</strong> Land Capability(formerly <strong>the</strong> land-use capability) <strong>of</strong> anArea (Bibby et al., 1991). Only <strong>the</strong> first four<strong>of</strong> <strong>the</strong> seven classes are suited to arableagriculture:• Class 1: Land capable <strong>of</strong> produc<strong>in</strong>g avery wide range <strong>of</strong> crops. <strong>Crop</strong>p<strong>in</strong>g ishighly flexible and <strong>in</strong>cludes <strong>the</strong> moreexact<strong>in</strong>g crops such as w<strong>in</strong>ter harvestedvegetables (cauliflowers, brusselssprouts, leeks). The level <strong>of</strong> yield isconsistently high. Soils are usually welldra<strong>in</strong>eddeep loams, sandy loams, siltyloams, or <strong>the</strong>ir related humic variants,with good reserves <strong>of</strong> moisture. Sitesare level or gently slop<strong>in</strong>g and <strong>the</strong>climate is favourable. There are no orvery m<strong>in</strong>or physical limitations affect<strong>in</strong>gagricultural use.• Class 2: Land capable <strong>of</strong> produc<strong>in</strong>g awide range <strong>of</strong> crops. <strong>Crop</strong>p<strong>in</strong>g is veryflexible and a wide range <strong>of</strong> crops can begrown though some root and w<strong>in</strong>ter


Geology, Soils and Land CapabilityTable 3.1 Major Arable Soils <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>. Map units > 200km 2 ;from Brown & Shipley, 1982; Walker et al, 1982Soil Map Extent, Pr<strong>in</strong>cipal Soil Parent Texture Prelom<strong>in</strong>antAssociation Unit km 2 Areas Material Soil TypeAlluvium 1 674 (E) River valleys, flood pla<strong>in</strong>s Freshwater alluvial Loam/sandy loam Alluvial soil437 (SE) <strong>in</strong> North <strong>East</strong> deposits over gravel*Balrownie 41 948 (E) Perth & Angus ORS Sandstone till Loam over sandy Brown forest soil271 (SE) loam/ sandy clay loam with gley<strong>in</strong>g*Carpow/Panbridge 89 129 (E) Fife & Angus Raised beaches <strong>of</strong> Sandy loam Brown forest soil86 (SE) ORS materialCorby/Boyndie 97 943 (E) Moray & North <strong>East</strong> Fluvioglacial deposits <strong>of</strong> Sandy loam/loamy Humus iron podzol3 (SE) river valleys acid schists and granite sand98 471 (E) North <strong>East</strong> river valleys Fluvioglacial terraces Coarse Humus iron podzolCountesswells 115 820 (E) Aberdeen Granite till Sandy loam Humus iron podzol*Darleith 147 138 (E) Fife & Angus Basalt till Loam Brown forest soil178 (SE)Darvel 163 36 (E) Distributed throughout, Fluvioglacial deposits <strong>of</strong> Sandy loam Brown forest soil196 (SE) south <strong>of</strong> <strong>the</strong> Tay Carboniferous materialForfar (closely 239 302 (E) Angus Fluvioglacial and colluvial Sandy loam/ loam Humus iron podzolrelated to Balrownie) 4 (SE) deposits <strong>of</strong> ORS materialFoudland 243 878 (E) Banff & Buchan Dalradian schist till Sandy loam/ loamy Humus iron podzol32 (SE) sandHobkirk 296 317 (SE) Merse ORS sandstone till Sandy loam Brown forest soilInsch 316 257 (E) Aberdeen Mixed till <strong>of</strong> gabbro and schist Sandy loam/clay loam Brown forest soilKilmarnock 331 210 (SE) <strong>East</strong> Lothian Carboniferous till Loam over clay loam or clay Brown forest soil with gley<strong>in</strong>g*Mountboy 414 214 (E) Angus Carboniferous sandstone Sandy loam/loam Brown forest soil with gley<strong>in</strong>g70 (SE) and lava till*W<strong>in</strong>ton 444 92 (E) Lothians and Fife Carboniferous till Sandy loam/loam Brown forest soil with gley<strong>in</strong>g412 (SE)445 444 (E) Lothians and Fife Carboniferous till Loam/silty clay loam Brown forest soil with gley<strong>in</strong>g1061 (SE) over sandy clay loam*Sourhope 472 405 (E) Fife ORS lava till Loam Brown forest soil324 (SE)*Stirl<strong>in</strong>g 488 216 (E) Carses <strong>of</strong> Stirl<strong>in</strong>g and Estuar<strong>in</strong>e and lacustr<strong>in</strong>e Silt loam/silty clay Non-calcareous gley261 (SE) Gowrie depositsTarves 517 629 (E) Aberdeen Mixed till <strong>of</strong> acid and basic Sandy loam/sandy Brown forest soiligneous rocksclay loamWhitesome 575 310 (SE) Merse Carboniferous and Silurian till Clay Brown forest soil with gley<strong>in</strong>g27


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>harvested crops may not be idealchoices because <strong>of</strong> difficulties <strong>in</strong>harvest<strong>in</strong>g. The level <strong>of</strong> yield is high butless consistently obta<strong>in</strong>ed than on Class 1land due to <strong>the</strong> effects <strong>of</strong> m<strong>in</strong>orlimitations affect<strong>in</strong>g cultivation, cropgrowth or harvest<strong>in</strong>g. [Indeed, cerealyields from Class 2 land can exceedthose from Class 1, ow<strong>in</strong>g to superiorwater supply] The limitations <strong>in</strong>clude,ei<strong>the</strong>r s<strong>in</strong>gly or <strong>in</strong> comb<strong>in</strong>ation, slightworkability or wetness problems, slightlyunfavourable soil structure or texture,moderate slopes or slightly unfavourableclimate. The limitations are alwaysm<strong>in</strong>or <strong>in</strong> <strong>the</strong>ir effect however and land <strong>in</strong><strong>the</strong> class is highly productive.• Class 3: Land capable <strong>of</strong> produc<strong>in</strong>g amoderate range <strong>of</strong> crops. Land <strong>in</strong> thisclass is capable <strong>of</strong> produc<strong>in</strong>g good yields<strong>of</strong> a narrow range <strong>of</strong> crops, pr<strong>in</strong>cipallycereals and grass, and/or moderateyields <strong>of</strong> a wider range <strong>in</strong>clud<strong>in</strong>gpotatoes, some vegetable crops (e.g.field beans and summer harvestedbrassicae) and oil-seed rape. The degree<strong>of</strong> variability between years will begreater than is <strong>the</strong> case for Classes 1 and2, ma<strong>in</strong>ly due to <strong>in</strong>teractions betweenclimate, soil and management factorsaffect<strong>in</strong>g <strong>the</strong> tim<strong>in</strong>g and type <strong>of</strong>cultivations, sow<strong>in</strong>g and harvest<strong>in</strong>g. Themoderate limitations require carefulmanagement and <strong>in</strong>clude wetness,restrictions to root<strong>in</strong>g depth,unfavourable structure or texture,strongly slop<strong>in</strong>g ground, slight erosion ora variable climate. The range <strong>of</strong> soiltypes with<strong>in</strong> <strong>the</strong> class is greater than forprevious classes.• Class 4: Land capable <strong>of</strong> produc<strong>in</strong>g anarrow range <strong>of</strong> crops. The land issuitable for enterprises based primarilyon grassland with short arable breaks(e.g. barley, oats, forage crops). Yields <strong>of</strong>arable crops are variable due to soil,wetness or climatic factors. Yields <strong>of</strong>grass are <strong>of</strong>ten high but difficulties <strong>of</strong>production or utilisation may beencountered. The moderately-severelevels <strong>of</strong> limitation restrict <strong>the</strong> choice <strong>of</strong>crops and demand careful management.The limitations may <strong>in</strong>clude moderatelyseverewetness, occasional damag<strong>in</strong>gfloods, shallow or very stony soils,moderately-steep gradients, erosion,moderately-severe climate or<strong>in</strong>teractions <strong>of</strong> <strong>the</strong>se which will <strong>in</strong>crease<strong>the</strong> level <strong>of</strong> farm<strong>in</strong>g risk.(Descriptions from Bibby et al., 1991, withadditional material <strong>in</strong> square brackets).It is useful to subdivide Classes 3 and 4 <strong>in</strong>to3 1 , 3 2 , 4 1 and 4 2 , to provide more precise<strong>in</strong>formation on <strong>the</strong> likely proportion <strong>of</strong>short-term grass (leys) <strong>in</strong> <strong>the</strong> rotation,which varies from: “short grass leyscommon” (3 1 ) to “primarily grassland withsome potential for o<strong>the</strong>r crops” (4 2 ).Only 0.2% (4,100 ha) <strong>of</strong> <strong>the</strong> arable land <strong>of</strong><strong>Scotland</strong> is <strong>of</strong> Class 1, located along <strong>the</strong>north west coast <strong>of</strong> <strong>East</strong> Lothian, and <strong>in</strong>one cont<strong>in</strong>uous block <strong>of</strong> 1700 ha to <strong>the</strong>north <strong>of</strong> Carnoustie <strong>in</strong> Tayside (Angus),known locally as “<strong>the</strong> golden mile”. In <strong>the</strong>Tweed Valley, <strong>the</strong> Lothians and Tayside,cont<strong>in</strong>uous areas <strong>of</strong> Class 2 land make uparound half <strong>of</strong> <strong>the</strong> arable area, and <strong>the</strong>y areassociated with substantial components <strong>of</strong>Class 3 1 . At <strong>the</strong> upper altitud<strong>in</strong>al limit <strong>of</strong><strong>the</strong>se areas, <strong>the</strong>re are large fr<strong>in</strong>ges <strong>of</strong> Class3 2 and 4 (see <strong>the</strong> maps <strong>in</strong> Brown & Shipley,1982; Walker et al., 1982). Fife and lowlandMoray are mosaics <strong>of</strong> Classes 2 to 4,reflect<strong>in</strong>g <strong>the</strong>ir more complex geologies andtopographies, whereas <strong>the</strong> potential arableland <strong>in</strong> Aberdeenshire and <strong>the</strong> Stirl<strong>in</strong>g areais predom<strong>in</strong>antly <strong>of</strong> Class 3. Over <strong>Scotland</strong>as a whole, <strong>the</strong>re are 172,000 ha <strong>of</strong> Class 228


Geology, Soils and Land Capabilityland (7.9% <strong>of</strong> <strong>the</strong> arable area); 459,000 ha<strong>of</strong> Class 3 1 (21.1%); 714,000 ha <strong>of</strong> Class 3 2(32.9%); 369,000 ha <strong>of</strong> Class 4 1 (17.0%);and 453,000 ha <strong>of</strong> Class 4 2 (20.1%). All <strong>the</strong>Class 1, and most <strong>of</strong> <strong>the</strong> Class 2 land, is <strong>in</strong><strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>.Seed potato production on Class 2 arable landformed on till <strong>of</strong> ORS sediments, and carselandsediments. Stra<strong>the</strong>arn near Perth.29


