24.02.2013 Views

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sketch of <strong>the</strong> proof: Integral representation<br />

A = −∆ on D(A) :=<br />

�<br />

u ∈ H 2 (O) : ∂u<br />

∂ν<br />

�<br />

= 0 with ∂O<br />

S(t) semi-group generated by L = −∆2 + ∆<br />

Green function G fundamental solution to δtu − Lu = 0 with B.C.<br />

Represent <strong>the</strong> weak solution of <strong>the</strong> stochastic <strong>Cahn</strong>-<strong>Hilliard</strong>/<strong>Allen</strong>-<strong>Cahn</strong><br />

<strong>equation</strong> in an integral form for any x ∈ O and t ∈ [0, T ]:<br />

�<br />

u(x, t) = u0(y)G(x, y, t) dy<br />

O<br />

� t �<br />

� �<br />

+ ∆G(x, y, t − s) − G(x, y, t − s) f (u(y, s)) dyds<br />

0 O<br />

� t �<br />

+ G(x, y, t − s)σ(u(y, s)) W (dy, ds)<br />

0<br />

O<br />

A. Millet (SAMM, Paris 1 and PMA) <strong>Cahn</strong>-<strong>Hilliard</strong>/<strong>Allen</strong>-<strong>Cahn</strong> <strong>equation</strong> Workshop <strong>Stochastic</strong> PDEs 8 / 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!