22.02.2013 Views

A Mathematica based Version of the CKMfitter Package

A Mathematica based Version of the CKMfitter Package

A Mathematica based Version of the CKMfitter Package

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong><br />

<strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

Diplomarbeit<br />

zur Erlangung des akademischen Grades<br />

Diplom-Physiker<br />

vorgelegt von<br />

Andreas Jantsch<br />

geboren in Dresden<br />

Institut für Kern- und Teilchenphysik<br />

Fachrichtung Physik<br />

Fakultät Ma<strong>the</strong>matik und Naturwissenschaften<br />

der Technischen Universität Dresden<br />

2006


1. Gutachter: Pr<strong>of</strong>. Dr. Klaus R. Schubert<br />

2. Gutachter: Dr. Heiko Lacker<br />

Datum des Einreichens der Arbeit: 11. 09. 2006


Kurzfassung<br />

Das <strong>CKMfitter</strong> S<strong>of</strong>tware-Paket stellt ein Analyseinstrument zur Verfügung, mit dessen<br />

Hilfe die Parameter der Cabibbo-Kobayashi-Maskawa-Matrix im Bereich des<br />

Standardmodells und seinen möglichen Erweiterungen eingeschränkt werden können.<br />

Die verwendete statistische Methode ist ein auf klassischer Statistik basierender<br />

Ansatz, genannt Rfit, in dem <strong>the</strong>oretische Unsicherheiten durch erlaubte Bereiche<br />

dargestellt werden. Das ursprüngliche Paket ist in FORTRAN programmiert und<br />

verwendet das Minimierungspaket MINUIT. Über die Jahre erhöhte sich die Komplexität<br />

der Fitprobleme und damit der CPU-Zeitverbrauch beachtlich. Mit dem Ziel einer<br />

deutlichen Fitzeitreduzierung initiierte Jérôme Charles eine auf <strong>Ma<strong>the</strong>matica</strong><br />

basierende <strong>Version</strong> des <strong>CKMfitter</strong>-Pakets. Mit diesem Paket konnte unter Verwendung<br />

von symbolischen Kalkulationen und einer effizienten Minimierungsroutine ein<br />

CPU-Zeitgewinn von mehr als einem Faktor 100 erreicht werden. Thema dieser Diplomarbeit<br />

ist die Implementierung der Theorie der neutralen Meson-Oszillationen<br />

als auch der leptonischen Zerfälle geladener B-Mesonen, jeweils im Standardmodell<br />

und einer möglichen Erweiterung. Weiterhin wurde die Behandlung von Dateien,<br />

welche tabellarische Eingabedaten enthalten, entwickelt. Abschließend werden aktuellste<br />

Resultate der Cabibbo-Kobayashi-Maskawa-Matrix Analyse im Standardmodell<br />

und zwei seiner Erweiterungen gezeigt. Diese wurden von der <strong>CKMfitter</strong><br />

Gruppe auf der Internationalen Konferenz für Hochenergiephysik 2006 (ICHEP06)<br />

präsentiert.<br />

Abstract<br />

The <strong>CKMfitter</strong> package provides an analysis tool to constrain <strong>the</strong> parameters <strong>of</strong> <strong>the</strong><br />

Cabibbo-Kobayashi-Maskawa matrix in <strong>the</strong> framework <strong>of</strong> <strong>the</strong> Standard Model<br />

and possible extensions. The statistical method used is a frequentist <strong>based</strong> approach<br />

called Rfit, where <strong>the</strong>oretical uncertainties are represented by allowed ranges. The<br />

original package is coded in FORTRAN and uses <strong>the</strong> MINUIT minimization package.<br />

Over <strong>the</strong> years, <strong>the</strong> complexity <strong>of</strong> <strong>the</strong> fit problems and associated with that<br />

<strong>the</strong> CPU time consumption have increased considerably. With <strong>the</strong> goal <strong>of</strong> a significant<br />

fit time reduction, Jérôme Charles initiated a <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version<br />

<strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package. With this new package a gain in CPU time <strong>of</strong> more<br />

than a factor 100 has been achieved, using symbolic calculations and an efficient<br />

minimization routine. Subject <strong>of</strong> this <strong>the</strong>sis is <strong>the</strong> implementation <strong>of</strong> <strong>the</strong> <strong>the</strong>ory<br />

<strong>of</strong> neutral meson oscillations as well as leptonic decays <strong>of</strong> charged B-mesons, both,<br />

for <strong>the</strong> Standard Model and a possible extension. Fur<strong>the</strong>rmore, <strong>the</strong> treatment <strong>of</strong><br />

look-up table input files has been developed. Finally, updated results <strong>of</strong> <strong>the</strong> global<br />

Cabibbo-Kobayashi-Maskawa matrix analysis in <strong>the</strong> Standard Model and two<br />

<strong>of</strong> its extensions have been provided. They have been presented by <strong>the</strong> <strong>CKMfitter</strong><br />

group at <strong>the</strong> International Conference on High Energy Physics 2006 (ICHEP06).


Contents<br />

Contents v<br />

List <strong>of</strong> Figures vii<br />

List <strong>of</strong> Tables ix<br />

1 Introduction 1<br />

2 Theory 3<br />

2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

2.2 The CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

2.3 The Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

2.4 Neutral Meson Oscillation . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

2.5 CP Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

3 <strong>CKMfitter</strong> 13<br />

3.1 The Statistical Framework - Rfit . . . . . . . . . . . . . . . . . . . . 13<br />

3.2 Fit Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

3.3 The <strong>CKMfitter</strong> <strong>Package</strong> Code . . . . . . . . . . . . . . . . . . . . . . 15<br />

4 A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong> 17<br />

4.1 <strong>Ma<strong>the</strong>matica</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

4.2 <strong>Package</strong> Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

4.3 <strong>CKMfitter</strong>.nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

4.4 The Minimization Routine . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

4.5 Theory <strong>Package</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

4.6 Look-Up Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

4.7 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

5 Probing <strong>the</strong> Standard Model 29<br />

5.1 Fit Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

5.2 Standard Model Fit Results . . . . . . . . . . . . . . . . . . . . . . . 39<br />

v


vi CONTENTS<br />

6 New Physics Beyond <strong>the</strong> Standard Model 49<br />

6.1 New Physics in B 0 - ¯ B 0 Oscillations . . . . . . . . . . . . . . . . . . . 49<br />

6.2 Charged Higgs Contributions to Leptonic B ± Decays . . . . . . . . . 54<br />

7 Conclusions and Perspectives 57<br />

A The Inami-Lim Functions 59<br />

B Additional Figures <strong>of</strong> New Physics in B 0 - ¯B 0 Oscillations 61<br />

C Testjob 65<br />

D Source Code 67<br />

D.1 Tableau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br />

D.2 dTableauO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68<br />

D.3 LoadLUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

E User Guide 71<br />

E.1 <strong>Ma<strong>the</strong>matica</strong> Terminology . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

E.2 Datacards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br />

E.3 Input Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />

E.4 Theory <strong>Package</strong> Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 77<br />

Bibliography 97<br />

Danksagung 103<br />

Erklärung 105


List <strong>of</strong> Figures<br />

2.1 The rescaled Unitarity Triangle . . . . . . . . . . . . . . . . . . . . . 7<br />

2.2 Box diagram contribution to K 0 - ¯ K 0 mixing . . . . . . . . . . . . . . 9<br />

2.3 Box diagram contribution to B 0 - ¯ B 0 mixing . . . . . . . . . . . . . . 10<br />

4.1 The fit process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

4.2 The minimization routine file system . . . . . . . . . . . . . . . . . . 21<br />

4.3 Comparison plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

5.1 CL on <strong>the</strong> UT angles α and γ . . . . . . . . . . . . . . . . . . . . . . 31<br />

5.2 Tree-level contributions to leptonic B + decays in <strong>the</strong> SM . . . . . . . 33<br />

5.3 The Standard Global CKM Fit in <strong>the</strong> (¯ρ,¯η) plane . . . . . . . . . . . 40<br />

5.4 CL on A, λ, ¯ρ, ¯η, J, α, β and γ . . . . . . . . . . . . . . . . . . . . . 41<br />

5.5 CL on |Vub|incl and sin 2β . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

5.6 CL on B(B + → τ + ντ ) and B(B + → µ + νµ) . . . . . . . . . . . . . . . 43<br />

5.7 CL in <strong>the</strong> (¯ρ,¯η) plane obtained from B(B + → τ + ντ ) and ∆md . . . . 43<br />

5.8 SM fit results in <strong>the</strong> (¯ρ,¯η) plane . . . . . . . . . . . . . . . . . . . . . 45<br />

5.9 CL on ASL including LO and NLO QCD corrections . . . . . . . . . 46<br />

6.1 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β . . . . . 50<br />

6.2 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β 51<br />

6.3 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β, γ 51<br />

6.4 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β,<br />

γ, α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

6.5 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β,<br />

γ, α, ASL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53<br />

6.6 CL on <strong>the</strong> NP parameters r 2 d and 2ϑd . . . . . . . . . . . . . . . . . 53<br />

6.7 Tree-level contribution from charged Higgs bosons to B + → τ + ντ . . 54<br />

6.8 Constraints on (tan β,m H +) from B(B + → τ + ντ ) . . . . . . . . . . . 55<br />

B.1 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, cos 2β . . . . 61<br />

B.2 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, α . . . . . . . 62<br />

B.3 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, ASL . . . . . 62<br />

B.4 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β, α 63<br />

B.5 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, ASL . . . . . 63<br />

vii


viii LIST OF FIGURES<br />

B.6 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, α . . . 64<br />

B.7 Constraints on NP from |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, γ, α, ASL 64


List <strong>of</strong> Tables<br />

2.1 The three generations <strong>of</strong> fundamental fermions . . . . . . . . . . . . 3<br />

2.2 The fundamental interactions . . . . . . . . . . . . . . . . . . . . . . 4<br />

4.1 Directory structure <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> package . . 18<br />

4.2 <strong>Version</strong> labels in <strong>the</strong> <strong>the</strong>ory package BBbarKKbarMixing . . . . . . 23<br />

4.3 <strong>Version</strong> labels in <strong>the</strong> <strong>the</strong>ory package LeptonicDecay . . . . . . . . . . 23<br />

4.4 LUT column order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

4.5 Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

4.6 Numerical comparison <strong>of</strong> A, λ, ¯ρ, ¯η and J . . . . . . . . . . . . . . . 26<br />

4.7 Fit time comparison <strong>of</strong> test job runs . . . . . . . . . . . . . . . . . . 28<br />

4.8 Hardware and s<strong>of</strong>tware performance tests . . . . . . . . . . . . . . . 28<br />

5.1 Inputs to <strong>the</strong> CKM fits . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br />

5.2 Inputs to <strong>the</strong> CKM fits (continued) . . . . . . . . . . . . . . . . . . . 38<br />

5.3 Fit results and errors using <strong>the</strong> Standard Global CKM Fit observables 47<br />

5.4 Fit results and errors (continued) . . . . . . . . . . . . . . . . . . . . 48<br />

ix


x LIST OF TABLES


Chapter 1<br />

Introduction<br />

“Nature has always looked like a horrible mess, but as we go along we see patterns<br />

and put <strong>the</strong>ories toge<strong>the</strong>r, a certain clarify comes and things get simpler.”<br />

Richard P. Feynman [1]<br />

An important instrument <strong>of</strong> research is creating models. A physical model is a <strong>the</strong>ory,<br />

which describes its objects and <strong>the</strong>ir interactions using ma<strong>the</strong>matical equations<br />

and makes predictions for <strong>the</strong>m. Usually, not all parameters <strong>of</strong> such a <strong>the</strong>ory are<br />

fixed by <strong>the</strong> model itself, <strong>the</strong>refore some free parameters <strong>of</strong> a <strong>the</strong>ory can only be<br />

determined by experiments.<br />

The Standard Model (SM) <strong>of</strong> particle physics is <strong>the</strong> <strong>the</strong>ory <strong>of</strong> three generations <strong>of</strong> fundamental<br />

fermions and <strong>the</strong> interactions between <strong>the</strong>m, mediated by gauge bosons. 1<br />

The SM is a combination <strong>of</strong> <strong>the</strong> Quantum Chromodynamics (QCD), which describes<br />

<strong>the</strong> strong interaction, and <strong>the</strong> unified <strong>the</strong>ory <strong>of</strong> electroweak interactions. These are<br />

<strong>the</strong>ories <strong>of</strong> massless particles. To generate masses preserving <strong>the</strong> gauge symmetry<br />

<strong>of</strong> <strong>the</strong> SM, it can be accommodated by spontaneous symmetry breaking, also called<br />

<strong>the</strong> Higgs Mechanism. The associated Higgs particle awaits its discovery though.<br />

Due to <strong>the</strong> disparity <strong>of</strong> weak and mass eigenstates, quarks can be transformed into<br />

each o<strong>the</strong>r via flavor changing weak interaction transitions. The transformation matrix<br />

is called Cabibbo-Kobayashi-Maskawa (CKM) matrix [2,3] and depends on<br />

four independent parameters, three rotation angles and one phase. A non-vanishing<br />

phase would be a source <strong>of</strong> CP violation 2 (CPV) in <strong>the</strong> Standard Model.<br />

The four independent parameters <strong>of</strong> <strong>the</strong> CKM matrix are free parameters <strong>of</strong> <strong>the</strong><br />

SM and need to be determined from experiments. They can be overconstrained by<br />

measurements <strong>of</strong> CKM matrix elements and CP asymmetries. This requires a global<br />

analysis, which probes <strong>the</strong> consistency between <strong>the</strong> different measurements and <strong>the</strong>ir<br />

SM predictions.<br />

1 Particles with half-integer spin are called fermions, particles with integer spin are called bosons.<br />

2 CP violation means an asymmetric behavior <strong>of</strong> particles and its corresponding antiparticles.<br />

1


2 Chapter 1. Introduction<br />

Unfortunately, <strong>the</strong> Standard Model cannot answer all questions, e. g. evidences for<br />

dark matter from <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> cosmic microwave backround radiation imply<br />

<strong>the</strong> existence <strong>of</strong> non-SM particles. Fur<strong>the</strong>rmore, <strong>the</strong> observed matter-antimatter<br />

asymmetry <strong>of</strong> <strong>the</strong> Universe requires additional CP-violating effects. There are many<br />

New Physics (NP) models, like Supersymmetric Models (SUSY) and Grand Unified<br />

Theories (GUTs), that can solve, in principle <strong>the</strong>se and o<strong>the</strong>r problems. Probing<br />

<strong>the</strong> consistency <strong>of</strong> <strong>the</strong>se models with experimental data is also a part <strong>of</strong> <strong>the</strong> global<br />

CKM matrix analysis.<br />

The <strong>CKMfitter</strong> package [4] provides a global analysis tool, which allows to constrain<br />

<strong>the</strong> CKM matrix parameters within <strong>the</strong> Standard Model and its possible extensions.<br />

In <strong>the</strong> framework <strong>of</strong> <strong>the</strong> frequentist approach Rfit, <strong>the</strong> consistency <strong>of</strong> recent experimental<br />

results and its <strong>the</strong>oretical predictions are probed. The s<strong>of</strong>tware package has<br />

been mainly written in FORTRAN using <strong>the</strong> MINUIT minimization package. Over<br />

<strong>the</strong> years, <strong>the</strong> complexity <strong>of</strong> <strong>the</strong> fit problems has increased substantially. Depending<br />

on <strong>the</strong> fit problem, a fit can last up to <strong>the</strong> order <strong>of</strong> days.<br />

In this <strong>the</strong>sis, a <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package is introduced.<br />

It has been initiated and commenced by Jérôme Charles. Beside <strong>of</strong> <strong>Ma<strong>the</strong>matica</strong>,<br />

which provides a framework for symbolic calculations, a slim and effective<br />

minimization routine is implemented. During this work, <strong>the</strong> final structure <strong>of</strong> <strong>the</strong><br />

source code with a userfriendly environment accrued and fundamental <strong>the</strong>ory packages<br />

were coded. They include <strong>the</strong> <strong>the</strong>oretical predictions <strong>of</strong> additional NP models<br />

beyond <strong>the</strong> SM. Important developments are also <strong>the</strong> routine for <strong>the</strong> treatment <strong>of</strong><br />

numerical input tables and <strong>the</strong> possibility <strong>of</strong> having different <strong>the</strong>oretical frameworks<br />

in one <strong>the</strong>ory package. A talk on <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> version has<br />

been presented at <strong>the</strong> DPG Frühjahrstagung 2006 in Dortmund [5].<br />

After one year <strong>of</strong> development, a lot <strong>of</strong> important fits, for instance <strong>the</strong> Standard<br />

Global CKM Fit, can be performed using <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>CKMfitter</strong>.<br />

For example, all SM and some NP fit results presented by Stephane T’Jampens<br />

at <strong>the</strong> International Conference on High Energy Physics 2006 (ICHEP06) in Moscow,<br />

have been produced with <strong>the</strong> new <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> version.<br />

The <strong>the</strong>sis is organized as follows. Chapter 2 gives a brief introduction to <strong>the</strong><br />

Standard Model and <strong>the</strong> CKM matrix. Fur<strong>the</strong>rmore, a review <strong>of</strong> <strong>the</strong> relevant <strong>the</strong>ory<br />

<strong>of</strong> neutral meson oscillation and CP violation is presented. After an overview about<br />

<strong>the</strong> original <strong>CKMfitter</strong> package and its statistical approach Rfit in Chapter 3, <strong>the</strong><br />

development <strong>of</strong> <strong>CKMfitter</strong> in a <strong>Ma<strong>the</strong>matica</strong> environment is described in Chapter 4.<br />

Up-to-date plots and results <strong>of</strong> <strong>the</strong> global CKM matrix analysis are presented in<br />

Chapter 5 for <strong>the</strong> Standard Model and in Chapter 6 in <strong>the</strong> framework <strong>of</strong> two New<br />

Physics models. A user guide and a development tutorial for <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong><br />

version <strong>of</strong> <strong>CKMfitter</strong> can be found in <strong>the</strong> appendices.


Chapter 2<br />

Theory<br />

In <strong>the</strong> following, a brief introduction to <strong>the</strong> relevant <strong>the</strong>oretical background is provided.<br />

If not explicitly stated, <strong>the</strong> information given is taken from <strong>the</strong> Refs. [6–10]<br />

which recommended for a more detailed overview.<br />

2.1 The Standard Model<br />

The Standard Model <strong>of</strong> particle physics is <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>the</strong> fundamental particles and<br />

<strong>the</strong>ir interactions. The known fundamental fermions are classified into leptons and<br />

quarks. They are ordered in three generations with ascending masses, as summarized<br />

in Table 2.1.<br />

Fermions Generation Charge Color Weak Isospin (I, I3)<br />

1 2 3 Q/e0 left-handed right-handed<br />

Leptons<br />

νe<br />

e− νµ<br />

µ −<br />

ντ<br />

τ −<br />

0<br />

−1<br />

-<br />

(1/2, +1/2)<br />

(1/2, −1/2)<br />

−<br />

(0, 0)<br />

Quarks<br />

ui ci ti +2/3<br />

−1/3<br />

i=r,g,b<br />

(1/2, +1/2)<br />

(1/2, −1/2)<br />

(0, 0)<br />

(0, 0)<br />

di<br />

si<br />

bi<br />

Table 2.1: The three generations <strong>of</strong> fundamental fermions<br />

For each fermion a corresponding anti-fermion exists with <strong>the</strong> same mass, but opposite<br />

electric charge, color 1 and third component <strong>of</strong> <strong>the</strong> weak isospin, I3.<br />

Beside <strong>of</strong> gravity 2 , <strong>the</strong>re are three fundamental interactions which are mediated by<br />

vector gauge bosons. Gluons have color and interact among each o<strong>the</strong>r as well as<br />

1 Color is <strong>the</strong> charge <strong>of</strong> <strong>the</strong> strong interaction. It is an additional degree <strong>of</strong> freedom with three<br />

possible values, usually called red (r), green (g) and blue (b).<br />

2 Due to its weakness (<strong>the</strong> relative strength compared to <strong>the</strong> strong interaction is <strong>of</strong> order 10 −38 ),<br />

gravity is irrelevant for particle physics on energy scales currently accessible in experiments and is<br />

not described by <strong>the</strong> Standard Model. A unified description <strong>of</strong> all fundamental interactions is <strong>the</strong><br />

goal <strong>of</strong> Theories <strong>of</strong> Everything (TOEs).<br />

3


4 Chapter 2. Theory<br />

<strong>the</strong> bosons <strong>of</strong> <strong>the</strong> weak interaction, which have weak charge. The three fundamental<br />

interactions are summarized in Table 2.2.<br />

Interaction Couples to Vector Boson Mass (GeV/c 2 ) J P<br />

strong color 8 gluons 0 1 −<br />

electromagnetic electric charge photon γ 0 1 −<br />

weak weak charge W ± , Z 0 ≈ 10 2 1<br />

Table 2.2: The fundamental interactions<br />

The Standard Model is <strong>the</strong> combination <strong>of</strong> Quantum Chromodynamics and <strong>the</strong> unified<br />

<strong>the</strong>ory <strong>of</strong> electroweak interactions. It is a renormalizable quantum field <strong>the</strong>ory<br />

and carries <strong>the</strong> group structure <strong>of</strong> <strong>the</strong> gauge group SU(3)C ⊗SU(2)L ⊗U(1)Y , where<br />

C means color, L means left and Y is <strong>the</strong> electroweak hypercharge.<br />

The QCD, represented by <strong>the</strong> gauge group SU(3)C, is <strong>the</strong> <strong>the</strong>ory <strong>of</strong> strong interactions<br />

between colored quarks and gluons. Its coupling constant αS depends on <strong>the</strong><br />

energy scale µ, which leads at high energies to a weak coupling, called Asymptotic<br />

freedom, and a strong coupling at low energies leading to so-called Confinement.<br />

Due to <strong>the</strong> Confinement, no free quarks or gluons have been observed yet. They<br />

only occur in color-neutral bound states, called hadrons, which can be classified into<br />

baryons and mesons 3 .<br />

The unification <strong>of</strong> electro-magnetic and weak interaction is described in <strong>the</strong> model <strong>of</strong><br />

S. L. Glashow, S. Weinberg and A. Salam by <strong>the</strong> gauge group SU(2)L⊗U(1)Y ,<br />

where <strong>the</strong> fermions are represented by left-handed doublets and right-handed singlets<br />

<strong>of</strong> <strong>the</strong> weak isospin. Since gauge invariance requires <strong>the</strong> absence <strong>of</strong> explicit mass<br />

terms in <strong>the</strong> Lagrangian, all particles are initially assumed to be massless. As<br />

a possibility <strong>of</strong> mass generation without spoiling <strong>the</strong> gauge invariance, P. Higgs<br />

introduced a complex scalar doublet field Φ = (φ1, φ2), which leads to an additional<br />

term in <strong>the</strong> SM Lagrangian:<br />

LΦ = � ∂µΦ +� (∂ µ Φ) − V (Φ) (2.1)<br />

with a rotationally symmetric potential V (Φ) = −µ 2 Φ + Φ + λ 2 (Φ + Φ) 2 . The Yukawa<br />

interaction <strong>of</strong> <strong>the</strong> quarks with <strong>the</strong> Higgs field is described by:<br />

LY = −Y d<br />

ij ¯ Q I LiΦd I Rj − Y u<br />

ij ¯ Q I LiεΦ ∗ u I Rj + h.c. , (2.2)<br />

(q = u, d) are complex 3 × 3 matrices, i, j are <strong>the</strong> labels <strong>of</strong> <strong>the</strong> fermion<br />

are <strong>the</strong> left-handed<br />

represent <strong>the</strong> right-handed down- and up-type<br />

quark singlets in <strong>the</strong> basis <strong>of</strong> weak interaction eigenstates, denoted by I.<br />

where Y q<br />

ij<br />

generation and ε is <strong>the</strong> 2×2 total antisymmetric tensor. The QI Li<br />

quark doublets, where dI Rj and uI Rj<br />

3 Baryons are composed <strong>of</strong> three quarks with different color (qiqjqk), mesons are composed <strong>of</strong> a<br />

quark-antiquark pair (qi ¯q ī), where <strong>the</strong> indices i, j, k represent <strong>the</strong> color and ī <strong>the</strong> anti-color respectively.


