22.02.2013 Views

Incremental Capacity Upgrade of Exisitng Fiber Optic Links - Mitre

Incremental Capacity Upgrade of Exisitng Fiber Optic Links - Mitre

Incremental Capacity Upgrade of Exisitng Fiber Optic Links - Mitre

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Incremental</strong> <strong>Capacity</strong><br />

<strong>Upgrade</strong> Solutions for<br />

Existing <strong>Fiber</strong> <strong>Optic</strong> <strong>Links</strong><br />

Dr. Hatem Abdelkader<br />

703-983-3131 abdelkader@mitre.org<br />

Army-Contract MOIE<br />

© 2006, The MITRE Corporation


Problem<br />

� As demand grows current fiber optic links will<br />

need to be re-engineered to increase capacity<br />

� Increasing the capacity using the current<br />

modulation is challenging due to increased<br />

linear/ nonlinear propagation impairments<br />

� Proposed Solution: Advanced optical<br />

modulation techniques may allow:<br />

– Exploitation <strong>of</strong> the investment in legacy<br />

optical infrastructure (amplifiers and fiber)<br />

– <strong>Incremental</strong> funding <strong>of</strong> link upgrades<br />

© 2006, The MITRE Corporation


Background<br />

� In order to ensure control <strong>of</strong> its critical<br />

communications infrastructure, the U.S.<br />

government has acquired long-term<br />

possession <strong>of</strong> a global fiber optic backbone.<br />

� To fully exploit this backbone, the optical<br />

layer design and optimization must be<br />

actively managed; an effort complicated by:<br />

– <strong>Fiber</strong> topology heterogeneity (different fiber types)<br />

– Unique architectural and operational requirements<br />

(Network Operations differ from Telcos)<br />

– Churn in traffic termination points (due to dynamic<br />

BW demand and procurement process)<br />

© 2006, The MITRE Corporation


Objective<br />

� Evaluate the benefits <strong>of</strong> advanced optical<br />

modulation formats, with focus on optical<br />

Differential Phase Shift Keying (DPSK)<br />

� Demonstrate DPSK feasibility and quantify<br />

the resulting improvement in optical link<br />

aggregate bandwidth, length, and/or margin<br />

� Assist industry in understanding the potential<br />

government market for advanced modulation<br />

– DPSK/NRZ modulation formats interoperability<br />

– D-QPSK feasibility (spectral efficiency & tolerance)<br />

– Experimental studies on GIG-BE-like links<br />

© 2006, The MITRE Corporation


Activities<br />

� Design and build a 10 Gb/s DPSK transceiver<br />

(XCVR) unit on a laboratory breadboard,<br />

using discrete <strong>of</strong>f-the-shelf components<br />

� Characterize the XCVR unit to establish its<br />

back-to-back performance envelope<br />

� Experimentally quantify the optical transport<br />

performance improvement when DPSK is<br />

used – instead <strong>of</strong> on/<strong>of</strong>f keying – on optical<br />

