25.02.2013 Views

MATH 225: DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA ...

MATH 225: DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA ...

MATH 225: DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MATH</strong> <strong>225</strong>: <strong>DIFFERENTIAL</strong> <strong>EQUATIONS</strong> <strong>AND</strong> <strong>LINEAR</strong> <strong>ALGEBRA</strong><br />

Solutions of First Midterm Exam<br />

March 13, 2006<br />

1.a) Show that the function y(x) = A + Be x + Ce 2x satisfies the differential<br />

equation y ′′′ − 3y ′′ + 2y ′ = 0, where A, B, and C are arbitrary constants.<br />

Solution:<br />

Hence<br />

y(x) = A + Be x + Ce 2x ,<br />

y ′ (x) = Be x + 2Ce 2x ,<br />

y ′′ (x) = Be x + 4Ce 2x<br />

y ′′′ (x) = Be x + 8Ce 2x<br />

y ′′′ − 3y ′′ + 2y ′ = Be x + 8Ce 2x − 3(Be x + 4Ce 2x ) + 2(Be x + 2Ce 2x ) = 0<br />

1.b) Find the constants A, B, and C so that y(0) = 1, y ′ (0) = −1, y ′′ (0) = 0.<br />

Solution:<br />

y(0) = A + B + C = 1,<br />

y ′ (0) = B + 2C = −1,<br />

y ′′ (0) = B + 4C = 0<br />

There is unique solution A = 5/2, B = −2, C = 1/2.<br />

2.a) Solve the following system by Gauss-Jordan Elimination<br />

Solution :<br />

x1 − 2x2 + x3 − 4x4 = 1,<br />

x1 + 3x2 + 7x3 + 2x4 = 2,<br />

x1 − 12x2 − 11x3 − 16x4 = −1<br />

⎡<br />

1 −2 1 −4<br />

⎤<br />

1<br />

⎡<br />

1 −2 1 −4<br />

⎤<br />

1<br />

⎡<br />

1 −2 1 −4<br />

⎤<br />

1<br />

⎣1<br />

3 7 2 2 ⎦ → ⎣0<br />

5 6 6 1 ⎦ → ⎣0<br />

5 6 6 1⎦<br />

→<br />

1 −12 −11 −16 −1 1 −12 −11 −16 −1 0 0 0 0 0<br />

⎡<br />

1 −2 1 −4<br />

⎤<br />

1<br />

⎡<br />

1 0 17/5 −8/5<br />

⎤<br />

7/5<br />

⎣0<br />

1 6/5 6/5 1/5⎦<br />

→ ⎣0<br />

1 6/5 6/5 1/5⎦<br />

0 0 0 0 0 0 0 0 0 0<br />

Hence the there are infinitely many solutions with two free parameters<br />

x1 = 7 17t 8s<br />

− +<br />

5 5 5 ,<br />

x2 = 1 6t 6s<br />

− −<br />

5 5 5 ,<br />

x3 = t, x4 = s


2.b) What conditions must b1,b2, and b3 satisfy in order for the system<br />

x1 + x2 + 2x3 = b1,<br />

x1<br />

to be consistent. Find the solutions.<br />

+ x3 = b2,<br />

2x1 + x2 + 3x3 = b3<br />

Solution :<br />

⎡<br />

1<br />

⎣1<br />

1<br />

0<br />

2<br />

1<br />

⎤<br />

b1<br />

b2⎦<br />

⎡<br />

1<br />

→ ⎣0<br />

1<br />

−1<br />

2<br />

−1<br />

⎤<br />

b1<br />

b2 − b1⎦<br />

⎡<br />

1<br />

→ ⎣0<br />

1<br />

−1<br />

2<br />

−1<br />

⎤<br />

b1<br />

b2 − b1 ⎦<br />

2 1 3 b3 2 1 3 b3 0 −1 −1 b3 − 2b1<br />

⎡<br />

1<br />

→ ⎣0<br />

1<br />

1<br />

2<br />

1<br />

b1<br />

b1 − b2<br />

⎤<br />

⎦<br />

0 0 0 b1 − b3 + b2<br />

Hence for consistency b3 = b1 + b2. In this case there are infinitely many solutions<br />

x1 = b2 − t, x2 = b1 − b2 + t, x3 = t where t ∈ R is an arbitrary real variable.<br />

