26.02.2013 Views

The role of eNOS, iNOS and NFκB in upregulation and activation of ...

The role of eNOS, iNOS and NFκB in upregulation and activation of ...

The role of eNOS, iNOS and NFκB in upregulation and activation of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Page 1 <strong>of</strong> Articles 35 <strong>in</strong> PresS. Am J Physiol Heart Circ Physiol (May 9, 2008). doi:10.1152/ajpheart.01350.2007<br />

<strong>The</strong> <strong>role</strong> <strong>of</strong> <strong>eNOS</strong>, <strong>iNOS</strong> <strong>and</strong> NF B <strong>in</strong> <strong>upregulation</strong> <strong>and</strong> <strong>activation</strong> <strong>of</strong><br />

cyclooxygenase-2 <strong>and</strong> <strong>in</strong>farct size reduction by atorvastat<strong>in</strong><br />

Yumei Ye, MD a,b ; Juan D. Mart<strong>in</strong>ez, MD a ; Reg<strong>in</strong>o J. Perez-Polo, PhD c ; Yu L<strong>in</strong>, BSc a,b<br />

; Barry F. Uretsky, MD a,b , Yochai Birnbaum, MD a,b,c .<br />

a- <strong>The</strong> Department <strong>of</strong> Internal Medic<strong>in</strong>e, b- <strong>The</strong> Division <strong>of</strong> Cardiology, c- <strong>The</strong><br />

Department <strong>of</strong> Biochemistry <strong>and</strong> Molecular Biology, University <strong>of</strong> Texas Medical<br />

Branch, Galveston, TX<br />

Runn<strong>in</strong>g Title: Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong><br />

Correspond<strong>in</strong>g author:<br />

Yochai Birnbaum, MD<br />

<strong>The</strong> Division <strong>of</strong> Cardiology<br />

University <strong>of</strong> Texas Medical Branch<br />

5,106 John Sealy Annex<br />

301 University Blvd.<br />

Galveston, Texas 77555-0553<br />

E-mail: yobirnba@utmb.edu<br />

Office: 409-772-2794<br />

Fax: 409-772-4982<br />

Copyright Information<br />

Copyright © 2008 by the American Physiological Society.


Abstract:<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 2<br />

Objectives: Pretreatment with atorvastat<strong>in</strong> (ATV) reduces <strong>in</strong>farct size (IS) <strong>and</strong> <strong>in</strong>creases<br />

myocardial expression <strong>of</strong> phosphorylated endothelial nitric oxide synthase (P-<strong>eNOS</strong>),<br />

<strong>in</strong>ducible NOS (<strong>iNOS</strong>), <strong>and</strong> cycloxygenase-2 (COX2) <strong>in</strong> the rat. Inhibit<strong>in</strong>g COX2<br />

abolished the ATV-<strong>in</strong>duced IS limitation without affect<strong>in</strong>g P-<strong>eNOS</strong> <strong>and</strong> <strong>iNOS</strong> expression.<br />

We <strong>in</strong>vestigated: 1) whether 3-day ATV pretreatment limits IS <strong>in</strong> <strong>eNOS</strong> -/- <strong>and</strong> <strong>iNOS</strong> -/-<br />

mouse; 2) whether COX2 expression <strong>and</strong>/or <strong>activation</strong> by ATV is <strong>eNOS</strong>-, <strong>iNOS</strong> <strong>and</strong>/or<br />

NF B-dependent. Methods: Male C57BL/6 wild-type (WT), University <strong>of</strong> North<br />

Carol<strong>in</strong>a <strong>eNOS</strong> -/- , <strong>and</strong> <strong>iNOS</strong> -/- mice received ATV 10 mg/kg/d (ATV+) or water alone<br />

(ATV-) for 3 days. Mice underwent 30m<strong>in</strong> coronary artery occlusion <strong>and</strong> 4h <strong>of</strong><br />

reperfusion, or hearts were harvested <strong>and</strong> subjected to ELISA, immunoblott<strong>in</strong>g, biot<strong>in</strong><br />

switch <strong>and</strong> electrophoretic mobility shift assay (EMSA). Results: ATV reduced IS only<br />

<strong>in</strong> the WT mice. ATV <strong>in</strong>creased <strong>eNOS</strong>, P-<strong>eNOS</strong>, <strong>iNOS</strong> <strong>and</strong> COX2 levels, <strong>and</strong> activated<br />

NF B <strong>in</strong> WT mice. It also <strong>in</strong>creased myocardial COX2 activity. In <strong>eNOS</strong> -/- mice, ATV<br />

<strong>in</strong>creased COX2 expression, but not COX2 activity or <strong>iNOS</strong> expression. NF B was not<br />

activated by ATV <strong>in</strong> the <strong>eNOS</strong> -/- mice. In the <strong>iNOS</strong> -/- mice <strong>eNOS</strong> <strong>and</strong> P-<strong>eNOS</strong> levels were<br />

<strong>in</strong>creased, but not <strong>iNOS</strong> <strong>and</strong> COX2 levels; however, NF B was activated. Conclusions:<br />

Both <strong>eNOS</strong> <strong>and</strong> <strong>iNOS</strong> are essential for the IS-limit<strong>in</strong>g effect <strong>of</strong> ATV. Expression <strong>of</strong><br />

COX2 by ATV is <strong>iNOS</strong>- but not <strong>eNOS</strong>- or NF B dependent. Activation <strong>of</strong> COX2 is<br />

dependent on <strong>iNOS</strong>.<br />

Key words: <strong>eNOS</strong>, <strong>iNOS</strong>, COX2, NF B, atorvastat<strong>in</strong>, <strong>in</strong>farct size.<br />

Introduction<br />

Copyright Information<br />

Page 2 <strong>of</strong> 35


Page 3 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 3<br />

<strong>The</strong> 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase <strong>in</strong>hibitors (stat<strong>in</strong>s)<br />

protect aga<strong>in</strong>st ischemia-reperfusion <strong>in</strong>jury <strong>and</strong> when adm<strong>in</strong>istered before ischemia [2; 5;<br />

7; 25; 26; 34-36; 43; 44; 46-48; 52; 53] or immediately upon reperfusion [4; 17; 47]<br />

limits myocardial <strong>in</strong>farct size (IS) <strong>in</strong> various animal models. Several <strong>in</strong>vestigators have<br />

shown that <strong>activation</strong> <strong>of</strong> endothelial nitric oxide synthase (<strong>eNOS</strong>) is essential for this<br />

protective effect, as non-specific nitric oxide synthase (NOS) <strong>in</strong>hibitors blunt the IS-<br />

limit<strong>in</strong>g effect <strong>of</strong> stat<strong>in</strong>s [5; 48] <strong>and</strong> stat<strong>in</strong>s do not reduce IS <strong>in</strong> <strong>eNOS</strong> -/- mice [1; 4; 18; 25;<br />

52]. However, most <strong>of</strong> these studies used a particular <strong>eNOS</strong> -/- l<strong>in</strong>e (Harvard). As reported<br />

by Sharp et al, there are two dist<strong>in</strong>ct l<strong>in</strong>es <strong>of</strong> <strong>eNOS</strong> -/- mice, the Harvard l<strong>in</strong>e lacks<br />

compensatory <strong>in</strong>creases <strong>in</strong> <strong>in</strong>ducible nitric oxide synthase (<strong>iNOS</strong>) <strong>and</strong> has IS bigger than<br />

the correspond<strong>in</strong>g wild-type mice, <strong>and</strong> the University <strong>of</strong> North Carol<strong>in</strong>a l<strong>in</strong>e, which has<br />

compensatory <strong>in</strong>creases <strong>in</strong> <strong>iNOS</strong> expression <strong>and</strong> IS smaller than the correspond<strong>in</strong>g wild-<br />

type mice [37]. It has been suggested that <strong>iNOS</strong> can be protective <strong>and</strong> compensate for the<br />

lack <strong>in</strong> <strong>eNOS</strong> <strong>and</strong> <strong>eNOS</strong> may compensate for a lack <strong>of</strong> <strong>iNOS</strong> <strong>in</strong> adenos<strong>in</strong>e-triggered<br />

precondition<strong>in</strong>g [3]. Others have suggested that neuronal NOS (nNOS) is upregulated <strong>in</strong><br />

the University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/- mice <strong>and</strong> can restore NOS-dependent<br />

vasodilation [13; 30]. It has not been demonstrated whether stat<strong>in</strong>s limit IS <strong>in</strong> the<br />