2.2. The CKM Matrix 5<br />

After spontaneous symmetry breaking from SU(2)L ⊗ U(1)Y to U(1)Q at lower<br />

energies (∼200 GeV), Φ acquires a non-vanishing vacuum expectation value 〈Φ〉 =<br />

� 0, v/ √ 2 � and equation (2.2) results in Dirac mass terms for <strong>the</strong> quarks:<br />

M u = v √ 2 Y u , M d = v √ 2 Y d . (2.3)<br />

Fur<strong>the</strong>rmore, in contrast to <strong>the</strong> photon γ, <strong>the</strong> vector bosons W ± and Z 0 obtain<br />

masses and an additional massive spin-0 boson, <strong>the</strong> physical Higgs particle H, is<br />

predicted 4 .<br />

The mass matrices M u and M d can be diagonalized by unitary transformations:<br />

M u,diag = UM u Ũ † =<br />

M d,diag = V M d ˜ V † =<br />

⎛<br />

⎝<br />

⎛<br />

⎝<br />

mu 0 0<br />

0 mc<br />

0 0 mt<br />

md 0 0<br />

0 ms<br />

0 0 mb<br />

⎞<br />

⎠ (2.4)<br />

⎞<br />

⎠ , (2.5)<br />

where U, Ũ and V, ˜ V are unitary matrices and <strong>the</strong> quark masses mq are real. Due<br />

to <strong>the</strong> fact that <strong>the</strong> left-handed up- and down-type quarks are members <strong>of</strong> <strong>the</strong> same<br />

SU(2)L doublet, <strong>the</strong>y cannot be transformed independently. Choosing <strong>the</strong> up-type<br />

quarks as mass eigenstates5 , <strong>the</strong> left-handed isospin doublet transforms to:<br />

Q I L =<br />

� u I Li<br />

d I Li<br />

�<br />

= U †<br />

ij<br />

�<br />

uLj �<br />

UV † �<br />

jk dLk<br />

�<br />

, (2.6)<br />

which leads to a mixing matrix in <strong>the</strong> down-type quark sector, <strong>the</strong> so-called CKM<br />

matrix VCKM = UV † .<br />

2.2 The CKM Matrix<br />

2.2.1 General Remarks<br />

The Cabibbo-Kobayashi-Maskawa matrix VCKM, is <strong>the</strong> quark-mixing matrix. It<br />

connects <strong>the</strong> weak interaction eigenstates d I Li = (d′ , s ′ , b ′ ) and <strong>the</strong> corresponding<br />

mass eigenstates dLk = (d, s, b) <strong>of</strong> <strong>the</strong> down-type quarks through:<br />

⎛<br />

⎝<br />

⎞ ⎛ ⎞ ⎛<br />

d Vud<br />

⎠ = VCKM ⎝ s ⎠ = ⎝ Vcd<br />

Vus<br />

Vcs<br />

Vub<br />

Vcb<br />

⎞ ⎛<br />

d<br />

⎠ ⎝ s<br />

b<br />

b<br />

d ′<br />

s ′<br />

b ′<br />

Vtd Vts Vtb<br />

⎞<br />

⎠ . (2.7)<br />

4<br />

The observation <strong>of</strong> <strong>the</strong> Higgs boson is <strong>the</strong> main goal <strong>of</strong> <strong>the</strong> experiments at <strong>the</strong> Large Hadron<br />

Collider (LHC), starting in 2007.<br />

5<br />

This is done by convention. It is also possible to choose <strong>the</strong> down-type quarks as mass eigenstates<br />

which would lead to a mixing matrix in <strong>the</strong> up-type quark sector.


6 Chapter 2. Theory<br />

VCKM is a complex 3×3 matrix and, hence, has 18 independent parameters: nine real<br />

parts and nine imaginary parts <strong>of</strong> its nine complex matrix elements. An important<br />

property is its unitarity, given by <strong>the</strong> relation:<br />

VCKMV † †<br />

CKM = V CKMVCKM = 1 , (2.8)<br />

which ensures <strong>the</strong> conservation <strong>of</strong> probability. Due to unitarity and <strong>the</strong> freedom <strong>of</strong><br />

phase redefinition, <strong>the</strong> number <strong>of</strong> independent parameters is reduced to four and<br />

<strong>the</strong> CKM matrix can be parameterized, e. g. by three Euler angles and one global<br />

phase.<br />

2.2.2 The Standard Parameterization <strong>of</strong> VCKM<br />

The Standard Parameterization <strong>of</strong> <strong>the</strong> CKM matrix was proposed by Chau and<br />

Keung [11] and is advocated by <strong>the</strong> Particle Data Group (PDG) [9]. It is obtained<br />

by <strong>the</strong> product <strong>of</strong> three unitary complex rotation matrices, where <strong>the</strong> rotations are<br />

characterized by Euler angles θ12, θ13 and θ23, which are <strong>the</strong> mixing angles between<br />

<strong>the</strong> generations, and one overall CP-violating phase δ. The result is:<br />

VCKM =<br />

⎛<br />

⎜<br />

⎝<br />

c12c13 s12c13 s13e −iδ<br />

−s12c23 − c12s23s13e iδ c12c23 − s12s23s13e iδ s23c13<br />

s12s23 − c12c23s13e iδ −c12s23 − s12c23s13e iδ c23c13<br />

⎞<br />

⎟<br />

⎠ , (2.9)<br />

where cij = cosθij and sij = sinθij for i < j = 1, 2, 3. The cij and sij are positive<br />

for θij > 0. The unitarity relation (2.8) is strictly satisfied.<br />

2.2.3 The Wolfenstein Parameterization <strong>of</strong> VCKM<br />

As a result <strong>of</strong> <strong>the</strong> observed hierarchy between <strong>the</strong> different CKM matrix elements,<br />

Wolfenstein [12] proposed a parameterization in terms <strong>of</strong> <strong>the</strong> four parameters A,<br />

λ, ρ and η. It is an expansion <strong>of</strong> VCKM in λ � |Vus| and defined to all orders in λ<br />

by [13]:<br />

s12 ≡ λ<br />

s23 ≡ Aλ 2<br />

s13e −iδ ≡ Aλ 3 (ρ − iη) .<br />

(2.10)<br />

Thus, up to order <strong>of</strong> λ4 , <strong>the</strong> CKM matrix can be written as:<br />

⎛<br />

⎜<br />

VCKM = ⎜<br />

⎝<br />

1 − λ2<br />

2<br />

λ Aλ3 −λ 1 −<br />

(ρ − iη)<br />

λ2<br />

2<br />

Aλ2 ⎞<br />

⎟ + O<br />

⎟<br />

⎠<br />

� λ 4� . (2.11)<br />

Aλ 3 (1 − ρ − iη) −Aλ 2 1


2.3. The Unitarity Triangle 7<br />

2.3 The Unitarity Triangle<br />

As a result <strong>of</strong> Equation (2.8), <strong>the</strong>re exist 12 different unitarity relations for <strong>the</strong> CKM<br />

matrix. The rescaled unitarity relation relevant for <strong>the</strong> B-meson system is:<br />

VudV ∗ ub<br />

VcdV ∗<br />

cb<br />

+ VcdV ∗<br />

cb<br />

VcdV ∗ +<br />

cb<br />

VtdV ∗<br />

tb<br />

VcdV ∗<br />

cb<br />

= 0 , (2.12)<br />

which can be displayed as a triangle in <strong>the</strong> complex (¯ρ,¯η) plane. Figure 2.1, taken<br />

from Ref. [9], shows <strong>the</strong> so-called Unitarity Triangle (UT). Independent from phase<br />

conventions, its apex is given by:<br />

¯ρ + i¯η ≡ − VudV ∗ ub<br />

VcdV ∗<br />

cb<br />

Figure 2.1: The rescaled Unitarity Triangle<br />

The sides Ru and Rt <strong>of</strong> <strong>the</strong> triangle, are given by:<br />

Ru =<br />

Rt =<br />

and <strong>the</strong> UT angles6 are defined as:<br />

α =<br />

�<br />

arg −<br />

β =<br />

�<br />

arg −<br />

�<br />

γ = arg<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

VudV ∗ ub<br />

VcdV ∗<br />

cb<br />

VtdV ∗<br />

tb<br />

VcdV ∗<br />

cb<br />

VtdV<br />

∗<br />

tb<br />

VudV ∗ ub<br />

VcdV<br />

∗<br />

cb<br />

VtdV ∗<br />

tb<br />

− VudV ∗ ub<br />

VcdV ∗<br />

cb<br />

�<br />

�<br />

�<br />

. (2.13)<br />

�<br />

�<br />

�<br />

� = � ¯ρ 2 + ¯η 2 (2.14)<br />

�<br />

�<br />

�<br />

� =<br />

�<br />

(1 − ¯ρ) 2 + ¯η 2 (2.15)<br />

�<br />

¯η<br />

= arctan<br />

¯η 2 �<br />

(2.16)<br />

− ¯ρ (1 − ¯ρ)<br />

� �<br />

¯η<br />

= arctan<br />

(2.17)<br />

1 − ¯ρ<br />

� �<br />

¯η<br />

= arctan . (2.18)<br />

¯ρ<br />

The area <strong>of</strong> <strong>the</strong> Unitarity Triangle is equal to <strong>the</strong> half <strong>of</strong> <strong>the</strong> Jarlskog invariant J [14],<br />

which is defined by <strong>the</strong> imaginary part <strong>of</strong> phase-convention independent CKM matrix<br />

element quartets:<br />

Im � VijVklV ∗<br />

il<br />

� ∗<br />

Vkj = J<br />

3�<br />

m,n=1<br />

εikmεjln . (2.19)<br />

6 In this work, <strong>the</strong> BABAR notation α, β, γ is used, whereas φ2, φ1, φ3 is used in <strong>the</strong> Belle<br />

collaboration.


8 Chapter 2. Theory<br />

2.4 Neutral Meson Oscillation<br />

The phenomenon <strong>of</strong> quark flavor oscillation is predicted in <strong>the</strong> four neutral meson<br />

systems:<br />

K 0 (¯sd) ↔ ¯ K 0 (s ¯ d) , D 0 (cū) ↔ ¯ D 0 (¯cu) , B 0 d (¯ bd) ↔ ¯ B 0 d (b ¯ d) , B 0 s ( ¯ bs) ↔ ¯ B 0 s (b¯s) .<br />

Since <strong>the</strong> mean life time <strong>of</strong> <strong>the</strong> neutral D mesons is very small compared to <strong>the</strong>ir<br />

oscillation frequency, neutral meson mixing has been only observed in <strong>the</strong> Kaon and<br />

B-meson systems, yet.<br />

The time evolution <strong>of</strong> <strong>the</strong>se transitions is given by <strong>the</strong> Schrödinger Equation for<br />

two-state systems <strong>of</strong> instable particles:<br />

i ˙ ψ(t) = ˆ H ψ(t) , (2.20)<br />

where ψ(t) is <strong>the</strong> two-state system <strong>of</strong> <strong>the</strong> neutral mesons, e. g. for <strong>the</strong> Bd system:<br />

�<br />

|B0 (t)〉<br />

ψ(t) =<br />

| ¯ B0 �<br />

. (2.21)<br />

(t)〉<br />

The Hamilton Operator ˆ H contains <strong>the</strong> two hermitian 2 × 2 mass (Mij) and decay<br />

width (Γij) matrices:<br />

⎛<br />

ˆH = ˆ M − i<br />

2 ˆ ⎜<br />

Γ = ⎝<br />

M11 − i<br />

2 Γ11 M12 − i<br />

2 Γ12<br />

M21 − i<br />

2 Γ21 M22 − i<br />

2 Γ22<br />

⎞<br />

⎟<br />

⎠ . (2.22)<br />

Since CPT symmetry requires equal masses and decay rates for a particle and its<br />

anti-particle, <strong>the</strong> diagonal elements must be equal:<br />

Γ11 = Γ22 = Γ (2.23)<br />

M11 = M22 = m (2.24)<br />

and <strong>the</strong> eight real parameters can be reduced to six independent parameters. The<br />

hermiticity <strong>of</strong> ˆ Γ and ˆ M leads to:<br />

M21 = M ∗ 12 and Γ21 = Γ ∗ 12 . (2.25)<br />

Because <strong>of</strong> an arbitrary global phase, only five observables can be defined<br />

� � � �<br />

Γ12<br />

Γ12<br />

m , Γ , |M12| , Re and Im . (2.26)<br />

M12<br />

The Schrödinger Equation (2.20) has well defined solutions ψ(t) for any ψ(0), but<br />

only two mass eigenstates with time-independent flavor composition for each neutral<br />

meson system.<br />

M12


2.4. Neutral Meson Oscillation 9<br />

2.4.1 The K 0 - ¯K 0 System<br />

The flavor eigenstates <strong>of</strong> <strong>the</strong> neutral Kaon system mix via weak interaction through<br />

<strong>the</strong> box diagrams shown in Figure 2.2. These are effective flavor changing neutral<br />

current (FCNC) processes with |∆S| = 2 7 , where <strong>the</strong> main contributions in <strong>the</strong> loop<br />

to <strong>the</strong> observable |ɛK| as described below come from top- and also from charm-quark<br />

exchange.<br />

s u,c,t<br />

d<br />

0<br />

K<br />

W W<br />

u,c,t<br />

0<br />

K<br />

d<br />

s<br />

s<br />

d<br />

W<br />

u,c,t u,c,t<br />

Figure 2.2: Box diagram contribution to K 0 - ¯ K 0 mixing<br />

The two mass eigenstates <strong>of</strong> <strong>the</strong> Kaon system are defined according to <strong>the</strong>ir lifetimes:<br />

0<br />

K<br />

|K 0 S〉 = pK|K 0 〉 + qK| ¯ K 0 〉 (2.27)<br />

|K 0 L〉 = pK|K 0 〉 − qK| ¯ K 0 〉 (2.28)<br />

where K0 S is <strong>the</strong> short living, and K0 L is <strong>the</strong> long living normalized mass eigenstate,<br />

with |qK| + |pK| = 1. An interesting observable <strong>of</strong> <strong>the</strong> neutral Kaon system related<br />

to <strong>the</strong> CKM matrix analysis is <strong>the</strong> CP-violating parameter |ɛK|. εK is defined by:<br />

εK = 2<br />

3 η+− + 1<br />

3 η00<br />

where η+− and η00 are <strong>the</strong> ratios <strong>of</strong> <strong>the</strong> K 0 L and K0 S<br />

and neutral pair <strong>of</strong> pions respectively:<br />

η+− = A � K 0 L → π+ π −�<br />

A � K 0 S → π+ π −�<br />

2.4.2 The B 0 - ¯B 0 System<br />

W<br />

0<br />

K<br />

d<br />

s<br />

(2.29)<br />

decay amplitudes to a charged<br />

η00 = A � K0 L → π0π0� A � K0 S → π0π0� . (2.30)<br />

Neutral B-meson oscillations occur in <strong>the</strong> SM through a second order FCNC process.<br />

They are mediated by <strong>the</strong> |∆B| = 2 box diagrams shown in Figure 2.3, where<br />

<strong>the</strong> loop is dominated by W boson and up-type quark contributions.<br />

According to <strong>the</strong>ir mass, <strong>the</strong> eigenstates <strong>of</strong> <strong>the</strong> B-meson system are defined by:<br />

|B 0 L〉 ∼ pB|B 0 〉 + qB| ¯ B 0 〉 (2.31)<br />

|B 0 H〉 ∼ pB|B 0 〉 − qB| ¯ B 0 〉 , (2.32)<br />

7 |∆F | expresses <strong>the</strong> flavor quantum number difference between <strong>the</strong> initial- and <strong>the</strong> final-state <strong>of</strong><br />

a transition, e. g. |∆S| for Strangeness and |∆B| for Bottomness.


10 Chapter 2. Theory<br />

b u,c,t<br />

d<br />

0<br />

B<br />

W W<br />

u,c,t<br />

0<br />

B<br />

d<br />

b<br />

b<br />

d<br />

0<br />

B<br />

W<br />

u,c,t u,c,t<br />

Figure 2.3: Box diagram contribution to B 0 - ¯ B 0 mixing<br />

where B0 L is <strong>the</strong> lighter, and B0 H is <strong>the</strong> heavier eigenstate. Analogous to <strong>the</strong><br />

Kaon system, <strong>the</strong> oscillation parameters pB and qB are complex and normalized<br />

by |qB| + |pB| = 1.<br />

The mass and decay width differences <strong>of</strong> <strong>the</strong> mass eigenstates are defined by convention<br />

as:<br />

∆mB ≡ MH − ML � 2|M12| (2.33)<br />

∆ΓB ≡ ΓH − ΓL � 2 Re (M12Γ ∗ 12 )<br />

|M12|<br />

W<br />

0<br />

B<br />

d<br />

b<br />

(2.34)<br />

where ∆ΓB ≪ ∆mB is assumed. The exact ratio qB/pB is given by:<br />

�<br />

2 M<br />

qB<br />

= −<br />

pB<br />

∗ i<br />

12 −<br />

2 Γ∗ �<br />

12<br />

∆mB − i<br />

2 ∆ΓB<br />

. (2.35)<br />

The physical meaningful quantity, that is independent <strong>of</strong> <strong>the</strong> phase convention, is:<br />

�<br />

� � �<br />

� qB �2<br />

�M<br />

� � �<br />

�pB<br />

� = �<br />

�<br />

�<br />

∗ i<br />

12 −<br />

2 Γ∗12 M12 − i<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

�<br />

. (2.36)<br />

2 Γ12<br />

The phase <strong>of</strong> qB/pB is convention dependent and, hence, not observable. Similar<br />

definitions can be made in <strong>the</strong> Bs-meson system by replacing only <strong>the</strong> d-quark by a<br />

s-quark.<br />

2.5 CP Violation<br />

The CP transformation is a combination <strong>of</strong> charge conjugation C and parity P.<br />

Under C transformation, a particle transforms into its anti-particle, by conjugating<br />

all internal quantum numbers, e. g. Q → −Q for <strong>the</strong> electromagnetic charge. P<br />

transformation reflects <strong>the</strong> space coordinate �x into −�x. The combination <strong>of</strong> both<br />

transforms a left-handed particle into its right-handed anti-particle, e. g. e −<br />

L<br />

→ e+<br />

R .


2.5. CP Violation 11<br />

Within <strong>the</strong> Standard Model with three families, CP violation can be generated by<br />

a single, non-vanishing phase (¯η �= 0 ⇔ J �= 0) in <strong>the</strong> CKM matrix. It is related<br />

to flavor changing charged currents <strong>of</strong> weak interactions and was discovered in <strong>the</strong><br />

neutral Kaon system in 1964 [15]. The effects <strong>of</strong> CP violation relevant for <strong>the</strong> CKM<br />

matrix analysis can be classified into three different types [9]:<br />

CP violation in decay results from <strong>the</strong> interference among different decay amplitudes<br />

<strong>of</strong> a meson M into a multi-particle final state f and its CP conjugated<br />

decay ¯ M → ¯ f:<br />

Af = 〈f|H|M〉 Ā ¯ f = 〈 ¯ f|H| ¯ M〉 . (2.37)<br />

The CP symmetry is violated, if:<br />

�<br />

�<br />

�<br />

�<br />

�<br />

Ā ¯ f<br />

Af<br />

�<br />

�<br />

�<br />

� �= 1 . (2.38)<br />

�<br />

This type <strong>of</strong> CP violation occurs in charged and neutral meson decays, but is<br />

<strong>the</strong> only possible source <strong>of</strong> CP asymmetries in charged meson decays. The CP<br />

asymmetry is defined by:<br />

A f ± ≡ Γ (M − → f − ) − Γ (M + → f + )<br />

Γ (M − → f − ) + Γ (M + → f + ) =<br />

for charged mesons and:<br />

for neutral mesons.<br />

Af ≡ Γ � ¯ M 0 → ¯ f � − Γ � M 0 → f �<br />

Γ � ¯ M 0 → ¯ f � + Γ (M → f) =<br />

� �<br />

�Āf −/Af + �2 − 1<br />

� �<br />

�Āf −/Af + �2 + 1<br />

� �<br />

�Āf ¯/Af �2 − 1<br />

� �<br />

�Āf ¯/Af �2 + 1<br />

(2.39)<br />

(2.40)<br />

CP violation in mixing <strong>of</strong> neutral mesons results from <strong>the</strong> fact that mass eigenstates<br />

are different from <strong>the</strong> CP eigenstates leading to:<br />

� �<br />

�<br />

�<br />

q �<br />

�<br />

�p<br />

� �= 1 , (2.41)<br />

where q and p are <strong>the</strong> complex parameters <strong>of</strong> <strong>the</strong> neutral meson mixing (see<br />

Section 2.4). They can be measured via <strong>the</strong> asymmetry <strong>of</strong> semileptonic neutral<br />

meson decays induced by oscillation:<br />

�<br />

Γ ¯M 0<br />

phys (t) → l<br />

ASL ≡<br />

+ � �<br />

X − Γ M 0 phys (t) → l− �<br />

X<br />

�<br />

Γ ¯M 0<br />

phys (t) → l + � �<br />

X + Γ M 0 phys (t) → l− �<br />

X<br />

� �<br />

�<br />

1 − �<br />

q �4<br />

�<br />

�p<br />

�<br />

= � �<br />

�<br />

1 + �<br />

q �4<br />

. (2.42)<br />

�<br />

�p<br />


12 Chapter 2. Theory<br />

CP violation in <strong>the</strong> interference between decays with and without mixing<br />

occurs from:<br />

Im (λfCP ) �= 0 , (2.43)<br />

where λfCP<br />

is <strong>the</strong> product <strong>of</strong> q/p and <strong>the</strong> ratio <strong>of</strong> <strong>the</strong> decay amplitudes <strong>of</strong> a<br />

meson M 0 and its anti-particle ¯ M 0 into <strong>the</strong> same final CP eigenstate fCP with<br />

CP eigenvalue ηfCP , given as:<br />

λfCP<br />

q<br />

≡<br />

p<br />

ĀfCP<br />

AfCP<br />

q ĀfCP ¯<br />

= ηfCP<br />

p<br />

AfCP<br />

. (2.44)<br />

The amplitudes Ā ¯ fCP and AfCP differ only in <strong>the</strong> signs <strong>of</strong> <strong>the</strong> weak phase for<br />

each term, while ηfCP = ±1.<br />

CP violation in <strong>the</strong> interference between decays with and without mixing can<br />

be measured via <strong>the</strong> asymmetry <strong>of</strong> neutral meson decays into final CP eigenstates<br />

fCP :<br />

AfCP ≡<br />

� � �<br />

Γ ¯M 0<br />

phys (t) → fCP − Γ M 0 �<br />

phys (t) → fCP<br />

� � �<br />

Γ ¯M 0<br />

phys (t) → fCP + Γ M 0 � . (2.45)<br />

phys (t) → fCP


Chapter 3<br />

<strong>CKMfitter</strong><br />

The <strong>CKMfitter</strong> group is an international group <strong>of</strong> experimental and <strong>the</strong>oretical particle<br />

physicists with collaborators from <strong>the</strong> high energy physics experiments ATLAS,<br />

BABAR, Belle and LHCb. Its goal is a global analysis <strong>of</strong> <strong>the</strong> CKM matrix, which<br />

contains:<br />

1. Probing <strong>the</strong> consistency between <strong>the</strong> SM <strong>the</strong>ory predictions and <strong>the</strong> experimental<br />

data.<br />

2. Constraining <strong>the</strong> CKM matrix and QCD model parameters entering <strong>the</strong> SM<br />

<strong>the</strong>ory predictions.<br />

3. Predicting observables from <strong>the</strong> Standard Global CKM Fit.<br />

4. Searching for specific signs <strong>of</strong> New Physics in an extended <strong>the</strong>oretical framework<br />

and constraining New Physics parameters.<br />

More detailed information is provided in Ref. [4] and on <strong>the</strong> <strong>CKMfitter</strong> website [16].<br />

3.1 The Statistical Framework - Rfit<br />

The statistical analysis performed in <strong>CKMfitter</strong> is entirely <strong>based</strong> on <strong>the</strong> frequentist<br />

approach Range Fit (Rfit) [17]. The experimental input information is a set<br />

<strong>of</strong> Nexp measurements xexp = {xexp(1), . . . , xexp(Nexp)} described by a set <strong>of</strong> corresponding<br />

<strong>the</strong>oretical expressions x<strong>the</strong>o = {x<strong>the</strong>o(1), . . . , x<strong>the</strong>o(Nexp)}. The <strong>the</strong>oretical<br />

expressions are model-dependent functions <strong>of</strong> a set <strong>of</strong> Nmod parameters<br />

ymod = {ymod(1), . . . , ymod(Nmod)}. A subset <strong>of</strong> N<strong>the</strong>o parameters within <strong>the</strong>se ymod<br />

set are considered as being fundamental and free parameters <strong>of</strong> <strong>the</strong> <strong>the</strong>ory model,<br />

e. g. <strong>the</strong> four Wolfenstein parameters in <strong>the</strong> SM or <strong>the</strong> top quark mass. These <strong>the</strong>ory<br />

parameters are denoted as y<strong>the</strong>o = {y<strong>the</strong>o(1), . . . , y<strong>the</strong>o(N<strong>the</strong>o)}. The remaining<br />

NQCD = Nmod − N<strong>the</strong>o parameters, which appear due to our present inability to<br />

compute strong interaction quantities precisely, e. g. fBd , Bd, . . . , are denoted as<br />

yQCD = {yQCD(1), . . . , yQCD(NQCD)}.<br />

13


14 Chapter 3. <strong>CKMfitter</strong><br />

The quantity minimized in <strong>the</strong> fit is<br />

χ 2 = −2 ln L(ymod) , (3.1)<br />

with <strong>the</strong> likelihood function L(ymod), defined by a product <strong>of</strong> contributions <strong>of</strong> two<br />

types:<br />

L(ymod) = Lexp(xexp − x<strong>the</strong>o(ymod)) · L<strong>the</strong>o(yQCD) . (3.2)<br />