30<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


The <strong>Crop</strong>s4. THE CROPSOilseed rape and cereals, The Merse<strong>Crop</strong> RotationsBy <strong>the</strong> n<strong>in</strong>eteenth century, a wide range <strong>of</strong>local arable crop rotations had evolved;<strong>the</strong>se were designed to ma<strong>in</strong>ta<strong>in</strong> soilfertility, to control weeds and diseases, toimprove soil structure, and to generatemarketable as well as subsistence products.The classic Norfolk “four course” rotation,imported from England by <strong>the</strong> Improvers,developed <strong>in</strong>to, for example, a “six course”rotation (wheat, roots, barley, hay, oats,potatoes) on <strong>the</strong> best land <strong>of</strong> <strong>the</strong> Lothians.Simpler arable rotations were usedelsewhere and short-term grassland playeda major role on Class 3 and 4 land. With <strong>the</strong><strong>in</strong>creas<strong>in</strong>g use <strong>of</strong> <strong>in</strong>organic fertilisers andchemical methods <strong>of</strong> controll<strong>in</strong>g plant pestsand diseases, <strong>the</strong> trend <strong>in</strong> <strong>the</strong> twentiethcentury has been towards rotations <strong>of</strong>cereals only, although some o<strong>the</strong>rsequences have tended to persist (e.g.wheat after potatoes <strong>in</strong> <strong>the</strong> South <strong>East</strong> tomake use <strong>of</strong> high levels <strong>of</strong> availablepotassium and phosphorus). By <strong>the</strong> 1940s,<strong>the</strong> area <strong>of</strong> oats had begun to decl<strong>in</strong>esharply with <strong>the</strong> replacement <strong>of</strong> <strong>the</strong> horseby <strong>the</strong> tractor, and <strong>in</strong> some areas, <strong>the</strong> role<strong>of</strong> short-term grass has dim<strong>in</strong>ished to <strong>the</strong>extent that soil structure has deteriorated.However, where seed potatoes are acomponent <strong>of</strong> <strong>the</strong> cropp<strong>in</strong>g system, a break<strong>of</strong> up to eight years is still required forphytosanitary reasons. In recent years,apart from <strong>the</strong> <strong>in</strong>troduction <strong>of</strong> oilseed rape,<strong>the</strong> most marked change has been fromspr<strong>in</strong>g-sown to autumn-sown cereals, giv<strong>in</strong>ghigher yields (greater <strong>in</strong>terception <strong>of</strong> solarradiation; Hay & Walker, 1989) and bettersoil conditions at earlier harvest (seeChapter 2). This appears to have had amajor effect on farm wildlife, ow<strong>in</strong>g to <strong>the</strong>removal <strong>of</strong> <strong>the</strong> food sources associated withoverw<strong>in</strong>ter<strong>in</strong>g stubble (see susta<strong>in</strong>abilityissues <strong>in</strong> Chapter 5).The <strong>Crop</strong>s <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>The distributions <strong>of</strong> crops grown <strong>in</strong> <strong>the</strong> <strong>East</strong><strong>of</strong> <strong>Scotland</strong>, <strong>in</strong>clud<strong>in</strong>g short-term grass, for<strong>the</strong> harvest years 1988 and 1997 are shown<strong>in</strong> Table 4.1 and Figures 4.1, 4.2. These show<strong>the</strong> clear predom<strong>in</strong>ance <strong>of</strong> barley, grass leysand wheat, with no o<strong>the</strong>r crop occupy<strong>in</strong>g10% <strong>of</strong> <strong>the</strong> arable area.Comparisons between <strong>the</strong> two seasonsreveal <strong>the</strong> follow<strong>in</strong>g trends:• a small <strong>in</strong>crease <strong>in</strong> <strong>the</strong> total arable area,although this is reversed by <strong>the</strong>proportion <strong>of</strong> “set aside” (Table 4.1);• a relatively small <strong>in</strong>crease <strong>in</strong> <strong>the</strong> wheatarea (Figure 4.2) (masked <strong>in</strong> Figure 4.1 by<strong>the</strong> <strong>in</strong>crease <strong>in</strong> arable area);31


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Figure 4.1a Percentage areas <strong>of</strong> majorcrops <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, harvest1988Figure 4.1b Percentage areas <strong>of</strong> majorcrops <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, harvest1997Figure 4.2a Percentage areas <strong>of</strong> majorcrops <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> (exclud<strong>in</strong>ggrass) harvest 1988Figure 4.2b Percentage areas <strong>of</strong> majorcrops <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> (exclud<strong>in</strong>ggrass) harvest 199732• substantial decreases <strong>in</strong> <strong>the</strong> areas <strong>of</strong>barley (Figures 4.1,2), <strong>of</strong>fset by <strong>in</strong>creases<strong>in</strong> areas <strong>of</strong> grass under 5 years (now <strong>the</strong>most extensive crop), and <strong>the</strong> <strong>in</strong>clusion<strong>of</strong> “set aside” areas;• modest <strong>in</strong>creases for oilseed rape, aftera spectacular rise from zero <strong>in</strong> 1980;• <strong>the</strong> collapse <strong>of</strong> o<strong>the</strong>r alternative arablecrops (l<strong>in</strong>seed, gra<strong>in</strong> legumes) (Table 4.1)which, unlike oilseed rape, have proveddifficult to match with <strong>the</strong> Scottishclimate (Taylor & Morrice, 1991; Hay,1993) and <strong>the</strong> agribus<strong>in</strong>ess sector (seealso Appendix 4);• stability <strong>in</strong> <strong>the</strong> potato sector; and• a fall <strong>in</strong> <strong>the</strong> proportion <strong>of</strong> permanentgrass on arable farms (Table 4.1).


The <strong>Crop</strong>sTable 4.1Total areas <strong>of</strong> crops and short-term grass <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>,1988-97<strong>Crop</strong> Mean 1988-97 (ha) % change 1988-97Wheat 103,504 + 8.6Barley (spr<strong>in</strong>g and w<strong>in</strong>ter) 294,125 - 10.1Oats (spr<strong>in</strong>g and w<strong>in</strong>ter) 21,684 - 41.8Oilseed rape (spr<strong>in</strong>g and w<strong>in</strong>ter) 50,074 + 43.1L<strong>in</strong>seed 1,461 - 79.4O<strong>the</strong>r cereals 1,486 + 25.0Potatoes 25,572 + 0.2Comb<strong>in</strong>able peas and beans 4,637 - 73.3Leafy forage 7,441 - 13.3Fodder roots 18,449 - 49.5Vegetables for human consumption 10,442 + 28.3Fruit 2,588 - 28.8O<strong>the</strong>r 7,065 + 34Total crops and fallow 566,038 + 0.1Set aside 20,351 + 46.0Grass under 5 yrs 280,747 + 24.4Grass over 5 yrs 232,174 - 20.9Total crops and grass 1,078,953 + 0.7Source: AEFD (1999a) and <strong>the</strong> DAFS census data for 1988.Table 4.2 prese nts <strong>the</strong> areas <strong>of</strong> cro ps <strong>in</strong> <strong>the</strong>Ea st <strong>of</strong> <strong>Scotland</strong> <strong>in</strong> 1997 as a pro p o rtion <strong>of</strong> <strong>the</strong>Scottish total, emphasis<strong>in</strong>g <strong>the</strong> co n ce nt ra t i o n<strong>of</strong> arable agricu l tu re <strong>in</strong> <strong>the</strong> Ea st.Table 4.2Proportions <strong>of</strong> Scottish arable crops grown <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>,harvest 1997.<strong>Crop</strong> Scottish total <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> Percentage <strong>in</strong>(ha) Total (ha) <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Wheat 108,655 101,360 93.3Barley 344,105 294,293 85.5Oats 21,185 16,182 76.4O<strong>the</strong>r cereals 2,489 1,766 70.9Oilseeds and l<strong>in</strong>seed 59,855 56,950 95.1Potatoes 27,613 25,627 92.8Fodder crops 29,386 21,738 74.0Vegetables 11,701 11,422 97.6Fruit 2,408 2,241 93.1Total crops 607,397 573,495 94.4Set aside 40,175 36,237 90.2Short-term grass 1,101,926 509,578 46.2Total crops and grass 1,709,323 1,083,053 63.4Source: AEFD (1999a,b)33


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Yields and Yield PotentialCerealsThe yield <strong>of</strong> a particular crop depends upongenotype, management, season and landcapability class, and <strong>the</strong>ir <strong>in</strong>teractions. Forexample, <strong>in</strong> a survey <strong>of</strong> nearly 500 farmcrops <strong>of</strong> spr<strong>in</strong>g barley <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong> over five seasons, 1978-82 (Hay,Galashan & Russell, 1986), <strong>the</strong>re was a verywide range <strong>of</strong> farm yield from 1.2 to 7.8 tha -1 (at 15% m.c.). However, national and<strong>in</strong>ternational statistics have tended to<strong>in</strong>dicate that cereal yields on farms <strong>in</strong><strong>Scotland</strong> tend, on average, to be higher notonly than those <strong>in</strong> o<strong>the</strong>r nor<strong>the</strong>rn countries(e.g. Table 1.1) but also than <strong>in</strong> England andWales.This phenomenon was first <strong>in</strong>vestigatedexperimentally <strong>in</strong> 1976 and 1977 bycompar<strong>in</strong>g <strong>the</strong> growth and physiology <strong>of</strong>two spr<strong>in</strong>g barley varieties under <strong>the</strong> samemanagement at Cambridge (52º11’N) andPathhead near Ed<strong>in</strong>burgh (55º53’N) (Kirby& Ellis, 1980; Ellis & Kirby, 1980). Over <strong>the</strong>two contrast<strong>in</strong>g seasons (severe drought <strong>in</strong>1976), <strong>the</strong> gra<strong>in</strong> yields <strong>of</strong> <strong>the</strong> Pathheadcrops were 79% higher than at Cambridge;<strong>the</strong> differences could be expla<strong>in</strong>ed <strong>in</strong> terms<strong>of</strong> up to 64% higher ear populationdensities, up to 17% more gra<strong>in</strong>s per ear,and up to 20% higher <strong>in</strong>dividual gra<strong>in</strong>weights. It was concluded that <strong>the</strong> longerphotoperiods (more than 15 hours frommid-April to late August) and lowertemperatures at Pathhead (i.e. similarsupplies <strong>of</strong> solar radiation distributed overlonger days; Chapter 2) permitted longerdurations <strong>of</strong> each developmental phase, andlonger grow<strong>in</strong>g seasons overall. Inconsequence, more organs (tillers, ears,spikelets, florets) were <strong>in</strong>itiated and/orfewer organs aborted; and <strong>the</strong>re wasgreater <strong>in</strong>terception <strong>of</strong> solar radiation tosupport <strong>the</strong>se organs.This provided <strong>the</strong> first unequivocal supportfor <strong>the</strong> hypo<strong>the</strong>sis that <strong>the</strong> yield potential<strong>of</strong> adapted crops, such as spr<strong>in</strong>g barley, canbe higher under cool long days, although itshould be noted that not all comparisonsgive such clear results (e.g. Ellis & Brown,1986). S<strong>in</strong>ce <strong>the</strong>n, <strong>the</strong>re has been a series<strong>of</strong> experiments at different latitudes <strong>in</strong><strong>Scotland</strong>, England and France, designed to<strong>in</strong>vestigate <strong>the</strong> environmental control <strong>of</strong>development and yield <strong>in</strong> wheat (e.g. Kirbyet al., 1987; Porter et al., 1987; Delécolle etal., 1989; Hay & Delécolle, 1989). Theconcept <strong>of</strong> slow and prolongeddevelopment, with extended gra<strong>in</strong> fill<strong>in</strong>g,delayed senescence and enhanced<strong>in</strong>terception <strong>of</strong> radiation, expla<strong>in</strong>s whyMidlothan holds <strong>the</strong> world record for <strong>the</strong>yield <strong>of</strong> a field crop <strong>of</strong> wheat (as opposed tosmall plot yields) at 14 t ha -1 (Hay, 1993).A study was conducted <strong>in</strong> <strong>the</strong> early 1980s(Hay et al., 1986; Hay & Galashan, 1988) toTable 4.3The yields <strong>of</strong> cereal crops (t ha -1 at 15% m.c.) <strong>in</strong> <strong>the</strong> South <strong>East</strong><strong>of</strong> <strong>Scotland</strong>, 1978-82.Spr<strong>in</strong>g BarleyW<strong>in</strong>ter WheatAll farms 4.7 (474) n/aSpecialist arable farms 5.0± 0.06 (265) 5.9 (149)Variety trials 5.6 ± 0.21 (110) 6.4 (48)Calculated maximum potential 9.2 13.234Values are means over five seasons ± s.e. with number <strong>of</strong> farms <strong>in</strong> brackets (adapted from Hay etal., 1986).