University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/- mouse. Moreover, while there is abundant literature<br />

on the pathways <strong>of</strong> <strong>activation</strong> <strong>of</strong> <strong>eNOS</strong> by stat<strong>in</strong>s [21; 28], less is known about the<br />

signal<strong>in</strong>g pathways <strong>of</strong> protection downstream from <strong>eNOS</strong>. It has been suggested that<br />

stat<strong>in</strong>s activates the Reperfusion Injury Salvage K<strong>in</strong>ase (RISK)-pathway [4; 17], which<br />

appears to be <strong>in</strong>dependent <strong>of</strong> NOS <strong>activation</strong> [22; 23]. On the other h<strong>and</strong>, we have shown<br />

that stat<strong>in</strong>s also activate <strong>iNOS</strong> [2; 7; 34; 53], cytosolic phospholipase A2 (cPLA2) [7; 53],<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 4<br />

cyclooxygenase 2 (COX2) [2; 7; 53] <strong>and</strong> the specific prostagl<strong>and</strong><strong>in</strong> synthases, PGI2<br />

synthase [7], PGE2 synthase [7], <strong>and</strong> PGD2 synthase [54]. Block<strong>in</strong>g either <strong>iNOS</strong> [7; 34]<br />

or COX2 [2; 7] abrogates the IS-limit<strong>in</strong>g effect <strong>of</strong> atorvastat<strong>in</strong> (ATV). In the rat, <strong>iNOS</strong><br />

activates COX2 by S-nitrosylation [2]. However, it is unclear whether <strong>iNOS</strong> is needed to<br />

upregulate COX2 expression, as pioglitazone, a peroxisome proliferator-activated<br />

receptor- (PPAR- ) agonist, <strong>in</strong>creases COX2 expression <strong>and</strong> activity without<br />

upregulat<strong>in</strong>g <strong>iNOS</strong> [53]. It has been shown that NF B mediates the <strong>upregulation</strong> <strong>of</strong> <strong>iNOS</strong><br />

<strong>and</strong>/or COX2 <strong>in</strong> delayed ischemic precondition<strong>in</strong>g [10; 40]. However, several studies<br />

have suggested that stat<strong>in</strong>s suppress NF B <strong>activation</strong> [14; 15; 32; 33; 41; 49]. <strong>The</strong>refore,<br />

we asked whether 3-day ATV pretreatment limits IS <strong>in</strong> the University <strong>of</strong> North Carol<strong>in</strong>a<br />

l<strong>in</strong>e <strong>of</strong> <strong>eNOS</strong> -/- mouse <strong>and</strong> <strong>iNOS</strong> -/- mouse. We also asked whether <strong>eNOS</strong>, <strong>iNOS</strong> <strong>and</strong> NF B<br />

are needed for the <strong>upregulation</strong> <strong>and</strong>/or <strong>activation</strong> <strong>of</strong> COX2 by ATV.<br />

Methods:<br />

Male C57BL/6 wild-type (WT), University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/- , <strong>and</strong> <strong>iNOS</strong> -/- mice<br />

were purchased from the Jackson Laboratory (Ma<strong>in</strong>e, USA) <strong>and</strong> received humane care <strong>in</strong><br />

compliance with ‘<strong>The</strong> Guide for the Care <strong>and</strong> Use <strong>of</strong> Laboratory Animals’ published by<br />

the US National Institutes <strong>of</strong> Health (NIH Publication No. 85-23, revised 1996). <strong>The</strong><br />

protocol was approved by UTMB IACUC.<br />

Treatment<br />

Mice received 3-day pretreatment with ATV (10 mg/kg per day) dissolved <strong>in</strong> water or<br />

water alone, adm<strong>in</strong>istered by oral gavage once daily. On the fourth day mice underwent<br />

coronary artery ligation for 30 m<strong>in</strong> followed by 4 hours <strong>of</strong> reperfusion (IS protocol)(n=10<br />

Copyright Information<br />

Page 4 <strong>of</strong> 35


Page 5 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 5<br />

<strong>in</strong> each group), or the mice were euthanized under anesthesia, hearts were explanted<br />

without be<strong>in</strong>g subjected to ischemia, r<strong>in</strong>sed <strong>in</strong> cold PBS (pH 7.4), conta<strong>in</strong><strong>in</strong>g 0.16 mg/ml<br />

hepar<strong>in</strong> to remove red blood cells <strong>and</strong> clots, frozen <strong>in</strong> liquid nitrogen <strong>and</strong> stored at -80°C<br />

for further analyses (immunoblott<strong>in</strong>g, calcium dependent <strong>and</strong> <strong>in</strong>dependent NOS activity,<br />

6-keto-PGF1 levels, COX2 activity, EMSA for NF B, <strong>and</strong> immun<strong>of</strong>luorescence for<br />

NF B). <strong>The</strong>re were 4 mice <strong>in</strong> each group.<br />

Infarct size<br />

On the fourth day mice were anesthetized with <strong>in</strong>traperitoneal <strong>in</strong>jection <strong>of</strong> ketam<strong>in</strong>e (60<br />

mg/kg) <strong>and</strong> xylaz<strong>in</strong>e (6 mg/kg), <strong>in</strong>tubated <strong>and</strong> ventilated (FIO2=30%). <strong>The</strong> rectal<br />

temperature was monitored <strong>and</strong> body temperature was ma<strong>in</strong>ta<strong>in</strong>ed between 36.7 <strong>and</strong><br />

37.3 0 C throughout the experiment. <strong>The</strong> chest was opened <strong>and</strong> the left coronary artery<br />

was encircled with a suture <strong>and</strong> ligated for 30 m<strong>in</strong>utes. Ischemia was verified by regional<br />

dysfunction <strong>and</strong> discoloration <strong>of</strong> the ischemic zone. Is<strong>of</strong>luorane (1-2.5% titrated to effect)<br />

was added after the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> ischemia to ma<strong>in</strong>ta<strong>in</strong> anesthesia. At 30 m<strong>in</strong>utes <strong>of</strong><br />

ischemia, the snare was released <strong>and</strong> myocardial reperfusion was verified by change <strong>in</strong><br />

the color <strong>of</strong> the myocardium. Subcutaneous 0.1 mg/kg buprenorph<strong>in</strong>e was adm<strong>in</strong>istered,<br />

the chest was closed <strong>and</strong> the mice were recovered from anesthesia. Four hours after<br />

reperfusion the mice were re-anesthetized, the coronary artery was reoccluded, Evan's<br />

blue dye 3% was <strong>in</strong>jected <strong>in</strong>to the right ventricle <strong>and</strong> the mice euthanized under deep<br />

anesthesia [2; 7; 43; 53].<br />

<strong>The</strong> pre-specified exclusion criteria were lack <strong>of</strong> signs <strong>of</strong> ischemia dur<strong>in</strong>g coronary artery<br />

ligation, lack <strong>of</strong> signs <strong>of</strong> reperfusion after release <strong>of</strong> the snare, prolonged ventricular<br />

arrhythmia with hypotension, <strong>and</strong> area at risk 10% <strong>of</strong> the LV weight.<br />

Copyright Information


Determ<strong>in</strong>ation <strong>of</strong> area at risk (AR) <strong>and</strong> <strong>in</strong>farct size (IS)<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 6<br />