The experimental likelihood Lexp depends on <strong>the</strong> experimental measurements xexp,<br />

which are gaussian distributed in general, and <strong>the</strong>ir <strong>the</strong>oretical predictions x<strong>the</strong>o,<br />

which are functions <strong>of</strong> <strong>the</strong> model parameters ymod. The <strong>the</strong>oretical likelihood L<strong>the</strong>o<br />

describes <strong>the</strong> knowledge on <strong>the</strong> QCD parameters yQCD ∈ {ymod}, where <strong>the</strong> <strong>the</strong>oretical<br />

uncertainties σsyst are considered to define allowed ranges:<br />

[yQCD − σsyst, yQCD + σsyst] . (3.3)<br />

In <strong>the</strong> Rfit scheme, <strong>the</strong> <strong>the</strong>oretical likelihoods L<strong>the</strong>o(i) do not contribute to <strong>the</strong> χ 2<br />

<strong>of</strong> <strong>the</strong> fit, as long as <strong>the</strong> yQCD take on values within <strong>the</strong>ir.<br />

3.2 Fit Metrology<br />

is determined with<br />

In a first step, <strong>the</strong> global minimum <strong>of</strong> Equation (3.1), χ2 min,global<br />

respect to all Nmod parameters. Due to <strong>the</strong> experimental and <strong>the</strong>oretical systematics,<br />

this absolute minimal value does in general not correspond to a unique ymod location.<br />

In a second step, a selected subspace <strong>of</strong> interest <strong>of</strong> <strong>the</strong> parameter space, e. g. a =<br />

{¯ρ, ¯η} is scanned, to determin <strong>the</strong> local χ2-minimum χ2 min,local (a) for each fixed point<br />

<strong>of</strong> a grid in <strong>the</strong> parameter space a, with respect to <strong>the</strong> remaining parameters. The<br />

<strong>of</strong>fset-corrected χ2 is calculated as follows:<br />

∆χ 2 (a) = χ 2 min,local (a) − χ2 min,global<br />

where its minimum is equal to zero by construction.<br />

, (3.4)<br />

Finally, a confidence level (CL) for a is obtained using <strong>the</strong> well-known PROB function<br />

from <strong>the</strong> CERN Program Library [18]:<br />

1 − CL = P rob � ∆χ 2 �<br />

(a), Nd<strong>of</strong><br />

=<br />

which assumes gaussian statistics.<br />

1<br />

√ 2 Nd<strong>of</strong> Γ (Nd<strong>of</strong> /2)<br />

� ∞<br />

χ 2 (ymod)<br />

(3.5)<br />

e −t/2 t Nd<strong>of</strong> /2−1 dt , (3.6)


3.3. The <strong>CKMfitter</strong> <strong>Package</strong> Code 15<br />

3.3 The <strong>CKMfitter</strong> <strong>Package</strong> Code<br />

The source code <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package consists <strong>of</strong> more than 40000 lines FOR-<br />

TRAN code and ca. 2000 lines C++ code. It is public available on <strong>the</strong> <strong>CKMfitter</strong><br />

website. The minimization routine used is MINUIT, <strong>the</strong> minimizer from <strong>the</strong> CERN<br />

Program Library [18]. The analysis is driven by datacards, where running options<br />

and input values for <strong>the</strong> fit are specified. The output file <strong>of</strong> <strong>the</strong> procedure is written<br />

in HBOOK format, which is used by PAW 1 macros for producing one- and twodimensional<br />

plots <strong>of</strong> <strong>the</strong> fit results.<br />

Over <strong>the</strong> years, <strong>the</strong> fit problems became more and more complex. There are difficult,<br />

non-linear fit problems which contain mirror solutions from trigonometric functions.<br />

This has been led to an increasing CPU time consumption and <strong>the</strong> time for a single<br />

complex fit can last longer than one day.<br />

The main reason for this is <strong>the</strong> so-called dictionary, a file, which contains hundreds<br />

<strong>of</strong> <strong>the</strong>ory predictions for <strong>the</strong> fit variables. Since <strong>the</strong>y are statically loaded, <strong>the</strong><br />

dictionary needs to be browsed in each fit step to obtain <strong>the</strong> <strong>the</strong>ory prediction needed<br />

in <strong>the</strong> specific fit. As <strong>the</strong> dictionary file is a very important part <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong><br />

source code, a runtime upgrade is difficult to realize in <strong>the</strong> original source code.<br />

1 The Physics Analysis Workstation (PAW) is a data analysis and presentation tool. [19]


16 Chapter 3. <strong>CKMfitter</strong>


Chapter 4<br />

A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong><br />

<strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

With <strong>the</strong> goal <strong>of</strong> a significant fit time reduction, Jérôme Charles initiated a<br />

<strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package. The basic concept is <strong>the</strong> usage<br />

<strong>of</strong> symbolic calculations <strong>of</strong> <strong>the</strong> fit expressions in a fit preparation phase within a<br />

<strong>Ma<strong>the</strong>matica</strong> environment, which interacts with a FORTRAN <strong>based</strong> minimization<br />

routine. An analysis is driven by datacards in ASCII format and <strong>the</strong> results are<br />

provided as data files and colored reference plots, done by <strong>Ma<strong>the</strong>matica</strong>. The final<br />

combined plots are currently made by ROOT 1 macros using <strong>the</strong> exported data files.<br />

The ROOT macros have been coded by Vincent Tisserand.<br />

This <strong>the</strong>sis makes contributions to <strong>the</strong> source code development <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong><br />

<strong>based</strong> <strong>CKMfitter</strong> package. Most important are <strong>the</strong> implementation <strong>of</strong> <strong>the</strong> <strong>the</strong>ories<br />

<strong>of</strong> neutral meson oscillations and leptonic decays <strong>of</strong> charged B mesons in <strong>the</strong> SM<br />

and in extended framework. Fur<strong>the</strong>rmore, <strong>the</strong> treatment <strong>of</strong> look-up-table input files<br />

has been developed. Since <strong>the</strong> source code development is still under progress, this<br />

work displays <strong>the</strong> current status <strong>of</strong> August, 2006.<br />

4.1 <strong>Ma<strong>the</strong>matica</strong><br />

The s<strong>of</strong>tware package <strong>Ma<strong>the</strong>matica</strong> is a computer algebra system, which facilitates<br />

symbolic math calculations. It provides also a programming language <strong>based</strong> on termrewriting<br />

2 . <strong>Ma<strong>the</strong>matica</strong> is a proprietary product <strong>of</strong> Wolfram Research, Inc. [21].<br />

The most recent version, which has also been used in this <strong>the</strong>sis, is <strong>Ma<strong>the</strong>matica</strong> 5.2,<br />

released in July, 2005.<br />

1 ROOT is an object-oriented data analysis framework <strong>based</strong> on C++ [20].<br />

2 Term-rewriting covers several methods <strong>of</strong> replacing subterms <strong>of</strong> a formal formula by o<strong>the</strong>r,<br />

e. g. simpler terms.<br />

17


18 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

The core <strong>of</strong> <strong>Ma<strong>the</strong>matica</strong> is <strong>the</strong> kernel, which interactively performs <strong>the</strong> calculation.<br />

The user interacts with <strong>the</strong> kernel via a front-end, where a graphical version is available<br />

as well as a commandline interface.<br />

Since <strong>the</strong> terminology <strong>of</strong> <strong>Ma<strong>the</strong>matica</strong> is used in this work, Appendix E.1 gives a<br />

short overview about relevant terms and commands. A more detailed documentation<br />

is provided on <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> website [22].<br />

4.2 <strong>Package</strong> Structure<br />

The <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package is modularly composed <strong>of</strong><br />

several <strong>Ma<strong>the</strong>matica</strong> notebooks and packages. Fur<strong>the</strong>rmore, <strong>the</strong>re are FORTRAN<br />

files from <strong>the</strong> minimization routine and datacards in ASCII format. In Table 4.1,<br />

<strong>the</strong> content <strong>of</strong> <strong>the</strong> most relevant directories is shown.<br />

<strong>CKMfitter</strong> Directory File Content<br />

analysis/ datacards<br />

fortran/ minimir.f, fit.f, dmnfg.f, specialfunctions.f<br />

inputs/ input datacards, χ 2 -input tables, PDG.m<br />

lib/ AnalysisLib.m, FitLib.m<br />

<strong>the</strong>ories/ <strong>the</strong>ory packages, TheoryTutorial.nb<br />

tools/ CreateInputTable.nb<br />

<strong>CKMfitter</strong>.nb<br />

Table 4.1: Directory structure <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> package<br />

The user interface is <strong>the</strong> <strong>CKMfitter</strong>.nb notebook. It is located in <strong>the</strong> main directory,<br />

but should be copied to ano<strong>the</strong>r analysis specific directory, outside <strong>of</strong> <strong>the</strong><br />

<strong>CKMfitter</strong> package. For <strong>the</strong> sake <strong>of</strong> clarity, complex functions and subroutines are<br />

sourced out from <strong>the</strong> user interface to library packages. The AnalysisLib package<br />

contains all relevant subroutines for <strong>the</strong> data processing inside <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong><br />

environment, e. g. subroutines to load datacards and <strong>the</strong>ory packages. The second<br />

library package is named FitLib and includes all functions for <strong>the</strong> interaction <strong>of</strong><br />

<strong>CKMfitter</strong>.nb with <strong>the</strong> FORTRAN minimization routine. It provides for example<br />

a subroutine, which translates <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> expressions to FORTRAN code.<br />

As in <strong>the</strong> original <strong>CKMfitter</strong> package, a fit is userfriendly driven by datacards. Since<br />

<strong>the</strong>se are ASCII text files, <strong>the</strong>y can be edited without using <strong>Ma<strong>the</strong>matica</strong> in a plain<br />

text editor. In a datacard, all flags and options <strong>of</strong> a selected analysis are set, e. g. <strong>the</strong><br />

context name, <strong>the</strong> fit variables and <strong>the</strong> scan granularity. A more detailed description<br />

<strong>of</strong> <strong>the</strong> relevant fit options and settings is given in Appendix E.2.


4.3. <strong>CKMfitter</strong>.nb 19<br />

An important flag in <strong>the</strong> datacards is <strong>the</strong> specification <strong>of</strong> <strong>the</strong> input files. These files<br />

contain <strong>the</strong> numerical input for each measurement xexp and model parameter ymod.<br />

The values are provided in <strong>the</strong> “inputs” list, where each element is again a list, one<br />

per measurement or model parameter. According to <strong>the</strong> different error types <strong>of</strong> a<br />

measurement, <strong>the</strong>re exist different input types, e. g. “Range” or “GaussRange”. It<br />

is also possible to specify <strong>the</strong> name <strong>of</strong> a file, which contains a χ 2 -contour <strong>of</strong> a measurement<br />

xexp. The different input types are distinguished using explicit syntaxes<br />

in <strong>the</strong> list. A brief description <strong>of</strong> <strong>the</strong> syntax for each possible input type is provided<br />

in Appendix E.3.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> <strong>the</strong>oretical expressions x<strong>the</strong>o depend on fixed inputs, e. g. physical<br />

constants. They are listed in a separate package, called PDG, which is also located<br />

in <strong>the</strong> inputs directory. Its content is <strong>the</strong> “fixedinputs” list, where each entry is a<br />

“rule”, which replaces a symbol through its numerical value, e. g. mB → 5.2794 for<br />

<strong>the</strong> B-meson mass.<br />

4.3 <strong>CKMfitter</strong>.nb<br />

The <strong>CKMfitter</strong> analysis notebook is <strong>the</strong> user front-end <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong><br />

version. It sources all relevant information from datacards and <strong>the</strong>ory packages,<br />

translates <strong>the</strong> χ 2 -function in FORTRAN format, runs <strong>the</strong> minimization and exports<br />

<strong>the</strong> fit results. In addition, <strong>the</strong> <strong>CKMfitter</strong> notebook provides several checks and <strong>the</strong><br />

opportunity to monitor <strong>the</strong> fit process.<br />

Running a fit, <strong>the</strong> user only needs to select an analysis datacard, where all job<br />

options are set before. Afterwards <strong>the</strong> analysis is executed step by step as shown<br />

in Figure 4.1. In <strong>the</strong> first part, all relevant informations are loaded, e. g. library<br />

packages and physical constants. After loading <strong>the</strong> <strong>the</strong>ory packages and input files<br />

as specified in <strong>the</strong> datacard, <strong>the</strong> χ 2 -function and <strong>the</strong>ir partial derivatives are symbolically<br />

calculated during <strong>the</strong> fit preparation. These expressions are transformed<br />

in FORTRAN code format using <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> intrinsic function FortranForm<br />

and written to <strong>the</strong> file minimirChi2.f. This file is compiled and linked to <strong>the</strong> minimization<br />

subroutines and <strong>the</strong> executable minimir is built. The fit starts through<br />

running minimir, which performes <strong>the</strong> global minimization as well as <strong>the</strong> one- and<br />

two-dimensional scans. The fit results are written to <strong>the</strong> file minimir.output and<br />

<strong>the</strong>n loaded from <strong>CKMfitter</strong>.nb, where <strong>the</strong> fit results are plotted. Finally, plots<br />

and data files are exported.<br />

Remark: To interrupt <strong>the</strong> fit process, <strong>the</strong>re is <strong>the</strong> possibility to quit <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong><br />

kernel. Since minimir is a stand alone executable, it needs to be aborted separately<br />

by <strong>the</strong> user!


20 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

Datacard specification<br />

Fit preparation<br />

Source library packages<br />

Load physical constants<br />

Read datacard<br />

Load <strong>the</strong>ory packages<br />

Load numerical inputs<br />

Write χ 2 -function (minimirChi2.f )<br />

Compile<br />

Run minimir<br />

Write<br />

Read Fit results (minimir.output)<br />

Plot results Export Plot and data file<br />

Figure 4.1: The fit process


4.4. The Minimization Routine 21<br />

4.4 The Minimization Routine<br />

Since FORTRAN is more optimized for numerical calculations, a FORTRAN <strong>based</strong><br />

minimization routine is used instead <strong>of</strong> a <strong>Ma<strong>the</strong>matica</strong> intrinsic function. The main<br />

file is minimir.f, which calls a set <strong>of</strong> subroutines and functions from <strong>the</strong> files fit.f,<br />

dmnfg.f and specialfunctions.f. The minimized quantity χ 2 and its partial derivatives<br />

with respect to all fit parameters are located in <strong>the</strong> file minimirChi2.f, which<br />

is also linked to <strong>the</strong> executable minimir after <strong>the</strong> compilation process. The subroutine,<br />

which manages <strong>the</strong> minimization process is called POINTFIT. It sets <strong>the</strong><br />

fit environment, e. g. <strong>the</strong> starting point and calls <strong>the</strong> real minimization subroutine<br />

DMNG, which proceeds <strong>the</strong> unconstrained minimization <strong>of</strong> <strong>the</strong> χ 2 -function using <strong>the</strong>ir<br />

exact analytic gradients. The subroutine DMNG was coded by David M. Gay using<br />

a quasi-Newton method and is publicly available at NetLib.org [23]. Fur<strong>the</strong>r informations<br />

can be found in Ref. [24].<br />

Non-standard FORTRAN functions and subroutines, which belong to <strong>the</strong> analytic<br />

part, e. g. contributions to <strong>the</strong> χ 2 -function, are <strong>the</strong> content <strong>of</strong> <strong>the</strong> file specialfunctions.f.<br />

Fur<strong>the</strong>rmore, it contains <strong>the</strong> function TABLEAU, which allows <strong>the</strong> usage <strong>of</strong><br />

look-up tables (LUT) as input files, and <strong>the</strong> function DDILOG from <strong>the</strong> CERN Library<br />

<strong>Package</strong> [18] to calculate di-logarithmic functions.<br />

minimirChi2.f<br />

minimir.f<br />

minimir.input<br />

minimir.aux<br />

fit.f Compile minimir<br />

dmnfg.f<br />

specialfunctions.f minimir.output<br />

Figure 4.2: The minimization routine file system<br />

A schema <strong>of</strong> <strong>the</strong> file system <strong>of</strong> <strong>the</strong> FORTRAN <strong>based</strong> minimization routine is shown in<br />

Figure 4.4. The FORTRAN files are compiled and linked toge<strong>the</strong>r to <strong>the</strong> executable<br />

minimir. The input information for <strong>the</strong> fit routine is provided by two files in ASCII<br />

format, which are created by <strong>the</strong> analysis notebook. The file minimir.input contains<br />

<strong>the</strong> numerical input <strong>of</strong> <strong>the</strong> fit variables and minimir.aux provides <strong>the</strong> fit options,<br />

e. g. <strong>the</strong> scan direction. The fit result is finally written to <strong>the</strong> file minimir.output,<br />

which is read from <strong>the</strong> analysis notebook.


22 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

4.5 Theory <strong>Package</strong>s<br />

Theory packages provide <strong>the</strong> full physical information on <strong>the</strong> fit variables. Since no<br />

global variables are used in <strong>Ma<strong>the</strong>matica</strong>, all variables are initialized only in <strong>the</strong> context<br />

<strong>of</strong> <strong>the</strong>ir <strong>the</strong>ory package. For each observable, <strong>the</strong> <strong>the</strong>oretical expression x<strong>the</strong>o<br />

is defined and <strong>the</strong> partial derivatives ∂x<strong>the</strong>o/∂ymod with respect to all model parameters<br />

ymod are symbolically calculated. Finally, all expressions are written into<br />

a list named “<strong>the</strong>ory”, which is loaded from <strong>the</strong> analysis notebook. Theory packages<br />

are stored in a binary format (.mx), that is optimized for input by <strong>Ma<strong>the</strong>matica</strong>.<br />

It is possible to define an observable in different <strong>the</strong>oretical frameworks, e. g. <strong>the</strong> B 0 -<br />

¯B 0 oscillations in <strong>the</strong> Standard Model or in a New Physics model (see Chapter 6).<br />

Thus, a <strong>the</strong>ory package can include several <strong>the</strong>ory lists, one for each <strong>the</strong>oretical<br />

framework or possible different parametrization. Different <strong>the</strong>ory lists in <strong>the</strong> same<br />

<strong>the</strong>ory package are distinguished by version labels, which have to be specified in <strong>the</strong><br />

datacard.<br />

It is advantageous for <strong>the</strong> fit to store all expressions and derivatives in <strong>the</strong>ir simplest<br />

form. This can be obtained using <strong>the</strong> intrinsic <strong>Ma<strong>the</strong>matica</strong> functions Simplify and<br />

FullSimplify. For complex expressions, this may lead to a very high CPU time<br />

consumption during <strong>the</strong> <strong>the</strong>ory package development. More detailed information on<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong>ory packages are given in a tutorial, which accrued during<br />

this work. It is available in Appendix E.4.<br />

In <strong>the</strong> following, four important <strong>the</strong>ory packages, which are related to this work, are<br />

introduced.<br />

4.5.1 CKMmatrix<br />

The <strong>the</strong>ory package CKMmatrix is <strong>the</strong> basis <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong><br />

package and was coded by Jérôme Charles. It contains all relevant definitions<br />

<strong>of</strong> CKM matrix and Unitarity Triangle parameters in <strong>the</strong> exact Wolfenstein<br />

parametrization, e. g. <strong>the</strong> real and imaginary parts <strong>of</strong> <strong>the</strong> CKM matrix elements,<br />

Re (Vij) and Im (Vij), and <strong>the</strong> UT angles α, β, γ.<br />

An important object is <strong>the</strong> wolfCKM function. This is a list <strong>of</strong> rules and provides<br />

<strong>the</strong> real and imaginary parts <strong>of</strong> all CKM matrix elements Re (Vij) and Im (Vij).<br />

Its argument is <strong>the</strong> order <strong>of</strong> <strong>the</strong> expansion into Wolfenstein parameters, where “∞”<br />

means <strong>the</strong> exact expressions up to all orders.<br />

The CKMmatrix package needs to be sourced from each <strong>the</strong>ory package, where <strong>the</strong><br />

Wolfenstein parameters are used or <strong>the</strong> wolfCKM function is evaluated.


4.5. Theory <strong>Package</strong>s 23<br />

4.5.2 BBbarKKbarMixing<br />

The <strong>the</strong>ory <strong>of</strong> measurements describing <strong>the</strong> oscillations in neutral K- and B-meson<br />

systems are provided in <strong>the</strong> BBbarKKbarMixing <strong>the</strong>ory package. It contains all<br />

<strong>the</strong>oretical expressions and partial derivatives for <strong>the</strong> observables:<br />

∆md , ∆ms , |ɛK| and ASL,Bd (4.1)<br />

in two <strong>the</strong>oretical frameworks. The Standard Model definitions are shown in Chapter<br />

5. The second <strong>the</strong>oretical framework is a model independent extension <strong>of</strong> <strong>the</strong><br />

SM, which is discussed in Chapter 6. The version labels, which needs to be specified<br />

in <strong>the</strong> datacard are given in Table 4.2.<br />

framework version label<br />

Standard Model ”SM”<br />

New Physics (model independent) ”NP(r,<strong>the</strong>ta)”<br />

Table 4.2: <strong>Version</strong> labels in <strong>the</strong> <strong>the</strong>ory package BBbarKKbarMixing<br />

In addition to <strong>the</strong> observables in Equation (4.1):<br />

sin(2β + 2ϑd) , cos(2β + 2ϑd) , | sin(2β + 2ϑd + γ)| and αNP , (4.2)<br />

are defined in <strong>the</strong> New Physics framework, where αNP = π − β − γ − ϑd.<br />

4.5.3 LeptonicDecay<br />

The <strong>the</strong>ory package LeptonicDecay contains currently <strong>the</strong> branching fractions <strong>of</strong><br />

charged B mesons into purely leptonic final states:<br />

B � B + → e + �<br />

νe<br />

, B � B + → µ + �<br />

νµ<br />

and B � B + → τ + �<br />

ντ . (4.3)<br />

They are described in <strong>the</strong> Standard Model framework, given in Chapter 5, as well<br />

as in Two-Higgs-Doublet Models, which are described in Chapter 6. Table 4.3 lists<br />

<strong>the</strong> version labels for both frameworks.<br />

framework version label<br />

Standard Model ”SM”<br />

New Physics (charged Higgs) ”NP(H+)”<br />

Table 4.3: <strong>Version</strong> labels in <strong>the</strong> <strong>the</strong>ory package LeptonicDecay


24 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

4.5.4 DecayBagParameters<br />

The <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>CKMfitter</strong> avoids <strong>the</strong> usage <strong>of</strong> global variables.<br />

However, <strong>the</strong>re are some model parameters, e. g. <strong>the</strong> decay constants and bag parameters<br />

<strong>of</strong> Bd- and Bs-mesons:<br />

fBs ,<br />

fBs<br />

fBd<br />

, Bs , Bs<br />

Bd<br />

, (4.4)<br />

which are used in different <strong>the</strong>ory packages. Thus, <strong>the</strong>y need to be “globalized”,<br />

through initializing <strong>the</strong>m in a separate package, which will be sourced from <strong>the</strong> o<strong>the</strong>r<br />

<strong>the</strong>ory packages. The DecayBagParameters package is currently loaded from <strong>the</strong><br />

BBbarKKbarMixing package as well as from <strong>the</strong> LeptonicDecay package.<br />

4.6 Look-Up Tables<br />

Since <strong>the</strong>re is not always <strong>the</strong> possibility to express a measurement in terms <strong>of</strong> a value<br />

and an error, <strong>the</strong> experimental likelihood, translated into a χ 2 -contour, can also be<br />

used as an input. It is available in a discrete look-up table, where values in-between<br />

<strong>the</strong> discrete LUT entries are calculated through interpolation. The <strong>Ma<strong>the</strong>matica</strong><br />

<strong>based</strong> <strong>CKMfitter</strong> version provides <strong>the</strong> possibility <strong>of</strong> a cubic spline interpolation and<br />

uses a separate FORTRAN <strong>based</strong> function to load <strong>the</strong> LUTs during <strong>the</strong> fit.<br />

4.6.1 Cubic Spline Interpolation<br />

Piecewise interpolation using low order polynomials leads to a global continuous<br />

interpolating function, but is in general not continuous at <strong>the</strong> interval boundaries.<br />

This is avoided by using cubic spline interpolation, which gives back a smooth interpolating<br />

function. The goal <strong>of</strong> cubic spline interpolation is to get an interpolation<br />

formula that is smooth in <strong>the</strong> first, and continuous in <strong>the</strong> second derivative, both<br />

within an interval and at its boundaries.<br />

A cubic spline interpolation function s(x) to <strong>the</strong> sampling points x0 < x1 < . . . <<br />

xn−1 < xn and <strong>the</strong> corresponding sampling values yj (j = 0, 1, 2, . . . , n) is defined<br />

by [25]:<br />

• s (xj) = yj for (j = 0, 1, . . . , n);<br />

• s (x) is for x ∈ [xi, xi+1] (i = 0, . . . , n − 1) a polynomial <strong>of</strong> at most <strong>of</strong> order 3;<br />

• s (x) ∈ C 2 ([x0, xn]);<br />

• s ′′ (x0) = s ′′ (xn) = 0.