The <strong>Crop</strong>sexam<strong>in</strong>e <strong>the</strong> extent to which farmers <strong>in</strong><strong>Scotland</strong> were exploit<strong>in</strong>g <strong>the</strong> relatively highyield potential <strong>of</strong> exist<strong>in</strong>g approvedvarieties <strong>of</strong> <strong>the</strong> major arable crops. Thedata for comparison were:• Actual farm yields from unpublisheddata <strong>in</strong> <strong>the</strong> annual Farm AccountsSurvey (a representative sampl<strong>in</strong>g <strong>of</strong> 3%<strong>of</strong> Scottish farms carried out by <strong>the</strong>Department <strong>of</strong> <strong>the</strong> Scottish Executivewhich is now called <strong>the</strong> Rural AffairsDepartment, RAD – formerly DAFS andAEFD – see Appendix 3);• Yields, under optimum conditions and avery high level <strong>of</strong> management, from <strong>the</strong>annual variety (value for cultivation anduse) trials carried out by <strong>the</strong> ScottishAgricultural College (SAC); and• Maximum potential yields for <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>, calculated us<strong>in</strong>g a standardradiation <strong>in</strong>terception model, andrepresentative dates for sow<strong>in</strong>g andharvest.The ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> <strong>the</strong>se comparisonswere:• There was very little difference betweenfarm types <strong>in</strong> <strong>the</strong> actual barley yieldsobta<strong>in</strong>ed, with specialist farmsperform<strong>in</strong>g no better than mixedenterprises (Hay et al., 1986); <strong>the</strong>difference between all farms andspecialists was ma<strong>in</strong>ly due to low yieldson Class 4 land;• On average, arable farmers achieved90% <strong>of</strong> <strong>the</strong> barley variety trial yields,even though <strong>the</strong> trial data were fromplot experiments under very <strong>in</strong>tensivemanagement (i.e. <strong>the</strong> yield levels wereeffectively <strong>in</strong>dist<strong>in</strong>guishable from <strong>the</strong>variety trial levels);• On average, farmers were achiev<strong>in</strong>g54% <strong>of</strong> <strong>the</strong> potential yield <strong>of</strong> spr<strong>in</strong>gbarley, and 45% <strong>of</strong> <strong>the</strong> potential <strong>of</strong>w<strong>in</strong>ter wheat, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>re isconsiderable scope for yieldimprovement on farms. Never<strong>the</strong>less,Table 4.4The yields <strong>of</strong> comb<strong>in</strong>able crops (t ha -1 at 15% m.c.) <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>, 1993-97 (with separation <strong>of</strong> results <strong>in</strong>to <strong>the</strong> SAC <strong>East</strong> andNorth areas)SAC Mean Highest Mean Highest Max.area farm farm variety variety Potentialtrial trialSpr<strong>in</strong>g barley E 5.5 Not det. 7.6 9.3 9.2N 4.7 ~8 7.5 8.7 8.8W<strong>in</strong>ter barley E 6.3 9.5 10.5 11.1 13.2N 5.4 8.2 8.9 10.4 12.5W<strong>in</strong>ter wheat E 8.2 10.8 11.2 12.3 13.2N 6.9 9.8 9.8 11.1 12.5Spr<strong>in</strong>g oats E 5.2 7.9 7.3 8.5 9.2N 4.4 7.1 6.9 7.2 8.8W<strong>in</strong>ter oilseed rape E 3.0 4.7 5.5 5.7 n/dN 2.1 4.1 4.8 5.635Values are means over five seasons35


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong><strong>the</strong> highest recorded farm yields were8.6 t ha –1 (93% <strong>of</strong> potential) for spr<strong>in</strong>gbarley and 10.7 t ha -1 (81%) for w<strong>in</strong>terwheat.This exercise was repeated for <strong>the</strong> harvestyears 1993-97 for this booklet, and <strong>the</strong>results are presented <strong>in</strong> Table 4.4.From <strong>the</strong>se data, <strong>the</strong> follow<strong>in</strong>g conclusionscan be drawn:• For spr<strong>in</strong>g barley, farm yields have risenslightly over 15 years (around 10%) but<strong>the</strong>re has been a very substantial<strong>in</strong>crease <strong>in</strong> variety trial yields (36%);<strong>the</strong> highest variety trial yields are nowapproach<strong>in</strong>g <strong>the</strong> yield potential;• These f<strong>in</strong>d<strong>in</strong>gs for barley can be<strong>in</strong>terpreted <strong>in</strong> terms <strong>of</strong> two factors: i)replacement <strong>of</strong> spr<strong>in</strong>g barley by w<strong>in</strong>terbarley on land <strong>of</strong> higher capability; ii)reduction <strong>in</strong> <strong>in</strong>puts on land <strong>of</strong> lowercapability (Chapter 3), so that less use ismade <strong>of</strong> <strong>the</strong> potential yield <strong>of</strong> new spr<strong>in</strong>gbarley varieties; it should also be notedthat farm yields might have beenexpected to rise more steeply with <strong>the</strong>replacement <strong>of</strong> <strong>the</strong> “aged” malt<strong>in</strong>gvariety Golden Promise by newervarieties (many also <strong>of</strong> malt<strong>in</strong>g potential)<strong>of</strong> much higher yield potential;• Farm yield <strong>of</strong> w<strong>in</strong>ter barley was 0.7-0.8 tha -1 higher than that <strong>of</strong> spr<strong>in</strong>g barley,whereas <strong>the</strong> variety trials <strong>in</strong>dicated anadvantage <strong>of</strong> 1.4-2.9 t ha -1 .With <strong>the</strong> limited amount <strong>of</strong> available data, itis not yet possible to evaluate oilseed rape<strong>in</strong> <strong>the</strong> same way, although farm yields doappear to be relatively low compared withvariety trial data.The <strong>in</strong>puts required to achieve <strong>the</strong> yields <strong>in</strong>Tables 4.3 and 4.4 are considered <strong>in</strong> detail<strong>in</strong> Chapter 5.PotatoesParallel studies <strong>of</strong> <strong>the</strong> actual and potentialyield <strong>of</strong> potato crops <strong>in</strong> <strong>Scotland</strong> (Hay &Galashan, 1989) were less conclusivebecause <strong>of</strong> <strong>the</strong> many technical obstacles,<strong>in</strong>clud<strong>in</strong>g: estimation <strong>of</strong> field leav<strong>in</strong>gs andlosses <strong>in</strong> store and handl<strong>in</strong>g; less precisefarm records; variation <strong>in</strong> <strong>the</strong> dry mattercontent <strong>of</strong> tubers; <strong>the</strong> aggregation <strong>of</strong>statistics for early, seed, ware, andcomb<strong>in</strong>ed enterprises; variation <strong>in</strong> <strong>the</strong>m<strong>in</strong>imum size <strong>of</strong> harvested tubers etc.Provisional conclusions for <strong>the</strong> period 1978-• For w<strong>in</strong>ter wheat, which is grown on land<strong>of</strong> high capability, <strong>the</strong> developments <strong>of</strong>15 years have resulted <strong>in</strong> <strong>in</strong>creases <strong>of</strong>around 30% <strong>in</strong> farm yield and over 60%<strong>in</strong> variety trial yield, suggest<strong>in</strong>g a degree<strong>of</strong> de-<strong>in</strong>tensification <strong>of</strong> <strong>the</strong> crop onScottish farms;36• The exploitation <strong>of</strong> <strong>the</strong> yield potential onfarms was: 53-60% (spr<strong>in</strong>g barley); 43-48% (w<strong>in</strong>ter barley); 55-62% (w<strong>in</strong>terwheat); 50-56% (spr<strong>in</strong>g oats);Potatoes, near K<strong>in</strong>ross


The <strong>Crop</strong>s82 were different from those for cereals:specialist arable farmers were better thanaverage at exploit<strong>in</strong>g <strong>the</strong> potential <strong>of</strong> <strong>the</strong>crop (e.g. a mean over five years <strong>of</strong> 36 t ha -1fresh weight > 30 mm, compared with 31 tha -1 for o<strong>the</strong>r arable farms <strong>in</strong> <strong>the</strong> South<strong>East</strong>) but <strong>the</strong>se yields were well belowthose achieved <strong>in</strong> correspond<strong>in</strong>g varietytrials (53 t ha -1 ). At 36 t ha -1 , specialist farmyields represented only 44% <strong>of</strong> <strong>the</strong>maximum potential yield <strong>of</strong> 81 t ha -1 (herecalculated by <strong>the</strong> methods <strong>of</strong> MacKerron &Waister (1985); MacKerron, (1985, 1987);which have subsequently been improved to<strong>in</strong>clude <strong>the</strong> effects <strong>of</strong> water relations(Jefferies & Heilbron, 1991; Jefferies et al.,1991)). Never<strong>the</strong>less, unpublished results<strong>of</strong> MacKerron suggest that some specialistfarmers did achieve yields close to <strong>the</strong>potential <strong>in</strong> 1983-85.A repeat <strong>of</strong> <strong>the</strong> analysis for <strong>the</strong> years 1993-97 shows that <strong>the</strong>re has been no <strong>in</strong>crease<strong>in</strong> mean farm yield over 15 years; this isconsistent with <strong>the</strong> lack <strong>of</strong> improvement <strong>in</strong>yield potential <strong>of</strong> potato varieties, asopposed to improvement <strong>in</strong> tuber qualityand disease resistance. Unlike determ<strong>in</strong>atecrops such as cereals, <strong>the</strong>re is noconsistent evidence that <strong>the</strong> potential yield<strong>of</strong> <strong>the</strong> potato crop <strong>in</strong>creases with latitude(Hay & Galashan, 1989). The benefits that<strong>the</strong> cool climate <strong>of</strong> <strong>East</strong>ern <strong>Scotland</strong> br<strong>in</strong>gare more those <strong>of</strong> crop health: lowerpopulations <strong>of</strong> virus-transmitt<strong>in</strong>g aphids are<strong>the</strong> foundation <strong>of</strong> <strong>the</strong> Scottish seed potato<strong>in</strong>dustry (as well as specialist enterprisessuch as grow<strong>in</strong>g virus-free Narcissus bulbs).Grass <strong>Crop</strong>sPotential grow<strong>in</strong>g seasons are normallyexpressed <strong>in</strong> terms <strong>of</strong> <strong>the</strong> annual duration(time or <strong>the</strong>rmal time/degree days) <strong>of</strong>temperature above a threshold (commonly5 or 6ºC; Chapter 2). In humid climatessuch as <strong>Scotland</strong>’s, such calculations mustbe modified to take account <strong>of</strong> soil waterrelations (Hay, 1993). Thus <strong>the</strong> actualgrow<strong>in</strong>g season for an arable crop which isplanted and harvested (first soil moisturedeficit to return to field capacity) tends tobe shorter than <strong>the</strong> potential grow<strong>in</strong>gseason, although this can be overcome tosome extent by choos<strong>in</strong>g autumn-plantedra<strong>the</strong>r than spr<strong>in</strong>g-planted crops. Thisanalysis leads to <strong>the</strong> question <strong>of</strong> whe<strong>the</strong>rperennial crops would exploit <strong>the</strong> potentialgrow<strong>in</strong>g season better than annuals <strong>in</strong>those areas <strong>in</strong> which <strong>the</strong> water relations arelimit<strong>in</strong>g. In <strong>Scotland</strong>, <strong>the</strong>re is, at present,only one candidate for this role: grassland,normally based on perennial ryegrass, withor without white clover; <strong>the</strong> <strong>in</strong>crease <strong>in</strong>area <strong>of</strong> grass on arable soils over <strong>the</strong> lastfifteen years confirms its importance.The ceil<strong>in</strong>g for potential yield <strong>of</strong> grassland<strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom, established from<strong>in</strong>vestigations <strong>in</strong> Nor<strong>the</strong>rn Ireland, isaround 25 t DM ha -1 (Adams et al., 1983);but <strong>the</strong> yield <strong>of</strong> no o<strong>the</strong>r major crop is sodependent upon <strong>the</strong> environment andmanagement (pr<strong>in</strong>cipally nitrogen nutrition,water relations, harvest<strong>in</strong>g method andtim<strong>in</strong>g, as well as temperature andirradiance; Hay & Walker, 1989). Indeed, itis difficult to make mean<strong>in</strong>gful comparisonsamong systems and areas because <strong>of</strong> <strong>the</strong>lack <strong>of</strong> standard methods <strong>of</strong> measurement(Hodgson et al., 1981; Hay & Walker, 1989).Ano<strong>the</strong>r issue which has yet to bethoroughly explored is <strong>the</strong> extent to which<strong>the</strong> comb<strong>in</strong>ation <strong>of</strong> long photoperiods andcool temperatures stimulates <strong>the</strong> growthand yield <strong>of</strong> pasture swards as opposed tospaced plants (see, for example: Hay, 1989,1990; Hay & Heide, 1984; Hay & Pederson,1986; Junttila et al., 1990; Solhaug, 1991).Where grass is grown on Scottish arableland it is normally for one <strong>of</strong> two reasons.First, on Class 3, and especially Class 4land, short-term grass permits <strong>the</strong> <strong>in</strong>tensiveexploitation <strong>of</strong> areas with difficult waterrelations (short actual grow<strong>in</strong>g season for37