Hearts were excised <strong>and</strong> the left ventricle was sliced transversely <strong>in</strong>to 6 sections. Slices<br />

were <strong>in</strong>cubated for 10 m<strong>in</strong>utes at 37°C <strong>in</strong> 1% buffered (pH=7.4) 2,3,5-triphenyl-<br />

tetrazolium-chloride (TTC), fixed <strong>in</strong> a 10% formaldehyde <strong>and</strong> photographed <strong>in</strong> order to<br />

identify the AR (uncolored by the blue dye), the IS (unsta<strong>in</strong>ed by TTC), <strong>and</strong> the non-<br />

ischemic zones (colored by blue dye). <strong>The</strong> area <strong>of</strong> AR <strong>and</strong> IS <strong>in</strong> each slice were<br />

determ<strong>in</strong>ed by planimetry, converted <strong>in</strong>to percentages <strong>of</strong> the whole for each slice, <strong>and</strong><br />

multiplied by the weight <strong>of</strong> the slice <strong>and</strong> the results summed to obta<strong>in</strong> the weight <strong>of</strong> the<br />

myocardial AR <strong>and</strong> IS [2; 7; 43; 53].<br />

<strong>The</strong> effect <strong>of</strong> NF B <strong>and</strong> JAK <strong>in</strong>hibitors on the <strong>in</strong>duction <strong>of</strong> <strong>iNOS</strong> <strong>and</strong> COX2 by ATV<br />

WT mice were treated with <strong>in</strong>traperitoneal ATV (5 mg/kg); vehicle alone (DMSO 5%);<br />

ATV + AG-490 (JAK <strong>in</strong>hibitor, 40 µg/kg); or ATV + SN50 (NF B <strong>in</strong>hibitor, 400 µg/kg)<br />

(n=4 <strong>in</strong> each group). Hearts were harvested 8h later <strong>and</strong> assessed for <strong>iNOS</strong>, COX2, I B,<br />

<strong>and</strong> -act<strong>in</strong> expression <strong>in</strong> the whole cell lysate <strong>and</strong> phosphorylated STAT-1 <strong>and</strong> lam<strong>in</strong> B<br />

<strong>in</strong> the nuclear fraction.<br />

Immunoblott<strong>in</strong>g<br />

Myocardial samples from the left ventricular wall were homogenized <strong>in</strong> RIPA lysis<br />

buffer (Santa Cruz Biotechnology) <strong>and</strong> centrifuged at 14,000 rpm for 15m<strong>in</strong> at 4 0 C. <strong>The</strong><br />

supernatant was collected <strong>and</strong> the total prote<strong>in</strong> concentration was determ<strong>in</strong>ed us<strong>in</strong>g the<br />

Lowry prote<strong>in</strong> assay. <strong>The</strong> prote<strong>in</strong> samples (50 µg) with load<strong>in</strong>g buffer were run <strong>in</strong> 4-20%<br />

Tris-HCl Ready Gel at a 100V for 2h until the desired molecular weight b<strong>and</strong>s were<br />

separated. After electrophoresis, the gel was equilibrated <strong>in</strong> transfer buffer (25mM Tris,<br />

193mM glyc<strong>in</strong>e, 0.1% SDS <strong>and</strong> 10% methanol) <strong>and</strong> the prote<strong>in</strong>s were transferred to<br />

Copyright Information<br />

Page 6 <strong>of</strong> 35


Page 7 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 7<br />

nitrocellulose membrane. <strong>The</strong> prote<strong>in</strong> signals were quantified by an image-scann<strong>in</strong>g-<br />

densitometer <strong>and</strong> the strength <strong>of</strong> each prote<strong>in</strong> signal was normalized to the correspond<strong>in</strong>g<br />

-act<strong>in</strong> sta<strong>in</strong> signal. Signals for p-STAT-1 <strong>in</strong> the nuclear fraction were normalized to the<br />

correspond<strong>in</strong>g lam<strong>in</strong> B signal. Data are expressed as a ratio between the prote<strong>in</strong> <strong>and</strong> the<br />

correspond<strong>in</strong>g -act<strong>in</strong> or p-STAT-1 signal density.<br />

NOS activity<br />

Myocardial samples were homogenized <strong>in</strong> a buffer (25mM Tris-HCL (PH 7.4); 1 mM<br />

EDTA; <strong>and</strong> 1 mM EGTA), centrifuged at 10,000 X g for 15 m<strong>in</strong>. <strong>The</strong> supernatant,<br />

conta<strong>in</strong><strong>in</strong>g the soluble enzyme <strong>iNOS</strong>, <strong>and</strong> the pellet, conta<strong>in</strong><strong>in</strong>g the membrane-bound<br />

<strong>eNOS</strong> <strong>and</strong> neuronal NOS (nNOS) [calcium dependent NOS (cNOS)] were separated. <strong>The</strong><br />

pellet was resuspended <strong>in</strong> homogenization buffer. NOS activity was determ<strong>in</strong>ed by<br />

measur<strong>in</strong>g the conversion <strong>of</strong> L-[14C]-arg<strong>in</strong><strong>in</strong>e to L-[14C]-citrull<strong>in</strong>e us<strong>in</strong>g a commercial<br />

kit (Cayman Chemicals, Ann Arbor, MI). For assess<strong>in</strong>g calcium dependent NOS (cNOS)<br />

activity CaCl2 was added to the samples. For assess<strong>in</strong>g calcium <strong>in</strong>dependent (c<strong>iNOS</strong>)<br />

activity, CaCl2 was omitted from the solution. NOS activity was def<strong>in</strong>ed as counts per<br />

m<strong>in</strong>ute (cpm) [34].<br />

6-keto-PGF1 <strong>and</strong> Phospholipase A2 (PLA2) activity<br />

Myocardial samples <strong>of</strong> the anterior wall <strong>of</strong> the left ventricle were perfused with a PBS<br />

solution (pH 7.4) conta<strong>in</strong><strong>in</strong>g 0.16mg/ml hepar<strong>in</strong> to remove red blood cells <strong>and</strong> clots,<br />

homogenized <strong>in</strong> cold PBS (pH 7.4), <strong>and</strong> centrifuged. <strong>The</strong> supernatants were collected <strong>and</strong><br />

stored on ice. Measurement <strong>of</strong> 6-Keto-PGF1 , the stable metabolite <strong>of</strong> prostacycl<strong>in</strong>, <strong>and</strong><br />

PLA2 activity were made us<strong>in</strong>g immunoassay assay kits.<br />

COX activity<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 8<br />

Myocardial samples <strong>of</strong> the anterior wall <strong>of</strong> the left ventricle were perfused <strong>and</strong> r<strong>in</strong>sed<br />

with 0.05M Tris buffer, PH 7.4, conta<strong>in</strong><strong>in</strong>g 0.16 mg/ml hepar<strong>in</strong> to remove any red blood<br />

cells <strong>and</strong> clots. Samples were homogenized <strong>in</strong> 5-10 ml <strong>of</strong> cold buffer (0.1 M Tris-HCL,<br />

pH 7.8 conta<strong>in</strong><strong>in</strong>g 1 mM EDTA) per gram tissue, centrifuged at 10,000Xg for 15 m<strong>in</strong>utes<br />

at 4 0 C, <strong>and</strong> the supernatant was collected <strong>and</strong> stored on ice. <strong>The</strong> COX activity assay kit<br />

measures the peroxidase activity <strong>of</strong> COX, assayed colorimetrically by monitor<strong>in</strong>g the<br />

appearance <strong>of</strong> oxidized N,N,N’,N’-tetramethyl-p-phenylenediama<strong>in</strong>e (TMPD) at 590 nm.<br />

Each myocardial sample was tested <strong>in</strong> triplicate (the first without an <strong>in</strong>hibitor; the second<br />

with DuP-697 (0.286 µM), a specific COX2 <strong>in</strong>hibitor; <strong>and</strong> the third with Sc560 (0.314<br />

µM), a specific COX1 <strong>in</strong>hibitor. COX1 activity was calculated as the difference between<br />

total COX activity <strong>in</strong> the sample without an <strong>in</strong>hibitor <strong>and</strong> the sample with Sc560, <strong>and</strong><br />