4.6. Look-Up Tables 25<br />

In <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> version, polynomials <strong>of</strong> third order<br />

y(x) = a + bx + cx 2 + dx 3<br />

(4.5)<br />

are used as cubic spline interpolation functions, where a, b, c and d are <strong>the</strong> spline<br />

coefficients. They are calculated in a separate notebook using a public available<br />

routine coded by Joseph M. Herrmann [26]. Its result is a six column look-up<br />

table in ASCII format, which is used as input file for <strong>the</strong> fit. The column order <strong>of</strong><br />

<strong>the</strong> LUT is given in Table 4.4 and <strong>the</strong> number <strong>of</strong> lines is written in <strong>the</strong> first row.<br />

There is also an intrinsic <strong>Ma<strong>the</strong>matica</strong> function called SplineFit, which generates<br />

a spline function object. Due to <strong>the</strong> fact that <strong>the</strong> generated spline function doesn’t<br />

depend directly on <strong>the</strong> observable values, it cannot be used in <strong>CKMfitter</strong> to create<br />

<strong>the</strong> LUTs.<br />

Column: 1 2 3 4 5 6<br />

Content: value <strong>of</strong> observable χ 2 a b c d<br />

4.6.2 The Tableau Function<br />

Table 4.4: LUT column order<br />

The numerical contribution to <strong>the</strong> χ 2 -function <strong>of</strong> variables with LUT input is calculated<br />

by separate FORTRAN functions in <strong>the</strong> file specialfunctions.f. The function<br />

TABLEAU provides <strong>the</strong> χ 2 -contribution, where DTABLEAUO2 calculates <strong>the</strong> contributions<br />

to its gradients 3 . During <strong>the</strong> first call <strong>of</strong> TABLEAU, <strong>the</strong> different LUTs are<br />

loaded using <strong>the</strong> separate subroutine LoadLUT.<br />

The functions TABLEAU and DTABLEAUO2 are called during <strong>the</strong> fit for each prediction<br />

value <strong>of</strong> <strong>the</strong> fit parameter. Using <strong>the</strong> spline coefficients <strong>of</strong> <strong>the</strong> next lower entry in <strong>the</strong><br />

LUT, <strong>the</strong> contribution to <strong>the</strong> χ 2 -function or its gradient is calculated. The source<br />

code <strong>of</strong> <strong>the</strong>se functions is available in Appendix D.<br />

It is possible that <strong>the</strong> predicted value <strong>of</strong> <strong>the</strong> fit lies outside <strong>of</strong> <strong>the</strong> LUT boundaries.<br />

In this case, <strong>the</strong> TABLEAU function will be constantly continued using <strong>the</strong> first (last)<br />

value <strong>of</strong> <strong>the</strong> LUT, if <strong>the</strong> prediction is smaller (larger) than <strong>the</strong> lower (upper) bound.<br />

The gradient, obtained by DTABLEAUO2 is set to zero. This can lead to critical effects<br />

at <strong>the</strong> boundaries. A possibility to avoid such critical effects is to enlarge <strong>the</strong> LUTs<br />

periodically, if this is allowed by <strong>the</strong> variable. Examples for <strong>the</strong>se cases are <strong>the</strong> UT<br />

angles α and γ (see Section 5.1).<br />

3 DTABLEAUO2 (“O2” means over two) calculates <strong>the</strong> half <strong>of</strong> <strong>the</strong> gradient contribution.


26 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

4.7 Performance Tests<br />

The <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package was created with <strong>the</strong> goal<br />

to achieve a significant fit time reduction compared to <strong>the</strong> original version. Since<br />

both are complex packages, which include also fit preparation and result processing,<br />

an objective comparison <strong>of</strong> <strong>the</strong> pure minimization routines is beyond <strong>the</strong> scope <strong>of</strong> this<br />

<strong>the</strong>sis. However, <strong>the</strong>re is <strong>the</strong> possibility to compare <strong>the</strong> full analysis process using<br />

a test job, here <strong>the</strong> Standard Global CKM Fit (see Chapter 5). The conditions, for<br />

<strong>the</strong> comparison tests done in this work, are summarized in Table 4.5.<br />

Hardware/S<strong>of</strong>tware Test job<br />

CPU: Intel P III Analysis: SM global fit<br />

Frequency: 1266 MHz Scan: (¯ρ,¯η) plane<br />

Memory: 2048 MB RAM Granularity: 200<br />

OS: Scientific Linux 3.0.3 fits per point: 2<br />

Compiler: gnu f77 -O<br />

Table 4.5: Test conditions<br />

Figure 4.3 shows <strong>the</strong> results <strong>of</strong> <strong>the</strong> Standard Global CKM Fit and its single constraints<br />

in <strong>the</strong> (¯ρ,¯η) plane, produced by both versions <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package.<br />

The results presented numerically in Table 4.6 and graphically in Figure 4.3 are<br />

nearly identical.<br />

Parameter Original <strong>CKMfitter</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> package<br />

A 0.2272 +0.0010<br />

−0.0010<br />

λ 0.812 +0.015<br />

−0.015<br />

¯ρ 0.187 +0.025<br />

−0.086<br />

¯η 0.333 +0.038<br />

−0.017<br />

J [10−5 ] 3.02 +0.36<br />

−0.17<br />

0.2272 +0.0010<br />

−0.0010<br />

0.813 +0.015<br />

−0.015<br />

0.187 +0.028<br />

−0.086<br />

0.333 +0.038<br />

−0.017<br />

3.02 +0.36<br />

−0.18<br />

Table 4.6: Numerical comparison <strong>of</strong> <strong>the</strong> Wolfenstein parameters A, λ, ¯ρ, ¯η and <strong>the</strong> Jarlskog<br />

invariant J. The errors are quoted as 1-CL=32 % ranges (1σ).<br />

Possible reasons for <strong>the</strong> very small discrepancies could be <strong>the</strong> usage <strong>of</strong> <strong>the</strong> different<br />

parametrizations <strong>of</strong> <strong>the</strong> Lattice QCD parameters, as explained in Section 5.1.12, <strong>the</strong><br />

different coded interplation routines for <strong>the</strong> LUTs or rounding effects value from <strong>the</strong><br />

determination <strong>of</strong> <strong>the</strong> central value.


4.7. Performance Tests 27<br />

η<br />

η<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

sin 2β<br />

Δm d<br />

ε K<br />

Δm s & Δm d<br />

α<br />

luded luded at at CL CL > > 0.95 0.95<br />

sol. w/ cos 2β < 0<br />

(excl. at CL > 0.95)<br />

0.1<br />

0<br />

|Vub /Vcb |<br />

γ<br />

β<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

excluded area has CL > 0.95<br />

γ<br />

sin2β<br />

εK<br />

Δmd<br />

γ<br />

α<br />

ρ<br />

Δms<br />

& Δmd<br />

ρ<br />

α<br />

C K M<br />

f i t t e r<br />

ICHEP 2006<br />

α<br />

Vub/Vcb<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

εK<br />

sol. w/ cos2β<br />

< 0<br />

(excl. at CL > 0.95)<br />

β<br />

CKM<br />

γ<br />

f i t t e r<br />

ICHEP 2006<br />

Figure 4.3: Confidence level in <strong>the</strong> (¯ρ,¯η) plane for <strong>the</strong> Standard Global CKM Fit. The<br />

plots are produced with <strong>the</strong> original (top) and <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> (bottom) <strong>CKMfitter</strong><br />

package.<br />

α<br />

γ


28 Chapter 4. A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>Version</strong> <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> <strong>Package</strong><br />

The test job, used for <strong>the</strong> fit time comparison, is <strong>the</strong> Standard Global CKM Fit. Its<br />

<strong>Ma<strong>the</strong>matica</strong> datacard is shown in detail in Appendix C and <strong>the</strong> result is <strong>the</strong> yellow<br />

area around <strong>the</strong> apex <strong>of</strong> <strong>the</strong> Unitarity Triangle in Figure 4.3. The fit time needed<br />

using <strong>the</strong> original <strong>CKMfitter</strong> package is about 23 hours, whereas <strong>the</strong> same result<br />

can be obtained by <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version in only ten minutes. This is a<br />

reduction <strong>of</strong> <strong>the</strong> fit time <strong>of</strong> more than a factor 100 for <strong>the</strong> Standard Global CKM<br />

Fit.<br />

Original <strong>CKMfitter</strong> package ≈ 23 h<br />

<strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> ≈ 10 min<br />

Table 4.7: Fit time comparison <strong>of</strong> test job runs<br />

Since <strong>the</strong> fit time depends on <strong>the</strong> hard- and s<strong>of</strong>tware conditions, <strong>the</strong> performance <strong>of</strong><br />

<strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong> package is tested for several configurations. The<br />

results for <strong>the</strong> test job are summarized in Table 4.8.<br />

Hardware MHz Compiler Operation System Fit time / min<br />

AMD Opteron 2194 f77 -O Scientific Linux 3.0.7 04 : 42<br />

Intel P M 1497 ifort -O2 SUSE Linux 10.0 05 : 25<br />

Intel P M 1497 f77 -O SUSE Linux 10.0 07 : 06<br />

Intel P III 1266 ifort -O2 Scientific Linux 3.0.3 09 : 10<br />

Intel P III 1266 f77 -O Scientific Linux 3.0.3 10 : 18<br />

Table 4.8: Hardware and s<strong>of</strong>tware performance tests<br />

The most important conclusion is, that <strong>the</strong> fit results are independent <strong>of</strong> <strong>the</strong> used<br />

hard- and s<strong>of</strong>tware conditions. Using a high developed hardware system in combination<br />

with an optimized FORTRAN compiler leads to a fur<strong>the</strong>r fit time reduction.<br />

With a fit time reduction <strong>of</strong> more than a factor 100, <strong>the</strong> goal <strong>of</strong> <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong><br />

<strong>based</strong> <strong>CKMfitter</strong> development has been achieved.


Chapter 5<br />

Probing <strong>the</strong> Standard Model<br />

After a brief discussion <strong>of</strong> <strong>the</strong> relevant fit inputs, <strong>the</strong> most important results <strong>of</strong> <strong>the</strong><br />

global CKM matrix analysis in <strong>the</strong> framework <strong>of</strong> <strong>the</strong> Standard Model are presented.<br />

5.1 Fit Inputs<br />

In this section, <strong>the</strong> SM predictions and measurement methods <strong>of</strong> <strong>the</strong> most relevant<br />

observables are described. If not stated o<strong>the</strong>rwise, <strong>the</strong> expressions given are used<br />

in <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package. The input values are<br />

quoted in form <strong>of</strong> a central value and its uncertainties, where contributions <strong>of</strong> gaussian<br />

distributed experimental, statistical and <strong>the</strong>oretical uncertainties are quadratically<br />

added and labeled with “gauss”. Theoretical systematics, labeled with “<strong>the</strong>o”,<br />

are added linearly and treated in <strong>the</strong> Rfit scheme. In <strong>the</strong> case <strong>of</strong> constraints with<br />

ambiguous solutions (as for <strong>the</strong> UT angles α and γ), <strong>the</strong> experimental likelihood<br />

function is directly used as fit input.<br />

Since a complete review <strong>of</strong> <strong>the</strong> input measurements is beyond <strong>the</strong> scope <strong>of</strong> this <strong>the</strong>sis,<br />

more detailed informations can be obtained from <strong>the</strong> References [4, 8, 9] and references<br />

<strong>the</strong>rein. The values <strong>of</strong> <strong>the</strong> fit inputs are <strong>the</strong> most recent results as presented at<br />

ICHEP 2006 and are summarized in Table 5.1. The final plots have been prepared<br />

by Vincent Tisserand using <strong>the</strong> macros as described in Chapter 4.<br />

5.1.1 |Vud|<br />

The most precise determination <strong>of</strong> |Vud| stems from superallowed nuclear beta decays.<br />

Taking <strong>the</strong> average <strong>of</strong> <strong>the</strong> most precise experimental results yields [27]:<br />

|Vud| = 0.97377 ± 0.00027gauss . (5.1)<br />

Superallowed nuclear beta decays are pure weak vector transitions (0 + → 0 + ). Thus,<br />

<strong>the</strong> extraction <strong>of</strong> |Vud| is <strong>the</strong>oretically very clean, since <strong>the</strong>oretical uncertainties<br />

in electroweak radiative corrections, isospin violating electromagnetic effects and<br />

nuclear structure dependence are under good <strong>the</strong>oretical control.<br />

29


30 Chapter 5. Probing <strong>the</strong> Standard Model<br />

5.1.2 |Vus|<br />

The matrix element |Vus| has been extracted from semileptonic Kaon decays (Kl3),<br />

e. g. K + → π 0 e + νe. Its current world average (WA) is [9]:<br />

|Vus|Kl3 = 0.2257 ± 0.0021gauss . (5.2)<br />

|Vus| as well as |Vud| are <strong>the</strong> main inputs to constrain <strong>the</strong> Wolfenstein parameter λ.<br />

However, |Vus| depends on large <strong>the</strong>oretical uncertainties from <strong>the</strong> determination <strong>of</strong><br />

<strong>the</strong> form factor f+(0). O<strong>the</strong>r possibilities to determine |Vus| involve for instance<br />

leptonic Kaon and Pion decays, semileptonic Hyperon decays or hadronic τ decays.<br />

5.1.3 |Vcb|<br />

The magnitude <strong>of</strong> |Vcb| is determined from exclusive and inclusive measurements 1<br />

<strong>of</strong> semileptonic B-meson decays to charmed final states (b → clν). Because <strong>of</strong> <strong>the</strong>oretical<br />

uncertainties on <strong>the</strong> form factor calculation, <strong>the</strong> exclusive determination is<br />

less precise compared to <strong>the</strong> inclusive one and thus not used in this work. Due to<br />

<strong>the</strong> large statistics, <strong>the</strong> inclusive WA [9]:<br />

|Vcb|incl = (41.7 ± 0.7gauss) · 10 −3<br />

(5.3)<br />

is already below <strong>the</strong> 2% level. It is <strong>the</strong> main input to constrain <strong>the</strong> Wolfenstein<br />

parameter A.<br />

5.1.4 |Vub|<br />

Analogous to |Vcb|, <strong>the</strong> CKM matrix element |Vub| is determined from exclusive and<br />

inclusive measurements <strong>of</strong> b → ulν transitions. The inclusive determination suffers<br />

from large B → Xclν background and uses <strong>the</strong>refore phase space regions where <strong>the</strong><br />

charm background is kinematically suppressed. Hadronic effects enter in leading<br />

order (LO) via one non-perturbative shape function, which has been extracted from<br />

<strong>the</strong> photon energy spectrum in B → Xsγ. For <strong>the</strong> inclusive WA, <strong>the</strong> BLNP [28]<br />

calculation is chosen [29] 2 :<br />

|Vub| incl. = (4.48 ± 0.24gauss ± 0.39<strong>the</strong>o) · 10 −3 , (5.4)<br />

The <strong>the</strong>oretical error is obtained by adding linearly <strong>the</strong> contributions from weak<br />

annihilation, subleading shape functions and <strong>the</strong> Heavy-Quark Expansion (HQE)<br />

uncertainty on <strong>the</strong> b-quark mass.<br />

Direct measurements <strong>of</strong> exclusive channels depend significantly on form factor calculations.<br />

The form factors can be calculated using unquenched Lattice QCD (LQCD)<br />

or QCD Sum Rules, which still leads to larger <strong>the</strong>oretical uncertainties compared to<br />

<strong>the</strong> inclusive determination.<br />

1 Exclusive means <strong>the</strong> full reconstruction <strong>of</strong> a single mode, e. g. B + → ¯ D 0 e + νe, where inclusive<br />

measurements integrate over all possible final states, B → Xclν.<br />

2 The central value has been shifted after <strong>the</strong> ICHEP06 conference to 4.49 · 10 −3 .


5.1. Fit Inputs 31<br />

1 – CL<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

C K M<br />

f i t t e r<br />

ICHEP 06<br />

B → ππ<br />

B → ρπ<br />

B → ρρ<br />

Combined<br />

CKM fit<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

α (deg)<br />

WA<br />

1 – CL<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

C K M<br />

f i t t e r<br />

FPCP 06<br />

Full frequentist treatment on MC basis<br />

CKM fit<br />

no γ meas. in fit<br />

D ( * ) K ( * ) GLW + ADS<br />

D ( * ) K ( * ) WA<br />

GGSZ Combined<br />

0<br />

0 20 40 60 80 100 120 140 160 180<br />

γ (deg)<br />

Figure 5.1: Left: Confidence level on <strong>the</strong> UT angle α obtained from <strong>the</strong> combination<br />

(green shaded) <strong>of</strong> B → ππ (green curve), B → ρπ (red curve) and B → ρρ (blue curve).<br />

Right: Confidence level on <strong>the</strong> UT angle γ obtained from <strong>the</strong> combination (green shaded)<br />

<strong>of</strong> <strong>the</strong> GLW, ADS and GGSZ methods (see text).<br />

5.1.5 The UT angle α<br />

The direct constraint on <strong>the</strong> UT angle α is obtained from charmless B decays.<br />

The best current knowledge comes from a combination <strong>of</strong> <strong>the</strong> two body isospin<br />

analysis [10] <strong>of</strong> B → ππ and B → ρρ decays and <strong>the</strong> Dalitz-plot analysis [10]<br />

<strong>of</strong> B → ρπ decays. Figure 5.1 (left) shows <strong>the</strong> confidence level on α from <strong>the</strong><br />

combined constraint <strong>of</strong> <strong>the</strong>se three measurements. The isospin analysis as well as<br />

<strong>the</strong> α extraction from B → ρπ have been performed by <strong>the</strong> <strong>CKMfitter</strong> group using<br />

<strong>the</strong> most recent results <strong>of</strong> BABAR and Belle. Due to its non-gaussian shape, <strong>the</strong><br />

χ 2 -contour is used as a LUT input file as described in Chapter 4.<br />

5.1.6 sin 2β<br />

The currently best constraint on (¯ρ,¯η) comes from determination <strong>of</strong> <strong>the</strong> CP-violating<br />

parameter sin 2β. It is measured with high precision at <strong>the</strong> B-factories from <strong>the</strong><br />

interference between decays with and without mixing in b → c¯cs transitions. The<br />

current world average is obtained by combining <strong>the</strong> measurements <strong>of</strong> B → (c¯c)K 0<br />

(BABAR) and B → J/ψKS,L (Belle) and yields [30]:<br />

sin 2β = 0.675 ± 0.026gauss . (5.5)


32 Chapter 5. Probing <strong>the</strong> Standard Model<br />

5.1.7 The UT angle γ<br />

The extraction <strong>of</strong> <strong>the</strong> UT angle γ stems from measurements <strong>of</strong> direct CP violation<br />

in B → D (∗) K (∗) decays. It is obtained from a combination <strong>of</strong> <strong>the</strong> Gronau-<br />

London-Wyler (GLW) [31,32], Atwood-Dunietz-Soni (ADS) [33,34] and Giri-<br />

Grossman-S<strong>of</strong>fer-Zupan (GGSZ) [35, 36] methods. Figure 5.1 shows <strong>the</strong> combined<br />

result using a frequentist method, which is advocated by <strong>the</strong> <strong>CKMfitter</strong><br />

group [16]. Analogous to <strong>the</strong> UT angle α <strong>the</strong> corresponding χ 2 -contour is used<br />

as a LUT input file (see Chapter 4).<br />

5.1.8 |ɛK|<br />

In <strong>the</strong> Standard Model, <strong>the</strong> absolute value <strong>of</strong> <strong>the</strong> CP-violating parameter in <strong>the</strong><br />

neutral Kaon system |ɛK| is defined by:<br />

|ɛK| = G2 F m2 W mK<br />

12 √ 2π2 f<br />

∆mK<br />

2 �<br />

KBK<br />

+ 2ηctS(xc, xt)Im[VcsV ∗ ∗<br />

cdVtsVtd ]<br />

ηccS(xc)Im[(VcsV ∗<br />

cd )2 ] + ηttS(xt)Im[(VtsV ∗<br />

td )2 ]<br />

�<br />

, (5.6)<br />

where fK is <strong>the</strong> Kaon decay constant. The hadronic matrix element <strong>of</strong> <strong>the</strong> |∆S| = 2<br />

box diagram is proportional to � √ �2, fK BK where BK is <strong>the</strong> bag parameter. It<br />

has been obtained from Lattice QCD calculations and is <strong>the</strong> primary source <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>oretical uncertainties for <strong>the</strong> prediction <strong>of</strong> |ɛK|. The parameters ηqiqj are nextto-leading<br />

order (NLO) QCD corrections to <strong>the</strong> Inami-Lim functions S, which are<br />

listed in Appendix A. The values <strong>of</strong> ηct and ηtt are shown in Table 5.2, while due to<br />

large uncertainties, a parameterization [37–39] is used for ηcc. This is also shown in<br />

Appendix A. The used average <strong>of</strong> |ɛK| is [40]:<br />

5.1.9 ∆md<br />

|ɛK| = (2.221 ± 0.008gauss) · 10 −3 . (5.7)<br />

The B 0 - ¯ B 0 oscillation frequency is expressed through <strong>the</strong> mass difference ∆md between<br />

<strong>the</strong> mass eigenstates BH and BL. It is predicted in <strong>the</strong> Standard Model as:<br />

∆md = G2 F<br />

6π 2 ηB mBd f 2 Bd Bd m 2 W S(xt) |VtdV ∗<br />

tb |2 , (5.8)<br />

where ηB is a perturbative QCD correction<br />

√<br />

to <strong>the</strong> Inami-Lim function. The hadronic<br />

matrix element is proportional to fBd Bd, where <strong>the</strong> decay constant fBd and bag<br />

parameter Bd are taken from LQCD (see also Section 5.1.12). ∆md has been measured<br />

to high precision in many experiments. The WA is [29]:<br />

∆md = 0.507 ± 0.004gauss . (5.9)


5.1. Fit Inputs 33<br />

5.1.10 ∆ms<br />

In analogy to ∆md, <strong>the</strong> mass difference <strong>of</strong> <strong>the</strong> two mass eigenstates in <strong>the</strong> neutral<br />

Bs-system is predicted in <strong>the</strong> Standard Model as:<br />

∆ms = G2 F<br />

6π2 ηB mBsf 2 Bs Bs m 2 W S(xt) |VtsV ∗<br />

tb |2 . (5.10)<br />

The most recent experimental results, presented at <strong>the</strong> winter conferences 2006,<br />

are a two-sided limit on ∆ms, determined by D∅ [41] and a measurement with a<br />

significance <strong>of</strong> 99.5% by CDF [42]:<br />

∆m CDF<br />

s<br />

= � 17.33 +0.42<br />

−0.21<br />

� −1<br />

± 0.07syst ps . (5.11)<br />

As input for <strong>the</strong> CKM matrix analysis, <strong>the</strong> χ 2 -contour obtained from <strong>the</strong> measured<br />

amplitude spectrum <strong>of</strong> <strong>the</strong> B 0 s - ¯ B 0 s oscillation from both experiments is used in this<br />

work [29].<br />

5.1.11 The Branching Fraction B(B + → τ + ντ)<br />

Ano<strong>the</strong>r constraint on <strong>the</strong> CKM matrix element |Vub| comes from purely leptonic<br />

decays <strong>of</strong> charged B mesons. The tree-level process is mediated in <strong>the</strong> Standard<br />

Model by annihilation <strong>of</strong> <strong>the</strong> charged B meson into a pure leptonic final state via<br />

a virtual W boson as shown in Figure 5.2. Its branching fraction B is predicted to<br />

be [43]:<br />

B(B + → l + νl) = G2 F mBm 2 l<br />

8π<br />

where <strong>the</strong> decay constant fBd<br />

f 2 �<br />

2<br />

Bd<br />

|Vub| 1 − m2 l<br />

m2 �2<br />

B<br />

, (5.12)<br />

is taken from Lattice QCD calculations (see also<br />

5.1.12). Due to <strong>the</strong> smallness <strong>of</strong> |Vub| 2 and an additional helicity suppression proportional<br />

to m2 l , <strong>the</strong> SM expectation is ra<strong>the</strong>r small. Thanks to <strong>the</strong> successful<br />

running <strong>of</strong> <strong>the</strong> B-factories, <strong>the</strong> decay B + → τ + ντ is now in reach <strong>of</strong> <strong>the</strong> experimental<br />

sensitivity. The fit input is a combination <strong>of</strong> <strong>the</strong> most recent experimental<br />

likelihoods from BABAR [44] and Belle [45], where <strong>the</strong> systematics <strong>of</strong> <strong>the</strong> BABAR<br />

result have been neglected.<br />

b<br />

u<br />

+<br />

B<br />

+<br />

W<br />

Figure 5.2: Tree-level contributions to leptonic B + decays in <strong>the</strong> SM<br />

Since several models predict New Physics contributions to this tree-level process,<br />

purely leptonic decays play also an important role on testing extensions <strong>of</strong> <strong>the</strong> Standard<br />

Model. A model which predicts additional contributions from charged Higgs<br />

bosons is discussed in Chapter 6.2.<br />

+<br />

l<br />

νl


34 Chapter 5. Probing <strong>the</strong> Standard Model<br />

5.1.12 Decay Constants and Bag Parameters<br />

The observables ∆md, ∆ms and B(B + → l + νl) depend on a set <strong>of</strong> decay constants<br />

and bag parameters:<br />

fBd , fBs , Bd and Bs . (5.13)<br />

They can be calculated using Lattice QCD, which leads to significant <strong>the</strong>oretical uncertainties<br />

for <strong>the</strong> predictions <strong>of</strong> <strong>the</strong> observables discussed in Chapters 5.1.9 to 5.1.11.<br />