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>planted crops) or problems, for example, <strong>of</strong>slope or ston<strong>in</strong>ess. Secondly, on Class 2land <strong>of</strong> coarse texture or vulnerablestructure, <strong>in</strong>clusion <strong>of</strong> grass <strong>in</strong> <strong>the</strong> rotationmay be necessary to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> organicmatter content, and <strong>the</strong> associated fertility.The products are silage, <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong> <strong>the</strong>form <strong>of</strong> “big bales”, and graz<strong>in</strong>g. In nei<strong>the</strong>r<strong>of</strong> <strong>the</strong>se situations can <strong>the</strong> crop approach<strong>the</strong> yield potential for cut perennialryegrass swards. Higher yields can beexpected, by contrast, on farms managed<strong>in</strong>tensively for dairy production.Representative yields (generally less than10 t DM ha -1 ) for a range <strong>of</strong> grasslandenterprises, at different levels <strong>of</strong>management, can be found <strong>in</strong> <strong>the</strong> tablesfrom <strong>the</strong> SAC Farm Management Handbook(Chadwick, 1999).• a significant proportion <strong>of</strong> <strong>the</strong> arablearea is unused (set-aside)Never<strong>the</strong>less, <strong>the</strong> mix <strong>of</strong> enterprises doesvary considerably with<strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>. For example, <strong>the</strong>re is a greateremphasis on livestock <strong>in</strong> <strong>the</strong> North <strong>East</strong>whereas, <strong>in</strong> Fife and Angus, <strong>the</strong>re is a morecomplex cropp<strong>in</strong>g pattern, which <strong>in</strong>cludesvegetables and s<strong>of</strong>t fruit for direct humanconsumption.OverviewThis brief review, and <strong>the</strong> economic detailspresented <strong>in</strong> Appendix 4, show that• <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> has <strong>the</strong> potential togive very high yields <strong>of</strong> adapted crops• <strong>the</strong> range <strong>of</strong> crops grown is largelydeterm<strong>in</strong>ed by EU support schemes (forgra<strong>in</strong>, dairy products and meat) – exceptpotatoes, which benefit from <strong>the</strong> highplant health status <strong>of</strong> <strong>the</strong> area (seeAppendix 4)• <strong>the</strong> range <strong>of</strong> species grown has tendedto decrease over <strong>the</strong> last decade• very little <strong>of</strong> <strong>the</strong> crop production is fordirect human consumption, as opposedto consumption via livestock or via<strong>in</strong>dustrial processes (notably alcoholicspirits)Mach<strong>in</strong>e harvest<strong>in</strong>g <strong>of</strong> raspberries, Blairgowrie38


Inputs and Susta<strong>in</strong>ability5. INPUTS AND SUSTAINABILITY(e.g. genetic modification to <strong>in</strong>corporatenitrogen-fix<strong>in</strong>g genes), <strong>in</strong> plant/microbialrelations (e.g. more effective mycorrhizalassociations) or <strong>in</strong> potential yield on lowergrade land under “organic” systems, <strong>the</strong>ma<strong>in</strong>tenance <strong>of</strong> exist<strong>in</strong>g yields willnecessitate similar applications <strong>of</strong> N and Kfor <strong>the</strong> foreseeable future. The exception is<strong>the</strong> potato crop which could be managedwith much lower <strong>in</strong>puts <strong>of</strong> nitrogen (Hay &Walker, 1989), if <strong>the</strong> aim were dry matter,ra<strong>the</strong>r than fresh weight, yield.Timothy (Phleum pratense) grown for hay and seed,carselands west <strong>of</strong> Stirl<strong>in</strong>gIn evaluat<strong>in</strong>g <strong>the</strong> susta<strong>in</strong>ability <strong>of</strong> cropp<strong>in</strong>gsystems <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>, it isimportant to start with <strong>the</strong> <strong>in</strong>puts requiredto susta<strong>in</strong> exist<strong>in</strong>g systems and yields (e.g.Tables 1.1, 4.3 & 4.4).Inputs: M<strong>in</strong>eral NutritionThe 1997 survey <strong>of</strong> fertiliser use <strong>in</strong> <strong>Scotland</strong>(MAFF, 1998) showed that <strong>the</strong> (mean)application <strong>of</strong> <strong>in</strong>dustrially-syn<strong>the</strong>sisednitrogen fertiliser to arable crops andmanaged grassland has rema<strong>in</strong>ed above100 kg N ha -1 for <strong>the</strong> last twenty years, withno sign <strong>of</strong> significant reduction. Levels <strong>of</strong>phosphorus and potassium application havealso rema<strong>in</strong>ed steady (around 70 kg ha -1phosphate and potash on arable crops; 30 –40 kg <strong>of</strong> each on grassland), even though<strong>the</strong> reserves <strong>of</strong> available phosphate <strong>in</strong> manyScottish soils would justify reducedapplications. Unless <strong>the</strong>re are marked andrapid changes <strong>in</strong> <strong>the</strong> physiology <strong>of</strong> varietiesThe cont<strong>in</strong>ued availability <strong>of</strong> <strong>the</strong>se m<strong>in</strong>eralresources depends upon world supplies andprices <strong>of</strong> fossil energy, global security, and<strong>the</strong> size <strong>of</strong> global potash and phosphatedeposits, although <strong>the</strong>re could be somesubstitution by <strong>in</strong>creased reclamation <strong>of</strong>agricultural waste. There are seriousdoubts about <strong>the</strong> capacity <strong>of</strong> knownphosphate deposits to meet world demand,although, <strong>in</strong> <strong>the</strong> UK, <strong>the</strong> “m<strong>in</strong><strong>in</strong>g” <strong>of</strong>exist<strong>in</strong>g soil reserves could delay any crisis;and <strong>the</strong>re is at least <strong>the</strong> potential forutilis<strong>in</strong>g domestic sewage, if problems <strong>of</strong>contam<strong>in</strong>ation by heavy metals andmicrobial pathogens are overcome. Soils<strong>in</strong> humid areas such as <strong>Scotland</strong> will requireregular and heavy lim<strong>in</strong>g at least once perdecade for <strong>the</strong> foreseeable future toma<strong>in</strong>ta<strong>in</strong> yield capacity; <strong>the</strong>re are veryextensive deposits <strong>of</strong> useable limestone <strong>in</strong><strong>the</strong> UK and elsewhere, but <strong>the</strong>ir exploitationcontributes to climate change anddegradation <strong>of</strong> <strong>the</strong> environment. Thefrequency <strong>of</strong> lim<strong>in</strong>g will depend upon <strong>the</strong>types <strong>of</strong> nitrogen fertiliser used(ammonium-based products accelerateacidification) and levels <strong>of</strong> atmosphericpollution (acid ra<strong>in</strong>).One important consequence <strong>of</strong> <strong>the</strong>se heavy<strong>in</strong>puts, and <strong>the</strong> additional <strong>in</strong>puts to39


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>livestock production <strong>in</strong> <strong>the</strong> form <strong>of</strong>imported feed, is that <strong>the</strong>re is a serious risk<strong>of</strong> pollution <strong>of</strong> non-agricultural areas, byvarious forms <strong>of</strong> nitrogen (most seriouslygaseous ammonia, and nitrate), phosphate<strong>in</strong> solution, and effluents with a highbiological oxygen demand. Theconsequences <strong>of</strong> such pollution, both acuteand chronic, can be <strong>the</strong> sterilisation oreutrophication <strong>of</strong> water bodies, <strong>the</strong>pollution <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water, and <strong>the</strong>artificial fertilisation <strong>of</strong> terrestrial plantcommunities. These effects are <strong>in</strong> additionto those result<strong>in</strong>g from <strong>the</strong> relevantmanufactur<strong>in</strong>g activities.Inputs: <strong>Crop</strong> ProtectionThe protection <strong>of</strong> crops grow<strong>in</strong>g <strong>in</strong> <strong>Scotland</strong>is much more complex than m<strong>in</strong>eralfertilisation, as <strong>the</strong> <strong>in</strong>cidence andimportance <strong>of</strong> pests and diseases varieswith crop species, variety, location and withtime. <strong>Crop</strong> protection is an unremitt<strong>in</strong>gstruggle aga<strong>in</strong>st a wide range <strong>of</strong> rapidlyevolv<strong>in</strong>gpathogens (viruses, bacteria, fungi,nematodes, molluscs, <strong>in</strong>sects and o<strong>the</strong>rarthropods), affect<strong>in</strong>g all stages from <strong>the</strong>seed, through vegetative and reproductivephases, to harvest and storage. Thefollow<strong>in</strong>g case histories for <strong>the</strong> majorScottish crop, barley, are necessarilyillustrative ra<strong>the</strong>r than comprehensive.The struggle is typified by seed-bornefungal diseases <strong>of</strong> barley. As resistance torout<strong>in</strong>ely-applied organo-mercuryfungicides built up <strong>in</strong> <strong>the</strong> 1980s, <strong>the</strong>re wasan epidemic <strong>of</strong> barley leaf stripe(Pyrenophora gram<strong>in</strong>ea), a disease whichformerly caused serious yield losses, butwhich most Scottish farmers <strong>of</strong> <strong>the</strong> presentgeneration could not recognise from itssymptoms <strong>in</strong> <strong>the</strong> field. By 1990, <strong>the</strong> funguswas found <strong>in</strong> more than 80% <strong>of</strong> seed stocks<strong>of</strong> spr<strong>in</strong>g barley, and was a major threat toScottish agriculture. Yet, with<strong>in</strong> two years,<strong>the</strong> epidemic had been brought undercontrol by ensur<strong>in</strong>g that all seed with morethan 4% <strong>in</strong>fection was treated with aneffective fungicide before plant<strong>in</strong>g(Cockerell et al., 1995).<strong>Crop</strong> protection must change with <strong>the</strong>evolution <strong>of</strong> systems <strong>of</strong> crop management.For example, before <strong>the</strong> <strong>in</strong>troduction <strong>of</strong>w<strong>in</strong>ter barley, <strong>the</strong> spr<strong>in</strong>g crop was sown <strong>in</strong>March or April and harvested <strong>in</strong> latesummer; for six months <strong>the</strong>re was nogreen crop. The move to w<strong>in</strong>ter cropp<strong>in</strong>g <strong>in</strong><strong>the</strong> early 1980s created a “green bridge” <strong>of</strong>crop plants or volunteers throughout <strong>the</strong>calendar year, which could act as reservoirs<strong>of</strong> barley diseases. This has led to an<strong>in</strong>crease <strong>in</strong> <strong>the</strong> <strong>in</strong>cidence <strong>of</strong> traditionalfungal diseases <strong>of</strong> green tissues, (powderymildew Erisiphe gram<strong>in</strong>is; net blotchPyrenophora teres; and rhynchosporiumRhynchosporium secalis) but also lessfamiliar diseases such as snow rot (Typhula<strong>in</strong>carnata) which can develop on w<strong>in</strong>terbarley dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter months. Thus, <strong>in</strong><strong>the</strong> pursuit <strong>of</strong> higher yield potential(greater <strong>in</strong>terception <strong>of</strong> solar radiation),farmers have encountered <strong>in</strong>creaseddisease pressure.There can be important <strong>in</strong>teractionsbetween varietal characters and disease. In<strong>the</strong> 1990s, spr<strong>in</strong>g barley varieties (e.g.Chariot and Derkado) were <strong>in</strong>troducedwhich were resistant to powdery mildew.As this was <strong>the</strong> most common foliar diseaseat that time, it was hoped that fungicideusage would fall sharply, but <strong>the</strong>se mildewresistantvarieties turned out to besusceptible to rhynchosporium: <strong>the</strong> solution<strong>of</strong> one disease problem permitted ano<strong>the</strong>rto take <strong>the</strong> dom<strong>in</strong>ant position. Control <strong>of</strong>rhynchosporium is now caus<strong>in</strong>g concern, asno current fungicide is effective alone, andresistance to some groups <strong>of</strong> fungicide isdevelop<strong>in</strong>g.Fungal diseases predom<strong>in</strong>ate <strong>in</strong> cereals (see40