COX2 activity as the difference between total COX activity <strong>in</strong> the sample without an<br />

<strong>in</strong>hibitor <strong>and</strong> the sample with DuP-697.<br />

Nuclear extraction<br />

Myocardial samples (0.25 g) were homogenized, mixed with Buffer A Mix [Hepes (pH<br />

7.9) 10 mM, KCl 10 mM, EDTA 10 mM, DTT 100 mM, protease <strong>in</strong>hibitor cocktail, <strong>and</strong><br />

IGEPAL 10%, (Sigma, St Lois, MO)], homogenized aga<strong>in</strong> <strong>and</strong> <strong>in</strong>cubated for 15 m<strong>in</strong> on<br />

ice, <strong>and</strong> centrifuged at 850 x g for 10 m<strong>in</strong> at 4 0 C. <strong>The</strong> supernatants were discharged,<br />

Buffer A Mix was added aga<strong>in</strong> <strong>and</strong> the samples <strong>in</strong>cubated for an additional 15 m<strong>in</strong> on ice,<br />

<strong>and</strong> centrifuged at 15,000 x g for 3 m<strong>in</strong> at 4 0 C. <strong>The</strong> supernatant were discharged <strong>and</strong> the<br />

pellets resuspended <strong>in</strong> 150 µl <strong>of</strong> Buffer B Mix [Hepes (pH 7.9) 20mM, NaCl 0.4M,<br />

EDTA 1 mM, glycerol 10%, protease <strong>in</strong>hibitor cocktail, <strong>and</strong> IGEPAL 10%], the tubes<br />

were shake on ice at 200 rpm for 2h, centrifuged at 15,000 x g for 5 m<strong>in</strong> at 4 0 C, <strong>and</strong> the<br />

Copyright Information<br />

Page 8 <strong>of</strong> 35


Page 9 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 9<br />

supernatants collected as the nuclear fraction <strong>and</strong> stored at -80 0 C until used (Modified<br />

from Dignam et al [16].<br />

Electrophoretic mobility shift assay (EMSA)<br />

EMSA were carried out as described elsewhere with some modifications [19]. Briefly,<br />

the EMSA gel is made with 30% polyacrylamide, 10 x TBE, 10% AP, H2O, <strong>and</strong> TEMED<br />

to yield 7.5% gel. NF B probes: Oligonucleotides encompass<strong>in</strong>g the IgG- B enhancer<br />

sequence (GGGACTTTCC) were 5' labeled with a- 32 P-ATP <strong>and</strong> T4 polynucleotide<br />

k<strong>in</strong>ase. B<strong>in</strong>d<strong>in</strong>g reactions with 40 µg <strong>of</strong> nuclear extracts were performed <strong>in</strong> a 20 µl<br />

volume conta<strong>in</strong><strong>in</strong>g 20,000 cpm <strong>of</strong> probe, 2 µg <strong>of</strong> poly dI-dC, 10 µl <strong>of</strong> TK100 buffer (25<br />

mM HEPES, pH 7.9, 20% glycerol, 1 mM EDTA, 100 mM KCl, 2 mM MgCl2, 2 mM<br />

dithiothreitol, <strong>and</strong> 2 mM PMSF) <strong>and</strong> competitor. Nuclear extracts were <strong>in</strong>cubated with<br />

the poly dI-dC on ice for 10 m<strong>in</strong>, <strong>and</strong> then the buffer <strong>and</strong> probe was added. Incubation<br />

was cont<strong>in</strong>ued for 20 m<strong>in</strong> at room temperature, after which reaction mixtures was loaded<br />

on the gel <strong>in</strong> 0.25× TBE buffer (pH 7.2). Gels were dried <strong>and</strong> exposed to x-ray film.<br />

When antibodies were used <strong>in</strong> EMSA for immunodepletion/supershift study, nuclear<br />

extracts were <strong>in</strong>cubated with the different antibodies for 30 m<strong>in</strong> at 4°C before the<br />

addition <strong>of</strong> the poly dI-dC.<br />

Immun<strong>of</strong>luorescence<br />

Myocardial sections were <strong>in</strong>cubated <strong>in</strong> a block<strong>in</strong>g solution (1-3% normal serum/5%<br />

BSA/0.1% Triton X-100) for 30 m<strong>in</strong> at room temperature, <strong>and</strong> r<strong>in</strong>sed <strong>in</strong> PBS. <strong>The</strong><br />

primary anti-NF B p65 antibodies were centrifuged at 12,000 rpm at 4 0 C for 2 m<strong>in</strong> <strong>and</strong><br />

diluted <strong>in</strong> PBS. 50-100 µl <strong>of</strong> the primary antibodies were added to each section, <strong>and</strong> the<br />

samples were <strong>in</strong>cubated for 1-24 hr at 4 0 C <strong>in</strong> a humidified box, washed three times <strong>in</strong><br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 10<br />

PBS. <strong>The</strong> Alexa-secondary antibodies [Goat anti-mouse IgG with Alexa 488 (488-GAM)<br />

for monoclonal primary antibodies (Molecular Probe, A-11029), <strong>and</strong> goat anti-rabbit IgG<br />

with Alexa 594 (594-GAR) for rabbit polyclonal primary antibodies (Molecular Probe,<br />

A-11037)] were centrifuged at 12,000 rpm at 4 0 C for 2 m<strong>in</strong>, diluted 1:200-1:400 <strong>in</strong> PBS.<br />

<strong>The</strong> sections were <strong>in</strong>cubated with the Alexa-secondary antibodies <strong>in</strong> dark at room<br />

temperature for 1h, washed <strong>in</strong> PBS for 3 times, <strong>in</strong>cubated <strong>in</strong> 1µg/ml DAPI (1:1000<br />

dilution) at room temperature for 5 m<strong>in</strong> <strong>in</strong> the dark, <strong>and</strong> r<strong>in</strong>sed with PBS. <strong>The</strong> sections<br />

were dried, <strong>and</strong> Fluoromount-G was added onto the slides, <strong>and</strong> the slides were covered<br />

with a cover-slip. Slices were stored at 4 0 C, until exam<strong>in</strong>ed <strong>and</strong> photographed under<br />

microscope.<br />

Biot<strong>in</strong> switch assay<br />

S-nitrosylation <strong>of</strong> COX2 was determ<strong>in</strong>ed with the biot<strong>in</strong> switch method, as has been<br />

previously described [2]. Myocardial samples were homogenized with HEN buffer [25<br />

mM HEPES (pH 7.7)-0.1 mM EDTA-0.01 mM necupro<strong>in</strong>e]. <strong>The</strong> supernatant conta<strong>in</strong><strong>in</strong>g<br />

membrane fragments <strong>and</strong> the cytosolic prote<strong>in</strong> was recovered. <strong>The</strong> samples were<br />

<strong>in</strong>cubated for 30 m<strong>in</strong> at 4°C with block<strong>in</strong>g solution conta<strong>in</strong><strong>in</strong>g HEN buffer, 0.1% SDS,<br />

<strong>and</strong> 20 mM N-ethylmaleimide [NEM] to block free thiols. Lysates were centrifuged at<br />

16,000 Xg for 10 m<strong>in</strong> at 4°C. Cold acetone was added to precipitate the prote<strong>in</strong>s. <strong>The</strong><br />

pellets were resuspended <strong>in</strong> HEN buffer with 1% SDS, with 20 mM sodium ascorbate<br />

added to decompose the SNO bonds. <strong>The</strong> result<strong>in</strong>g free thiols <strong>in</strong> the sample were reacted<br />

with 0.05 mM biot<strong>in</strong>ylat<strong>in</strong>g agent, biocyt<strong>in</strong> [MPB] for 30 m<strong>in</strong> at room temperature. <strong>The</strong><br />

excess MPB was removed by additional prote<strong>in</strong> precipitation <strong>in</strong> cold acetone. COX2 was<br />

immunoprecipitated with anti-COX2 polyclonal antibody. Immunoprecipitates were<br />