Since some combinations <strong>of</strong> <strong>the</strong>se parameters can be calculated more precisely, <strong>the</strong><br />

parameters:<br />

fBd , Bd and ξ = fBs<br />

√<br />

Bs<br />

√<br />

fBd Bd<br />

, (5.14)<br />

have been used in <strong>the</strong> original <strong>CKMfitter</strong> package. Unfortunately, <strong>the</strong> LQCD calculation<br />

<strong>of</strong> fBd has large <strong>the</strong>oretical uncertainties, originating from <strong>the</strong> chiral extrapolation<br />

<strong>of</strong> <strong>the</strong> light lattice quark masses (mu,md) to <strong>the</strong> physical quark masses.<br />

Hence, <strong>the</strong> <strong>the</strong>oretical uncertainties <strong>of</strong> fBd and ξ are anti-correlated. This is not <strong>the</strong><br />

case in <strong>the</strong> different but ma<strong>the</strong>matically equivalent parametrization:<br />

fBs ,<br />

fBs<br />

fBd<br />

, Bs and Bs<br />

Bd<br />

, (5.15)<br />

which is used in <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package. It is<br />

free from <strong>the</strong> large correlation due to <strong>the</strong> uncertainty from <strong>the</strong> chiral extrapolation.<br />

However, possible smaller correlations are neglected since <strong>the</strong>ir correlation matrix<br />

has not been published.<br />

5.1.13 ASL<br />

Measurements <strong>of</strong> semileptonic B-meson decays, i.e. B → Xlν, allow <strong>the</strong> determination<br />

<strong>of</strong> <strong>the</strong> magnitude <strong>of</strong> CP violation in neutral B-meson mixing.<br />

The flavor specific CP asymmetry ASL as defined in Equation (2.42) is related to<br />

<strong>the</strong> mixing matrix elements in <strong>the</strong> SM via:<br />

� �<br />

Γ12<br />

ASL = Im . (5.16)<br />

Since <strong>the</strong> absolute value <strong>of</strong> Γ12/M12 is suppressed to <strong>the</strong> percent level through<br />

� � �<br />

� Γ12 �<br />

� �<br />

m2 b<br />

�M12<br />

� = O<br />

m2 �<br />

, (5.17)<br />

W<br />

ASL is expected to be ra<strong>the</strong>r small. It is additionally suppressed by ano<strong>the</strong>r order<br />

<strong>of</strong> magnitude through <strong>the</strong> GIM3 factor z = m2 c/m2 b � 0.1. In <strong>the</strong> presence <strong>of</strong> New<br />

3 In <strong>the</strong> SM, <strong>the</strong> Glashow-Iliopoulos-Maiani (GIM) mechanism leads to a cancellation <strong>of</strong><br />

FCNC processes at tree level.<br />

M12


5.1. Fit Inputs 35<br />

Physics <strong>the</strong> GIM suppression may be diminished, thus a precise measurement <strong>of</strong> ASL<br />

is an important constraint to New Physics models. Its input value is obtained from<br />

a weighted average <strong>of</strong> measurements by CLEO [46], BABAR [47,48] and Belle [49]:<br />

ASL = −0.0005 ± 0.0055gauss . (5.18)<br />

where di-leptonic modes as well as hadronic modes are taken into account. A measurement<br />

by D∅ [50] has not been included since it has also contributions from<br />

Bs-meson mixing.<br />

Since <strong>the</strong> <strong>the</strong>oretical prediction on Γ12/M12 still depends on large QCD uncertainties,<br />

it has been calculated beyond leading order in QCD.<br />

Leading Order<br />

The basic expression <strong>of</strong> Γ12/M12 is given in <strong>the</strong> SM through [51]:<br />

� �SM Γ12<br />

4πm<br />

= −<br />

M12<br />

2 b<br />

3m2 W ¯ηBS(xt)<br />

�<br />

5<br />

8 (K2 − K1) B′<br />

S<br />

B +<br />

�<br />

K1 + K2<br />

�<br />

2<br />

� �<br />

K1 m2 B − m<br />

+ − K2<br />

2 2 b 1<br />

B − 3z (K1<br />

1 − ¯ρ − i¯η<br />

+ K2)<br />

m 2 b<br />

(1 − ¯ρ) 2 + ¯η 2<br />

�<br />

,<br />

(5.19)<br />

where only contributions <strong>of</strong> O(z) and O(1/mb) are considered. The parameter ¯ηB<br />

is <strong>the</strong> scale dependend QCD correction factor to <strong>the</strong> Inami-Lim functions S(xi) and<br />

K1, K2 are linear combinations <strong>of</strong> Wilson coefficients.<br />

The hadronic matrix elements <strong>of</strong> <strong>the</strong> local |∆B| = 2 contributions are parametrized<br />

through B = B(mb) and B ′<br />

S<br />

= B′<br />

S (mb):<br />

〈 ¯ Bd|( ¯ bidi)V −A( ¯ bjdj)V −A|Bd〉 = 8<br />

3 f 2 Bd m2 Bd B(mb) (5.20)<br />

〈 ¯ Bd|( ¯ bidi)S−P ( ¯ bjdj)S−P |Bd〉 = − 5<br />

3 f 2 Bd m2 Bd B′<br />

S(mb) (5.21)<br />

≡ − 5<br />

3 f 2 Bd m2 Bd<br />

m2 Bd<br />

( ¯mb(mb) + ¯md(mb)) 2 BS(mb) .<br />

The scale-dependence can be separated through <strong>the</strong> factor [52]:<br />

bB(mb) = [αS(mb)] −6/23<br />

�<br />

1 + αS(mb)<br />

�<br />

5165<br />

, (5.22)<br />

4π 3174<br />

which leads to <strong>the</strong> scale-independent parameters:<br />

ηB = ¯ηB<br />

bB(mb)<br />

and Bd = B(mb) · bB(mb) . (5.23)<br />

Assuming ¯md(mb) → 0, <strong>the</strong> parameter BS(mb) is used to parametrize <strong>the</strong> scalarpseudoscalar<br />

hadronic matrix element instead <strong>of</strong> B ′<br />

S (mb). It depends one <strong>the</strong> scale mb.<br />

The input values <strong>of</strong> all parameters are summarized in Table 5.2.


36 Chapter 5. Probing <strong>the</strong> Standard Model<br />

Next-to-Leading Order<br />

In NLO, higher corrections in z and 1/mb are taken into account as well as penguin<br />

contributions and QCD corrections. The most recent progress is summarized in<br />

Reference [53] and references <strong>the</strong>rein.<br />

The expansion <strong>of</strong> Γ12/M12 up to <strong>the</strong> order <strong>of</strong> λ 2 u/λ 2 t is given by [53]:<br />

Γ12<br />

M12<br />

= λ2 �<br />

t<br />

−Γ<br />

M12<br />

cc<br />

12 + 2 (Γ uc<br />

12 − Γ cc<br />

12) λu<br />

+ (2Γ<br />

λt<br />

uc<br />

12 − Γ cc<br />

12 − Γ uu<br />

12 ) λ2u λ2 �<br />

t<br />

(5.24)<br />

where λi = V ∗<br />

id Vib, for i = u, c, t. The mixing matrix element M12 is predicted in <strong>the</strong><br />

SM as [54]:<br />

λ 2 t<br />

G 2 F<br />

12π 2 mBd ηBB(mb)bB(mb)f 2 Bd m2 W S(xt) . (5.25)<br />

The coefficients Γab 12 are expressed through [53]:<br />

Γ ab<br />

12 = G2 F m2 b<br />

−<br />

24π f 2 Bd MBd<br />

� �<br />

F ab (z) + P ab (z)<br />

�<br />

F ab<br />

S (z) + P ab<br />

�<br />

5<br />

S (z)<br />

3 B′ S(mb)<br />

�<br />

8<br />

3 B(mb)<br />

�<br />

, (5.26)<br />

+ Γ ab<br />

12,1/mb<br />

where <strong>the</strong> short-distance coefficients F ab<br />

(S) (z) contain <strong>the</strong> contributions from |∆B| = 1<br />

(z) coefficients contain <strong>the</strong> contributions from penguin opera-<br />

have been computed in Ref. [53], Γcc 12 is given in Ref. [55]<br />

is derived from Γcc 12 taking <strong>the</strong> limit z → 0. In addition, <strong>the</strong>y depend on<br />

<strong>the</strong> Wilson coefficients C1, . . . , C6 and C8, which are also given in Table 5.2. The<br />

contains <strong>the</strong> corrections <strong>of</strong> order 1/mb.<br />

operators and <strong>the</strong> P ab<br />

(S)<br />

tors. The coefficients in Γ uc<br />

12<br />

and Γ uu<br />

12<br />

term Γ ab<br />

12,1/mb<br />

A comparison <strong>of</strong> <strong>the</strong> SM predictions <strong>of</strong> ASL at LO and NLO in QCD is shown in <strong>the</strong><br />

Section 5.2. The implementation <strong>of</strong> <strong>the</strong> NLO prediction for Γ12/M12 has finished<br />

immediately before <strong>the</strong> end <strong>of</strong> this <strong>the</strong>sis and <strong>the</strong>refore not all cross checks have been<br />

performed up to this point. As a consequence, <strong>the</strong> <strong>the</strong>ory prediction for Γ12/M12 in<br />

this <strong>the</strong>sis is used at LO to produce quantitative results if not stated o<strong>the</strong>rwise.


5.1. Fit Inputs 37<br />

Parameter Value ± Error(s) Reference<br />

Errors<br />

GS TH<br />

|Vud| (nuclei) 0.97377 ± 0.00027 [27] ⋆ -<br />

|Vus| (Kℓ3) 0.2257 ± 0.0021 [9] ⋆ -<br />

|Vub| (incl.) (4.48 ± 0.24 ± 0.39) × 10 −3 [9] ⋆ ⋆<br />

|Vcb| (incl.) (41.70 ± 0.70) × 10 −3 [29] ⋆ -<br />

|εK| (2.221 ± 0.008) × 10 −3 [40] ⋆ -<br />

∆md (0.507 ± 0.004) ps −1 [29] ⋆ -<br />

ASL −0.0005 ± 0.0055 [46–49] ⋆ -<br />

∆ms Amplitude spectrum+CDF -LogL [41, 42] ⋆ -<br />

sin(2β) [c¯c] 0.675 ± 0.026 [30] ⋆ -<br />

S +−<br />

ππ −0.58 ± 0.09 [29] ⋆ -<br />

C +−<br />

ππ −0.39 ± 0.07 [29] ⋆ -<br />

C 00<br />

ππ −0.35 ± 0.33 [29] ⋆ -<br />

Bππ all charges Inputs to isospin analysis [29] ⋆ -<br />

S +−<br />

ρρ,L −0.22 ± 0.22 [29] ⋆ -<br />

C +−<br />

ρρ,L −0.06 ± 0.14 [29] ⋆ -<br />

Bρρ,L all charges Inputs to isospin analysis [29] ⋆ -<br />

B 0 → (ρπ) 0 → 3π Time-dependent Dalitz analysis [56] ⋆ -<br />

B − → D (∗) K (∗)− Inputs to GLW analysis [57] ⋆ -<br />

B − → D (∗) K (∗)− Inputs to ADS analysis [57] ⋆ -<br />

B − → D (∗) K (∗)− GGSZ Dalitz analysis [57] ⋆ -<br />

B(B − → τ − ντ ) Experimental likelihoods [44, 45] ⋆ -<br />

mc(mc) (1.24 ± 0.037 ± 0.095) GeV/c 2 [58] ⋆ ⋆<br />

mt(mt) (162.3 ± 2.2) GeV/c 2 [59] ⋆ -<br />

m K + (493.677 ± 0.016) MeV/c 2 [60] - -<br />

∆mK (3.4833 ± 0.0066) × 10 −12 MeV/c 2 [60] - -<br />

mBd (5.2794 ± 0.0005) GeV/c 2 [60] - -<br />

mBs (5.3696 ± 0.0024) GeV/c 2 [60] - -<br />

mW (80.425 ± 0.039) GeV/c 2 [60] - -<br />

GF 1.16637 × 10 −5 GeV −2 [60] - -<br />

fK (159.8 ± 1.5) MeV [60] - -<br />

Table 5.1: Inputs to <strong>the</strong> CKM fits. If not stated o<strong>the</strong>rwise: for two errors given, <strong>the</strong> first<br />

stands for statistical and accountable systematic uncertainties and <strong>the</strong> second stands for systematic<br />

<strong>the</strong>oretical uncertainties. The last two columns indicate <strong>the</strong> Rfit treatment <strong>of</strong> <strong>the</strong><br />

input parameters: measurements or parameters that have statistical errors (we include here<br />

experimental systematics) are marked in <strong>the</strong> “GS” column by an asterisk; measurements or<br />

parameters that have systematic <strong>the</strong>oretical errors are marked in <strong>the</strong> “TH” column by an<br />

asterisk. Upper part: experimental determinations <strong>of</strong> <strong>the</strong> CKM matrix elements. Middle<br />

part: CP-violation and mixing observables. Lower part: parameters used in SM<br />

predictions that are obtained from experiment.


38 Chapter 5. Probing <strong>the</strong> Standard Model<br />

Parameter Value ± Error(s) Reference<br />

Errors<br />

GS TH<br />

BK 0.79 ± 0.04 ± 0.09 [61] ⋆ ⋆<br />

αS(m2 Z )<br />

ηct<br />

0.1176 ± 0.0020<br />

0.47 ± 0.04<br />

[60]<br />

[37]<br />

-<br />

-<br />

⋆<br />

⋆<br />

ηtt 0.5765 ± 0.0065 [37, 39] - ⋆<br />

ηB(MS) 0.551 ± 0.007 [52] - ⋆<br />

fBs (236.5 ± 31.5 ± 1) MeV [62] ⋆ ⋆<br />

Bs 1.37 ± 0.14 [62] ⋆ -<br />

fBs /fBd 1.24 ± 0.04 ± 0.06 [62] ⋆ -<br />

Bs/Bd 1.00 ± 0.02 [62] ⋆ ⋆<br />

mb 4.8 ± 0.1 [51] - ⋆<br />

z 0.085 ± 0.01 [51] - ⋆<br />

α S(mb) 0.22 [51] - -<br />

BS(mb) 0.83 ± 0.03 ± 0.07 [51] ⋆ ⋆<br />

K1 −0.295 [51] - -<br />

K2 1.162 [51] - -<br />

C1 −0.184 [52] - -<br />

C2 1.078 [52] - -<br />

C3 0.013 [52] - -<br />

C4 −0.035 [52] - -<br />

C5 0.009 [52] - -<br />

C6 −0.41 [52] - -<br />

C8 −0.14795 [63] - -<br />

Table 5.2: Inputs to <strong>the</strong> CKM fits (continued). Upper part: parameters <strong>of</strong> <strong>the</strong> SM<br />

predictions obtained from <strong>the</strong>ory. Middle part: parameters <strong>of</strong> <strong>the</strong> ASL predictions. Lower<br />

part: Wilson Coefficients.


5.2. Standard Model Fit Results 39<br />

5.2 Standard Model Fit Results<br />

The goal <strong>of</strong> <strong>the</strong> CKM matrix analysis is to test <strong>the</strong> quality <strong>of</strong> <strong>the</strong> agreement between<br />

<strong>the</strong> Standard Model predictions <strong>of</strong> <strong>the</strong> relevant observables and <strong>the</strong>ir experimental<br />

measurements. Fur<strong>the</strong>rmore, <strong>the</strong> CKM matrix parameters are constrained from fits,<br />

performed in <strong>the</strong> framework <strong>of</strong> Rfit, where <strong>the</strong> input values from Tables 5.1 & 5.2<br />

have been used. The fit results are provided numerically as well as graphically in<br />

one- and two-dimensional representations, e. g. in <strong>the</strong> (¯ρ,¯η) plane. They are obtained<br />

using <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong> package and have been partly<br />

presented at ICHEP 2006.<br />

The Standard Global CKM Fit includes <strong>the</strong> observables:<br />

|Vud| , |Vus| , |Vub| , |Vcb| , |εK| , ∆md , ∆ms , α , sin 2β and γ , (5.27)<br />

which can be considered as <strong>the</strong>oretically and experimentally well understood and<br />

provide significant constraints on <strong>the</strong> fit parameters. Its result is shown in Figure<br />

5.3, where for each individual constraint <strong>the</strong> 95% CL allowed belt is indicated<br />

in <strong>the</strong> (¯ρ,¯η) plane 4 .<br />

The left side <strong>of</strong> <strong>the</strong> Unitarity Triangle, Ru, is determined from <strong>the</strong> ratio <strong>of</strong> |Vub|<br />

and |Vcb|. Its 95 % CL belt is, to a very good approximation, a ring around<br />

(¯ρ, ¯η) = (0, 0). The right side Rt, is constrained by |Vtd| and |Vtb|, which have<br />

been obtained from measurements <strong>of</strong> <strong>the</strong> oscillaton frequencies ∆md and ∆ms. Be-<br />

cause <strong>of</strong> large <strong>the</strong>oretical uncertainties on fBd<br />

√ Bd, <strong>the</strong> constraint from ∆md is very<br />

loose. A much better result is obtained from <strong>the</strong> combination <strong>of</strong> ∆md and ∆ms,<br />

where most <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical uncertainties from QCD correction factors and LQCD<br />

parameters cancel. The constraint on (¯ρ,¯η) from <strong>the</strong> γ determination is very loose<br />

and <strong>the</strong> UT angle α is ambiguous due to mirror solutions, as shown in Figure 5.1.<br />

The currently best known parameter is <strong>the</strong> UT angle β, which is well constrained<br />

from measurements <strong>of</strong> sin 2β. Since cos 2β is measured to be a positive number [64],<br />

its mirror solution is excluded at 95 % CL. A direct constraint on <strong>the</strong> altitude <strong>of</strong> <strong>the</strong><br />

Unitarity Triangle is provided by <strong>the</strong> measurements <strong>of</strong> |ɛK| leading to a hyperboliclike<br />

belt in <strong>the</strong> (¯ρ,¯η) plane.<br />

The allowed area from <strong>the</strong> Standard Global CKM Fit constrains <strong>the</strong> apex <strong>of</strong> <strong>the</strong><br />

Unitarity Triangle in <strong>the</strong> first quadrant <strong>of</strong> <strong>the</strong> (¯ρ,¯η) plane. It is covered consistently<br />

by all 95 % CL belts <strong>of</strong> <strong>the</strong> individual constraints. The Standard Global CKM<br />

Fit excludes <strong>the</strong> possibility <strong>of</strong> ¯η = 0 and thus a real CKM matrix at a CL <strong>of</strong> at<br />

most 99.9 %.<br />

4 For sin 2β, <strong>the</strong> 68 % CL (1σ) and 95.5 % CL (2σ) belts are given instead.


40 Chapter 5. Probing <strong>the</strong> Standard Model<br />

The results <strong>of</strong> <strong>the</strong> Standard Global CKM Fit for <strong>the</strong> Wolfenstein parameters A, λ, ¯ρ,<br />

¯η and <strong>the</strong> Jarlskog invariant J are shown in Figure 5.4. Fur<strong>the</strong>rmore, <strong>the</strong> fit results<br />

<strong>of</strong> <strong>the</strong> UT angles α, β and γ are compared with <strong>the</strong>ir SM predictions and <strong>the</strong>ir<br />

direct measurements. In this case, SM prediction means <strong>the</strong> result <strong>of</strong> <strong>the</strong> Standard<br />

Global CKM Fit without <strong>the</strong> respective parameter in <strong>the</strong> fit. The numerical results<br />

<strong>of</strong> <strong>the</strong> relevant observables and model parameters are summarized in Table 5.3 & 5.4.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

excluded area has CL > 0.95<br />

εK<br />

γ<br />

sin2β<br />

V /V ub cb<br />

α<br />

γ<br />

α<br />

excluded at CL > 0.95<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

γ<br />

sol. w/ cos2β<br />

< 0<br />

(excl. at CL > 0.95)<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

α<br />

Δms<br />

Δmd<br />

& Δm<br />

Figure 5.3: Confidence level in <strong>the</strong> (¯ρ,¯η) plane obtained from <strong>the</strong> Standard Global CKM Fit<br />

(red bordered yellow area) and from <strong>the</strong> individual constraints (colored belts). The shaded<br />

areas indicate 95 % CL allowed regions.<br />

d<br />

εK


5.2. Standard Model Fit Results 41<br />

1 - CL<br />

1 - CL<br />

1 - CL<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.86<br />

A<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

0.05 0.1 0.15 0.2 0.25<br />

ρ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

-6<br />

× 10<br />

26 28 30 32 34 36<br />

× 10<br />

38<br />

J<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0<br />

0 0.1 0.2 0.3 0.4<br />

β<br />

0.5 0.6 0.7<br />

-6<br />

1 - CL<br />

1 - CL<br />

1 - CL<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

0.224 0.225 0.226 0.227 0.228 0.229 0.23 0.231<br />

λ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0.28 0.3 0.32 0.34<br />

η<br />

0.36 0.38 0.4 0.42<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0<br />

0 0.5 1 1.5<br />

α<br />

2 2.5 3<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0<br />

0 0.5 1 1.5<br />

γ<br />

2 2.5 3<br />

Figure 5.4: Confidence level in <strong>the</strong> (¯ρ,¯η) plane on <strong>the</strong> Wolfenstein parameters, <strong>the</strong> UT<br />

angles and <strong>the</strong> Jarlskog invariant, obtained from <strong>the</strong> Standard Global CKM Fit. For α, γ<br />

and sin 2β, also <strong>the</strong> SM predictions and <strong>the</strong> direct measurements are shown.


42 Chapter 5. Probing <strong>the</strong> Standard Model<br />

The quality <strong>of</strong> <strong>the</strong> agreement between <strong>the</strong> SM predictions and <strong>the</strong> experimental data<br />

, which is a<br />

can be obtained from <strong>the</strong> interpretation <strong>of</strong> <strong>the</strong> test statistics χ2 min,ymod<br />

probe <strong>of</strong> <strong>the</strong> goodness-<strong>of</strong>-fit for <strong>the</strong> SM hypo<strong>the</strong>sis. The p-value P (χ2 min,ymod |SM)<br />

for <strong>the</strong> validity <strong>of</strong> <strong>the</strong> Standard Model needs to be calculated using Toy Monte Carlo<br />

simulations [4]. Since this is beyond <strong>the</strong> scope <strong>of</strong> this <strong>the</strong>sis, an approximative<br />

method is chosen instead.<br />

Assuming naively a gaussian behavior <strong>of</strong> <strong>the</strong> global likelihood function L(ymod) with<br />

Nd<strong>of</strong> = Nexp − Nmod = 6, <strong>the</strong> p-value can be approximately obtained from <strong>the</strong> Prob<br />

function, which is given in Equation (3.6). The global χ2-minimum <strong>of</strong> <strong>the</strong> Standard<br />

Global CKM Fit is:<br />

= 4.25 . (5.28)<br />

This leads to a p-value <strong>of</strong><br />

χ 2 min,ymod<br />

P (χ 2 min,ymod |SM) ≤ P rob(χ2min,ymod ) = 64.2 % (5.29)<br />

for <strong>the</strong> validity <strong>of</strong> <strong>the</strong> Standard Model.<br />

The main contribution to <strong>the</strong> global χ 2 -minimum stems from <strong>the</strong> slight disagreement<br />

<strong>of</strong> <strong>the</strong> measurements <strong>of</strong> |Vub| and sin 2β. The plots in Figure 5.5 show <strong>the</strong> SM<br />

prediction compared to <strong>the</strong> direct measurement for both observables, |Vub|incl. and<br />

sin 2β. In addition, <strong>the</strong> result <strong>of</strong> <strong>the</strong> Standard Global CKM Fit is shown.<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0.0035 0.004 0.0045 0.005 0.0055<br />

| Vub | incl.<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0<br />

0.5 0.6 0.7 0.8 0.9 1<br />

sin(2 β )<br />

Figure 5.5: Confidence level on |Vub|incl (left) and sin 2β (right) obtained from <strong>the</strong> Standard<br />

Global CKM Fit (blue curve), <strong>the</strong> SM predictions (red curve) and <strong>the</strong> direct measurements<br />

(green shaded).<br />

Ano<strong>the</strong>r possibility for <strong>the</strong> determination <strong>of</strong> <strong>the</strong> CKM matrix element |Vub| is provided<br />

by purely leptonic decays <strong>of</strong> charged B-mesons. Since <strong>the</strong> SM expectations for<br />

<strong>the</strong> corresponding branching fractions are ra<strong>the</strong>r small, only <strong>the</strong> decay B + → τ + ντ<br />

has been seen yet. Figure 5.6 shows <strong>the</strong> SM predictions from <strong>the</strong> Standard Global<br />

CKM Fit for B(B + → τ + ντ ) and B(B + → µ + νµ). In addition, <strong>the</strong> combined<br />

B + → τ + ντ measurement from BABAR and Belle and <strong>the</strong> corresponding fit result<br />

is shown.