Inputs and Susta<strong>in</strong>abilityTable 5.1), but <strong>the</strong>re are major arthropodpests. Wheat bulb fly (Delia coarctata) is acommon pest <strong>in</strong> <strong>the</strong> South <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>,caus<strong>in</strong>g “deadheart” symptoms when larvaefeed on <strong>the</strong> ma<strong>in</strong> shoot. S<strong>in</strong>ce <strong>the</strong> eggswhich will result <strong>in</strong> damage <strong>in</strong> spr<strong>in</strong>g aredeposited dur<strong>in</strong>g <strong>the</strong> preced<strong>in</strong>g summer,preferentially on bare soil, <strong>the</strong> greatest riskis run by w<strong>in</strong>ter wheat crops after potatoes,peas, oilseed rape or set-aside. There is along history <strong>of</strong> wheat bulb fly damage <strong>in</strong><strong>East</strong> Lothian, Fife and Angus, but s<strong>in</strong>ce <strong>the</strong>early 1990s <strong>the</strong>re has been an <strong>in</strong>crease <strong>in</strong><strong>the</strong> number <strong>of</strong> eggs recorded, and <strong>in</strong> <strong>the</strong>range <strong>of</strong> <strong>the</strong> pest (e.g. to <strong>the</strong> Merse) (Evans,2000). This suggests that its <strong>in</strong>cidence andseverity may be chang<strong>in</strong>g <strong>in</strong> response tochanges <strong>in</strong> climate and/or farm<strong>in</strong>g practice(e.g. set-aside and <strong>in</strong>creased areas <strong>of</strong>oilseed rape). Without an effectiveforecast<strong>in</strong>g system, many farmers willcont<strong>in</strong>ue with prophylactic, and <strong>in</strong> manycases unnecessary, <strong>in</strong>secticide applications(see Table 5.1).Of <strong>the</strong> ma<strong>in</strong> crops <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>,<strong>the</strong> potato is most susceptible to <strong>the</strong> fullrange <strong>of</strong> pathogenic taxa, <strong>in</strong>clud<strong>in</strong>g anarray <strong>of</strong> viruses transmitted by leaf-feed<strong>in</strong>gaphids (e.g. <strong>the</strong> peach-potato aphid Myzuspersicae); bacterial diseases such asblackleg (Erw<strong>in</strong>ia carotovora); foliar fungaldiseases, notably late blight (Phytophthora<strong>in</strong>festans); soil-borne nematodes (potatocyst nematodes (PCN) Globodera spp.) aswell as a wide array <strong>of</strong> fungal and bacterialdiseases <strong>of</strong> tubers <strong>in</strong> storage. By exploit<strong>in</strong>g<strong>the</strong> cool climate <strong>of</strong> <strong>the</strong> North <strong>of</strong> <strong>Scotland</strong>(slow build up <strong>of</strong> aphid populations) and acomprehensive set <strong>of</strong> strict regulations(restriction <strong>of</strong> cropp<strong>in</strong>g to PCN-free land;regular field <strong>in</strong>spections; pre- and postharvestdiagnosis <strong>of</strong> virus diseases etc.),<strong>Scotland</strong> ma<strong>in</strong>ta<strong>in</strong>s a highly-pr<strong>of</strong>itable seedtuber <strong>in</strong>dustry, supply<strong>in</strong>g many overseascountries, particularly <strong>in</strong> <strong>the</strong> Mediterraneanzone. Never<strong>the</strong>less, this phytosanitaryapproach does not rule out <strong>the</strong> need forextensive chemical crop protection (e.g.Table 5.1Estimates <strong>of</strong> <strong>the</strong> total usage <strong>of</strong> pesticides on cereal crops <strong>in</strong> <strong>Scotland</strong>,1994, 1996 and 19981994 1996 1998InsecticidesPyrethroids 15,210 46,456 56,648Organophosphates 31,608 15,656 20,993Organochlor<strong>in</strong>es - - 1,157Carbamates 4,192 1,962 2,650Unspecified or mixed formulation - 427 -All <strong>in</strong>secticides 51,010 64,501 81,448Molluscicides 17,025 8,841 30,586Fungicides 1,092,222 1,712,768 1,967,309Herbicides 1,011,474 1,315,092 1,354,105Growth regulators 295,233 388,787 422,748Seed treatments 779,010 830,133 799,005All pesticides 3,245,974 4,320,122 4,655,201Area planted (ha) 395,286 ha 449,298 ha 468,153 haThe data are expressed <strong>in</strong> terms <strong>of</strong> “spray hectares <strong>of</strong> active <strong>in</strong>gredients”.Source: Pesticide Usage <strong>in</strong> <strong>Scotland</strong> Reports. Arable <strong>Crop</strong>s 1994, 1996, 1998. Ed<strong>in</strong>burgh:Scottish Agricultural Science Agency.41


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>42aphicides, protection aga<strong>in</strong>st blight).Each crop species and cropp<strong>in</strong>g system hasits own characteristic weeds, some <strong>of</strong> whichcan be extremely difficult to control (e.g.wild oats, which are taxonomically, and<strong>the</strong>refore biochemically, close to <strong>the</strong> majorcereal crops). Weeds are controlled byrout<strong>in</strong>e spray<strong>in</strong>g with <strong>the</strong> appropriateselective herbicide (Table 5.1), although allweeds can be controlled by a comb<strong>in</strong>ation<strong>of</strong> rotation and cultivation. Recent work onlow doses <strong>of</strong> herbicide, repeated only ifnecessary, has demonstrated how herbicideusage can be reduced withoutcompromis<strong>in</strong>g crop yield and quality.The extent <strong>of</strong> pesticide applications tocontrol <strong>the</strong> pests, diseases and weeds <strong>of</strong>cereal crops <strong>in</strong> <strong>Scotland</strong> is shown <strong>in</strong> Table5.1 (Note that several <strong>of</strong> <strong>the</strong> values for“spray areas” are greater than <strong>the</strong> actualarea cropped because many crops receivetwo or three applications per season). Thepreponderance <strong>of</strong> herbicide and fungicideapplications reflects <strong>the</strong> practical problems<strong>of</strong> cereal grow<strong>in</strong>g <strong>in</strong> a cool climate, but <strong>the</strong>data also show a dist<strong>in</strong>ct rise <strong>in</strong> <strong>the</strong> use <strong>of</strong><strong>in</strong>secticides, which may be related toclimate change (<strong>in</strong>creased w<strong>in</strong>ter survivaland higher spr<strong>in</strong>g populations <strong>of</strong> <strong>in</strong>sects).Work on <strong>in</strong>tegrated farm<strong>in</strong>g systems hasdemonstrated some <strong>of</strong> <strong>the</strong> ways <strong>in</strong> whichpesticide applications can be reduced.Never<strong>the</strong>less, <strong>the</strong>re is no immediateprospect <strong>of</strong> a substantial reduction <strong>in</strong> <strong>the</strong>level <strong>of</strong> application <strong>of</strong> pesticides, if exist<strong>in</strong>gyields are to be ma<strong>in</strong>ta<strong>in</strong>ed.Risks to humans from pesticides appliedaccord<strong>in</strong>g to codes <strong>of</strong> best practice, arejudged to be low, and <strong>the</strong> accumulation <strong>of</strong>pesticide residues <strong>in</strong> <strong>the</strong> human diet ismonitored by government scientists toensure food safety. On <strong>the</strong> o<strong>the</strong>r hand,pesticides <strong>in</strong>evitably have a deleteriouseffect on biodiversity <strong>in</strong> crops and <strong>the</strong>irmarg<strong>in</strong>s.Inputs: EnergyFossil fuel is required for <strong>the</strong> chemicalsyn<strong>the</strong>sis <strong>of</strong> fertilisers and pesticides; for<strong>the</strong> transport and distribution <strong>of</strong>agrochemicals and o<strong>the</strong>r supplies; fortraction (direct fuel use); and for <strong>the</strong>manufacture <strong>of</strong> mach<strong>in</strong>ery; before anyaccount is taken <strong>of</strong> <strong>the</strong> large energy costs<strong>of</strong> transform<strong>in</strong>g, transport<strong>in</strong>g andmarket<strong>in</strong>g <strong>the</strong> farm yield <strong>in</strong>to food or o<strong>the</strong>rproducts. For example, Slesser (1975)calculated that <strong>the</strong> fossil energy required tomeet <strong>the</strong> direct fuel use, fertiliser andpesticide needs <strong>of</strong> a Scottish spr<strong>in</strong>g barleycrop was equivalent to around 20% <strong>of</strong> <strong>the</strong>solar energy captured <strong>in</strong> <strong>the</strong> harvestedgra<strong>in</strong>; with <strong>the</strong> <strong>in</strong>tensification <strong>of</strong> cerealproduction, <strong>the</strong>se energy costs will be atleast as high now. Intensive agriculture, aspresently practised worldwide, needs to beprimed with oil to secure <strong>the</strong> acquisition <strong>of</strong>solar energy (see <strong>the</strong> pioneer<strong>in</strong>g studies <strong>of</strong>Pimental & Pimental, 1979).Implementation <strong>of</strong> <strong>the</strong> Kyoto Protocol ongreenhouse gas emissions may have asignificant effect on <strong>the</strong> volume <strong>of</strong>agricultural produce which is transportedover long distances, particularlycommodities with a high moisture content.The competitiveness <strong>of</strong> agriculture <strong>in</strong> <strong>the</strong><strong>East</strong> <strong>of</strong> <strong>Scotland</strong> might benefit from anysuch change.Predictable ChangeThe next step <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong>susta<strong>in</strong>ability <strong>of</strong> arable agriculture <strong>in</strong><strong>Scotland</strong> is to review predictable changes <strong>in</strong><strong>the</strong> physical and biological environment,and <strong>the</strong>ir potential impacts.Current forecasts <strong>of</strong> long-term climatechange <strong>in</strong> <strong>Scotland</strong> are for highertemperatures (typically 1 - 3ºC) particularly<strong>in</strong> w<strong>in</strong>ter, higher w<strong>in</strong>ter ra<strong>in</strong>fall, and drier


Inputs and Susta<strong>in</strong>abilitysummers (Kerr et al., 1999). As <strong>the</strong> length<strong>of</strong> <strong>the</strong> grow<strong>in</strong>g season for arable crops islargely determ<strong>in</strong>ed by <strong>the</strong> duration <strong>of</strong> soilmoisture deficits (Chapters 2,4), <strong>the</strong> actualeffect on cropp<strong>in</strong>g systems will dependupon <strong>the</strong> amount and distribution <strong>of</strong> w<strong>in</strong>terprecipitation. In this context, dra<strong>in</strong>age mayplay a central role. Many <strong>of</strong> <strong>the</strong> productivearable soils <strong>of</strong> <strong>Scotland</strong> are <strong>in</strong>herentlypoorly-dra<strong>in</strong>ed (brown forest soils withgley<strong>in</strong>g; and non-calcareous gleys; Table 3.1;Figure 3.2; Appendix 2), and mechanisedagriculture is possible only with underdra<strong>in</strong>age,much <strong>of</strong> which was <strong>in</strong>stalled <strong>in</strong><strong>the</strong> n<strong>in</strong>eteenth century us<strong>in</strong>g cheap manuallabour. This dra<strong>in</strong>age <strong>in</strong>frastructure is nowdeteriorat<strong>in</strong>g, and it rema<strong>in</strong>s to be seenwhe<strong>the</strong>r its renewal can be justified as costeffectiveunder <strong>the</strong> <strong>in</strong>creased load<strong>in</strong>gbrought on by higher w<strong>in</strong>ter precipitation.Poor dra<strong>in</strong>age could have major impacts,not only on grow<strong>in</strong>g season length, but on<strong>the</strong> graz<strong>in</strong>g <strong>of</strong> rotational grassland bylivestock.Summer drought may also pose <strong>in</strong>creas<strong>in</strong>gproblems, particularly for spr<strong>in</strong>g cropsgrown on soils <strong>of</strong> low available-watercapacity <strong>in</strong> <strong>the</strong> drier parts <strong>of</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>. The scope for <strong>in</strong>creasedirrigation is limited, s<strong>in</strong>ce additionalsupplies would have to come from riverswhich are already heavily exploited <strong>in</strong> dryyears.Large areas <strong>of</strong> <strong>the</strong> South <strong>East</strong> have beenunder <strong>in</strong>tensive cultivation cont<strong>in</strong>uouslys<strong>in</strong>ce <strong>the</strong> thirteenth century, when <strong>the</strong>great Cistercian abbeys <strong>of</strong> Newbattle andMelrose were established, and <strong>the</strong>y havecont<strong>in</strong>ued to provide high yield under eachsucceed<strong>in</strong>g system <strong>of</strong> management(Meiklejohn, 1951). There is little sign <strong>of</strong>deterioration <strong>in</strong> “performance”, <strong>in</strong> spite <strong>of</strong>a general decrease <strong>in</strong> soil organic matter,which tends to <strong>in</strong>crease susceptibility toerosion and loss <strong>of</strong> structure, as well aslower<strong>in</strong>g <strong>the</strong> ion-exchange capacity.Organic matter levels can be restored by<strong>in</strong>creas<strong>in</strong>g <strong>the</strong> return <strong>of</strong> crop residues andmanure, and keep<strong>in</strong>g soil disturbance bycultivation to <strong>the</strong> m<strong>in</strong>imum necessary forestablishment and weed control. There isevidence <strong>of</strong> soil erosion on steeper slopes<strong>in</strong> Sou<strong>the</strong>rn <strong>Scotland</strong> from as early as <strong>the</strong>Bronze Age (Mercer & Tipp<strong>in</strong>g, 1994), butthis is unlikely to be a factor <strong>in</strong> <strong>the</strong>lowlands even under <strong>in</strong>creased w<strong>in</strong>terra<strong>in</strong>fall. If summers do becomesignificantly drier, erosion <strong>of</strong> poorlystructuredarable soils on <strong>the</strong> North-<strong>East</strong>coast (Figure 3.1; Appendix 2), by w<strong>in</strong>d-blow,could <strong>in</strong>tensify. In summary, <strong>the</strong> soils <strong>of</strong><strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong> are generally robust,as long as soil structure is ma<strong>in</strong>ta<strong>in</strong>ed.Consider<strong>in</strong>g biological effects, as outl<strong>in</strong>edabove, <strong>the</strong> rate <strong>of</strong> evolution <strong>of</strong> pathogens<strong>of</strong> exist<strong>in</strong>g agricultural systems is so rapidthat predictions <strong>of</strong> developments underclimate change are <strong>of</strong> little value. Althoughwarmer w<strong>in</strong>ters should <strong>in</strong>crease pathogenpressures on all crops, <strong>the</strong> first effects willprobably be to endanger <strong>the</strong> health status<strong>of</strong> Scottish seed potatoes, ow<strong>in</strong>g to earlierand higher populations <strong>of</strong> virustransmitt<strong>in</strong>gaphids. The <strong>in</strong>dustry cannotmigrate much fur<strong>the</strong>r north.Never<strong>the</strong>less, tak<strong>in</strong>g a historicalperspective over <strong>the</strong> last two hundredyears, farm<strong>in</strong>g systems <strong>in</strong> <strong>the</strong> area havedemonstrated a capacity to survive climaticvariation <strong>of</strong> <strong>the</strong> scale predicted for <strong>the</strong> next50 years. For example, Figure 2.2 shows afive-fold variation <strong>in</strong> late summer ra<strong>in</strong>fallover <strong>the</strong> last forty years. This may justify<strong>the</strong> judgement <strong>of</strong> Kerr et al. (1999) thatclimate change is unlikely to be a majorfactor modify<strong>in</strong>g agricultural production;and, <strong>of</strong> course, Scottish agriculture couldplay a part <strong>in</strong> <strong>the</strong> alleviation/reversal <strong>of</strong>climate change (e.g. generat<strong>in</strong>g bi<strong>of</strong>uels;short rotation coppice etc.). It has beenestimated that around one quarter <strong>of</strong> <strong>the</strong>arable area <strong>of</strong> <strong>Scotland</strong> would be needed to43


