24.02.2013 Views

Investigation of the risk for Rolling Contact Fatigue on ... - SimPack

Investigation of the risk for Rolling Contact Fatigue on ... - SimPack

Investigation of the risk for Rolling Contact Fatigue on ... - SimPack

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Investigati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>risk</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>Rolling</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Fatigue</str<strong>on</strong>g> <strong>on</strong> wheels <str<strong>on</strong>g>of</str<strong>on</strong>g> different passenger trains<br />

Jakob Wingren, Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Competence <str<strong>on</strong>g>for</str<strong>on</strong>g> Vehicle Dynamics<br />

prepared by<br />

S. Stichel, H. Mohr, J. Ågren ,R. Enblom<br />

Bombardier Transportati<strong>on</strong><br />

SIMPACK UM 2007, B<strong>on</strong>n


Background<br />

During <str<strong>on</strong>g>the</str<strong>on</strong>g> last years RCF has become more comm<strong>on</strong> also<br />

<strong>on</strong> passenger trains which resulted in wheel damages and<br />

more frequent repr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling and reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> life time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wheels.<br />

There<str<strong>on</strong>g>for</str<strong>on</strong>g>e in this study different trains have been<br />

compared regarding <str<strong>on</strong>g>the</str<strong>on</strong>g>ir <str<strong>on</strong>g>risk</str<strong>on</strong>g> to develop RCF <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wheels by calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact c<strong>on</strong>diti<strong>on</strong>s between<br />

wheel and rail during curving with <str<strong>on</strong>g>the</str<strong>on</strong>g> multibody<br />

simulati<strong>on</strong> tool SIMPACK.<br />

The overall aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study is to develop criteria that<br />

indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>risk</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> RCF already in <str<strong>on</strong>g>the</str<strong>on</strong>g> design stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

vehicle.<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

2


The phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Rolling</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>tact</str<strong>on</strong>g> fatigue<br />

� Surface-initiated fatigue sometimes denoted<br />

as spalling<br />

� Subsurface-initiated fatigue sometimes<br />

denoted as shelling<br />

� <str<strong>on</strong>g>Fatigue</str<strong>on</strong>g> initiated at deep defects, sometimes<br />

denoted as deep shelling or shattered rims<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

3


Phases <str<strong>on</strong>g>of</str<strong>on</strong>g> surface initiated fatigue<br />

� Crack initiati<strong>on</strong><br />

� Crack propagati<strong>on</strong><br />

� Crack branching towards tread surface<br />

and wheel web<br />

� Final fracture due to single overloads<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

4


Visual appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> spalling<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

Cross secti<strong>on</strong><br />

Circumferential secti<strong>on</strong><br />

5


Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> trapped fluid <strong>on</strong> crack propagati<strong>on</strong><br />

Crack opens just be<str<strong>on</strong>g>for</str<strong>on</strong>g>e rail c<strong>on</strong>tact<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

F t<br />

Hydrostatic<br />

pressure<br />

Crack closes at rail c<strong>on</strong>tact<br />

6


Two criteria tested<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

� Shakedown map and fatigue index<br />

- developed by Chalmers, Go<str<strong>on</strong>g>the</str<strong>on</strong>g>nburg<br />

� RCF damage functi<strong>on</strong> (Tγ)<br />

- developed by AEA Technology<br />

7


Shake down map and fatigue index<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

Limit line<br />

<str<strong>on</strong>g>Fatigue</str<strong>on</strong>g> index developed by<br />

Chalmers (Go<str<strong>on</strong>g>the</str<strong>on</strong>g>nburg)<br />

FI surf<br />

= µ −<br />

8<br />

k<br />

p<br />

0<br />

2πabk<br />

= µ −<br />

3F<br />

ζ


RCF damage functi<strong>on</strong><br />

Developed by AEA Technology<br />

- four different areas<br />

RCF Damage increases<br />

No damage<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

Damage (Nf x 1E-6)<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

Tγ = T x ν x + T y ν y<br />

RCF Damage functi<strong>on</strong><br />

0 50 100 150 200 250 300<br />

Wear number, Ty (Nm/m)<br />

Slower damage increase<br />

due to increased wear<br />

Cracks are worn away<br />

due to severe wear<br />

9


Shakedown evaluati<strong>on</strong><br />

p0/k<br />

p0/k<br />

10,0<br />

9,0<br />

8,0<br />

7,0<br />

6,0<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

10,0<br />

9,0<br />

8,0<br />

7,0<br />

6,0<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

Vehicle 1, Shakedown map, inner wheel<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

mue<br />

Vehicle 3, Shakedown map, inner wheel<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

mue<br />

1. R=739m<br />

2. R=2922m<br />

3. R=570m<br />

4. R=736m<br />

5. straight track<br />

6. straight track<br />

7. R=430m<br />

boundary curve<br />

1. R=739m<br />

2. R=2922m<br />

3. R=570m<br />

4. R=736m<br />

5. straight track<br />

6. straight track<br />

7. R=430m<br />

boundary curve<br />

p0/k<br />

10,0<br />

9,0<br />

8,0<br />

7,0<br />

6,0<br />

5,0<br />

4,0<br />

3,0<br />

2,0<br />

1,0<br />

0,0<br />

Vehicle 2, Shakedown map, inner wheel<br />

0,0 0,1 0,2 0,3 0,4 0,5 0,6<br />

mue<br />

Vehicles 1 and 2 suffer from RCF<br />

10<br />

1. R=300m<br />

2. R=600m<br />

3. R=1000m<br />

4. R=296m<br />

5. R=761m<br />

6. R=592m<br />

7. R=800m<br />

8. R=1000m<br />

9. R=579m<br />

boundary curve<br />

Vehicle 3 does not suffer from RCF


Evaluati<strong>on</strong> with damage parameter<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