5.2. Standard Model Fit Results 43<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM fit<br />

prediction<br />

measurement<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

+ +<br />

4<br />

BR(B → τ ν τ ) × 10<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

0.2 0.3 0.4 0.5 0.6 0.7<br />

+ +<br />

6<br />

BR(B → μ ν μ ) × 10<br />

Figure 5.6: Confidence level on B(B + → τ + ντ ) and B(B + → µ + νµ) obtained from <strong>the</strong> SM<br />

prediction (red curve). Fur<strong>the</strong>rmore, <strong>the</strong> results <strong>of</strong> <strong>the</strong> direct measurement (green shaded)<br />

and <strong>the</strong> fit (blue curve) are given for <strong>the</strong> decay B + → τ + ντ .<br />

Since <strong>the</strong> SM prediction <strong>of</strong> <strong>the</strong> branching fraction <strong>of</strong> purely leptonic B-meson decays<br />

depends also on <strong>the</strong> decay constant fBd , a precise measurement can help to reduce<br />

<strong>the</strong>oretical uncertainties in <strong>the</strong> Standard Global CKM Fit. Figure 5.7 shows <strong>the</strong><br />

constraint on (¯ρ,¯η) coming from <strong>the</strong> individual constraints B(B + → τ + ντ ), ∆md<br />

and a combination <strong>of</strong> both inputs. Since B(B + → τ + ντ ) depends on <strong>the</strong> matrix<br />

element |Vub|, its 95 % CL belt is to a very good approximation a ring around<br />

(¯ρ, ¯η) = (0, 0). In <strong>the</strong> combination with ∆md, <strong>the</strong> <strong>the</strong>oretical uncertainties are<br />

reduced due to <strong>the</strong> cancelation <strong>of</strong> <strong>the</strong> decay constant contribution. The remaining<br />

<strong>the</strong>oretical uncertainty stems from <strong>the</strong> bag factor Bd in <strong>the</strong> SM prediction <strong>of</strong> ∆md.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

excluded area has CL > 0.95<br />

+ + B → τ ντ<br />

CKM fit<br />

γ<br />

α<br />

CKM<br />

+ +<br />

f i t t e r Constraint from B → τ ντ<br />

and Δmd<br />

ICHEP 06<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

Figure 5.7: Confidence level in <strong>the</strong> (¯ρ,¯η) plane obtained from B(B + → τ + ντ ) (blue ring),<br />

∆md (yellow ring) and a combination <strong>of</strong> both (green area).<br />

ρ<br />

β<br />

Δmd


44 Chapter 5. Probing <strong>the</strong> Standard Model<br />

In addition to <strong>the</strong> Standard Global CKM Fit, several fits for different classes <strong>of</strong><br />

constraints have been performed in this <strong>the</strong>sis. Each plot <strong>of</strong> Figure 5.8 shows <strong>the</strong><br />

95 % CL belts for <strong>the</strong> individual constraints and <strong>the</strong> allowed area from <strong>the</strong> combined<br />

fits.<br />

In <strong>the</strong> first row, <strong>the</strong> fit results, obtained from <strong>the</strong> CP-violating observables α, sin 2β,<br />

γ and |ɛK| are compared with those obtained from <strong>the</strong> CP-conserving constraints<br />

|Vub|, ∆md and ∆md & ∆ms. An important observation is that a non-real CKM<br />

matrix with ¯η �= 0 and thus CP violation is also obtained from CP-conserving constraints.<br />

The crucial input in this constraint is <strong>the</strong> recent measurement <strong>of</strong> ∆ms by<br />

CDF, presented at <strong>the</strong> winter conferences 2006.<br />

The second row shows <strong>the</strong> impact <strong>of</strong> <strong>the</strong>oretical uncertainties. The allowed area from<br />

<strong>the</strong> fit using only <strong>the</strong> UT angle constraints α, sin 2β and γ is much smaller than <strong>the</strong><br />

area obtained from <strong>the</strong> constraints |Vub|, |ɛK|, ∆md and ∆md & ∆ms which depend<br />

on additional QCD parameters.<br />

The left figure <strong>of</strong> <strong>the</strong> third row shows <strong>the</strong> fit results from constraints which are<br />

dominated by tree-level contributions. Beside |Vub|, a combined constraint from α<br />

and β is used which allows to extract γ. Assuming no New Physics contributions to<br />

<strong>the</strong> ∆I = 3/2 part <strong>of</strong> b → d transitions in <strong>the</strong> extraction <strong>of</strong> α leads in combination<br />

with β, measured in tree-level B → Mc¯c transitions, to a cancellation <strong>of</strong> a possible<br />

New Physics mixing phase ϑd (see Chapter 6). That gives a determination <strong>of</strong><br />

γ = π − β − α independent from possible New Physics in B 0 - ¯ B 0 mixing. Compared<br />

to that, <strong>the</strong> right plot shows constraints from <strong>the</strong> loop-dominated observables sin 2β,<br />

|ɛK|, ∆md and ∆md & ∆ms.<br />

Since all fits are consistent with <strong>the</strong> Standard Global CKM Fit and <strong>the</strong> allowed<br />

(¯ρ,¯η) range is quite small, <strong>the</strong> space for possible New Physics effects is significantly<br />

constrained. A more detailed discussion <strong>of</strong> possible NP contributions in B 0 - ¯ B 0<br />

mixing is described in <strong>the</strong> next chapter.


5.2. Standard Model Fit Results 45<br />

η<br />

η<br />

η<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

γ<br />

sin2β<br />

εK<br />

α<br />

0.1<br />

α<br />

γ<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

γ<br />

sin2β<br />

ρ<br />

εK<br />

sol. w/ cos2β<br />

< 0<br />

(excl. at CL > 0.95)<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

α<br />

γ<br />

η<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

Δmd<br />

Δms<br />

& Δmd<br />

α<br />

0.1<br />

γ<br />

Vub/Vcb<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

(a) (b)<br />

α<br />

0.1<br />

α<br />

γ<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

(c)<br />

γ(<br />

α)<br />

α<br />

ρ<br />

ρ<br />

sol. w/ cos2β<br />

< 0<br />

(excl. at CL > 0.95)<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0.1<br />

γ<br />

Vub/Vcb<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

(e)<br />

α<br />

CKM<br />

γ<br />

f i t t e r<br />

ICHEP 2006<br />

η<br />

η<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

excluded area has CL > 0.95<br />

εK<br />

Δmd<br />

α<br />

ρ<br />

Δms<br />

& Δmd<br />

ρ<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0.1<br />

γ<br />

Vub/Vcb<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

sin2β<br />

εK<br />

Δmd<br />

(d)<br />

Δms<br />

& Δmd<br />

α<br />

0.1<br />

γ<br />

β<br />

0<br />

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1<br />

ρ<br />

εK<br />

εK<br />

sol. w/ cos2β<br />

< 0<br />

(excl. at CL > 0.95)<br />

Figure 5.8: Confidence level in <strong>the</strong> (¯ρ,¯η) plane for several global CKM fits. (a) CP-violating<br />

observables vs. (b) CP-conserving observables, (c) <strong>the</strong>oretically clean observables vs. (d) observables<br />

with significant <strong>the</strong>ory errors from non-perturbative QCD parameters and (e) tree<br />

dominated observables vs. (f) loop dominated observables. In <strong>the</strong> plot from pure tree observables,<br />

<strong>the</strong> constraint on α has been used assuming <strong>the</strong>re are no New Physics contributions<br />

to <strong>the</strong> ∆I = 3/2 part <strong>of</strong> b → d transitions. In <strong>the</strong> combination <strong>of</strong> this constraint with β<br />

from B → Mc¯cKS modes <strong>the</strong> New Physics mixing phase ϑd cancels, so that it gives a New<br />

Physics free determination <strong>of</strong> γ = π − β − α.<br />

excluded area has CL > 0.95<br />

(f)<br />

CKM<br />

f i t t e r<br />

ICHEP 2006


46 Chapter 5. Probing <strong>the</strong> Standard Model<br />

An important constraint on New Physics in B 0 - ¯ B 0 mixing comes from measurements<br />

<strong>of</strong> <strong>the</strong> semileptonic CP asymmetry ASL. Since it is not measured precisely<br />

enough to provide a significant constraint in (¯ρ,¯η) plane, <strong>the</strong> measurement <strong>of</strong> ASL<br />

is not included in <strong>the</strong> Standard Global CKM Fit. The prediction <strong>of</strong> ASL depends<br />

on short and long distance hadronic matrix elements, which need to be calculated<br />

from Lattice QCD. During this work, ASL has been implemented with LO and NLO<br />

QCD corrections. Figure 5.9 shows <strong>the</strong> confidence levels for <strong>the</strong> SM prediction <strong>of</strong><br />

ASL, taking LO as well as NLO QCD corrections into account. They are compared<br />

with <strong>the</strong> results <strong>of</strong> <strong>the</strong> Standard Global CKM Fit, including ASL. Its input value is<br />

given in Table 5.1.<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

× 10<br />

0<br />

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1<br />

× 10<br />

-0<br />

ASL LO<br />

-3<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

× 10<br />

0<br />

-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1<br />

× 10<br />

-0<br />

ASL NLO<br />

Figure 5.9: Confidence level on ASL from <strong>the</strong> SM prediction. The QCD corrections are<br />

used up to LO (left) and NLO (right).<br />

-3


5.2. Standard Model Fit Results 47<br />

Observable central ± 1σ ± 2σ ± 3σ<br />

λ 0.2272 +0.0010<br />

−0.0010<br />

A 0.813 +0.015<br />

−0.015<br />

¯ρ 0.187 +0.028<br />

−0.086<br />

¯η 0.333 +0.038<br />

−0.017<br />

J [10 −5 ] 3.02 +0.36<br />

−0.18<br />

sin(2α) −0.25 +0.48<br />

−0.15<br />

sin(2α) (meas. not in fit) −0.28 +0.66<br />

−0.17<br />

sin(2β) 0.701 +0.022<br />

−0.022<br />

sin(2β) (meas. not in fit) 0.777 +0.114<br />

−0.052<br />

α (rad) 1.694 +0.082<br />

−0.242<br />

α (rad) (meas. not in fit) 1.713 +0.090<br />

−0.339<br />

α (rad) (direct meas.) 1.62 +0.18<br />

−0.17<br />

β (rad) 0.389 +0.016<br />

−0.015<br />

β (rad) (meas. not in fit) 0.452 +0.099<br />

−0.046<br />

β (rad) (direct meas.) 0.371 +0.018<br />

−0.017<br />

γ � δ (rad) 1.058 +0.244<br />

−0.076<br />

γ � δ (rad) (meas. not in fit) 1.060 +0.250<br />

−0.079<br />

γ � δ (rad) (direct meas.) 1.06 +0.67<br />

−0.44<br />

Ru<br />

Rt<br />

0.382 +0.014<br />

−0.015<br />

0.878 +0.092<br />

−0.030<br />

∆md (ps−1 ) (meas. not in fit) 0.359 +0.270<br />

−0.077<br />

∆ms (ps−1 ) 17.37 +0.35<br />

−0.23<br />

∆ms (ps−1 ) (meas. not in fit) 20.0 +7.0<br />

−4.7<br />

|ɛK| [10−3 ] (meas. not in fit) 2.34 +1.15<br />

−0.73<br />

B(B + → τ + νµ) [10−4 ] 1.06 +0.16<br />

−0.16<br />

B(B + → τ + νµ) [10−4 ] (meas. not in fit) 1.01 +0.16<br />

−0.24<br />

B(B + → µ + νµ) [10−7 ] (meas. not in fit) 4.01 +0.64<br />

−0.95<br />

+0.0020<br />

−0.0020<br />

+0.030<br />

−0.030<br />

+0.054<br />

−0.119<br />

+0.060<br />

−0.034<br />

+0.55<br />

−0.35<br />

+0.64<br />

−0.29<br />

+0.79<br />

−0.32<br />

+0.044<br />

−0.045<br />

+0.141<br />

−0.093<br />

+0.16<br />

−0.33<br />

+0.18<br />

−0.41<br />

+0.47<br />

−0.28<br />

+0.032<br />

−0.031<br />

+0.130<br />

−0.075<br />

+0.036<br />

−0.034<br />

+0.33<br />

−0.15<br />

+0.33<br />

−0.15<br />

+1.10<br />

−0.70<br />

+0.028<br />

−0.029<br />

+0.126<br />

−0.059<br />

+0.37<br />

−0.10<br />

+0.59<br />

−0.40<br />

+11.8<br />

−7.2<br />

+1.56<br />

−0.90<br />

+0.35<br />

−0.34<br />

+0.36<br />

−0.36<br />

+1.4<br />

−1.4<br />

+0.0030<br />

−0.0031<br />

+0.046<br />

−0.045<br />

+0.080<br />

−0.143<br />

+0.077<br />

−0.051<br />

+0.70<br />

−0.51<br />

+0.75<br />

−0.43<br />

+0.91<br />

−0.45<br />

+0.066<br />

−0.067<br />

+0.16<br />

−0.14<br />

+0.25<br />

−0.39<br />

+0.27<br />

−0.48<br />

+0.62<br />

−0.36<br />

+0.049<br />

−0.045<br />

+0.16<br />

−0.10<br />

+0.056<br />

−0.051<br />

+0.40<br />

−0.23<br />

+0.40<br />

−0.23<br />

+1.58<br />

−0.92<br />

+0.043<br />

−0.043<br />

+0.150<br />

−0.089<br />

+0.46<br />

−0.13<br />

+0.79<br />

−0.57<br />

+15.3<br />

−8.6<br />

+1.9<br />

−1.1<br />

+0.58<br />

−0.45<br />

+0.59<br />

−0.44<br />

+2.4<br />

−1.8<br />

Table 5.3: Fit results and errors using <strong>the</strong> Standard Global CKM Fit observables. For<br />

results marked with “meas. not in fit”, <strong>the</strong> measurement <strong>of</strong> <strong>the</strong> corresponding observable<br />

has not been included in <strong>the</strong> fit. The “1 − CL” ranges are defined as 32 % (1σ), 4.5 % (2σ)<br />

and 0.3 % (3σ).


48 Chapter 5. Probing <strong>the</strong> Standard Model<br />

Observable central ± 1σ ± 2σ ± 3σ<br />

|Vud| 0.97384 +0.00023<br />

−0.00024<br />

|Vus| 0.2272 +0.0010<br />

−0.0010<br />

|Vub| [10−3 ] 3.74 +0.14<br />

−0.15<br />

|Vub| [10−3 ] (meas. not in fit) 3.52 +0.18<br />

−0.17<br />

|Vcd| 0.2271 +0.0010<br />

−0.0010<br />

|Vcs| 0.97298 +0.00023<br />

−0.00024<br />

|Vcb| [10−3 ] 41.94 +0.67<br />

−0.69<br />

|Vcb| [10−3 ] (meas. not in fit) 44.7 +1.1<br />

−1.9<br />

|Vtd| [10−3 ] 8.37 +0.90<br />

−0.31<br />

|Vts| [10−3 ] 41.26 +0.68<br />

−0.66<br />

|Vtb| 0.999113 +0.000029<br />

−0.000029<br />

+0.00047<br />

−0.00047<br />

+0.0020<br />

−0.0020<br />

+0.29<br />

−0.29<br />

+0.37<br />

−0.34<br />

+0.0020<br />

−0.0020<br />

+0.00047<br />

−0.00048<br />

+1.4<br />

−1.4<br />

+2.3<br />

−4.6<br />

+1.32<br />

−0.62<br />

+1.3<br />

−1.4<br />

+0.000057<br />

−0.000058<br />

Table 5.4: Fit results and errors (continued)<br />

+0.00071<br />

−0.00071<br />

+0.0030<br />

−0.0031<br />

+0.44<br />

−0.44<br />

+0.55<br />

−0.57<br />

+0.0030<br />

−0.0031<br />

+0.00071<br />

−0.00072<br />

+2.0<br />

−2.0<br />

+3.5<br />

−7.2<br />

+1.47<br />

−0.92<br />

+2.0<br />

−2.1<br />

+0.000084<br />

−0.000088


Chapter 6<br />

New Physics Beyond <strong>the</strong><br />

Standard Model<br />

The Standard Model describes successfully all <strong>the</strong> present data from flavor physics<br />

experiments. Never<strong>the</strong>less, <strong>the</strong>re are still many reasons to believe in physics beyond<br />

<strong>the</strong> SM. For example, evidences for unobserved “dark matter” and “dark energy”<br />

from cosmic microwave background radiation measurements are not described by<br />

<strong>the</strong> SM. Fur<strong>the</strong>rmore, <strong>the</strong> strength <strong>of</strong> CP violation in <strong>the</strong> CKM matrix, expressed<br />

through <strong>the</strong> Jarlskog invariant, is significantly to weak and <strong>the</strong> electroweak phase<br />

transition is not intens enough to generate <strong>the</strong> observed baryon asymmetry in <strong>the</strong><br />

universe.<br />

In <strong>the</strong> following, two extensions <strong>of</strong> <strong>the</strong> Standard Model are discussed. First <strong>of</strong> all a<br />

model independent description <strong>of</strong> NP contributions to B 0 - ¯ B 0 mixing and secondly,<br />

charged Higgs contributions to <strong>the</strong> leptonic decay width <strong>of</strong> charged B mesons in<br />

Two Higgs Doublet Models (2HDM).<br />

6.1 New Physics in B 0 - ¯B 0 Oscillations<br />

B 0 - ¯ B 0 oscillation occurs in <strong>the</strong> SM through |∆B| = 2 transitions. A model independent<br />

description <strong>of</strong> New Physics contributions introduces two additional parameters,<br />

<strong>the</strong> relative amplitude r 2 d and <strong>the</strong> relative phase 2ϑd between <strong>the</strong> mixing<br />

matrix elements including SM and NP contributions compared to SM contributions<br />

only [65, 66]:<br />

� B 0 � �H SM+NP � � ¯ B 0 �<br />

� B 0 |H SM | ¯ B 0 � = r2 d ei2ϑd . (6.1)<br />

The Standard Model is referred to as r 2 d = 1 and 2ϑd = 0. Additional assumptions<br />

are a unitary 3 × 3 CKM matrix and no NP contributions to tree level dominated<br />

processes (which means Γ12 = ΓSM 12 ). More specifically, decay transitions with four<br />

flavor changes (i.e. b → q1¯q2q3, q1 �= q2 �= q3) are dominated by <strong>the</strong> SM [4]. The<br />

49


50 Chapter 6. New Physics Beyond <strong>the</strong> Standard Model<br />

<strong>the</strong>ory predictions <strong>of</strong> <strong>the</strong> relevant observables are changed as follows [67]:<br />

γ ⇒ γ (tree level dominated)<br />

|Vud|, |Vus| ⇒ |Vud|, |Vus| (tree level dominated)<br />

|Vub|, |Vcb| ⇒ |Vub|, |Vcb| (tree level dominated)<br />

∆md ⇒ ∆m NP<br />

d<br />

sin 2β ⇒ sin(2β + 2ϑd)<br />

= ∆mSM d · r 2 d<br />

cos 2β ⇒ cos(2β + 2ϑd) (6.2)<br />

α (= π − β − γ) ⇒ α NP (= π − β − γ − ϑd)<br />

� �SM Γ12 sin 2ϑd<br />

ASL ⇒ A NP<br />

SL = −Re<br />

M12<br />

r 2 d<br />

� �SM Γ12 cos 2ϑd<br />

+ Im<br />

M12 r2 d<br />

The tree-level dominated constraints from |Vud|, |Vus|, |Vub|, |Vcb| and γ remain unchanged.<br />

The o<strong>the</strong>r observables in Eqn. 6.2 have more important loop contributions<br />

which are sensitive to possible New Physics effects. The only constraint on both NP<br />

parameters r 2 d and 2ϑd comes from <strong>the</strong> semileptonic CP asymmetry ASL, where <strong>the</strong><br />

SM prediction <strong>of</strong> Γ12/M12 is used here at LO in QCD.<br />

The observables in Eqn. 6.2 provide significant constraints in <strong>the</strong> (¯ρ,¯η) plane as well<br />

as in <strong>the</strong> (r 2 d ,2ϑd) plane. The results <strong>of</strong> a global New Physics fit are shown in <strong>the</strong><br />

Figures 6.1 to 6.5, where <strong>the</strong> used input values are summarized in Table 5.1 & 5.2.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure 6.1: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md and sin 2β.<br />

Figure 6.1 shows <strong>the</strong> confidence level obtained from a global CKM fit in <strong>the</strong> (¯ρ,¯η)<br />

and (r 2 d ,2ϑd) planes, assuming New Physics contributions to B 0 - ¯ B 0 oscillations.<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

.


6.1. New Physics in B 0 - ¯ B 0 Oscillations 51<br />

The constraints stem from |Vud|, |Vub|, |Vcb|, ∆md and sin 2β. The only significant<br />

constraint in <strong>the</strong> (¯ρ,¯η) plane comes from <strong>the</strong> ratio |Vub/Vcb|, which leads, to a very<br />

good approximation, to a ring around (¯ρ, ¯η) = (0, 0). The constraint in <strong>the</strong> (r 2 d ,2ϑd)<br />

plane is very loose. The input <strong>of</strong> sin 2β leads to a mirror solution at 2ϑd > π/2. It<br />

vanishes after adding cos(2β + 2ϑd) > 0 to <strong>the</strong> fit inputs, as shown in Fig. 6.2. It<br />

does only marginally effect <strong>the</strong> result in <strong>the</strong> (¯ρ,¯η) plane.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure 6.2: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β and cos 2β.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

22<br />

ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure 6.3: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β and γ.<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


52 Chapter 6. New Physics Beyond <strong>the</strong> Standard Model<br />

A much better constraint stems from <strong>the</strong> observable γ. Since it is tree-level dominated,<br />

it directly constrains <strong>the</strong> CKM matrix parameters (¯ρ,¯η) and <strong>the</strong>reby <strong>the</strong><br />

allowed range in <strong>the</strong> (r 2 d ,2ϑd) plane. Figure 6.3 shows <strong>the</strong> two allowed regions remain<br />

in <strong>the</strong> (¯ρ,¯η) plane and in <strong>the</strong> (r 2 d ,2ϑd) plane. Since a one-dimensional scan<br />

in ¯η results ¯η �= 0 at a CL <strong>of</strong> at most 99.9 %, a real CKM matrix is also excluded<br />

assuming New Physics contributions in B 0 - ¯ B 0 oscillations. The first solution in <strong>the</strong><br />

(r 2 d ,2ϑd) plane is in agreement with <strong>the</strong> SM values (r 2 d = 1, 2ϑd = 0), whereas <strong>the</strong><br />

second solution would be a clear sign <strong>of</strong> New Physics effects. Ano<strong>the</strong>r major input<br />

stems from measurements <strong>of</strong> <strong>the</strong> UT angle α. It decreases <strong>the</strong> allowed regions in <strong>the</strong><br />

(¯ρ,¯η) plane as well as in <strong>the</strong> (r 2 d ,2ϑd) plane as shown in Figure 6.4.<br />

Finally, <strong>the</strong> inclusion <strong>of</strong> ASL in <strong>the</strong> fit gives an additional hard constraint in both<br />

planes. As shown in Figure 6.5, <strong>the</strong> non-SM solution almost vanishes, which highlights<br />

<strong>the</strong> importance <strong>of</strong> <strong>the</strong> observable ASL in constraining possible New Physics<br />

contributions to B 0 - ¯ B 0 mixing. Additional fits have been performed to describe <strong>the</strong><br />

effects from <strong>the</strong> individual constraints. The results are shown in <strong>the</strong> Figures B.1<br />

to B.5 , given in Appendix B.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure 6.4: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β, γ and α.<br />

Figure 6.6 shows <strong>the</strong> confidence level obtained from one-dimensional scans <strong>of</strong> <strong>the</strong><br />

New Physics parameters r 2 d and 2ϑd, using constraints from |Vud|, |Vub|, |Vcb|, ∆md,<br />

sin 2β, cos 2β, γ, α and ASL. The results<br />

r 2 d<br />

+0.50 +1.28<br />

= 1.02 −0.42 (1σ)<br />

−0.57 (2σ) and 2ϑd = −0.094 +0.049<br />

−0.123<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

+0.11<br />

(1σ) −0.16 (2σ) , (6.3)<br />

are in good agreement with <strong>the</strong> Standard Model, never<strong>the</strong>less, <strong>the</strong> r2 d constraint shows<br />

that NP contributions <strong>of</strong> order O(100 %) are still possible. The non-SM solution is<br />

0


6.1. New Physics in B 0 - ¯ B 0 Oscillations 53<br />

strongly suppressed at more than 99.5 % CL, <strong>the</strong> SM-like solution shows a small bias<br />

in 2ϑd, mainly caused by <strong>the</strong> inputs |Vub|incl. and sin 2β.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure 6.5: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β, γ, α and ASL.<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

CKM<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

1 - CL<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

f i t t e r<br />

ICHEP 2006<br />

0<br />

-3 -2 -1 0<br />

2 ϑ (rad)<br />

1 2 3<br />

Figure 6.6: Confidence level on r 2 d and 2ϑd obtained from <strong>the</strong> global CKM fit, assuming<br />

possible New Physics contributions to <strong>the</strong> B 0 - ¯ B 0 mixing amplitude.<br />

CKM<br />

d<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


54 Chapter 6. New Physics Beyond <strong>the</strong> Standard Model<br />

6.2 Charged Higgs Contributions to Leptonic B ± Decays<br />

6.2.1 Two-Higgs-Doublet Models<br />

Charged Higgs bosons are predicted by multiple-Higgs-doublet extensions <strong>of</strong> <strong>the</strong><br />

