11.04.2015 Views

Matematik og modeller 2012: Facit til udvalgte opgaver fra Modul 3–5

Matematik og modeller 2012: Facit til udvalgte opgaver fra Modul 3–5

Matematik og modeller 2012: Facit til udvalgte opgaver fra Modul 3–5

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Matematik</strong> <strong>og</strong> <strong>modeller</strong> <strong>2012</strong>:<br />

<strong>Facit</strong> <strong>til</strong> <strong>udvalgte</strong> <strong>opgaver</strong> <strong>fra</strong> <strong>Modul</strong> <strong>3–5</strong><br />

DL Opgave 136<br />

For a > 0 <strong>og</strong> b > 0: y = 1<br />

a+b+1 xb+1 +cx −a (c ∈ R).<br />

DL,<br />

(<br />

Opgave 152<br />

x<br />

y)<br />

= e<br />

−t ( 2) −5 +3e<br />

6t ( 1)<br />

1<br />

DL,<br />

(<br />

Opgave 169<br />

x<br />

(<br />

y)<br />

=<br />

7t+9<br />

)<br />

13t +c1 e −t( )<br />

1<br />

1 +c2 e 3t( )<br />

1<br />

5<br />

DL,<br />

(<br />

Opgave 180<br />

3<br />

)<br />

1 , ustabil<br />

DL, Opgave 187<br />

Ustabil<br />

DL, Opgave 192<br />

Ustabil<br />

DL, Opgave 194<br />

(1) ( 1 3 , 1 3 )<br />

DL, Opgave 204<br />

( )<br />

(1) (M ∗ ,N ∗ ) = 30(2α−1) 30<br />

4α−1<br />

,<br />

4α−1<br />

for α ≥ 1 2 .<br />

(2)<br />

1<br />

4α−1<br />

(3) Stabil<br />

( ) 2−4α 1−2α<br />

−1 −2α<br />

DL, Opgave 205<br />

(3,5)<br />

DL, Opgave 206<br />

(30,20); stabil<br />

1


Opgave S.3.1<br />

y = 1 3 ln( 3<br />

2 e2x +c ) (c ∈ R).<br />

Opgave S.3.2<br />

y = − 8 12<br />

13<br />

cos(2x)+<br />

13 sin(2x)+ce−3x (c ∈ R).<br />

Opgave S.3.3<br />

Ligevægte: x ∗ = 0 (stabil for a < 1) <strong>og</strong> x ∗ = lna (stabil for a > 1).<br />

Opgave S.3.4<br />

(a) Ligevægte: N ∗ = 300 (ustabil) <strong>og</strong> N ∗ = 700 (stabil).<br />

(b) H < 50. Den mindste ligevægt er ustabil, mens den største er stabil.<br />

Opgave S.3.5<br />

(a) y = 1<br />

x 2 +c<br />

(c ∈ R).<br />

(b)<br />

(c)<br />

x 0.0 0.2 0.4 0.6<br />

y(x) 1.000 0.962 0.862 0.735<br />

y(x) [Euler] 1 1 0.92 0.785<br />

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

y(x) 1.000 0.990 0.962 0.917 0.862 0.800 0.735 0.671 0.610 0.552 0.500<br />

y(x) [Euler] 1 1 0.98 0.942 0.888 0.825 0.757 0.688 0.622 0.560 0.504<br />

(d) h = 0.01: y(1) = 0.50036 vha. Eulers metode. Afvigelse 0.00036.<br />

h = 0.001: y(1) = 0.500035 vha. Eulers metode. Afvigelse 0.000035.<br />

(e)<br />

(f)<br />

x 0.0 0.2 0.4 0.6<br />

y(x) [Euler forbedret] 1 0.96 0.86 0.735<br />

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

y(x) [Euler forbedret] 1 0.99 0.961 0.917 0.862 0.8 0.736 0.672 0.61 0.553 0.501<br />

(g) h = 0.01: y(1) = 0.5000096 vha. Eulers forbedrede metode. Afvigelse 0.0000096.<br />

h = 0.001: y(1) = 0.5000001 vha. Eulers forbedrede metode. Afvigelse 0.0000001.<br />

(h) Eulerny(f,1000,0,1,2) = 0.199987. Eulerforbedretny(f,1000,0,1,2) = 0.2000003.<br />

2


Opgave S.4.1<br />

(a) Lad x(t) <strong>og</strong> y(t) betegne mængderne af stoffet i tank 1 hhv. tank 2 <strong>til</strong> tiden t.<br />