Copyright Information<br />

Page 10 <strong>of</strong> 35


Page 11 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 11<br />

washed three times with HEN buffer <strong>and</strong> resuspended <strong>in</strong> 50 µl <strong>of</strong> HEN conta<strong>in</strong><strong>in</strong>g<br />

Laemmli sample buffer, boiled at 95°C for 5 m<strong>in</strong>, loaded on 10% acrylamide gels, <strong>and</strong><br />

transferred to nitrocellulose. <strong>The</strong> biot<strong>in</strong>ylated COX2 prote<strong>in</strong> was detected with<br />

horseradish peroxidase-l<strong>in</strong>ked streptavid<strong>in</strong>. All procedures up to biot<strong>in</strong>ylation were<br />

performed <strong>in</strong> the dark. <strong>The</strong> membranes were stripped with a stripp<strong>in</strong>g buffer <strong>and</strong> blotted<br />

aga<strong>in</strong> with anti-COX2 antibodies. <strong>The</strong> signal densities <strong>of</strong> the biot<strong>in</strong>ylated COX2 <strong>and</strong> total<br />

COX2 were quantified by an image-scann<strong>in</strong>g densitometer <strong>and</strong> the ratio <strong>of</strong> the densities<br />

was calculated for each animal.<br />

Materials<br />

ATV was purchased from Pfizer Pharmaceuticals (New York, NY). NOS-activity kit, <strong>and</strong><br />

ELISA kit for 6-keto-PGF1 , <strong>and</strong> COX2 activity were purchased from Cayman Chemicals<br />

(Ann Arbor, MI). Polyclonal anti-<strong>iNOS</strong> antibodies were purchased from Cayman<br />

Chemical; polyclonal anti ser-1177 phosphorylated-<strong>eNOS</strong> (P-<strong>eNOS</strong>) antibodies from Cell<br />

Signal<strong>in</strong>g (Beverly, MA); monoclonal anti-<strong>eNOS</strong> antibodies <strong>and</strong> monoclonal anti-COX2<br />

antibodies from BD Bioscience (San Jose, CA); <strong>and</strong> monoclonal anti- -Act<strong>in</strong> antibody<br />

from Sigma (St.Louis, MO). Anti- NF B antibodies (NF B p65, NF B p50) were<br />

purchased from Millipore Corporation, Billerica, MA. Anti lam<strong>in</strong> B, anti I B, <strong>and</strong> anti p-<br />

STAT-1 antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA).<br />

[N-(3-malemidylpropionyl) biocyt<strong>in</strong> was purchased from Molecular Probes (Eugene,<br />

OR). ImmunoPure Streptavid<strong>in</strong>, Horseradish Peroxidase Conjugated was purchased from<br />

PIERCE Biotechnology, Inc. (Rockford IL). AG-490 was purchased from Sigma (St.<br />

Louis, MO) <strong>and</strong> SN50 from Calbiochem (San Diego, CA).<br />

Statistical analysis<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 12<br />

Data are presented as mean ±SEM. <strong>The</strong> significance level is 0.05. Body weight, left<br />

ventricular weight <strong>and</strong> the size <strong>of</strong> the AR were compared us<strong>in</strong>g analysis <strong>of</strong> variance<br />

(ANOVA). Data on IS (as a percentage <strong>of</strong> the AR) <strong>and</strong> enzyme expression <strong>and</strong> activity<br />

were compared between the ATV treated <strong>and</strong> not treated groups us<strong>in</strong>g t-test or Mann-<br />

Whitney Rank Sum test when appropriate. Values <strong>of</strong> P


Page 13 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 13<br />

the <strong>eNOS</strong> -/- or <strong>iNOS</strong> -/- mice (Figure 2c). On the other h<strong>and</strong>, COX2 expression was<br />

upregulated by ATV only <strong>in</strong> the WT <strong>and</strong> <strong>eNOS</strong> -/- , but not the <strong>iNOS</strong> -/- mice (Figure 2d).<br />

NOS activity<br />

All enzyme activity analyses were done <strong>in</strong> hearts that were explanted on the fourth day <strong>of</strong><br />

the experiment without be<strong>in</strong>g subjected to regional ischemia. In agreement with the P-<br />

<strong>eNOS</strong> immunoblott<strong>in</strong>g results, ATV augmented cNOS activity <strong>in</strong> the WT <strong>and</strong> <strong>iNOS</strong> -/-<br />

mice, but not <strong>in</strong> the <strong>eNOS</strong> -/- mice (Figure 3a). c<strong>iNOS</strong> activity was augmented by ATV<br />

only <strong>in</strong> the WT mice (Figure 3b).<br />

Myocardial 6-keto-PGF1 levels <strong>and</strong> COX activity<br />

ATV significantly <strong>in</strong>creased myocardial 6-keto-PGF1 levels only <strong>in</strong> the WT mice<br />

(Figure 3c). ATV did not affect COX1 activity <strong>in</strong> all three stra<strong>in</strong>s (data not shown).<br />

COX2 activity was <strong>in</strong>creased by ATV only <strong>in</strong> the WT mice, but not <strong>in</strong> the <strong>eNOS</strong> -/- <strong>and</strong><br />

<strong>iNOS</strong> -/- mice (Figure 3d). Thus, the upregulated COX2 prote<strong>in</strong> <strong>in</strong> the <strong>eNOS</strong> -/- mice treated<br />

with ATV was <strong>in</strong>active.<br />

NF B <strong>activation</strong><br />

EMSA was done <strong>in</strong> hearts that were explanted on the fourth day <strong>of</strong> the experiment<br />

without be<strong>in</strong>g subjected to regional ischemia. EMSA showed that NF B was activated <strong>in</strong><br />

the WT <strong>and</strong> <strong>iNOS</strong> -/- mice, but not <strong>in</strong> the <strong>eNOS</strong> -/- mice (Figure 4a). Immunoblott<strong>in</strong>g <strong>of</strong> I B<br />

<strong>in</strong> the cytosol confirmed the EMSA results, show<strong>in</strong>g decreased I B levels <strong>in</strong> the ATV<br />

treated WT <strong>and</strong> <strong>iNOS</strong> -/- mice (Figure 4b). Immun<strong>of</strong>luorescent sta<strong>in</strong><strong>in</strong>g <strong>of</strong> myocardial<br />

tissue <strong>of</strong> WT mice showed <strong>in</strong>creased sta<strong>in</strong><strong>in</strong>g <strong>of</strong> NF B <strong>in</strong> the cell nuclei <strong>of</strong> mice treated<br />

with ATV (Figure 5).<br />

<strong>The</strong> effect <strong>of</strong> NF B <strong>and</strong> JAK <strong>in</strong>hibitors on the <strong>in</strong>duction <strong>of</strong> <strong>iNOS</strong> <strong>and</strong> COX2 by ATV<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 14<br />

SN50, an NF B <strong>in</strong>hibitor, blocked the ATV <strong>in</strong>duced decrease <strong>in</strong> I B levels, <strong>in</strong>dicat<strong>in</strong>g<br />

block<strong>in</strong>g NF B <strong>activation</strong>. AG49 blocked ATV <strong>in</strong>duced <strong>in</strong>crease <strong>in</strong> p-STAT-1 levels <strong>in</strong><br />

the nuclear fraction, <strong>in</strong>dicat<strong>in</strong>g blockade <strong>of</strong> the JAK-STAT <strong>activation</strong>. SN50 completely<br />

blocked the <strong>in</strong>duction <strong>of</strong> <strong>iNOS</strong>, whereas AG490, a JAK <strong>in</strong>hibitor, had no effect (Figure 6).<br />

In contrast, AG490 <strong>and</strong> SN50 alone did not block the <strong>in</strong>duction <strong>of</strong> COX2 by ATV.<br />