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>produce <strong>the</strong> equivalent <strong>of</strong> <strong>the</strong> amount <strong>of</strong>diesel used <strong>in</strong> its farm<strong>in</strong>g systems – similarto <strong>the</strong> proportion needed to produce oatsfor horse power before 1950.Compared with <strong>the</strong> threats posed byclimate change, those posed by worldprices and supplies <strong>of</strong> oil and m<strong>in</strong>erals areprobably <strong>of</strong> much greater magnitude.O<strong>the</strong>r major factors, whose futures aredifficult to predict <strong>in</strong>clude:• Major advances <strong>in</strong> biologicalunderstand<strong>in</strong>g, and <strong>in</strong> <strong>the</strong> tailor<strong>in</strong>g <strong>of</strong>species and varieties for yield andquality• Fundamental advances <strong>in</strong> applied biology(e.g. managed mycorrhizal associations)• Unexpected substantial climatic changes(e.g. major alterations <strong>in</strong> <strong>the</strong> circulation<strong>of</strong> <strong>the</strong> atmosphere or <strong>of</strong> <strong>the</strong> AtlanticOcean) and damag<strong>in</strong>g <strong>in</strong>stability <strong>in</strong>wea<strong>the</strong>r• Major changes <strong>in</strong> <strong>the</strong> patterns <strong>of</strong> worldtrade, <strong>in</strong>clud<strong>in</strong>g EU (e.g. <strong>the</strong> candidature<strong>of</strong> <strong>East</strong>ern European countries) and WTOarrangementsSusta<strong>in</strong>ability: Prospects forArable Land <strong>in</strong> <strong>Scotland</strong> over<strong>the</strong> Next 50 YearsSusta<strong>in</strong>ability is used here as def<strong>in</strong>ed byBrundtland: “meet<strong>in</strong>g <strong>the</strong> needs <strong>of</strong> <strong>the</strong>present without compromis<strong>in</strong>g <strong>the</strong> ability <strong>of</strong>future generations to meet <strong>the</strong>ir needs”(World Commission on Environment andDevelopment, 1987).Argu<strong>in</strong>g from a historical perspective;tak<strong>in</strong>g <strong>the</strong> current predictions <strong>of</strong> climatechange <strong>in</strong>to account; assum<strong>in</strong>g a cont<strong>in</strong>uedhigh level <strong>of</strong> national prosperity; andnarrow<strong>in</strong>g <strong>the</strong> focus to <strong>the</strong> <strong>East</strong> <strong>of</strong><strong>Scotland</strong>; <strong>the</strong> signs are that <strong>the</strong> currentapproach to land use could be susta<strong>in</strong>edover <strong>the</strong> next 50 years. Its cont<strong>in</strong>uationwould be favoured by actions to reducepollution, recycle resources, and activelyalleviate environmental change.Never<strong>the</strong>less, <strong>the</strong>re would be a need torespond quickly, <strong>in</strong> <strong>the</strong> short term, tochanges <strong>in</strong> <strong>the</strong> global economy; to <strong>the</strong>evolution <strong>of</strong> crop pathogens; and topressure from consumers. Although <strong>the</strong>sepredictions <strong>in</strong>dicate <strong>the</strong> survival <strong>of</strong> Scottish• Serious deterioration <strong>in</strong> global security• Major changes <strong>in</strong> diet, consumer demandand <strong>in</strong> <strong>the</strong> market<strong>in</strong>g <strong>of</strong> agriculturalproducts• Depression <strong>of</strong> yield by pollution (e.g.regional effects <strong>of</strong> ozone)• Major reverses <strong>in</strong> <strong>the</strong> struggle aga<strong>in</strong>stcrop pathogens44• Policy decisions for <strong>the</strong> countrysidefavour<strong>in</strong>g management for <strong>the</strong>production <strong>of</strong> environmental goods (lowpollution; energy; aes<strong>the</strong>tics; access;recreation) or <strong>the</strong> products <strong>of</strong> forestryExport <strong>of</strong> Scottish seed potatoes from Montrose


Inputs and Susta<strong>in</strong>abilityagriculture, <strong>the</strong>y do not necessarily <strong>in</strong>dicate<strong>the</strong> survival <strong>of</strong> rural (human) communitiesand <strong>in</strong>stitutions, and landscape quality.However, no country is an “island”, andpolicies for <strong>Scotland</strong> must be set <strong>in</strong> a worldcontext. Tak<strong>in</strong>g a fully-global perspective(ra<strong>the</strong>r than simply consider<strong>in</strong>g worldprices), and tak<strong>in</strong>g account <strong>of</strong> <strong>the</strong>population/food equation, <strong>in</strong>creases <strong>in</strong> <strong>the</strong>extent and <strong>in</strong>tensity <strong>of</strong> food production areboth essential and <strong>in</strong>tr<strong>in</strong>sicallyunsusta<strong>in</strong>able: necessary on ethicalgrounds, but ultimately caus<strong>in</strong>g irreversibleplanetary changes. This is <strong>the</strong> basis <strong>of</strong> <strong>the</strong>concerns over genetically-modified (GM)crops and food expressed by Sir RobertMay, <strong>the</strong> UK government chief scientist(May, 1999): at present not all <strong>of</strong> <strong>the</strong>potentially-cultivable land <strong>in</strong> <strong>the</strong> world isused, and over 30% <strong>of</strong> <strong>the</strong> food produced islost to pathogens and spoilage (Evans,1996). Cultivation <strong>of</strong> new land, <strong>in</strong>creasedyield, and reduced losses (e.g. by <strong>the</strong> use <strong>of</strong>GM technology) are all about reduc<strong>in</strong>g <strong>the</strong>share <strong>of</strong> solar radiation captured byphotosyn<strong>the</strong>sis which is consumed first byspecies o<strong>the</strong>r than man – be <strong>the</strong>y rats,rabbits, locusts, fungi or bacteria, - orpandas, chimpanzees, songbirds ortermites. Thus, progressive <strong>in</strong>creases <strong>in</strong> <strong>the</strong>extent and <strong>in</strong>tensity <strong>of</strong> agriculturalproduction will <strong>in</strong>evitably cause reductions<strong>in</strong> biodiversity. Tak<strong>in</strong>g an example close tohome, <strong>the</strong> recent sharp decl<strong>in</strong>e <strong>in</strong> farmlandbirds <strong>in</strong> <strong>the</strong> UK has been attributed to <strong>the</strong>plough<strong>in</strong>g-<strong>in</strong> <strong>of</strong> cereal stubble <strong>in</strong> <strong>the</strong>autumn, <strong>the</strong>reby plac<strong>in</strong>g an important foodresource out <strong>of</strong> reach <strong>of</strong> a range <strong>of</strong> wildspecies.The consequences <strong>of</strong> changes toagriculture on <strong>the</strong> environment are rarelysimple and concern has been expressedthat moves towards extensification andorganic farm<strong>in</strong>g may not always provide <strong>the</strong>environmental benefits that are commonlypredicted (Kirchmann and Thorvaldsson,2000). It is also <strong>in</strong>creas<strong>in</strong>gly recognisedthat actions taken to achieve oneenvironmental goal may make ano<strong>the</strong>rmore difficult to achieve. For example,manure and slurry spread<strong>in</strong>g contribute to<strong>the</strong> Europe-wide problem <strong>of</strong> ammoniaemissions and <strong>the</strong> consequent <strong>in</strong>crease <strong>in</strong>nitrogen deposition on <strong>the</strong> land surface.Research is needed to identify <strong>the</strong>consequences <strong>of</strong> changes <strong>in</strong> farm<strong>in</strong>goperations <strong>in</strong> different agro-ecologicalzones.Arguments over <strong>in</strong>tensification <strong>of</strong> foodsupply and biodiversity, <strong>of</strong> course, ignore<strong>the</strong> question <strong>of</strong> whe<strong>the</strong>r <strong>the</strong>re are sufficientresources <strong>of</strong> oil, phosphorus, traceelements and water to go round; orwhe<strong>the</strong>r <strong>the</strong> planet can absorb <strong>the</strong> load <strong>of</strong>pollution generated by <strong>in</strong>tensifiedagriculture. There are o<strong>the</strong>r issues, such as<strong>the</strong> extent to which food should beprocessed through livestock. Never<strong>the</strong>less,if a population <strong>of</strong> 9 billion is to be fed (USCensus Bureau projection for 2050) <strong>the</strong>world will be a very different place.Recent Sources:Agriculture and Technology Review, TheEconomist, 25 March, 2000;Brief<strong>in</strong>g Ecology and Economics, Nature395, 426-434, 1998;Food <strong>Production</strong>, Population Growth, and<strong>the</strong> Environment, Science 281, 1291-1292;The Green<strong>in</strong>g <strong>of</strong> <strong>the</strong> Green Revolution,Nature 396, 211-212, 1998;<strong>Crop</strong> Scientists Seek a New RevolutionScience 283, 311-316;Feed<strong>in</strong>g <strong>the</strong> World <strong>in</strong> <strong>the</strong> 21st CenturyNature 412, C55-C58, 1999;45