3.a) Solve the differential equation x 2 y ′ + 2xy = 5y 4 with y(1) = 1. Discus the<br />

existence and uniqueness of the solution of the differential equation with the initial<br />

condition y(0) = 0.<br />

Solution : Let v(x) = y −3 then<br />

v ′ − 6<br />

x<br />

15<br />

v + = 0<br />

x2 This is a linear equation with the integrating factor ρ(x) = 1<br />

x 6 . Hence the solution<br />

is<br />

v(x) = C x 6 + 15<br />

7<br />

1<br />

x<br />

�<br />

5x<br />

→ y(x) =<br />

7Cx7 + 15<br />

where C is an arbitrary constant. If y(1) = 1 then C = − 8<br />

7 .<br />

The singular solution of this equation is y = 0. Furthermore at x = 0 the existence<br />

and uniqueness is not guaranteed. It is clear from the solution that y(0) = 0 is<br />

satisfied for all C, hence there are infinitely many solutions.<br />

3.b) Solve the differential equation (x + ln y)dx + ( x<br />

y + ey )dy = 0 with y(0) = 1<br />

Solution: M(x, y) = x + ln y and N(x, y) = x<br />

y + ey . Then<br />

but<br />

Fx = M(x, y) = x + ln y → F (x, y) = x2<br />

2<br />

� 1/3<br />

+ x ln y + g(y),<br />

Fy = x<br />

y + g′ = x<br />

y + ey , → F (x, y) = x2<br />

+ x ln y + ey<br />

2


Hence the solution is<br />

x 2<br />

2 + x ln y + ey = C<br />

where C is an arbitrary constant. Since y(0) = 1 then C = e. Therefore the solution<br />

is<br />

x 2<br />

2 + x ln y + ey = e<br />

4.a) Find the Reduced Row-Echelon matrix of the augmented coefficient matrix of<br />

the following system. Then find the solution of the system.<br />

Solution:<br />

x1 + 2x2 + 3x3 = 4,<br />

2x1 + 5x2 + 3x3 = 5,<br />

x1<br />

+ 8x3 = 9<br />

⎡<br />

1 2 3<br />

⎤<br />

4<br />

⎡<br />

1 2 3<br />

⎤<br />

4<br />

⎡<br />

1 2 3<br />

⎤<br />

4<br />

⎡<br />

1 2 3<br />

⎤<br />

4<br />

⎣2<br />

5 3 5⎦<br />

→ ⎣0<br />

1 −3 −3⎦<br />

→ ⎣0<br />

1 −3 −3⎦<br />

→ ⎣0<br />

1 −3 −3⎦<br />

1 0 8 9 1 0 8 9 0 −2 5 5 0 0 −1 −1<br />

⎡<br />

1 0 9<br />

⎤<br />

10<br />

⎡<br />

1 0 0<br />

⎤<br />

1<br />

⎡<br />

1 0 0<br />

⎤<br />

1<br />

→ ⎣0<br />

1 −3 −3⎦<br />

→ ⎣0<br />

1 −3 −3⎦<br />

→ ⎣0<br />

1 0 0⎦<br />

0 0 1 1 0 0 1 1 0 0 1 1<br />

Hence the solution is x1 = 1, x2 = 0, x3 = 1.<br />

4.b) Let XA = Z where A, Z are matrices given by<br />

⎡<br />

0<br />

A = ⎣1<br />

2<br />

−2<br />

2<br />

0<br />

⎤<br />

3<br />

−3⎦<br />

,<br />

4<br />

�<br />

4<br />

Z =<br />

−1<br />

−2<br />

2<br />

�<br />

3<br />

.<br />

0<br />

Find A −1 and the matrix X.<br />

Solution:<br />

⎡<br />

0 −2 3 1 0<br />

⎤<br />

0<br />

⎡<br />

1 2 −3 0 1<br />

⎤<br />

0<br />

⎡<br />

1 2 −3 0 1<br />

⎤<br />

0<br />

⎣1<br />

2 −3 0 1 0⎦<br />

→ ⎣0<br />

−2 3 1 0 0⎦<br />

→ ⎣0<br />

−2 3 1 0 0⎦<br />

2 0 4 0 0 1 2 0 4 0 0 1 0 −4 10 0 −2 1<br />

⎡<br />

1 2 −3 0 1<br />

⎤<br />

0<br />

⎡<br />

1 2 −3 0 1<br />

⎤<br />

0<br />

→ ⎣0<br />

1 −3/2 −1/2 0 0⎦<br />

→ ⎣0<br />

1 −3/2 −1/2 0 0⎦<br />

0 −4 10 0 −2 1 0 0 4 −2 −2 1<br />

⎡<br />

1 0 0 1 1<br />

⎤<br />

0<br />

⎡<br />

1 0 0 1 1<br />

⎤<br />

0<br />

→ ⎣0<br />

1 −3/2 −1/2 0 0 ⎦ → ⎣0<br />

1 0 −5/4 −3/4 3/8⎦<br />

0 0 1 −1/2 −1/2 1/4 0 0 1 −1/2 −1/2 1/4


Hence<br />

A −1 ⎡<br />

1 1<br />

⎤<br />

0<br />

= ⎣−5/4<br />

−3/4 3/8⎦<br />

, then X = ZA<br />

−1/2 −1/2 1/4<br />

−1 =<br />

� �<br />

5 4 0<br />

.<br />

−7/2 −5/2 3/4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!