Vehicle 1, D and FI versus R, nominal gauge<br />

0 500 1000 1500 2000 2500 3000 3500<br />

-0,2<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0,0<br />

-0,2<br />

-0,4<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

R in m<br />

Vehicle 3, D and FI versus R, nominal gauge<br />

0 500 1000 151500 2000 2500 3000 3500<br />

R in m<br />

D, P8<br />

FI, P8<br />

D, S1002<br />

FI, S1002<br />

D<br />

FI<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

Vehicle 2, D and FI versus R, nominal gauge<br />

0 200 400 600 800 1000 1200<br />

-0,2<br />

R in m<br />

- Also <str<strong>on</strong>g>the</str<strong>on</strong>g> damage functi<strong>on</strong> produces<br />

results that correlate to <str<strong>on</strong>g>the</str<strong>on</strong>g> real<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wheels.<br />

- The damage functi<strong>on</strong> seems to predict<br />

too much damage <str<strong>on</strong>g>for</str<strong>on</strong>g> vehicle 2 or too<br />

little damage <str<strong>on</strong>g>for</str<strong>on</strong>g> vehicle 1.<br />

11<br />

D<br />

FI


KTH wear measure<br />

1,5<br />

1<br />

0,5<br />

0<br />

-0,5<br />

-1<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

-0,2<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

Vehicle 2, nominal gauge<br />

0 200 400 600 800 1000 1200<br />

R in m<br />

Vehicle 1, nominal gauge<br />

0 500 1000 1500 2000 2500 3000 3500<br />

R in m<br />

D<br />

FI<br />

FI/KTHwr<br />

D<br />

FI<br />

FI/KTHwr<br />

Wear measure:<br />

FI / Wear volume<br />

Wear model developed by<br />

Enblom, Jendel<br />

KTH Rail Vehicles<br />

12


Guideline <str<strong>on</strong>g>for</str<strong>on</strong>g> assessment<br />

FI<br />

0,25<br />

0,20<br />

0,15<br />

0,10<br />

0,05<br />

-0,05<br />

-0,10<br />

-0,15<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

Suggested limits <str<strong>on</strong>g>for</str<strong>on</strong>g> FI and D<br />

0,00<br />

0,00 0,20 0,40 0,60 0,80 1,00<br />

Area 3<br />

D<br />

Area 1<br />

Area 2<br />

Area 1 High <str<strong>on</strong>g>risk</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> RCF<br />

A minor porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> in<br />

this area will lead to RCF damages.<br />

Area 2 Risk <str<strong>on</strong>g>for</str<strong>on</strong>g> RCF<br />

A larger porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong> in<br />

this area will lead to RCF damages.<br />

Area 3 Low <str<strong>on</strong>g>risk</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g> RCF<br />

A significant porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

operati<strong>on</strong> in this area may lead to<br />

RCF damages.<br />

13


C<strong>on</strong>clusi<strong>on</strong>s<br />

� Both <str<strong>on</strong>g>the</str<strong>on</strong>g> shakedown <str<strong>on</strong>g>the</str<strong>on</strong>g>ory and <str<strong>on</strong>g>the</str<strong>on</strong>g> damage functi<strong>on</strong> can be used<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> indicative predicti<strong>on</strong>s using quasistatic simulati<strong>on</strong>s.<br />

� It seems that <str<strong>on</strong>g>the</str<strong>on</strong>g> damage functi<strong>on</strong> is having a slightly better<br />

correlati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> experiences <str<strong>on</strong>g>of</str<strong>on</strong>g> RCF.<br />

� The study indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact pressure may not be decisive<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> RCF c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>for</str<strong>on</strong>g> vehicle 1/S1002,<br />

i.e. high damage values and low FI. This is in line with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

experiences from <str<strong>on</strong>g>the</str<strong>on</strong>g> UK rail study.<br />

� The evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FI/KTHwear measure shows that it can be<br />

very sensitive to small variati<strong>on</strong>s in c<strong>on</strong>tact pressure. It is likely<br />

that this sensitivity will decrease if applying it to transient<br />

simulati<strong>on</strong>s with track irregularities due to average effects.<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

14


Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work<br />

� Analyze more vehicles in order to improve <str<strong>on</strong>g>the</str<strong>on</strong>g> validati<strong>on</strong>.<br />

� Develop an evaluati<strong>on</strong> method able to accumulate damage at<br />

different positi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tread during transient simulati<strong>on</strong>s with<br />

track irregularities.<br />

� Define a methodology to accumulate damage c<strong>on</strong>sidering both <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

curve and gauge distributi<strong>on</strong>.<br />

� Implement braking <str<strong>on</strong>g>for</str<strong>on</strong>g>ces in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>s.<br />

SIMPACK UM 2007, B<strong>on</strong>n<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!