46<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


The Future6. THE FUTURE: POLICIES FOR THE USEOF ARABLE LAND IN SCOTLANDOVER THE NEXT 50 YEARS• For <strong>the</strong> best land, <strong>the</strong> f<strong>in</strong>ancial marg<strong>in</strong>sfor specialist crops such as carrots aregood• Never<strong>the</strong>less, unlike many o<strong>the</strong>rcountries <strong>in</strong> Europe, <strong>the</strong> citizen cannotsee her next meal <strong>in</strong> <strong>the</strong> fields near herhome, and tends to have little <strong>in</strong>terest <strong>in</strong>where her food supplies orig<strong>in</strong>ate; alarge proportion <strong>of</strong> <strong>the</strong> diet is imported• (Not mentioned above, but crucial)<strong>Scotland</strong> has one <strong>of</strong> <strong>the</strong> poorest diets,and nearly <strong>the</strong> worst health record,amongst developed countriesVirus-free Narcissus near Brech<strong>in</strong>, AngusThe <strong>in</strong>formation <strong>in</strong> this booklet can besummarised as follows:• <strong>Scotland</strong> has a relatively small butrobust area <strong>of</strong> arable land <strong>of</strong> very highpotential yield for adapted crops• This area is currently devotedpredom<strong>in</strong>antly to crops subsidised under<strong>the</strong> Common Agricultural Policy, nowAgenda 2000, <strong>of</strong> <strong>the</strong> European Union;<strong>the</strong> products are ma<strong>in</strong>ly dest<strong>in</strong>ed forlivestock and alcoholic beverageproduction• <strong>Scotland</strong> has a reputation for very highquality products for direct humanconsumption, pr<strong>in</strong>cipally s<strong>of</strong>t fruit andpotatoes (via <strong>the</strong> seed potato <strong>in</strong>dustry)Drivers for Change <strong>in</strong>clude:• Climate change• Agenda 2000• Low farm <strong>in</strong>comes; world prices;exchange rates• Need for environmental goods• Customer perceptions: health, foodsafety, positive <strong>in</strong>terest <strong>in</strong> eat<strong>in</strong>g• Unrelent<strong>in</strong>g scientific progress, <strong>in</strong>clud<strong>in</strong>gGM technology• The Organic movement• Vegetarianism• Direct market<strong>in</strong>g by farmers• DevolutionPolicies for Agriculture <strong>in</strong> <strong>Scotland</strong> might,with benefit, be <strong>in</strong>tegrated with Policies for<strong>the</strong> Environment, <strong>in</strong>clud<strong>in</strong>g rural47


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>communities, for Food, and for Health.There are precedents for this, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong>recent <strong>in</strong>tegrated drive for improved health<strong>in</strong> F<strong>in</strong>land.What is undoubtedly true is that scientists,<strong>in</strong>clud<strong>in</strong>g crop scientists, will play a majorrole <strong>in</strong> <strong>the</strong> future.48


ReferencesReferencesAdams S.N., Easson D.L., Gracey H.I., Haycock R.E. & O’Neil D.G. (1983). An attempt tomaximise yields <strong>of</strong> cut grass <strong>in</strong> <strong>the</strong> field <strong>in</strong> Nor<strong>the</strong>rn Ireland. Record <strong>of</strong> AgriculturalResearch 31, 11-16.AEFD (1999a). Agricultural census summary sheets by geographic area: June 1998.Ed<strong>in</strong>burgh: The Scottish Office Agriculture, Environment and Fisheries Department.AEFD (1999b). Economic Report on Scottish Agriculture: 1999 Edition. Ed<strong>in</strong>burgh: TheScottish Office Agriculture, Environment and Fisheries Department.Bibby J.S., Douglas H.A., Thomasson A.J. & Robertson J.S. (1991). Land CapabilityClassification for Agriculture. Aberdeen: The Macaulay Land Use Research Institute.Brown C.J. & Shipley B.M. (1982). South <strong>East</strong> <strong>Scotland</strong>: Soil and Land Capability.Aberdeen: The Macaulay Institute for Soil Research.Chadwick L. (Ed.) (1999). The Farm Management Handbook 1999/2000. Ed<strong>in</strong>burgh: SAC.Cockerell V., Rennie W.J. & Jacks M. (1995). Incidence and control <strong>of</strong> barley leaf stripe(Pyrenophora gram<strong>in</strong>ea) <strong>in</strong> Scottish barley dur<strong>in</strong>g <strong>the</strong> period 1987-1992. Plant Pathology44, 655-661.Coppock J.T. (1976). An Agricultural Atlas <strong>of</strong> <strong>Scotland</strong>. Ed<strong>in</strong>burgh: John Donald.Delécolle R., Hay R.K.M., Guérif M., Pluchard P. & Varlet-Grancher C. (1989). A method <strong>of</strong>describ<strong>in</strong>g <strong>the</strong> progress <strong>of</strong> apical development <strong>in</strong> wheat, based on <strong>the</strong> time-course <strong>of</strong>organogenesis. Field <strong>Crop</strong>s Research 21, 147-160.Ellis R.P. & Brown J. (1986). Yield <strong>in</strong> spr<strong>in</strong>g barley at contrast<strong>in</strong>g sites <strong>in</strong> England and<strong>Scotland</strong>. Annals <strong>of</strong> Applied Biology 109, 613-617.Ellis R.P. & Kirby E.J.M. (1980). A comparison <strong>of</strong> spr<strong>in</strong>g barley grown <strong>in</strong> England and <strong>in</strong><strong>Scotland</strong>. 2. Yield and its components. Journal <strong>of</strong> Agricultural Science, Cambridge 95, 111-115.Evans K.A. (2000). Wheat bulb fly survey <strong>of</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>. Unpublished reportcommissioned by <strong>the</strong> Rural Affairs Department <strong>of</strong> <strong>the</strong> Scottish Executive.Evans L.T. (1996). <strong>Crop</strong> Evolution, Adaptation and Yield. Cambridge University Press.Francis P.E. (1981). The climate <strong>of</strong> <strong>the</strong> agricultural areas <strong>of</strong> <strong>Scotland</strong>. ClimatologicalMemorandum <strong>of</strong> <strong>the</strong> Meteorological Office 108.Hay R.K.M. (1976). The temperature <strong>of</strong> <strong>the</strong> soil under a barley crop. Journal <strong>of</strong> SoilScence 27, 121-128.Hay R.K.M. (1977). The effects <strong>of</strong> tillage and direct drill<strong>in</strong>g on soil temperature <strong>in</strong> w<strong>in</strong>ter.Journal <strong>of</strong> Soil Science 28, 403-409.Hay R.K.M., Holmes, J.C. & Hunter, E.A. (1978). The effects <strong>of</strong> tillage, direct drill<strong>in</strong>g andnitrogen fertiliser on soil temperature under a barley crop. Journal <strong>of</strong> Soil Science 29,174-183.49


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>Hay R.K.M. (1989). The performance <strong>of</strong> high-latitude grass varieties under Scottishconditions: seasonal distribution <strong>of</strong> dry-matter production. Grass and Forage Science 44,405-410.Hay R.K.M. (1990). The <strong>in</strong>fluence <strong>of</strong> photoperiod on <strong>the</strong> dry-matter production <strong>of</strong> grassesand cereals. New Phytologist 116, 233-254.Hay R.K.M. (1993). The contribution <strong>of</strong> crop physiology to strategies for new arable cropsfor cool wet regions: a case history from <strong>Scotland</strong>. European Journal <strong>of</strong> Agronomy 2, 161-171.Hay R.K.M. & Delécolle R. (1989). The sett<strong>in</strong>g <strong>of</strong> rates <strong>of</strong> development <strong>of</strong> wheat plants atcrop emergence: <strong>in</strong>fluence <strong>of</strong> <strong>the</strong> environment on rates <strong>of</strong> leaf appearance. Annals <strong>of</strong>Applied Biology 115, 333-341.Hay R.K.M. & Galashan S. (1989). The yields <strong>of</strong> arable crops <strong>in</strong> <strong>Scotland</strong> 1978-82: Actualand potential yields <strong>of</strong> potatoes. Research and Development <strong>in</strong> Agriculture 6, 1-5.Hay R.K.M. & Heide O.M. (1984). The response <strong>of</strong> high-latitude grass cultivars to longphotoperiods and cool temperatures. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> 10th General Meet<strong>in</strong>g <strong>of</strong> <strong>the</strong>European Grassland Federation, Ås, Norway, pp. 46-50.Hay R.K.M. & Pedersen K. (1986). Influence <strong>of</strong> long photoperiods on <strong>the</strong> growth <strong>of</strong> timothy(Phleum pratense L.) varieties from different latitudes <strong>in</strong> nor<strong>the</strong>rn Europe. Grass andForage Science 41, 311-317.Hay R.K.M. & Walker A.J. (1989). An Introduction to <strong>the</strong> Physiology <strong>of</strong> <strong>Crop</strong> Yield. London:Longman.Hay R.K.M., Galashan S. & Russell G. (1986). The yields <strong>of</strong> arable crops <strong>in</strong> <strong>Scotland</strong> 1978-82: actual and potential yields <strong>of</strong> cereals. Research and Development <strong>in</strong> Agriculture 3,159-164.Hodgson J., Baker R.D., Davies A., Laidlaw A.S. & Leaver J.D. (1981). Sward MeasurementHandbook. Hurley: British Grassland Society.Jefferies R.A. & Heilbron T.D. (1991). Water stress as a constra<strong>in</strong>t on growth <strong>in</strong> <strong>the</strong> potatocrop. 1. Model development. Agricultural and Forest Meteorology 53, 185-196.Jefferies R.A., Heilbronn T.D. & MacKerron D.K.L. (1991). Water stress as a constra<strong>in</strong>t ongrowth <strong>in</strong> <strong>the</strong> potato crop. 2. Validation <strong>of</strong> <strong>the</strong> model. Agricultural and Forest Meteorology53, 197-205.Junttila O., Svenn<strong>in</strong>g M. & Solheim B. (1990). Effects <strong>of</strong> temperature and photoperiod onvegetative growth <strong>of</strong> white clover (Trifolium repens) ecotypes. Physiologia Plantarum 79,427-434.Kerr A., Shackley S., Milne R. & Allen S. (1999). Climate Change: Scottish ImplicationsScop<strong>in</strong>g Survey. Ed<strong>in</strong>burgh: Scottish Executive, Central Research Unit.Kirby E.J.M. & Ellis R.P. (1980). A comparison <strong>of</strong> spr<strong>in</strong>g barley grown <strong>in</strong> England and <strong>in</strong><strong>Scotland</strong>. 1. Shoot apex development. Journal <strong>of</strong> Agricultural Science, Cambridge 95, 101-110.50


ReferencesKirby E.J.M and 17 o<strong>the</strong>rs (1987). An analysis <strong>of</strong> primordium <strong>in</strong>itiation <strong>in</strong> Avalon wheatcrops with different sow<strong>in</strong>g dates and at n<strong>in</strong>e sites <strong>in</strong> England and <strong>Scotland</strong>. Journal <strong>of</strong>Agricultural Science, Cambridge 109, 123-134.Kirchmann, H. & Thorvaldsson, G. (2000). Challeng<strong>in</strong>g targets for future agriculture.European Journal <strong>of</strong> Agronomy 12, 145-161.MacKerron D.K.L. (1985). A simple model <strong>of</strong> potato growth and yield. II. Validation andexternal sensitivity. Agricultural and Forest Meteorology 34, 285-300.MacKerron D.K.L. (1987). A wea<strong>the</strong>r-driven model <strong>of</strong> potential yield <strong>in</strong> potato and itscomparison with achieved yields. Acta Horticulturae 214, 85-94.MacKerron D.K.L. & Waister P.D. (1985). A simple model <strong>of</strong> potato growth and yield. I.Model development and sensitivity analysis. Agricultural and Forest Meteorology 34, 241-252.MAFF (1998). The British Survey <strong>of</strong> Fertiliser Practice. Fertiliser Use on Farm <strong>Crop</strong>s for<strong>Crop</strong> Year 1997. London: The Stationery Office.May R. (1999). Genetically modified foods: facts, worries, policies and public confidence.Policy Paper S4815, Office <strong>of</strong> Science & Technology, February 1999 (London: unpublished).Meiklejohn A.K.M. (1951). Agriculture. In Scientific Survey <strong>of</strong> South-<strong>East</strong>ern<strong>Scotland</strong> (Eds.A.G. Ogilvie et al.). Ed<strong>in</strong>burgh: British Association for <strong>the</strong> Advancement <strong>of</strong> Science, pp. 95-112.Mercer R. & Tipp<strong>in</strong>g R. (1994). The prehistory <strong>of</strong> soil erosion <strong>in</strong> <strong>the</strong> Nor<strong>the</strong>rn and <strong>East</strong>ernCheviot Hills, Anglo-Scottish Borders. In The History <strong>of</strong> Soils and Field Systems (Eds. S.Foster & T.C. Smout). Aberdeen: Scottish Cultural Press, pp. 1-25.Monteith J.L. (1981). Does light limit crop production? In Physiological Processes Limit<strong>in</strong>gPlant Productivity (Ed. C.B. Johnson). London: Butterworth, pp. 23-38.Pimental D. & Pimental M. (1979). Food Energy & Society. London: Edward Arnold.Porter J.R. and 19 o<strong>the</strong>rs (1987). An analysis <strong>of</strong> morphological development stages <strong>in</strong>Avalon w<strong>in</strong>ter wheat crops with different sow<strong>in</strong>g dates and at ten sites <strong>in</strong> England and<strong>Scotland</strong>. Journal <strong>of</strong> Agricultural Science, Cambridge 109, 107-121.Slesser M. (1975). Energy requirements <strong>of</strong> agriculture. In Food, Agriculture and Society(Eds. J. Lenihan & W.W. Fletcher). Glasgow: Blackie, pp. 1-20.Solhaug K.A. (1991). Influence <strong>of</strong> photoperiod and temperature on dry matter productionand chlorophyll content <strong>in</strong> temperate grasses. Norwegian Journal <strong>of</strong> Agricultural Sciences5, 365-383.Taylor B.R. & Morrice L.A.F. (1991). Effects <strong>of</strong> husbandry practices on <strong>the</strong> seed yield and oilcontent <strong>of</strong> l<strong>in</strong>seed <strong>in</strong> Nor<strong>the</strong>rn <strong>Scotland</strong>. Journal <strong>of</strong> <strong>the</strong> Science <strong>of</strong> Food and Agriculture.57, 189-198.Walker A.D., Campbell C.G.B., Heslop R.E.F., Gauld J.H., La<strong>in</strong>g D., Shipley B.M. & Wright G.G.(1982). <strong>East</strong>ern <strong>Scotland</strong>: Soil and Land Capability for Agriculture. Aberdeen: TheMacaulay Institute for Soil Research.WCED (1987). Our Common Future. World Commission on Environment and Development.Oxford: Oxford University Press.51