Standard Model. The simplest versions are Two-Higgs-Doublet Models (2HDM),<br />

which introduce <strong>the</strong> two Higgs doublet scalar fields Φi, i = 1, 2, where tan β = v2/v1<br />

is <strong>the</strong> ratio <strong>of</strong> <strong>the</strong>ir vacuum expectation values vi ∼ 〈Φi〉. This leads to five physical<br />

Higgs bosons, three neutral and two charged ones.<br />

The 2HDM are classified in model I, where all fermions obtain <strong>the</strong>ir masses from<br />

<strong>the</strong> same Higgs doublet, and model II, where u-type quarks obtain <strong>the</strong>ir mass from<br />

one, d-type quarks and charged leptons from <strong>the</strong> o<strong>the</strong>r doublet [68]. Since <strong>the</strong>re are<br />

no relevant effects from charged B decays in model I, only model II is considered<br />

here. Model II is also realized in <strong>the</strong> Higgs sector <strong>of</strong> <strong>the</strong> Minimal Supersymmetric<br />

Standard Model (MSSM), where <strong>the</strong> mass <strong>of</strong> <strong>the</strong> charged Higgs boson is additionally<br />

restricted to m H ± > mW . This is not <strong>the</strong> case for <strong>the</strong> general model II <strong>of</strong> 2HDM,<br />

where m H ± can take on arbitrary values [9].<br />

6.2.2 Charged Higgs Contributions to Leptonic B ± Decays<br />

Important constraints on <strong>the</strong> charged Higgs mass m H ± come from purely leptonic<br />

decays <strong>of</strong> charged B mesons. In contrast to many o<strong>the</strong>r rare decays (e. g. b → sγ)<br />

which are influenced by New Physics at <strong>the</strong> one loop level, <strong>the</strong> decays B ± → l ± ν<br />

are sensitive to charged Higgs bosons (H ± ) at tree level [69]. Figure 6.7 shows<br />

<strong>the</strong> tree-level contribution to <strong>the</strong> decay B + → τ + ντ , which is, in addition to <strong>the</strong><br />

SM-W boson, mediated by a H ± boson.<br />

b<br />

u<br />

+<br />

B<br />

+ +<br />

W , H<br />

Figure 6.7: Tree-level contribution from charged Higgs bosons to B + → τ + ντ<br />

+ τ<br />

ντ


6.2. Charged Higgs Contributions to Leptonic B ± Decays 55<br />

The prediction <strong>of</strong> <strong>the</strong> branching fraction B <strong>of</strong> purely leptonic B ± decays can be<br />

written as [70]:<br />

B (B → lν) = G2 F mBm2 l f 2 B<br />

|Vub|<br />

8π<br />

2<br />

�<br />

1 − m2 l<br />

m2 �2<br />

· rH , (6.4)<br />

B<br />

where <strong>the</strong> factor rH contains <strong>the</strong> charged Higgs boson contributions. It is defined<br />

by [69]:<br />

�<br />

rH = 1 − tan 2 β m2 B<br />

m2 H ±<br />

�2<br />

1<br />

1 + ɛ0 · tan β<br />

. (6.5)<br />

The factor 1/(1 + ɛ0 · tan β) combines corrections to <strong>the</strong> coupling H ± uidj which occur<br />

at large tan β in SUSY models [69, 71]. Since a detailed discussion <strong>of</strong> this effect<br />

occurring in SUSY models is beyond <strong>the</strong> scope <strong>of</strong> this <strong>the</strong>sis, <strong>the</strong>y are neglected<br />

by fixing ɛ0 to be zero. A discussion <strong>of</strong> <strong>the</strong> numerical impact <strong>of</strong> ɛ0 1 is provided in<br />

Ref. [69].<br />

Figure 6.8 shows <strong>the</strong> confidence level in <strong>the</strong> (tan β,m H +) plane obtained from <strong>the</strong><br />

constraints |Vud|, |Vus|, |Vcb|, |Vub|incl and B(B + → τ + ντ ). Their input values are <strong>the</strong><br />

same as summarized in Table 5.1, where for B(B + → τ + ντ ) <strong>the</strong> combined likelihood<br />

function from BABAR [44] and Belle [45] is taken.<br />

2<br />

) GeV/c<br />

+<br />

m(H<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0 10 20 30 40 50 60 70 80 90<br />

tan( β )<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

Figure 6.8: Confidence level in <strong>the</strong> (tan β,m H +) plane obtained from |Vud|, |Vus|, |Vcb|,<br />

|Vub|incl and B(B + → τ + ντ ).<br />

Since <strong>the</strong> constraint in Fig. 6.8 is very loose, only small m H + are exclude for large<br />

tan β at 95 % CL. An experimental lower limit with m H + > 78.6 GeV/c 2 at 95 %<br />

CL is obtained from <strong>the</strong> combined LEP results <strong>of</strong> searches in <strong>the</strong> decay channels<br />

1 Varied in an interval −0.01 < ɛ0 < +0.01 which has been found in Ref. [71].<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


56 Chapter 6. New Physics Beyond <strong>the</strong> Standard Model<br />

H + → c¯s and H + → τ + ντ [72]. Ano<strong>the</strong>r interesting constraint stems from ¯ B → Xsγ<br />

decays where a lower limit <strong>of</strong> m H + > 350 GeV/c 2 at 99 % CL [73] has been found.


Chapter 7<br />

Conclusions and Perspectives<br />

This <strong>the</strong>sis is a contribution to <strong>the</strong> development <strong>of</strong> a <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong><br />

<strong>the</strong> <strong>CKMfitter</strong> package. It had been introduced by Jérôme Charles to obtain a<br />

significant fit time reduction compared to <strong>the</strong> original FORTRAN <strong>based</strong> <strong>CKMfitter</strong><br />

package. Using symbolic calculations during <strong>the</strong> fit preparation and an efficient<br />

FORTRAN <strong>based</strong> minimization routine, a gain in CPU time <strong>of</strong> more than a factor<br />

100 has been achieved for <strong>the</strong> Standard Global CKM Fit.<br />

Related to <strong>the</strong> Standard Global CKM Fit, <strong>the</strong> <strong>the</strong>ory <strong>of</strong> neutral meson oscillations<br />

has been implemented for <strong>the</strong> B 0 d , B0 s and K 0 systems as well as <strong>the</strong> <strong>the</strong>ory predictions<br />

for <strong>the</strong> branching fraction <strong>of</strong> purely leptonic B-meson decays. More specifically,<br />

<strong>the</strong> following observables have been implemented: ∆md, ∆ms, ASL, |ɛK| and<br />

B(B + → l + νl).<br />

For <strong>the</strong> treatment <strong>of</strong> look-up-table input files, e. g. for ∆ms, B(B + → τ + ντ ) and <strong>the</strong><br />

UT angles α and γ, FORTRAN <strong>based</strong> subroutines (TABLEAU, dTABLEAUO2, LoadLUT)<br />

have been coded. The interpolation <strong>of</strong> <strong>the</strong> look-up tables is performed by a <strong>Ma<strong>the</strong>matica</strong>-<strong>based</strong><br />

subroutine using cubic spline interpolation.<br />

The results <strong>of</strong> <strong>the</strong> Standard Global CKM Fit show a good agreement between SM<br />

predictions and recent data. The Wolfenstein parameters have been constraint<br />

at 68 % CL to:<br />

A = 0.813 +0.015<br />

+0.0010<br />

+0.028<br />

+0.038<br />

−0.015 , λ = 0.2272 −0.0010 , ¯ρ = 0.187 −0.086 , ¯η = 0.333 −0.017 , (7.1)<br />

and <strong>the</strong> Jarlskog invariant, which is related to <strong>the</strong> strength <strong>of</strong> CP violation in electroweak<br />

transitions is found to be:<br />

J = � 3.02 +0.36�<br />

−5<br />

−0.18 · 10 . (7.2)<br />

57


58 Chapter 7. Conclusions and Perspectives<br />

Since all <strong>the</strong> present data from experiments in quark-flavor physics is well described<br />

by <strong>the</strong> Standard Model, <strong>the</strong> space for New Physics contributions is significantly constrained.<br />

Never<strong>the</strong>less, <strong>the</strong>re is still enough space for possible New Physics effects,<br />

which have been quantified in this <strong>the</strong>sis in two different extensions <strong>of</strong> <strong>the</strong> Standard<br />

Model.<br />

Possible New Physics contributions to neutral meson oscillations have been implemented<br />

model-independently to <strong>the</strong> B-meson systems as well as to <strong>the</strong> Kaon system.<br />

The allowed ranges for <strong>the</strong> NP parameters (r 2 d ,2ϑd) in <strong>the</strong> Bd system have been found<br />

to:<br />

r 2 d<br />

= 1.02 +0.50<br />

−0.42 and 2ϑd = −0.094 +0.049<br />

−0.123 (at 68 % CL), (7.3)<br />

which is in good agreement with <strong>the</strong> Standard Model. The small bias in 2ϑd results<br />

from <strong>the</strong> slight disagreement <strong>of</strong> <strong>the</strong> measurements <strong>of</strong> |Vub|incl and sin 2β. Since a<br />

significant constraint on possible New Physics in B 0 - ¯ B 0 mixing is obtained from <strong>the</strong><br />

observable ASL, its <strong>the</strong>oretical prediction has been implemented including LO QCD<br />

corrections as well as NLO QCD corrections. A preliminary comparison <strong>of</strong> <strong>the</strong>ir SM<br />

predictions is given in this <strong>the</strong>sis.<br />

Contributions <strong>of</strong> charged Higgs bosons to <strong>the</strong> branching fraction <strong>of</strong> leptonic B-meson<br />

decays have been implemented in <strong>the</strong> framework <strong>of</strong> Two-Higgs-Doublet Models. Since<br />

only <strong>the</strong> decay B + → τ + ντ is currently experimentally accessible, <strong>the</strong> constraint<br />

on (tan β,m H +) is still loose. An additional fit input from B → Xsγ transitions<br />

would provide an additional constraint, but has not been implemented yet.<br />

To guarantee <strong>the</strong> stability <strong>of</strong> <strong>the</strong> fit results by using <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> <strong>CKMfitter</strong><br />

package, several comparison tests with <strong>the</strong> original package have been performed.<br />

As a benefit to <strong>the</strong> <strong>CKMfitter</strong> group, a user guide has been written during this <strong>the</strong>sis<br />

as well as a tutorial on <strong>the</strong> coding <strong>of</strong> <strong>the</strong>ory packages.<br />

After more than one year <strong>of</strong> development, <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong><br />

<strong>CKMfitter</strong> package has been used for <strong>the</strong> first time to produce <strong>the</strong> fit results for<br />

a large conference (ICHEP 2006). Never<strong>the</strong>less, a lot <strong>of</strong> features available in <strong>the</strong><br />

original <strong>CKMfitter</strong> package are still missing. A Wolfenstein parameter independent<br />

prediction <strong>of</strong> B(B + → l + νl) as well as <strong>the</strong> <strong>the</strong>ory <strong>of</strong> rare Kaon decays need to be<br />

implemented.<br />

Due to its modular structure, <strong>the</strong> new <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version <strong>of</strong> <strong>the</strong> <strong>CKMfitter</strong><br />

package is not only restricted to <strong>the</strong> CKM matrix analysis. Fur<strong>the</strong>r applications,<br />

e. g. a leptonic mixing matrix analysis could be easily added.


Appendix A<br />

The Inami-Lim Functions<br />

The Inami-Lim functions are defined by [74]:<br />

where<br />

S (xi) =<br />

�<br />

1<br />

xi<br />

4 +<br />

9<br />

4 (1 − xi) −<br />

3<br />

2 (1 − xi) 2<br />

�<br />

− 3<br />

S (xi, xj) i�=j =<br />

� �3 xi<br />

ln xi<br />

2 1 − xi<br />

��<br />

1<br />

xixj<br />

4 +<br />

3<br />

2 (1 − xi) −<br />

3<br />

4 (1 − xi) 2<br />

�<br />

1<br />

ln(xi)<br />

xi − xj<br />

�<br />

1<br />

+<br />

4 +<br />

3<br />

2 (1 − xj) −<br />

3<br />

4 (1 − xj) 2<br />

�<br />

−<br />

1<br />

ln(xj)<br />

xj − xi<br />

3<br />

�<br />

1<br />

,<br />

4 (1 − xi) (1 − xj)<br />

xi = m2 i<br />

m 2 W<br />

with i = c, t .<br />

The quark masses are used in <strong>the</strong> MS scheme, which are perturbatively calculated<br />

in LO from <strong>the</strong> pole masses by:<br />

�<br />

¯mi(mi) = mi 1 − 4<br />

� ��<br />

αS(mi)<br />

. (A.1)<br />

3 π<br />

The QCD correction factor ηcc to <strong>the</strong> Inami-Lim functions has been parametrized<br />

through [37]:<br />

� � ��<br />

¯mc(mc)<br />

ηcc � (1.46 ± δcc) 1 − 1.2<br />

− 1 [1 + 52 (αS(mZ) − 0.118)] (A.2)<br />

1.25 GeV/c2 with an uncertainty from higher-order corrections parametrized by:<br />

� � ��<br />

¯mc(mc)<br />

δcc = 0.22 1 − 1.8<br />

− 1 [1 + 80 (αS(mZ) − 0.118)] . (A.3)<br />

1.25 GeV/c2 59


60 Appendix A. The Inami-Lim Functions


Appendix B<br />

Additional Figures <strong>of</strong> New<br />

Physics in B 0 - ¯B 0 Oscillations<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.1: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md and cos 2β.<br />

61<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


62 Appendix B. Additional Figures <strong>of</strong> New Physics in B 0 - ¯B 0 Oscillations<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.2: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md and α.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.3: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md and ASL.<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.4: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, cos 2β and α.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.5: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md and ASL.<br />

1<br />

0<br />

63<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

1<br />

0.99<br />

0.98<br />

0.97<br />

0.96<br />

0.95<br />

0.94<br />

0.93


64 Appendix B. Additional Figures <strong>of</strong> New Physics in B 0 - ¯B 0 Oscillations<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.6: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β and α.<br />

η<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

γ<br />

α<br />

-1.5<br />

-1 -0.5 0 0.5 1 1.5 2<br />

ρ<br />

β<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

(rad)<br />

d<br />

2 ϑ<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

CKM<br />

1-CL<br />

f i t t e r<br />

ICHEP 2006<br />

-3<br />

0 1 2 3<br />

r 2<br />

d<br />

4 5 6<br />

Figure B.7: Constraints within <strong>the</strong> framework <strong>of</strong> New Physics contributions to <strong>the</strong> B 0 - ¯ B 0<br />

mixing amplitude on <strong>the</strong> (¯ρ,¯η) plane (left) and on <strong>the</strong> (r 2 d ,2ϑd) plane (right), obtained from<br />

a global CKM fit including |Vud|, |Vus|, |Vub|, |Vcb|, ∆md, sin 2β, γ, α and ASL.<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0


Appendix C<br />

Testjob<br />

{<br />

(* Setting datacard for global CKM fit *)<br />

analysisContext -> "TESTJOB‘",<br />

<strong>the</strong>ory<strong>Package</strong> -> "BBbarKKbarMixing‘",<br />

inputData -> "globalCKMfit_ICHEP06",<br />

job -> 1,<br />

(***** TESTJOB - SM global Fit - small plane *****)<br />

takeMe[1] -> {<br />

"|Vud|","|Vus|","|Vcb|", "|Vub|",<br />

"All(Deltamd)",<br />

"All(Deltams)",<br />

"All(|epsilonK|)",<br />

"sin2beta",<br />

"alpha",<br />

"gamma"<br />

},<br />

(********** common settings **********)<br />

startRange -> {<br />

"A"->{0.7, 0.9},<br />

"lambda"->{0.22, 0.23},<br />

"rhobar"->{0, 0.26},<br />

"etabar"->{0.28, 0.42}<br />

},<br />

65


66 Appendix C. Testjob<br />

}<br />

globalMinSearches -> 100,<br />

useOneD<strong>of</strong> -> False,<br />

scanQty -> {"rhobar", "etabar"},<br />

scanMin -> {-0.4, 0. },<br />

scanMax -> {+1.0, 0.7},<br />

granularity -> 200,<br />

nbOfScans -> 2,<br />

nbOfFits -> 1,<br />

scanDirection -> "both",<br />

outputType -> { ".dat", {".png",ImageSize->800}, {".eps",ImageSize->800} },<br />

verbose -> True


Appendix D<br />

Source Code<br />

D.1 Tableau<br />

!-----------------------------------------------------------------------<br />

C<br />

C Tableau Function for LUT inputs by A. Jantsch<br />

C<br />

Double precision Function Tableau( ObsPred, fn )<br />

Implicit None<br />

include ’dimarray.f’<br />

integer k, n, fn, lengthTable(maxLUT)<br />

double precision ObsPred, SplinePred<br />

double precision xmin, xmax<br />

double precision tabsave(maxLUT,0:5,maxGranularity)<br />

common /LUT/ lengthTable, tabsave<br />

n = lengthTable(fn)<br />

xmin = tabsave(fn,0,1)<br />

xmax = tabsave(fn,0,n)<br />

if( ObsPred.le.xmin ) <strong>the</strong>n<br />

Tableau = tabsave(fn,1,1)<br />

elseif( ObsPred.ge.xmax ) <strong>the</strong>n<br />

Tableau = tabsave(fn,1,n)<br />

67


68 Appendix D. Source Code<br />

else<br />

k = int( (dble(n-1)*ObsPred +xmax -dble(n)*xmin)/(xmax -xmin) )<br />

SplinePred = ObsPred -tabsave(fn,0,k)<br />

Tableau = tabsave(fn,2,k) +<br />

> tabsave(fn,3,k) *SplinePred +<br />

> tabsave(fn,4,k) *SplinePred**2 +<br />

> tabsave(fn,5,k) *SplinePred**3<br />

end if<br />

End<br />

D.2 dTableauO2<br />

Tableau = Max(Tableau, 0D0)<br />

!-----------------------------------------------------------------------<br />

C<br />

C Derivatives <strong>of</strong> Tableau function (divided by 2)<br />

C<br />

Double precision Function dTableauO2( ObsPred, fn )<br />

Implicit None<br />

include ’dimarray.f’<br />

integer k, n, fn, lengthTable(maxLUT)<br />

double precision ObsPred, SplinePred<br />

double precision xmin, xmax<br />

double precision tabsave(maxLUT,0:5,maxGranularity)<br />

common /LUT/ lengthTable, tabsave<br />

n = lengthTable(fn)<br />

xmin = tabsave(fn,0,1)<br />

xmax = tabsave(fn,0,n)<br />

if( ObsPred.le.xmin .or. ObsPred.ge.xmax ) <strong>the</strong>n


D.3. LoadLUT 69<br />

else<br />

dTableauO2 = 0D0<br />

k = int( (dble(n-1)*ObsPred +xmax -dble(n)*xmin)/(xmax -xmin) )<br />

SplinePred = ObsPred -tabsave(fn,0,k)<br />

dTableauO2 = tabsave(fn,3,k) +<br />

> 2D0 *tabsave(fn,4,k) *SplinePred +<br />

> 3D0 *tabsave(fn,5,k) *SplinePred**2<br />

end if<br />

End<br />

D.3 LoadLUT<br />

dTableauO2 = dTableauO2 /2D0<br />

!-----------------------------------------------------------------------<br />

C<br />

C subroutine to load LUT’s for Tableau function<br />

C<br />

subroutine LoadLUT( nbOfLUT, LUTfname)<br />

Implicit None<br />

include ’dimarray.f’<br />

integer nbOfLUT<br />

character*200 LUTfname(maxLUT)<br />

integer i, fn, lengthTable(maxLUT)<br />

double precision tabsave(maxLUT,0:5,maxGranularity)<br />

common /LUT/ lengthTable, tabsave<br />

do fn = 1, nbOfLUT<br />

open(22, file = LUTfname(fn), status = ’old’)<br />

read(22,*) lengthTable(fn)


70 Appendix D. Source Code<br />

do i = 1, lengthTable(fn)<br />

read(22,*) tabsave(fn,0,i), tabsave(fn,1,i),<br />

> tabsave(fn,2,i), tabsave(fn,3,i),<br />

> tabsave(fn,4,i), tabsave(fn,5,i)<br />

enddo<br />

close(22)<br />

enddo<br />

End


Appendix E<br />

User Guide<br />

E.1 <strong>Ma<strong>the</strong>matica</strong> Terminology<br />

In <strong>the</strong> following, <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> terminology used in this work, is briefly described.<br />

Fur<strong>the</strong>r informations are given in <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> Documentation Center [22].<br />

Notebook<br />

A <strong>Ma<strong>the</strong>matica</strong> notebook is a file format used by <strong>the</strong> graphical front-end. It contains<br />

input cells, which are evaluated by <strong>the</strong> <strong>Ma<strong>the</strong>matica</strong> kernel. The result is displayed<br />

in corresponding output cells.<br />

<strong>Package</strong><br />

A <strong>Ma<strong>the</strong>matica</strong> package is a text file, written in <strong>Ma<strong>the</strong>matica</strong> language. It can be<br />

sourced from <strong>Ma<strong>the</strong>matica</strong> notebooks and o<strong>the</strong>r <strong>Ma<strong>the</strong>matica</strong> packages and provides<br />

<strong>the</strong> included definitions like a library file.<br />

List<br />

Lists are general objects that represent collections <strong>of</strong> expressions. Each type <strong>of</strong> expression<br />

can be a list element, e. g. a list <strong>of</strong> strings or a list <strong>of</strong> lists, which represents<br />

vectors, matrices or higher tensors.<br />

Example: list = { 1 , ”string” , { 3+x , 3 , y } }<br />

Rule<br />

Evaluating a rule replaces an expression by ano<strong>the</strong>r one.<br />

Example: x → 5<br />

71


72 Appendix E. User Guide<br />

E.2 Datacards<br />

A datacard describes <strong>the</strong> analysis and contains <strong>the</strong> settings for all options <strong>of</strong> a job.<br />

Datacards are ASCII files, located in <strong>the</strong> analysis directory and can be edited using<br />

a plain text editor. The only object is a list <strong>of</strong> rules, where each rule specifies an<br />

option for <strong>the</strong> analysis job, e. g. <strong>the</strong> input files or <strong>the</strong> scan granularity.<br />

It is possible to perform more than one job using one datacard. Therefor, an option<br />

can be referred to a specific job adding <strong>the</strong> job number in brackets to its end, e. g.<br />

analysisContext<br />

’takeMe[3] → {}’ instead <strong>of</strong> ’takeMe → {}’.<br />

The analysis context specifies <strong>the</strong> environment <strong>of</strong> <strong>the</strong> fit and is used as <strong>the</strong> name for<br />

each output file. It is a string, where special characters are forbidden, ending with a<br />

“context mark”. A “context mark” in <strong>Ma<strong>the</strong>matica</strong> is <strong>the</strong> backquote or grave accent<br />

character (ASCII decimal code 96).<br />

Syntax: analysisContext → ”Contextname`”<br />

Example: analysisContext → ”TestFit`”<br />

<strong>the</strong>ory<strong>Package</strong><br />

Here, <strong>the</strong> <strong>the</strong>ory package(s) used in <strong>the</strong> analysis are specified. For each package,<br />

its context and <strong>the</strong> version should be specified in a list. Attention: If no version is<br />

specified, <strong>the</strong> Standard Model version is used. There is also <strong>the</strong> possibility to set a<br />

list <strong>of</strong> <strong>the</strong>se lists to load more than one <strong>the</strong>ory package.<br />

Syntax: <strong>the</strong>ory<strong>Package</strong> → { ”package context`” , version → ”version label” }<br />

Example: <strong>the</strong>ory<strong>Package</strong> → { ”LeptonicDecay`” , version → ”SM” }<br />

Example: <strong>the</strong>ory<strong>Package</strong> → { ”LeptonicDecay`” , { ”BBbarKKbarMixing`” ,<br />

inputData<br />

This option specifies <strong>the</strong> input file(s) for <strong>the</strong> analysis.<br />

Syntax: inputData → ”inputfile”<br />

Example: inputData → ”globalCKMfit ICHEP06.data”<br />

version → ”NP(r,<strong>the</strong>ta)” } }


E.2. Datacards 73<br />

jobs<br />

The number <strong>of</strong> jobs in <strong>the</strong> settings datacard is set with this flag.<br />

Syntax: jobs → Integer<br />

Example: jobs → 2<br />

takeMe<br />

This is <strong>the</strong> list, which specifies <strong>the</strong> fit variables. It is a list <strong>of</strong> observable and parameter<br />

labels.<br />

Syntax: takeMe → { ”label”, ”label”, . . .}<br />

Example: takeMe → { ”alpha”, ”Deltamd”, ”fBd”}<br />

startRange<br />

This list defines <strong>the</strong> start ranges for all free parameters, which are not in <strong>the</strong> takeMe<br />

list.<br />

Syntax: startRange → { ”label” → range list }<br />

Example: startRange → { ”A” → {0.75, 0.85}, ”lambda” → {0.226, 0.228} }<br />

globalMinSearches<br />

Here, <strong>the</strong> number <strong>of</strong> reruns <strong>of</strong> <strong>the</strong> global minimization is set. To avoid finding a<br />

local minimum, this could be a large number.<br />

Syntax: globalMinSearches → Integer<br />

Example: globalMinSearches → 100<br />

scanQty<br />

This flag selects <strong>the</strong> parameter space for <strong>the</strong> scan.<br />

