22.03.2013 Views

Semiconductor Culture

Semiconductor Culture

Semiconductor Culture

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

In This Lecture:<br />

<strong>Semiconductor</strong> <strong>Culture</strong>: History, Trends


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Basic <strong>Semiconductor</strong> <strong>Culture</strong><br />

1900-1940: Incubation period<br />

History of <strong>Semiconductor</strong> Physics<br />

Discovery of the electron(1899), photon (1905), QM (1925-28)<br />

F. Bloch – Ph.D. Thesis (1928), introduces band theory of metals<br />

R. Peierls (1929) conceives the theory of positive carriers to explain the thermal and<br />

electrical conductiveness of semiconductors.<br />

A.H. Wilson provides a theoretical understanding of se/c based on energy gap,<br />

further clarifying the holes/electrons, the role of impurities<br />

Fermi introduces pseudopotentials (vital for the development of band structure)<br />

se/c devices on the stage: thyristors & photodetectors<br />

1939-1945: WW-II<br />

1940-1945: Post-war disclosure; Microwave detection using se/c, QED, Lamb shift<br />

1947: Bardeen & Brattain demonstrate first bipolar transistor action<br />

1947: Bardeen points the importance of surface states in Schottky contacts<br />

1949: Shockley describes the physics of the p-n junction


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

History of <strong>Semiconductor</strong> Physics (cont’d)<br />

1950’s: se/c recognized as being versatile mat’ls; new devices follow<br />

1951: Shockley introduces heterojunctions<br />

1952: Shockley introduces junction FET<br />

1954: Townes invents maser after Dumke (1952) se/c laser proposal<br />

1958: Esaki’s tunnel diode (a marriage of QM & se/c physics)<br />

1958: Krömer’s NDR idea based on the effects of bandstructure on charge xport<br />

1960’s: Boom in theory (Keldysh, Kane, Kohn, Phillips, Cohen, Harrison,…)<br />

1962: Stimulated emission in GaAs diodes at GE & IBM labs (20 years more needed for<br />

an industrial maturity)<br />

1963: Gunn oscillations measured by Gunn; theory by Ridley-Watkins (1961)<br />

1970’s: Mainly large-size integration, first microprocessor, RTDs<br />

1970: Esaki & Tsui introduce superlattices & Bloch oscillations<br />

Early 1970’s: First Molecular Beam Epitaxy (MBE) at Bell Lab’s


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

History of <strong>Semiconductor</strong> Physics (cont’d)<br />

1980’s: Thanks to MBE, clean se/c samples; fundamental discoveries follow<br />

Weak localization and the rise of the mesoscopic physics<br />

Low-dimensional heterostructures (quantum wells & wires)<br />

1980: von Klitzing discovered QHE in pure MOSFETs (at mK); resistance standard<br />

1982: Tsui & Strömer discovered FQHE using very pure GaAs samples<br />

1987: Conductance quantization in quantum point contacts (Cambridge & Delft groups); Coulomb<br />

blockade<br />

1990’s: More advances in growth…<br />

Growth of Group-III Nitrides – Nakamura (1989-93)<br />

Synthesis of Carbon nanotubes – Ijima et al. (1991)<br />

Growth of Dilute Nitrides – Kondow et al.(1994)<br />

Growth of Self assembled quantum dots – Several groups (such as P. Petroff of UCSB)<br />

2000’s: The rise and rise of se/c physics…<br />

Silicon photonics – Pavesi<br />

Se/c quantum electrodynamics<br />

Quantum computing utilizing se/c QDs<br />

Spintronics – Spin Hall Effect experimentally demonstrated by UCSB group in 2004<br />

Molecular electronics & organic se/c<br />

Japanese Experimental<br />

Breakthrough


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Trends in <strong>Semiconductor</strong> Research<br />

The period 1940-2000 was under the rule of information<br />

systems (high speed devices...)<br />

In 2000’s this monopoly is being weakened by other needs<br />

such as energy (solar cells, energy storage, etc.) and health<br />

(diagnostic and therapeutic tools)<br />

Some References on the History of <strong>Semiconductor</strong> Physics<br />

L. Hoddeson and G. Baym, ‘The development of the quntum-mechanical<br />

electron theory of metals: 1928-1933’, Reviews of Moden Physics, 59 287<br />

(1987).<br />

R. Peierls, ‘Early work on solids, mainly thirties’, Reviews of Moden<br />

Physics, 65 251 (1993).<br />

A. B. Fowler, ‘A semicentury of semiconductors’, Physics Today, p. 59<br />

(October, 1993)<br />

J. W. Orton, The story of semiconductors, (Oxford University Press, 2004)<br />

This book is available at our library: TK7871.85.O78 2004


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

How about the Future?<br />

Moore’s Law<br />

Source: J. Singh


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Se/c industry roadmap<br />

Visit: International Technology Roadmap for <strong>Semiconductor</strong>s<br />

http://www.itrs.org<br />

NB: Main activity around CMOS technology<br />

Severe Challenges ahead<br />

Interconnect bottleneck<br />

Thermal Inferno<br />

In chip communication:<br />

Do it with Photons!<br />

Source: J. Singh


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Classification of Electronic Materials<br />