test bed representative <strong>of</strong> GIG-BE links<br />

� Evaluate the NRZ/DPSK modulation format’s<br />

interoperability (on the same optical link)<br />

© 2006, The MITRE Corporation


Highlight: How Does DPSK Work?<br />

• Transmitted data is encoded on the laser optical phase<br />

differentially between adjacent bits rather than in the amplitude.<br />

• Decoding at the receiver is done via an optical delay-and-add<br />

Mach-Zehnder Interferometer. Here’s how it’s done:<br />

Input DATA<br />

Binary ON/OFF keyed NRZ Data<br />

0 1 0 1 1 0 1 0 0 1 1 0 0 0 1 0<br />

Electrically Pre-Coded Data Out(0) 1 1 0 1 1 0 0 0 1 0 0 0 0 1 1<br />

DPSK Encoded <strong>Optic</strong>al<br />

Signal<br />

Shifted by Demodulator 1-bit<br />

Delay<br />

Demodulator DATA Out<br />

—<br />

ϕ=0<br />

ϕ=π<br />

© 2006, The MITRE Corporation


Highlight: DPSK XCVR Diagram<br />

PPG<br />

Broadband<br />

Divider<br />

Tunable<br />

Laser<br />

10 GHz<br />

Clock<br />

DPSK Encoder<br />

DATA<br />

Data<br />

Amp<br />

(Phase Locked<br />

Ref. Oscillators)<br />

(Manual<br />

Gain Control)<br />

5 GHz<br />

½Clock<br />

Clock<br />

Amp<br />

MZ Data Modulator (DM)<br />

DATA<br />

Bias<br />

Tee<br />

(null)<br />

Bias<br />

Controller<br />

Athermal demodulator or (Manual wavelength control in lieu<br />

<strong>of</strong> demodulator temperature control)<br />

DPSK Receiver<br />

Instrumentation<br />

<strong>Optic</strong>al Components, Connections<br />

Control Components, Connections<br />

Microwave Components, Connections<br />

For NRZ, the DPSK RX is replaced by a standard<br />

PIN-TIA/limiting amplifier front end.<br />

Demodulator,<br />

100 ps delay<br />

Microwave<br />

Var. Delay<br />

MZ Pulse Carving Modulator (PC)<br />

(null/peak)<br />

Tunable<br />

Filter<br />

DATA<br />

DATA-<br />

BAR<br />

Matched<br />

delays<br />

DCA<br />

Error<br />

Detector<br />

OSA<br />

TIA<br />

Differential<br />

Receiver<br />

© 2006, The MITRE Corporation


Highlight: DPSK XCVR Testbed Evaluation<br />

SONET<br />

TX<br />

WDM<br />

Source<br />

(40 DFB<br />

lasers)<br />

Data<br />

Data Modulator Driver<br />

PM-AWG<br />

5<br />

<strong>Optic</strong>al<br />

Modulator<br />

Current <strong>Optic</strong>al Link Configuration at the MITRE<br />

<strong>Optic</strong>al Networking Laboratory:<br />

• 1,200 km linear test bed (TW-RS & LEAF fibers)<br />

• 40ch x10Gb/s = 400 Gb/s link aggregate bit rate<br />

• 12 state-<strong>of</strong>–the-art Onetta EDFAs<br />

• 40 ch on 100 GHz ITU grid<br />

6<br />

1<br />

6<br />

7<br />

9<br />

7<br />

1<br />

8<br />

17<br />

1<br />

8<br />

2<br />

15<br />

9<br />

<strong>Optic</strong>al<br />

Amplifier<br />

5<br />

2<br />

9<br />

3<br />

12<br />

10<br />

13<br />

3<br />

10<br />

4<br />

Span<br />

7<br />

11<br />

20<br />

4<br />

<strong>Optic</strong>al Receiver<br />

11<br />

5<br />

8<br />

12<br />

DCM<br />

6<br />

SONET<br />

RX<br />

© 2006, The MITRE Corporation


Impacts<br />

� Compared to NRZ, DPSK allows optical link<br />

operation with a 3-dB lower OSNR at the RX.<br />

This can potentially translate into a factor <strong>of</strong><br />

two increase in link capacity<br />

� Our sponsors can benefit from this work to:<br />

– Significantly increase the aggregate<br />

capacity <strong>of</strong> exhausted deployed links<br />

– Markedly extend the reach on these links<br />

– Improve the BER performance on marginal<br />

links (that are susceptible to outages due<br />

to transients caused by unplanned events)<br />

© 2006, The MITRE Corporation


Future Plans<br />

� <strong>Upgrade</strong> the DPSK XCVR to D-QPSK.<br />

Compared to binary on/<strong>of</strong>f Keying, D-QPSK:<br />

– is 2 times more spectrally efficient, and 4 times<br />

more tolerant to CD & PMD distortions<br />

– has a narrow optical spectrum that can enable<br />

closer channel spacing (more capacity)<br />

� Investigate a coherent based DPSK RX:<br />

– Effective electrical dispersion compensation<br />

– Higher RX sensitivity, and<br />

– Compatibility with several modulation formats<br />

© 2006, The MITRE Corporation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!