Syntax: scanQty → {”label”, ”label”}<br />

Example: scanQty → ”lambda” for 1D scans<br />

Example: scanQty → {”rhobar”, ”etabar”} for 2D scans


74 Appendix E. User Guide<br />

scanMin<br />

The minimal end point in <strong>the</strong> parameter space is set with scanMin. It is only a<br />

number for 1D scans or a point for 2D scans.<br />

Syntax: scanMin → Point<br />

Example: scanMin → 0.3 for 1D scans<br />

Example: scanMin → { -1.0 , -1.5} for <strong>the</strong> large (¯ρ,¯η) plane<br />

Example: scanMin → { -0.4 , 0.0} for <strong>the</strong> small (¯ρ,¯η) plane<br />

scanMax<br />

In analogy to scanMin, scanMax defines <strong>the</strong> maximal end point in <strong>the</strong> parameter<br />

space.<br />

Syntax: scanMax → Point<br />

Example: scanMax → 0.6 for 1D scans<br />

Example: scanMax → { +2.0 , +1.5} for <strong>the</strong> large (¯ρ,¯η) plane<br />

Example: scanMax → { +1.0 , +0.7} for <strong>the</strong> small (¯ρ,¯η) plane<br />

useOneD<strong>of</strong><br />

This option sets <strong>the</strong> degree <strong>of</strong> freedom <strong>of</strong> <strong>the</strong> fit problem. If it is equal to one, this<br />

option is “True”, o<strong>the</strong>rwise it is set to “False”.<br />

Syntax: useOneD<strong>of</strong> → Logical<br />

Example: useOneD<strong>of</strong> → False<br />

granularity<br />

The scan granularity is specified with this option.<br />

Syntax: granularity → Integer<br />

Example: granularity → 300<br />

nbOfScans<br />

The scan path in <strong>the</strong> parameter space is set with nbOfScans, which can be also<br />

referred to how <strong>of</strong>ten a point is scanned. Only <strong>the</strong> values “1”, “2”, “4” are defined.<br />

Syntax: nbOfScans → Integer<br />

Example: nbOfScans → 2


E.2. Datacards 75<br />

nbOfFits<br />

The number <strong>of</strong> fits (minimizations) per single scan point in <strong>the</strong> parameter space is<br />

set with this flag. It should be a positive number.<br />

Syntax: nbOfFits → Integer<br />

Example: nbOfFits → 2<br />

scanDirection<br />

This option defines <strong>the</strong> scan direction in <strong>the</strong> parameter space. The possible settings<br />

are ”vertical”, ”horizontal” or ”both”.<br />

Syntax: scanDirection → String<br />

Example: scanDirection → ”both”<br />

outputType<br />

The analysis notebook exports data files and plots. An output type is chosen by its<br />

file extension. For plots, also <strong>the</strong> image size can be specified.<br />

Syntax: outputType → { ”extansion”, {”extansion”, ImageSize → Integer} }<br />

Example: outputType → { ”.dat”, ”.eps”, {”.png”, ImageSize → 800} }<br />

verbose<br />

Detailed information during <strong>the</strong> fit can be obtained with setting this option as<br />

“True”.<br />

Syntax: verbose → Logical<br />

Example: verbose → True


76 Appendix E. User Guide<br />

E.3 Input Types<br />

An input datacard is an ASCII file containing <strong>the</strong> input values <strong>of</strong> all observables or<br />

parameters <strong>of</strong> <strong>the</strong> fit <strong>the</strong>ory given as a list. Each element <strong>of</strong> this list is again a list,<br />

with a special syntax for each input type. For example <strong>the</strong> first element in each list<br />

is a string, which represents <strong>the</strong> label <strong>of</strong> <strong>the</strong> observable or parameter. Attention:<br />

Greek letters have to be written out, e. g. “delta“ for “δ“ or “Delta“ for “∆“. The<br />

inputs datacard needs to be located in <strong>the</strong> inputs subdirectory.<br />

Fixed<br />

Syntax: { “label“ , value }<br />

Example: { “delta“ , 0.0}<br />

Gauss<br />

Syntax: { “label“ , central value , gaussian error }<br />

Example: { “delta“ , 0.0 , 0.1 }<br />

Asymmetric Gauss<br />

Syntax: { “label“ , central value , pos. gaussian error , neg. gaussian error }<br />

Example: { “delta“ , 0.0 , +0.1 , -0.2 }<br />

Range<br />

Syntax: { “label“ , central value , 0 , pos. <strong>the</strong>oretical error }<br />

Example: { “delta“ , 0.0 , 0 , 0.1 }<br />

Gauss Range<br />

Syntax: { “label“ , central value , pos. gaussian error , pos. <strong>the</strong>oretical error }<br />

Example: { “delta“ , 0.0 , 0.1 , 0.1 }<br />

Asymmetric Gauss Range<br />

Syntax: { “label“ , c. value , neg. gauss. error , pos. gauss. error , <strong>the</strong>o. error}<br />

Example: { “delta“ , 0.0 , +0.1 , -0.2 , 0.1 }<br />

Look Up Table (LUT)<br />

Syntax: { “label“ , “file name“ }<br />

Example: { “delta“ , “delta ICHEP06.dat“ }


E.4. Theory <strong>Package</strong> Tutorial 77<br />

Upper Limit<br />

Syntax: { “label“ , { pos. value } , number between 0 and 100 }<br />

Example: { “delta“ , { 0.4 } , 50 }<br />

Penalty<br />

Syntax: { “label“ , 0 , neg. }<br />

Example: { “delta“ , 0 , -0.1 }<br />

Short Cut<br />

Syntax: { “label“ , “label“ , “label“ , ... }<br />

Example: { “All(delta)“ , “x“ , “y“ , “z“ }<br />

E.4 Theory <strong>Package</strong> Tutorial<br />

During this work, a tutorial that describes <strong>the</strong> development <strong>of</strong> <strong>the</strong>ory packages has<br />

been written. It explains in detail <strong>the</strong> structure and relevant commands <strong>of</strong> a <strong>the</strong>ory<br />

package. It is provided as a PostScript document as well as a <strong>Ma<strong>the</strong>matica</strong> notebook,<br />

named TheoryTutorial.nb. There is <strong>the</strong> possibility to use <strong>the</strong> notebook<br />

version as a template file to create a new <strong>the</strong>ory package.<br />

In addition, a version in HTML format is currently available at:<br />

http://iktp.tu-dresden.de/ jantsch/<strong>CKMfitter</strong>/Tutorials/TheoryTutorial.html


78 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 79


80 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 81


82 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 83


84 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 85


86 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 87


88 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 89


90 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 91


92 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 93


94 Appendix E. User Guide


E.4. Theory <strong>Package</strong> Tutorial 95


96 Appendix E. User Guide


Bibliography<br />

[1] R. P. Feynman, “QED. The strange <strong>the</strong>ory <strong>of</strong> light and matter.”, Princeton<br />

University Press (1985) 158 P. (Alix G. Mautner Memorial Lectures).<br />

[2] N. Cabibbo, “Unitary symmetry and leptonic decays”, Phys. Rev. Lett. 10,<br />

531–532 (1963).<br />

[3] M. Kobayashi and T. Maskawa, “CP violation in <strong>the</strong> renormalizable <strong>the</strong>ory <strong>of</strong><br />

weak interaction”, Prog. Theor. Phys. 49, 652–657 (1973).<br />

[4] J. Charles et al., “CP violation and <strong>the</strong> CKM matrix: Assessing <strong>the</strong> impact<br />

<strong>of</strong> <strong>the</strong> asymmetric B factories.”, Eur. Phys. J. C41, 1–131 (2005),<br />

hep-ph/0406184.<br />

[5] A. Jantsch, “<strong>CKMfitter</strong> - A <strong>Ma<strong>the</strong>matica</strong> <strong>based</strong> version”, Talk given at <strong>the</strong><br />

DPG Frühjahrstagung (DPG06), Dortmund, Germany, 27-31 Mars 2006.<br />

[6] B. Povh, C. Scholz, K. Rith and F. Zetsche, “Particles and nuclei: An introduction<br />

to <strong>the</strong> physical conceptions. (In German)”, (1993) 316 p. Springer Berlin,<br />

Germany.<br />

[7] Beyer, M. (Ed.), “CP violation in particle, nuclear and astrophysics. Proceedings,<br />

Summer School, Prerow, Germany, October 1-8, 2000”, Prepared for International<br />

School on Violation <strong>of</strong> CP Symmetry and Related Processes, Prerow,<br />

Rostock, Germany, 1-8 Oct 2000.<br />

[8] A. Höcker and Z. Ligeti, “CP violation and <strong>the</strong> CKM matrix”, (2006),<br />

hep-ph/0605217.<br />

[9] W.-M. Yao et al., “Review <strong>of</strong> Particle Physics”, Journal <strong>of</strong> Physics G 33, 1+<br />

(2006), http://pdg.lbl.gov.<br />

[10] Harrison, P. F. (Ed.) and Quinn, Helen R. (Ed.), “The BaBar physics book:<br />

Physics at an asymmetric B factory.”, Papers from Workshop on Physics at<br />

an Asymmetric B Factory (BaBar Collaboration Meeting), Rome, Italy, 11-14<br />

Nov 1996, Princeton, NJ, 17-20 Mar 1997, Orsay, France, 16-19 Jun 1997 and<br />

Pasadena, CA, 22-24 Sep 1997.<br />

[11] L.-L. Chau and W.-Y. Keung, Phys. Rev. Lett. 53, 1802 (1984).<br />

97


98 BIBLIOGRAPHY<br />

[12] L. Wolfenstein, “Parametrization <strong>of</strong> <strong>the</strong> Kobayashi-Maskawa matrix”, Phys.<br />

Rev. Lett. 51, 1945 (1983).<br />

[13] A. J. Buras, M. E. Lautenbacher and G. Ostermaier, “Waiting for <strong>the</strong> top quark<br />

mass, K + → π + ν¯ν, B 0 s - ¯ B 0 s mixing and CP asymmetries in B decays”, Phys.<br />

Rev. D50, 3433–3446 (1994), hep-ph/9403384.<br />

[14] C. Jarlskog, “Commutator <strong>of</strong> <strong>the</strong> quark mass matrices in <strong>the</strong> Standard Electroweak<br />

Model and a measure <strong>of</strong> <strong>the</strong> maximal CP violation”, Phys. Rev. Lett.<br />

55, 1039 (1985).<br />

[15] J. H. Christenson, J. W. Cronin, V. L. Fitch and R. Turlay, “Evidence for <strong>the</strong><br />

2 Pi Decay <strong>of</strong> <strong>the</strong> K(2)0 Meson”, Phys. Rev. Lett. 13, 138–140 (1964).<br />

[16] <strong>CKMfitter</strong>, http://ckmfitter.in2p3.fr.<br />

[17] A. Höcker, H. Lacker, S. Laplace and F. Le Diberder, “A new approach<br />

to a global fit <strong>of</strong> <strong>the</strong> CKM matrix”, Eur. Phys. J. C21, 225–259 (2001),<br />

hep-ph/0104062.<br />

[18] CERN Program Library, http://cernlib.web.cern.ch/cernlib/.<br />

[19] PAW, http://paw.web.cern.ch/paw/.<br />

[20] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework”,<br />

Nucl. Instrum. Meth. A389, 81–86 (1997), http://root.cern.ch/.<br />

[21] Wolfram Research, Inc., http://www.wolfram.com.<br />

[22] Wolfram Research, Inc., “<strong>Ma<strong>the</strong>matica</strong> Documentation Center”,<br />

http://documents.wolfram.com/ma<strong>the</strong>matica.<br />

[23] NetLib.org, http://www.netlib.org/port/index.html.<br />

[24] J. E. Dennis, D. M. Gay and R. E. Welsch, “ALGORITHM 573: NL2SOL–An<br />

Adaptive Nonlinear Least-Squares Algorithm”, ACM Trans. Math. S<strong>of</strong>tware 7,<br />

369–383 (1981).<br />

[25] “Teubner-Taschenbuch der Ma<strong>the</strong>matik”, Teubner, Stuttgart, Leipzig, 1995.<br />

[26] J. M. Herrmann, http://library.wolfram.com/infocenter/MathSource/699/.<br />

[27] E. Blucher et al., “Status <strong>of</strong> <strong>the</strong> Cabibbo angle (CKM2005 - WG 1)”, (2005),<br />

hep-ph/0512039.<br />

[28] B. O. Lange, M. Neubert and G. Paz, “Theory <strong>of</strong> charmless inclusive B<br />

decays and <strong>the</strong> extraction <strong>of</strong> V(ub)”, Phys. Rev. D 72, 073006 (2005),<br />

hep-ph/0504071.


BIBLIOGRAPHY 99<br />

[29] The Heavy Flavor Averaging Group (HFAG), “Summer 2006 averages”,<br />

http://www.slac.stanford.edu/xorg/hfag/.<br />

[30] The Heavy Flavor Averaging Group (HFAG), “Summer 2006 averages”,<br />

Preliminary world average, not yet on <strong>the</strong> website,<br />

http://www.slac.stanford.edu/xorg/hfag/.<br />

[31] M. Gronau and D. London, “How to determine all <strong>the</strong> angles <strong>of</strong> <strong>the</strong> unitarity<br />

triangle from B 0 d → DKs and B 0 s → Dφ”, Phys. Lett. B253, 483–488 (1991).<br />

[32] M. Gronau and D. Wyler, “On determining a weak phase from CP asymmetries<br />

in charged B decays”, Phys. Lett. B265, 172–176 (1991).<br />

[33] D. Atwood, I. Dunietz and A. Soni, “Enhanced CP violation with B →<br />

KD 0 ( ¯ D 0 ) modes and extraction <strong>of</strong> <strong>the</strong> CKM angle gamma”, Phys. Rev. Lett.<br />

78, 3257–3260 (1997), hep-ph/9612433.<br />

[34] D. Atwood, I. Dunietz and A. Soni, “Improved methods for observing CP violation<br />

in B ± → KD and measuring <strong>the</strong> CKM phase gamma”, Phys. Rev. D63,<br />

036005 (2001), hep-ph/0008090.<br />

[35] A. Giri, Y. Grossman, A. S<strong>of</strong>fer and J. Zupan, “Determining gamma using<br />

B ± → DK ± with multibody D decays”, Phys. Rev. D68, 054018 (2003),<br />

hep-ph/0303187.<br />

[36] A. Poluektov et al., “Measurement <strong>of</strong> phi(3) with Dalitz plot analysis <strong>of</strong> B ± →<br />

D (∗) K ± decay”, Phys. Rev. D70, 072003 (2004), hep-ex/0406067.<br />

[37] S. Herrlich and U. Nierste, “Enhancement <strong>of</strong> <strong>the</strong> KL − KS mass difference by<br />

short distance QCD corrections beyond leading logarithms”, Nucl. Phys. B419,<br />

292–322 (1994), hep-ph/9310311.<br />

[38] M. Battaglia et al., “The CKM matrix and <strong>the</strong> unitarity triangle”,<br />

hep-ph/0304132.<br />

[39] U. Nierste, private communication with <strong>CKMfitter</strong> group (2003)<br />

[40] Average <strong>of</strong> η+− between KTeV and KLOE (calculated by H. Lacker):<br />

KTeV collaboration (T. Alexopoulos et al.), Phys. Rev. D, volume 70 092006,<br />

KLOE collaboration (F. Ambrosino et al.), hep-ex/0603041 (2006)<br />

εK calculated by H. Lacker from η+− and Re(ɛ ′ /ɛ) [9]<br />

[41] D∅ Collaboration (V. M. Abazov et al.), “First direct two-sided bound<br />

on <strong>the</strong> B 0 s oscillation frequency”, Phys. Rev. Lett. 97, 021802 (2006),<br />

hep-ex/0603029.<br />

[42] CDF Collaboration, “Measurement <strong>of</strong> <strong>the</strong> B 0 s − ¯ B 0 s oscillation frequency”, Phys.<br />

Rev. Lett. 97, 062003 (2006), hep-ex/0606027.


100 BIBLIOGRAPHY<br />

[43] A. G. Akeroyd and S. Recksiegel, “Purely leptonic B decays at high luminosity<br />

e + e − B factories”, (2002), hep-ph/0209252.<br />

[44] B. Aubert (BABAR Collaboration), “A search for B + → τ + ν recoiling against<br />

B − → D 0 l − ¯ν/lX”, hep-ex/0608019.<br />

[45] T. Browder (Belle Collaboration), talk given at ICHEP 2006,<br />

http://ichep06.jinr.ru/session.asp?sid=6.<br />

[46] D. E. Jaffe et al.(CLEO Collaboration), “Bounds on <strong>the</strong> CP asymmetry in like<br />

sign dileptons from B 0 ¯ B 0 meson decays”, Phys. Rev. Lett. 86, 5000 (2001),<br />

hep-ex/0101006.<br />

[47] B. Aubert et al.(BABAR Collaboration), “Search for T, CP and CPT violation<br />

in B 0 B 0 mixing with inclusive dilepton events”, Phys. Rev. Lett. 96, 251802<br />

(2006), hep-ex/0603053.<br />

[48] B. Aubert et al.(BABAR Collaboration), “Limits on <strong>the</strong> decay-rate difference<br />

<strong>of</strong> neutral B mesons and on CP, T, and CPT violation in B 0 B 0 oscillations”,<br />

Phys. Rev. Lett. 92, 181801, (2004), hep-ex/0311037.<br />

[49] E. Nakano et al.(Belle Collaboration), “Charge asymmetry <strong>of</strong> same-sign dileptons<br />

in B 0 - ¯ B 0 mixing”, Phys. Rev. D 73, 112002, (2006), hep-ex/0505017.<br />

[50] B. Casey (D∅ Collaboration), talk given at Moriond EW 2006,<br />

http://moriond.in2p3.fr/EW/2006/Transparencies/B.Casey.pdf.<br />

[51] S. Laplace, Z. Ligeti, Y. Nir and G. Perez, “Implications <strong>of</strong> <strong>the</strong> CP asymmetry<br />

in semileptonic B decay”, Phys. Rev. D65, 094040 (2002), hep-ph/0202010.<br />

[52] G. Buchalla, A. J. Buras and M. E. Lautenbacher, “Weak Decays Beyond Leading<br />

Logarithms”, Rev. Mod. Phys. 68, 1125–1144 (1996), hep-ph/9512380.<br />

[53] M. Beneke, G. Buchalla, A. Lenz and U. Nierste, “CP asymmetry in flavourspecific<br />

B decays beyond leading logarithms”, Phys. Lett. B576, 173–183<br />

(2003), hep-ph/0307344.<br />

[54] A. J. Buras, M. Jamin and P. H. Weisz, Nucl. Phys. B347, 491–536 (1990).<br />

[55] M. Beneke, G. Buchalla, C. Greub, A. Lenz and U. Nierste, “Next-to-leading<br />

order QCD corrections to <strong>the</strong> lifetime difference <strong>of</strong> Bs mesons”, Phys. Lett.<br />

B459, 631–640 (1999), hep-ph/9808385.<br />

[56] B. Aubert (BABAR Collaboration), “Measurement <strong>of</strong> CP-violating asymmetries<br />

in B 0 → (ρπ) 0 using a time-dependent Dalitz plot analysis”,<br />

hep-ex/0608002.<br />

[57] The Heavy Flavor Averaging Group (HFAG), Winter 2006 averages,<br />

http://www.slac.stanford.edu/xorg/hfag/.


BIBLIOGRAPHY 101<br />

[58] O. Buchmüller and H. Flächer, Fit to Moment Measurements from B → Xcℓν<br />

and B → Xsγ Decays using Heavy Quark Expansions in <strong>the</strong> Kinetic Scheme,<br />

(2005), hep-ph/0507253<br />

[59] The CDF Collaboration, <strong>the</strong> D0 Collaboration, and <strong>the</strong> Tevatron Electroweak<br />

Working Group, Combination <strong>of</strong> CDF and D0 Results on <strong>the</strong> Top-Quark Mass,<br />

(2006), hep-ex/0603039.<br />

[60] Particle Data Group (S. Eidelman et al.), Phys. Lett. B592, 1 (2004), and 2005<br />

partial update for <strong>the</strong> 2006 edition available on http://pdg.lbl.gov/.<br />

[61] Results presented at <strong>the</strong> San Diego CKM workshop,<br />

http://ckm2005.ucsd.edu/.<br />

[62] calculated by H. Lacker using results presented at <strong>the</strong> San Diego CKM workshop,<br />

http://ckm2005.ucsd.edu/.<br />

[63] calculated by A.Jantsch using a <strong>Ma<strong>the</strong>matica</strong> notebook by G. Buchalla.<br />

[64] B. Aubert, “Measurement <strong>of</strong> cos(2beta) in B 0 → D 0(∗) h 0 decays with a timedependent<br />

Dalitz plot analysis <strong>of</strong> D 0 → K 0 S π+ π − ”, (2006), hep-ex/0607105.<br />

[65] J. M. Soares and L. Wolfenstein, “CP violation in <strong>the</strong> decays B 0 → ΨKS and<br />

B 0 → π + π − : A probe for new physics”, Phys. Rev. D 47 3, 1021–1025 (Feb<br />

1993).<br />

[66] Y. Grossman, Y. Nir and M. P. Worah, “A model independent construction <strong>of</strong><br />

<strong>the</strong> unitarity triangle”, Phys. Lett. B407, 307–313 (1997), hep-ph/9704287.<br />

[67] see [4] and references <strong>the</strong>rein.<br />

[68] J. F. Gunion, H. E. Haber, G. L. Kane and S. Dawson, “THE HIGGS<br />

HUNTER’S GUIDE”, SCIPP-89/13.<br />

[69] A. G. Akeroyd and S. Recksiegel, J. Phys. G29, 2311–2317 (2003),<br />

hep-ph/0306037.<br />

[70] W.-S. Hou, “Enhanced charged Higgs boson effects in B → τ ¯ν, µ¯ν and b →<br />

τ ¯ν + X”, Phys. Rev. D48, 2342–2344 (1993).<br />

[71] A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Nucl. Phys. B<br />

659, 3 (2003), hep-ph/0210145.<br />

[72] The LEP working group for Higgs boson searches, “Search for Charged Higgs<br />

bosons: Preliminary Combined Results Using LEP data Collected at Energies<br />

up to 209 GeV”, LHWG note 2001-05 (2001).<br />

[73] P. Gambino and M. Misiak, “Quark mass effects in ¯ B → Xsγ”, Nucl. Phys. B<br />

611, 338 (2001), hep-ph/0104034.


102 BIBLIOGRAPHY<br />

[74] T. Inami and C. S. Lim, “Effects <strong>of</strong> superheavy quarks and leptons in lowenergy<br />

weak processes KL → µ¯µ, K+ → π + ν¯ν and K 0 ↔ ¯ K 0 ”, Prog. Theor.<br />

Phys. 65, 297 (1981).


Danksagung<br />

Allen voran möchte ich meinen Eltern danken, die mir weit mehr als nur ein sorgenfreies<br />

Studium ermöglicht haben. Desweiteren danke ich meinem Bruder Matthias<br />

für seine Hilfsbereitschaft, meiner Freundin Carolin für ihre Liebe sowie meiner gesamten<br />

Familie für das Vertrauen, welches sie in mich gesetzt hat. Ich bedanke<br />

mich bei all meinen Freunden für ihre Unterstützung und die Nachsicht, die sie in<br />

letzter Zeit mit mir haben mussten. Besonderer zu erwähnen sind dabei Matthias<br />

und Steffen, die mich nicht nur durch den Studienalltag begleitet haben.<br />

Heiko Lacker danke ich für die Möglichkeit dieses interessante Thema zu bearbeiten,<br />

aber vor allem für seine sehr gute und persönliche Betreuung. Besonderer Dank<br />

gilt der <strong>CKMfitter</strong> Gruppe, allen voran Jérôme Charles für die fruchtbare Zusammenarbeit,<br />

sowie Stephane T’Jampens und Vincent Tisserand für die großartige<br />

Unterstützung beim Schreiben dieser Diplomarbeit.<br />

Für lehrreiche Diskussionen danke ich Klaus Schubert, sowie Gerhard Buchalla, Zoltan<br />

Ligeti und Michele Papucci.<br />

Ich bedanke mich bei den Mitarbeitern, Doktoranden und Diplomanden des IKTP,<br />

insbesondere bei Rosemarie Krause, Rainer Schwierz und Andreas Petzold, deren<br />

Hilfsbereitschaft nicht hoch genug gewürdigt werden kann. Ein besonderer Dank<br />

geht an Rene Nogowski, dessen hilfreiche Anmerkungen wesentlich zum Gelingen<br />

dieser Diplomarbeit beigetragen haben.<br />

Außerdem möchte ich Gerhard S<strong>of</strong>f, Bernhard Spaan und Sven Jahnke erwähnen,<br />

die entscheidenden Einfluß auf meinen Studienweg hatten.<br />

103


Erklärung<br />

Hiermit versichere ich, daß ich die vorliegende Arbeit selbständig und ohne Benutzung<br />

anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus fremden<br />

Quellen direkt oder indirekt übernommenen Resultate sind als solche kenntlich gemacht.<br />

Dresden, den 11.09.2006 Andreas Jantsch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!