S-nitrosylation <strong>of</strong> COX2<br />

ATV <strong>in</strong>duced S-nitrosylation <strong>of</strong> COX2 only <strong>in</strong> the WT mice. <strong>The</strong> COX2, <strong>in</strong>duced by<br />

ATV <strong>in</strong> the <strong>eNOS</strong> -/- mice was not S-nitrosylated, <strong>in</strong> agreement with its be<strong>in</strong>g <strong>in</strong>active<br />

(Figure 7).<br />

Summary <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs is presented <strong>in</strong> table 2.<br />

Discussion<br />

Our ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>g is that ATV did not limit IS <strong>in</strong> the University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/-<br />

<strong>and</strong> <strong>iNOS</strong> -/- mice, as reported for the Harvard <strong>eNOS</strong> -/- mice [1; 18; 25; 52]. <strong>The</strong> <strong>in</strong>duction<br />

<strong>of</strong> COX2 by ATV was <strong>eNOS</strong> <strong>and</strong> NF B <strong>in</strong>dependent, as ATV <strong>in</strong>creased COX2 expression<br />

<strong>in</strong> <strong>eNOS</strong> -/- mice <strong>and</strong> <strong>in</strong> these mice NF B was not activated by ATV. On the other h<strong>and</strong>, <strong>in</strong><br />

the <strong>iNOS</strong> -/- mice, NF B was activated by ATV; however, COX2 expression was not<br />

changed. Moreover, SN50, an NF B <strong>in</strong>hibitor, did not block COX2 expression, although<br />

it blocked <strong>iNOS</strong> expression. <strong>The</strong>se data are <strong>in</strong> agreement with the delayed ischemic<br />

precondition<strong>in</strong>g literature that NF B <strong>activation</strong> is downstream to <strong>eNOS</strong> [10]. On the other<br />

h<strong>and</strong>, COX2 activity was <strong>in</strong>creased by ATV only <strong>in</strong> the WT mice. In the <strong>eNOS</strong> -/- mice,<br />

ATV <strong>in</strong>creased COX2 expression, but the COX2 was <strong>in</strong>active. Of note, the upregulated<br />

COX2 <strong>in</strong> the <strong>eNOS</strong> -/- mice was not S-nitrosylated. Previously we have shown that<br />

Copyright Information<br />

Page 14 <strong>of</strong> 35


Page 15 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 15<br />

myocardial COX2, upregulated by ATV is <strong>in</strong>activated by an <strong>iNOS</strong> <strong>in</strong>hibitor that<br />

decreased its S<strong>in</strong>itrosylation [2] (Table 2).<br />

We have previously shown that 3-day ATV treatment does not upregulate nNOS levels <strong>in</strong><br />

the rat myocardium [7]. As the activities <strong>of</strong> both <strong>eNOS</strong> <strong>and</strong> nNOS are calcium dependent,<br />

cNOS activity reflects the activity <strong>of</strong> both enzymes. In the present study we did not<br />

observe an <strong>in</strong>crease <strong>in</strong> cNOS activity <strong>in</strong> the <strong>eNOS</strong> -/- mice, suggest<strong>in</strong>g that ATV did not<br />

<strong>in</strong>duce a significant <strong>upregulation</strong> <strong>of</strong> nNOS <strong>in</strong> these mice. Moreover, ATV did not<br />

decrease IS <strong>in</strong> the University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/- mice, suggest<strong>in</strong>g that <strong>in</strong> contrast<br />

to the effect on vascular relaxation [13; 30], nNOS does not compensate for the lack <strong>of</strong><br />

<strong>eNOS</strong> <strong>in</strong> our model.<br />

<strong>iNOS</strong><br />

Our f<strong>in</strong>d<strong>in</strong>gs are <strong>in</strong> disagreement with those <strong>of</strong> Sharp et al that <strong>iNOS</strong> expression is<br />

upregulated <strong>in</strong> the University <strong>of</strong> North Carol<strong>in</strong>a <strong>eNOS</strong> -/- mice [37]. Myocardial levels <strong>of</strong><br />

<strong>iNOS</strong> were very low <strong>in</strong> the <strong>eNOS</strong> -/- mice <strong>and</strong> were not upregulated by ATV <strong>in</strong> these mice.<br />

In accordance, c<strong>iNOS</strong> activity was not <strong>in</strong>creased <strong>in</strong> the <strong>eNOS</strong> -/- mice compared to the WT<br />

mice. <strong>The</strong> present study confirms our previous results that <strong>iNOS</strong> <strong>upregulation</strong> is essential<br />

for the IS-limit<strong>in</strong>g effect <strong>of</strong> ATV. Scalia has also shown that simvastat<strong>in</strong> does not limit IS<br />

<strong>in</strong> <strong>iNOS</strong> -/- mice [36]. We have previously shown that 1400W, a selective <strong>iNOS</strong> <strong>in</strong>hibitor,<br />

abrogates the IS-limit<strong>in</strong>g effect <strong>of</strong> 3-day pretreatment with ATV, by <strong>in</strong>hibit<strong>in</strong>g the<br />

<strong>activation</strong> <strong>of</strong> COX2 via S-nitrosylation [2]. In that study, 1400W did not affect total <strong>and</strong><br />

Ser-1177 phosphorylated <strong>eNOS</strong> levels <strong>and</strong> cNOS activity, although it blocked the ATV<br />

<strong>in</strong>duction <strong>of</strong> c<strong>iNOS</strong> activity. In the present study <strong>iNOS</strong> expression <strong>and</strong> c<strong>iNOS</strong> activity<br />

were not upregulated <strong>in</strong> the <strong>eNOS</strong> -/- mice [2], suggest<strong>in</strong>g that <strong>iNOS</strong> is downstream <strong>of</strong><br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 16<br />

<strong>eNOS</strong>, as has been described for the delayed form <strong>of</strong> ischemic precondition<strong>in</strong>g [10] [23].<br />

It has been suggested that <strong>eNOS</strong> <strong>activation</strong> leads to <strong>activation</strong> <strong>of</strong> soluble guanylate<br />

cyclase, prote<strong>in</strong> k<strong>in</strong>ase C (PKC ), NF B, <strong>and</strong> Janus k<strong>in</strong>ase (JAK)-signal transducers <strong>and</strong><br />

activators <strong>of</strong> transcription (STAT) pathways, lead<strong>in</strong>g to <strong>activation</strong> <strong>of</strong> <strong>iNOS</strong> <strong>and</strong>/or COX2<br />

[3; 9-11] [23]. In contrast, <strong>in</strong> other models <strong>eNOS</strong> has been reported to <strong>in</strong>hibit NF B<br />

<strong>activation</strong> [45]. This may reflect that NF B <strong>activation</strong> <strong>in</strong>volves both <strong>in</strong>flammatory<br />

signal<strong>in</strong>g (p65/p50) <strong>and</strong> anti-<strong>in</strong>flammatory signal<strong>in</strong>g (cRel/p52) as well as other non-<br />

canonical pathways. It is probable that the <strong>upregulation</strong> <strong>of</strong> <strong>iNOS</strong> by ATV is NF B-<br />

dependent (Figure 6). Indeed, both NF B <strong>and</strong> <strong>iNOS</strong> expression <strong>and</strong> activity were not<br />

<strong>in</strong>creased by ATV <strong>in</strong> the <strong>eNOS</strong> -/- mice.<br />

Our data suggest that the expression <strong>of</strong> COX2 is dependent on the presence <strong>of</strong> <strong>in</strong>tact<br />

<strong>iNOS</strong>, as COX2 expression was not <strong>in</strong>creased <strong>in</strong> the <strong>iNOS</strong> -/- mice despite <strong>activation</strong> <strong>of</strong><br />