Source: J. Singh<br />

E<br />

Semimetals<br />

k<br />

e.g., Bi, Sb, As,<br />

HgTe, HgSe


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

A typical se/c (EPM) bandstructure: GaN & AlN<br />

Conduction<br />

Bands<br />

Fermi<br />

level<br />

Band gap<br />

for GaN<br />

Valence<br />

Bands


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Periodic Table<br />

Common se/c


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

A Classification of Se/c’s<br />

Elemental <strong>Semiconductor</strong>s<br />

Group-IV: Si, Ge; Diamond structure, tetrahedrally coordinated<br />

Group-V, VI: P, S, Se, Te are also se/c’s with several different crystal<br />

structures. Good glass formers<br />

Binary <strong>Semiconductor</strong>s<br />

III-V compounds are similiar to group IV<br />

IV → III-V ionicity increases. Electronic charge transfer from III to V<br />

atom: Coulomb interaction, changes in electronic band structure<br />

II-VI (ZnS): more ionic. Mostly large bandgaps → displays and lasers.<br />

Exception: HgTe zero bandgap → IR detectors.<br />

I-VII (CuCl): have larger bandgaps. Some are regarded as insulators.<br />

Increased cohesive energy. Rock salt struc.<br />

IV-VI (PbS, PbTe, SnS): semiconductors. Large ionicity. 6-fold<br />

coordination. Very small gaps. → IR detectors<br />

Ref: Yu-Cardona


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

A Classification of Se/c’s (Cont’d)<br />

Oxides<br />

CuO, CuO2 :semiconductors ZnO →transducer<br />

High Tc SC: Copper oxides: La2CuO4 → bandgap 2 eV.Dope with Ba or Sr.<br />

P-type.<br />

Layered <strong>Semiconductor</strong>s<br />

PbI2 , MoS2 , GaSe, GaS: Intraleyer bonding covalent, interlayer bonding van<br />

de Waals.<br />

Quasi 2-D.Intercalation.<br />

Organic <strong>Semiconductor</strong>s<br />

Polyacetylene [(CH2 ) n ], polydiacetylene<br />

LEDs, lasers? Displays. Cheap. Slow. Bandgap manipulation is easier.<br />

Magnetic <strong>Semiconductor</strong>s (gained further importance with spintronics)<br />

Magnetic ions: Mn, Eu etc. EuS, Cd1-xMnxTe: ferromag, antiferromag<br />

possible. Dilute mag se/c’s. Large Faraday rotation → optical modulators.<br />

Others<br />

SbSI: Ferroelectricy at low T,<br />

I-III-VI2 , II-IV-V2 : AgGaS2 and ZnSiP2 → chalcopyrite struc. Tetrahedral<br />

bonding. Analog to III-V and II-VI.<br />

IV-VI with formula such as As2Se3 : se/c’s in crystalline or glassy states<br />

Ref: Yu-Cardona


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

A Classification of Se/c’s (Cont’d)<br />

Ternary and Quaternary Se/c’s<br />

III x -III 1-x -V type ternaries:<br />

AlxGa1-xN, AlxGa1-xAs,AlxIn1-xP, AlxIn1-xSb, etc.<br />

III-V1-x-Vx type ternaries:<br />

AlAs1-xPx , GaAs1-xPx , InSb1 xAsx , InSb1-xBix , etc.<br />

IIIx-III1-x-Vy-V1-y , type Quaternaries:<br />

GaxIn1-xAsyP1-y , GaxIn1-xAsySb1 y , etc.<br />

III 1-x-y IIIx-IIIy-V type Quaternaries:<br />

In 1-x-y Al x Ga y P, In 1-x-y Al x Ga y As, etc.


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Band gap vs. Photon Wavelength<br />

Surprise: dilute nitrides!<br />

Bandgap not linear interpolation<br />

Source: J. Singh


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Comparison of se/s<br />

Source: J. Singh


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Why insist on se/c ?<br />

Physical properties of se/c can be altered drastically by<br />

Doping<br />

Pressure<br />

Electric or magnetic field<br />

Light<br />

Temperature<br />

Response of se/c to external inputs can be tailored in a manner that allows<br />

the devices to implement all necessary information processing operations<br />

Digital & analog signal processing<br />

Oscillators<br />

Detectors<br />

Memories<br />

…<br />

Industrial conservatism; huge investments and acquired knowledge


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Why insist on se/c ?<br />

Electrons have:<br />

charge → interact strongly<br />

Good for information processing/computation (digital/analog)<br />

But they interact strongly among themselves and the environment, hence they<br />

are prone to noise<br />

mass → they suffer from propagation delays (drift velocity in se/c ~ 10 7 cm/s)<br />

Photons have:<br />

no mass, no charge → very weak interaction<br />

Ideal for signal transmission as they are fast and hardly interact with each other<br />

But, it is also harder to operate on them as in the case of electrons<br />

<strong>Semiconductor</strong> structures are ideal for hosting both electrons & photons!


C. Bulutay <strong>Semiconductor</strong> Electronic & Optical Processes<br />

Lecture 1<br />

Demands on se/s<br />

Source: J. Singh

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!