24.02.2013 Views

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

On the Stochastic Cahn-Hilliard/Allen-Cahn equation - Isaac Newton ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Sketch of proof (continued)<br />

Using vn = un − L(un) which solves<br />

∂tvn + (−∆ + 1)(−∆)vn + (−∆ + 1)χn(�vn + Lun�q)f (vn + L(un)) = 0<br />

• Apply (−∆ + Id) −1 yields <strong>the</strong> existence of constants C1 and C2 such that<br />

� t<br />

0<br />

χn(�un(., s)�q)�un(., s)� 4 4ds ≤C1(1.B(u0))<br />

+ C2<br />

� t<br />

0<br />

χn(�un(., s)�q)�Lun(., s)� 4 4ds<br />

• energie estimates on <strong>the</strong> Galerkin approximation,<br />

|f (x + y) − f (x)| ≤ C|y|(1 + x 2 + y 2 ) and Hölder’s inequality yield<br />

��<br />

E<br />

� T<br />

�un(·, t)� a �β� �<br />

q dt ≤ C(T )<br />

0<br />

�u0� aβ<br />

2 +1+n3aαβ +(1+n aαβ )B(u0) aβ<br />

2<br />

for a ∈ [q, ∞) and β ∈ [1, ∞), where for some ONB (ei, i ≥ 0) of L2 (O)<br />

B(u0) := 1<br />

� ∞�<br />

�<br />

�<br />

1<br />

− �<br />

� [λi + 1] 2 (u0, ei) L2 (O)ei �<br />

2<br />

2<br />

2 .<br />

i=0<br />

A. Millet (SAMM, Paris 1 and PMA) <strong>Cahn</strong>-<strong>Hilliard</strong>/<strong>Allen</strong>-<strong>Cahn</strong> <strong>equation</strong> Workshop <strong>Stochastic</strong> PDEs 12 / 18<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!