NF B. Previously it has been shown that 24 hours after ischemic precondition<strong>in</strong>g<br />

stimulus, COX2 expression was <strong>in</strong>creased <strong>in</strong> both WT <strong>and</strong> <strong>iNOS</strong> -/- mice, suggest<strong>in</strong>g that<br />

with a more robust stimulus than stat<strong>in</strong> pretreatment, such as precondition<strong>in</strong>g, <strong>iNOS</strong> is not<br />

essential for COX2 <strong>upregulation</strong> [50]. Although <strong>iNOS</strong> expression <strong>and</strong> c<strong>iNOS</strong> activity<br />

were not <strong>in</strong>creased by ATV <strong>in</strong> the <strong>eNOS</strong> -/- mice, the presence <strong>of</strong> <strong>in</strong>tact <strong>iNOS</strong> gene may<br />

enable COX2 <strong>upregulation</strong>. Alternatively, a gene adjacent to <strong>iNOS</strong> on chromosome 10<br />

that is responsible for upregulat<strong>in</strong>g COX2 expression could have been erroneously<br />

deleted <strong>in</strong> the <strong>iNOS</strong> -/- mice. However, as pioglitazone, a PPAR- agonist augments COX2<br />

expression <strong>in</strong> the same <strong>iNOS</strong> -/- mice stra<strong>in</strong> [8], this is probably not the explanation.<br />

<strong>The</strong> over-expressed COX2 <strong>in</strong> the ATV-treated <strong>eNOS</strong> -/- mice was not activated <strong>and</strong> not S-<br />

nitrosylated. Although we cannot exclude the possibility that <strong>eNOS</strong> S-nitrosylates COX2<br />

Copyright Information<br />

Page 16 <strong>of</strong> 35


Page 17 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 17<br />

<strong>in</strong> the present study, previously we have shown that 1400W, a selective <strong>iNOS</strong> <strong>in</strong>hibitor,<br />

prevents COX2 S-nitrosylation by ATV <strong>in</strong> the heart without affect<strong>in</strong>g cNOS activity [2].<br />

Kim et al have shown that S-nitrosylation by <strong>iNOS</strong> is essential for COX2 <strong>activation</strong> <strong>in</strong><br />

<strong>in</strong>flammatory cells [27]. Moreover, Xuan et al have shown the although ischemic<br />

precondition<strong>in</strong>g <strong>in</strong>creased COX expression <strong>in</strong> <strong>iNOS</strong> -/- mice, the COX2 was <strong>in</strong>active [50].<br />

Thus, <strong>iNOS</strong> is needed for both the expression <strong>and</strong> <strong>activation</strong> <strong>of</strong> myocardial COX2 by<br />

ATV. <strong>eNOS</strong> is a membrane bound enzyme, whereas <strong>iNOS</strong> is a soluble enzyme, thus, the<br />

localization <strong>of</strong> these two enzymes <strong>in</strong> the cells is different <strong>and</strong> although COX2 is a<br />

membrane bound enzyme [42], it seems that <strong>iNOS</strong>, but not <strong>eNOS</strong> is responsible for COX2<br />

S-nitrosylation.<br />

We [2] <strong>and</strong> others [27] have used the biot<strong>in</strong> switch assay to assess S-nitrosylation.<br />

Recently, it has been suggested that artifacts may <strong>in</strong>terfere with the <strong>in</strong>terpretation <strong>of</strong> the<br />

test [24]. However, currently there are no reliable alternative assays to assess for S-<br />

nitrosylation. It is plausible that other mediators may activate COX2 <strong>in</strong>dependent <strong>of</strong> S-<br />

nitrosylation, especially <strong>in</strong> <strong>in</strong>flammatory models. However, it seems that when COX2 is<br />

upregulated by ATV without an <strong>in</strong>flammatory stimulus, <strong>iNOS</strong>-<strong>in</strong>duced S-nitrosylation is<br />

essential for COX2 <strong>activation</strong> <strong>in</strong> the rat <strong>and</strong> mouse myocardium. It may be that<br />

nitrosylation <strong>of</strong> COX2 is not a general prerequisite, but rather is restricted to the<br />

myocardium.<br />

Of note, c<strong>iNOS</strong> activity <strong>in</strong> the <strong>iNOS</strong> -/- mice was comparable to that <strong>of</strong> the WT control<br />

group <strong>and</strong> not nil. This represents background noise <strong>of</strong> the method <strong>and</strong> not residual<br />

activity, as has also been shown by Guo et al [20].<br />

COX2<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 18<br />

Previously we have shown that ATV upregulates COX2 expression <strong>and</strong> activity [2; 7;<br />

53]. Inhibit<strong>in</strong>g COX2, but not COX1 abrogated the IS-limit<strong>in</strong>g effect <strong>of</strong> ATV [2; 7].<br />

COX2 is essential for mediat<strong>in</strong>g the protective effect <strong>of</strong> delayed ischemic<br />

precondition<strong>in</strong>g, as COX2 <strong>in</strong>hibition abrogates IS limitation by precondition<strong>in</strong>g [10; 12;<br />

38; 39]. It is well established that NF B affects COX2 expression [10; 29; 40; 45].<br />

However, other pathways such as the JAK-STAT signal<strong>in</strong>g pathway [10; 45; 50; 51],<br />

PI3K through C/EBP or ERK via CREB can also upregulate COX2 expression<br />

<strong>in</strong>dependent <strong>of</strong> NF B [45]. Our data suggest that the <strong>upregulation</strong> <strong>of</strong> COX2 expression by<br />

oral ATV <strong>in</strong> the heart is <strong>in</strong>dependent <strong>of</strong> NF B, as COX2 expression was <strong>in</strong>creased by<br />

ATV <strong>in</strong> <strong>eNOS</strong> -/- mice, despite the fact that NF B was not activated. Moreover, <strong>in</strong> the<br />

<strong>iNOS</strong> -/- mice, COX2 expression was not <strong>in</strong>creased by ATV despite <strong>activation</strong> <strong>of</strong> NF B.<br />

Furthermore, SN50 did not block the ATV-<strong>in</strong>duction <strong>of</strong> COX2 expression, although it<br />

blocked <strong>iNOS</strong> <strong>in</strong>duction, support<strong>in</strong>g the fact that the <strong>in</strong>duction <strong>of</strong> <strong>iNOS</strong>, but not COX2 is<br />

NF B-dependent (Figure 6). In addition, AG490 also did not affect COX2 <strong>in</strong>duction by<br />

<strong>in</strong>traperitoneal ATV, suggest<strong>in</strong>g that COX2 <strong>in</strong>duction may be <strong>in</strong>dependent <strong>of</strong> JAK-STAT,<br />

<strong>in</strong> contrast to the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> ischemic precondition<strong>in</strong>g [10]. Further studies are needed to<br />

clarify the <strong>role</strong> <strong>of</strong> JAK-STAT <strong>in</strong> mediat<strong>in</strong>g stat<strong>in</strong>-<strong>in</strong>duced myocardial protection.<br />

<strong>The</strong> dose <strong>of</strong> ATV used <strong>in</strong> the present study (10 mg/kg/d) may be considered high. Indeed,<br />

several <strong>in</strong>vestigators have shown reduction <strong>of</strong> IS with lower doses <strong>of</strong> stat<strong>in</strong>; however, <strong>in</strong><br />

all these studies stat<strong>in</strong>s were adm<strong>in</strong>istered <strong>in</strong>traperitoneally, subcutaneously or<br />

<strong>in</strong>travenously. In a dose rang<strong>in</strong>g study we have shown that 3-day oral pretreatment with<br />

ATV at 10 mg/kg/d <strong>and</strong> 75 mg/kg/d reduces IS <strong>in</strong> the rat [5], whereas at a dose <strong>of</strong> 1-2<br />

mg/kg/d oral ATV has no effect [5; 34]. Moreover, we have shown that <strong>in</strong> the rat, blood<br />

Copyright Information<br />

Page 18 <strong>of</strong> 35


Page 19 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 19<br />

levels <strong>of</strong> ATV 16 hours after a third dose <strong>of</strong> 10 mg/kg/d are comparable to those seen <strong>in</strong><br />

humans treated with ATV 80 mg/d [6]. Other <strong>in</strong>vestigators have also used equivalent or<br />

even higher doses <strong>of</strong> oral stat<strong>in</strong>s to show myocardial protection [31; 48].<br />