( ) ( )<br />

x<br />

′ −<br />

b c (x ( )<br />

V W −<br />

b c (x<br />

V W<br />

y ′ = = , idet b = a+c.<br />

y)<br />

y)<br />

b<br />

V<br />

− a+c<br />

W<br />

b<br />

V<br />

− b W<br />

(b) Fuldstændig løsning:<br />

( x<br />

y)<br />

= c1 e −0.2t( )<br />

1<br />

4 +c2 e −t( )<br />

3<br />

−4<br />

Partikulær løsning: c 1 = 15 <strong>og</strong> c 2 = 10, så<br />

x(t) = 15e −0.2t +30e −t <strong>og</strong> y(t) = 60e −0.2t −40e −t .<br />

(c 1 ,c 2 ∈ R).<br />

0 10 20 30 40 50<br />

x<br />

y<br />

0 5 10 15 20 25 30<br />

t<br />

(c)<br />

( x<br />

′<br />

y ′ )<br />

=<br />

(<br />

−<br />

b<br />

V<br />

b<br />

V<br />

c<br />

W<br />

− b W<br />

) (x<br />

y)<br />

+<br />

( ) ka<br />

.<br />

0<br />

(d) ( x ∗<br />

y ∗ )<br />

=<br />

( kV<br />

kW)<br />

.<br />

(e) Slutkoncentrationen er k i begge tanke (<strong>og</strong> afhænger altså kun af k).<br />

Opgave S.4.2<br />

(a) e −2t cost hhv. e −2t sint<br />

(b) v(t) = e −2t( cost+sint<br />

cost<br />

)<br />

+ie<br />

−2t ( −cost+sint)<br />

sint<br />

Opgave<br />

(<br />

S.4.3<br />

x<br />

y)<br />

= c1 e −2t( cost+sint) cost +c2 e −2t( −cost+sint)<br />

sint<br />

(c 1 ,c 2 ∈ R)<br />

3


Opgave S.5.1<br />

t 0.0 0.1 0.2<br />

x(t) [Euler] 5 6.6 9.3<br />

y(t) [Euler] −2 0.3 3.63<br />

x(t) 5 7.28 11.60<br />

y(t) −2 0.94 5.87<br />

Opgave S.5.2<br />

y<br />

(a)<br />

y<br />

(b) h = 0.1:<br />

t 0.0 0.5 1.0<br />

x(t) [Euler] 2 0 0<br />

y(t) [Euler] 1 1.5 0.75<br />

0.0 0.5 1.0 1.5 2.0<br />

x<br />

y<br />

0.2 0.4 0.6 0.8 1.0<br />

0 1 2 3 4<br />

t<br />

0.0 0.5 1.0 1.5 2.0<br />

x<br />

h = 0.01:<br />

0.0 0.5 1.0 1.5 2.0<br />

x<br />

y<br />

0.2 0.4 0.6 0.8 1.0<br />

0 1 2 3 4<br />

t<br />

0.0 0.5 1.0 1.5 2.0<br />

x<br />

Opgave S.5.3<br />

(a) 326 gram den 1. oktober<br />

(b) Strategi A: Høst 255 gram<br />

Strategi B: Høst 609 gram<br />

Opgave S.5.4<br />

V ′ = h 1 b KV +h 4 b GV −(f V +l A )V<br />

BC ′ = h 4 b GC − ( (<br />

f C g BC<br />

) )<br />

1 V +lB BC.<br />

4


Opgave S.5.5<br />

(a) Ligevægte: (0,0), (15,0), (0,15a) <strong>og</strong> (20−10a,20a −10).<br />

M ∗ > 0 <strong>og</strong> N ∗ > 0 for 0.5 < a < 2.<br />

(b) Med M ′ = f(M,N) <strong>og</strong> N ′ = g(M,N) fås<br />

( (<br />

f 1−<br />

2<br />

15<br />

D (M,N) =<br />

g)<br />

M − 1 30 N − 1<br />

30 M<br />

)<br />

− 1 30 N a− 1 30 M − 2<br />

15 N .<br />

( f<br />

D (M<br />

g)<br />

∗ ,N ∗ ) = 1 ( ) 2a−4 a−2<br />

.<br />

3 1−2a 2−4a<br />

(c) Ligevægten er stabil for alle 0.5 < a < 2.<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!