52<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


Appendix 1Appendix 1: The “Scottish System” forScientific Support to Natural ResourceUse, Food and <strong>the</strong> EnvironmentThe term “Scottish System” has been used<strong>in</strong> different ways for a number <strong>of</strong> purposesover <strong>the</strong> last century. At its simplest, itorig<strong>in</strong>ally expressed <strong>the</strong> <strong>in</strong>tegration <strong>of</strong>education, development and extension forland use with<strong>in</strong> <strong>the</strong> Scottish AgriculturalColleges (now SAC) – a model widelyapplied <strong>in</strong> North America and <strong>the</strong> formerBritish Empire.The term is now more widely used toexpress <strong>the</strong> coord<strong>in</strong>ated activities <strong>of</strong> <strong>the</strong>organisations funded by <strong>the</strong> ScottishExecutive Rural Affairs Department to workon research, development, education,extension, policy support, and publicunderstand<strong>in</strong>g <strong>of</strong> science, <strong>in</strong> relation to landand water use, food and <strong>the</strong> environment.Royal Botanic Garden, Ed<strong>in</strong>burghScottish Agricultural College, Ed<strong>in</strong>burgh,Aberdeen & AyrScottish Agricultural Science Agency,Ed<strong>in</strong>burgh (<strong>Crop</strong>s and Environment:Regulation)Scottish <strong>Crop</strong> Research Institute, DundeeThere are also close functionalrelationships with <strong>the</strong> relevant academicdepartments <strong>of</strong> <strong>the</strong> Higher EducationInstitutes, particularly <strong>the</strong> Universities <strong>of</strong>Ed<strong>in</strong>burgh, Aberdeen, Glasgow, and Dundee.These <strong>in</strong>stitutes come toge<strong>the</strong>r under <strong>the</strong>aegis <strong>of</strong> CHABOS (Committee <strong>of</strong> <strong>the</strong> Heads<strong>of</strong> Agricultural and Biological Organisations<strong>in</strong> <strong>Scotland</strong>) whose membership is:Fisheries Research Services, Aberdeenand PitlochryForestry Commission Research Agency,Ed<strong>in</strong>burghHannah Research Institute, Ayr (Dairy)Macaulay Land Use Research Institute,Aberdeen (Environment)Moredun Research Institute, Ed<strong>in</strong>burgh(Animal Health)Rowett Research Institute, Aberdeen(Animal & Human Nutrition)53


54<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


Appendix 2Appendix 2: Selected Soil Pr<strong>of</strong>iles from<strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>(representative pr<strong>of</strong>iles from Memoirs <strong>of</strong> <strong>the</strong> Soil Survey <strong>of</strong> Great Brita<strong>in</strong>)Brown Forest Soil (Hobkirk Series formed on ORS, under arable cropp<strong>in</strong>g)S 0 – 25 cm Dark reddish brown sandy loam; weak blocky structure; friable;low organic content; occasional small stones; abundant roots; sharpchange toB 2 25 – 51 Reddish brown sandy loam; very weak blocky structure;friable; frequent small sub-angular and sub-rounded stones; frequentroots; gradual change <strong>in</strong>toB 3 51 – 76 Reddish brown f<strong>in</strong>e sandy loam; massive structure; firm;frequent small stones; occasional roots; clear change <strong>in</strong>toC 76+ Weak red f<strong>in</strong>e sandstoneBrown Forest Soil (Darvel Series formed on fluvioglacial deposits, under arablecropp<strong>in</strong>g)S 0 – 28 Dark brown sandy loam; weak medium crumb structure; veryfriable; low organic content; occasional small rounded stones;abundant roots; sharp change toB 2 28 – 43 Dark reddish brown loamy sand; weak f<strong>in</strong>e blocky structure;very friable; low organic content, conf<strong>in</strong>ed to worm burrows;m<strong>in</strong>eral carbon present <strong>in</strong> coal-conta<strong>in</strong><strong>in</strong>g bands; occasional smallstones; frequent roots; gradual change <strong>in</strong>toB 3 43 – 76 Brown sand; s<strong>in</strong>gle gra<strong>in</strong>; loose; small rounded stones rare;occasional roots; gradual change <strong>in</strong>toC 76 - 117 Brown sand; s<strong>in</strong>gle gra<strong>in</strong>; no stones; roots rare; clear change toC g 117+ Brown sand; s<strong>in</strong>gle gra<strong>in</strong>; no stones; no roots; strong brown andlight brown-grey mottles.Brown Forest Soil (W<strong>in</strong>ton Series formed on Carboniferous till, deciduouswith Gley<strong>in</strong>g woodland)L/FLeaf litterA 0 – 20 cm Dark grey brown sandy clay loam; f<strong>in</strong>e subangular blockystructure; friable; moderate organic content; abundant roots;occasional stones; earthworms active; clear boundary, but irregulardue to worm activityB 2(g) 20 – 38 Brown clay loam; coarse blocky structure; plastic; frequentroots; low organic content except <strong>in</strong> worm burrows; stones frequent;many reddish yellow mottles and grey-brown ped faces; gradualchange <strong>in</strong>toB 3(g) 38 – 56 Reddish brown clay loam; coarse prismatic structure; plastic;occasional roots; frequent stones; many yellowish red mottles andlight brown-grey ped faces; fa<strong>in</strong>t manganiferous sta<strong>in</strong><strong>in</strong>g; gradualchange to55


<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>C (g) 56+ Weak red clay; coarse prismatic structure; plastic; roots rare;frequent stones; fa<strong>in</strong>t yellowish red mottles and greyish ped facesand streaks; strong manganiferous sta<strong>in</strong><strong>in</strong>gBrown Forest Soil (Whitsome Series formed on mixed till <strong>of</strong> ORS, Silurian andwith Gley<strong>in</strong>g Ordovician sedimentary rocks, under arable cropp<strong>in</strong>g)S 0 – 28 cm Dark reddish brown clay loam; medium blocky structure;friable; low organic content; abundant roots; occasional small stones;clear change toB 2(g) 28 – 53 Dark reddish grey clay loam; coarse prismatic structure; firm,plastic when wet; frequent stones; occasional f<strong>in</strong>e roots; f<strong>in</strong>eyellowish red mottles; gradual change <strong>in</strong>toB 3(g) 53 – 76 Dark reddish brown clay loam; massive structure; firm;frequent stones; roots rare; fa<strong>in</strong>t ochreous mottles; gradual change<strong>in</strong>toC (g) 76+ As B 3(g) with abundant wea<strong>the</strong>red fragments <strong>of</strong> mudstone andshale.Humus Iron (Boyndie Series formed on fluvioglacial sand, under arablePodzolcropp<strong>in</strong>g)S 0 – 30 cm Grey-brown loamy sand; <strong>in</strong>coherent structure; merg<strong>in</strong>g <strong>in</strong>toA 1 30 – 50 Yellow-brown sand, yellow colour <strong>in</strong>creas<strong>in</strong>g with depth; loosecloddy structure, bound by f<strong>in</strong>e roots; transitional horizon, merg<strong>in</strong>g<strong>in</strong>toB 2 50 – 75 Yellow-brown sand; s<strong>in</strong>gle gra<strong>in</strong> structure; some f<strong>in</strong>e roots;Sharp change toB 3 75 – 117 Medium brown sand; compact structure; dark brown organicsta<strong>in</strong><strong>in</strong>g, somewhat mottled with grey and yellow-orange colours;sharp change toC 117+ Yellowish coarse sand, stratified, s<strong>in</strong>gle gra<strong>in</strong> structure.Humus Iron (Countesswells Series formed on granite till, Calluna grass heath)PodzolA 0 F 0 – 10 cm Black to dark brown, partially decomposed mor; fibrous andresilient; matted by f<strong>in</strong>e roots; sharp change toA 2 10 – 20 Grey, with small amount <strong>of</strong> dark brown humus sta<strong>in</strong><strong>in</strong>g, stony,loamy coarse sand; weakly coherent cloddy structure, held toge<strong>the</strong>rby roots; sharp change toB 1 20 Th<strong>in</strong> iron pan sometimes presentB 2 20 – 40 Yellow, with patches <strong>of</strong> dark brown humus sta<strong>in</strong><strong>in</strong>g; sandyloam; moderate stone content; s<strong>of</strong>t and friable; weakly cloddy; rootsfrequent; sharp change <strong>in</strong>toB 3 40 – 60 Pale yellow; stony, coarse loam; <strong>in</strong>durated; <strong>in</strong>durationdecreas<strong>in</strong>g towards base; few roots penetrate; merg<strong>in</strong>g <strong>in</strong>toC 60+ Greyish yellow; stony, loamy, coarse sand till; moderatelycompact.56


Appendix 3Appendix 3: Explanation <strong>of</strong> Acronyms <strong>in</strong><strong>the</strong> TextAEFDBSEDAFSEC/EUGDPGMAgriculture, Environment and Fisheries Department <strong>of</strong> <strong>the</strong> Scottish Office(equivalent to RAD before <strong>the</strong> creation <strong>of</strong> <strong>the</strong> Scottish Parliament <strong>in</strong>1999)Bov<strong>in</strong>e Spongiform EncephalopathyDepartment <strong>of</strong> Agriculture and Fisheries <strong>of</strong> <strong>the</strong> Scottish Office(predecessor <strong>of</strong> AEFD, before <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> Environment)European Commission/UnionGross Domestic ProductGenetic Modification/Genetically-ModifiedICSC International <strong>Crop</strong> Science Congress (3rd at Hamburg, August 2000)m.c.ORSRADSACWTOmoisture contentOld Red Sandstone (freshwater deposits <strong>of</strong> <strong>the</strong> Devonian period)Rural Affairs Department <strong>of</strong> <strong>the</strong> Scottish ExecutiveScottish Agricultural CollegeWorld Trade Organisation57


58<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>


Appendix 4Appendix 4: The Economics <strong>of</strong> a Range<strong>of</strong> <strong>Crop</strong>p<strong>in</strong>g Enterprises: SAC FarmManagement Handbook (Chadwick,1999).Values are Gross Marg<strong>in</strong>s, £ per hectare<strong>Crop</strong> Low Low Medium Medium High High <strong>in</strong>put<strong>in</strong>put <strong>in</strong>put <strong>in</strong>put <strong>in</strong>put with <strong>in</strong>put withwith area area areapayment payment paymentW. wheat 305 545 485 725 667 907W. barley 371 611 511 751 653 893S. barley 217 457 357 597 499 739W. oilseed rape 53 449 108 504 163 559S. oilseed rape 86 482 141 537 196 592S. l<strong>in</strong>seed -142 218 -70 290 -7 353Prote<strong>in</strong> peas -14 282 98 394 211 507Ware potatoes 1410 - 2071 - 2733 -Seed potatoes - - 3064 - - -Raspberries fresh - - 3046- 7257 - - -Raspberries processed - - -286-1704 - - -Carrots - - 3001-4013 - - -Leeks - - 4345 - - -Calabrese - - 1515-3524 - - -Timothy hay - - 545- 637 - - -For full details <strong>of</strong> estimates, see Chadwick (199959


60<strong>Crop</strong> <strong>Production</strong> <strong>in</strong> <strong>the</strong> <strong>East</strong> <strong>of</strong> <strong>Scotland</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!