In conclusion, we have shown that both <strong>iNOS</strong> <strong>and</strong> <strong>eNOS</strong> are essential for mediat<strong>in</strong>g the<br />

IS-limit<strong>in</strong>g effect <strong>of</strong> ATV. Induction <strong>of</strong> <strong>eNOS</strong> leads to NF B-dependent <strong>iNOS</strong><br />

<strong>upregulation</strong>. On the other h<strong>and</strong>, the <strong>in</strong>duction <strong>of</strong> COX2 expression by ATV is <strong>eNOS</strong>- <strong>and</strong><br />

probably NF B- <strong>in</strong>dependent. However, <strong>iNOS</strong> is needed for both the <strong>in</strong>creased expression<br />

<strong>and</strong> <strong>activation</strong> <strong>of</strong> COX2.<br />

Copyright Information


References:<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 20<br />

1. Am<strong>in</strong>-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK <strong>and</strong> Moskowitz<br />

MA. Mevastat<strong>in</strong>, an HMG-CoA reductase <strong>in</strong>hibitor, reduces stroke damage <strong>and</strong><br />

upregulates endothelial nitric oxide synthase <strong>in</strong> mice. Stroke 32: 980-986, 2001.<br />

2. Atar S, Ye Y, L<strong>in</strong> Y, Freeberg SY, Nishi SP, Rosanio S, Huang MH, Uretsky BF,<br />

Perez-Polo JR <strong>and</strong> Birnbaum Y. Atorvastat<strong>in</strong>-<strong>in</strong>duced cardioprotection is mediated by<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>ducible nitric oxide synthase <strong>and</strong> consequent S-nitrosylation <strong>of</strong><br />

cyclooxygenase-2. Am J Physiol Heart Circ Physiol 290: H1960-1968, 2006.<br />

3. Bell RM, Smith CC <strong>and</strong> Yellon DM. Nitric oxide as a mediator <strong>of</strong> delayed<br />

pharmacological (A(1) receptor triggered) precondition<strong>in</strong>g; is <strong>eNOS</strong> masquerad<strong>in</strong>g as<br />

<strong>iNOS</strong>? Cardiovasc Res 53: 405-413, 2002.<br />

4. Bell RM <strong>and</strong> Yellon DM. Atorvastat<strong>in</strong>, adm<strong>in</strong>istered at the onset <strong>of</strong> reperfusion, <strong>and</strong><br />

<strong>in</strong>dependent <strong>of</strong> lipid lower<strong>in</strong>g, protects the myocardium by up-regulat<strong>in</strong>g a pro-survival<br />

pathway. J Am Coll Cardiol 41: 508-515, 2003.<br />

5. Birnbaum Y, Ashitkov T, Uretsky BF, Ball<strong>in</strong>ger S <strong>and</strong> Motamedi M. Reduction <strong>of</strong><br />

<strong>in</strong>farct size by short-term pretreatment with atorvastat<strong>in</strong>. Cardiovasc Drugs <strong>The</strong>r 17: 25-<br />

30, 2003.<br />

6. Birnbaum Y, Ye Y, L<strong>in</strong> Y, Freeberg SY, Nishi SP, Mart<strong>in</strong>ez JD, Huang MH,<br />

Uretsky BF <strong>and</strong> Perez-Polo JR. Augmentation <strong>of</strong> myocardial production <strong>of</strong> 15-epilipox<strong>in</strong>-a4<br />

by pioglitazone <strong>and</strong> atorvastat<strong>in</strong> <strong>in</strong> the rat. Circulation 114: 929-935, 2006.<br />

7. Birnbaum Y, Ye Y, Rosanio S, Tavackoli S, Hu Z-Y, Schwarz ER <strong>and</strong> Barry F.<br />

Uretsky. Prostagl<strong>and</strong><strong>in</strong>s mediate the cardioprotective effects <strong>of</strong> atorvastat<strong>in</strong> aga<strong>in</strong>st<br />

ischemia-reperfusion <strong>in</strong>jury. Cardiovasc Res 65: 345-355, 2005.<br />

8. Birnbaum Y, Ye YM, L<strong>in</strong> Y, Huang MH, Lui CY <strong>and</strong> Perez-Polo RJ. <strong>The</strong><br />

<strong>in</strong>duction <strong>of</strong> cyclooxygenase-2 by pioglitazone is <strong>eNOS</strong>- <strong>and</strong> <strong>iNOS</strong>-<strong>in</strong>dependent, whereas<br />

both are essential for the <strong>in</strong>duction <strong>of</strong> cyclooxygenase-2 by atorvastat<strong>in</strong>. Circulation<br />

Research 101: E62-E63, 2007.<br />

9. Bolli R, Dawn B, Tang XL, Qiu Y, P<strong>in</strong>g P, Xuan YT, Jones WK, Takano H, Guo<br />

Y <strong>and</strong> Zhang J. <strong>The</strong> nitric oxide hypothesis <strong>of</strong> late precondition<strong>in</strong>g. Basic Res Cardiol<br />

93: 325-338, 1998.<br />

10. Bolli R, Dawn B <strong>and</strong> Xuan YT. Role <strong>of</strong> the JAK-STAT pathway <strong>in</strong> protection<br />

aga<strong>in</strong>st myocardial ischemia/reperfusion <strong>in</strong>jury. Trends Cardiovasc Med 13: 72-79, 2003.<br />

11. Bolli R, Manchikalapudi S, Tang XL, Takano H, Qiu Y, Guo Y, Zhang Q <strong>and</strong><br />

Jadoon AK. <strong>The</strong> protective effect <strong>of</strong> late precondition<strong>in</strong>g aga<strong>in</strong>st myocardial stunn<strong>in</strong>g <strong>in</strong><br />

conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts<br />

both as a trigger <strong>and</strong> as a mediator <strong>of</strong> the late phase <strong>of</strong> ischemic precondition<strong>in</strong>g. Circ Res<br />

81: 1094-1107, 1997.<br />

12. Bolli R, Sh<strong>in</strong>mura K, Tang XL, Kodani E, Xuan YT, Guo Y <strong>and</strong> Dawn B.<br />

Discovery <strong>of</strong> a new function <strong>of</strong> cyclooxygenase (COX)-2: COX-2 is a cardioprotective<br />

prote<strong>in</strong> that alleviates ischemia/reperfusion <strong>in</strong>jury <strong>and</strong> mediates the late phase <strong>of</strong><br />

precondition<strong>in</strong>g. Cardiovasc Res 55: 506-519, 2002.<br />

13. Chlopicki S, Kozlovski VI, Lorkowska B, Drelicharz L <strong>and</strong> Gebska A.<br />

Compensation <strong>of</strong> endothelium-dependent responses <strong>in</strong> coronary circulation <strong>of</strong> <strong>eNOS</strong>deficient<br />

mice. J Cardiovasc Pharmacol 46: 115-123, 2005.<br />

Copyright Information<br />

Page 20 <strong>of</strong> 35


Page 21 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 21<br />

14. Cuccurullo C, Iezzi A, Fazia ML, De Cesare D, Di Francesco A, Muraro R, Bei<br />

R, Ucch<strong>in</strong>o S, Spigonardo F, Chiarelli F, Schmidt AM, Cuccurullo F, Mezzetti A<br />

<strong>and</strong> Cipollone F. Suppression <strong>of</strong> RAGE as a basis <strong>of</strong> simvastat<strong>in</strong>-dependent plaque<br />

stabilization <strong>in</strong> type 2 diabetes. Arterioscler Thromb Vasc Biol 26: 2716-2723, 2006.<br />

15. Devaraj S, Chan E <strong>and</strong> Jialal I. Direct demonstration <strong>of</strong> an anti<strong>in</strong>flammatory effect<br />

<strong>of</strong> simvastat<strong>in</strong> <strong>in</strong> subjects with the metabolic syndrome. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 91:<br />

4489-4496, 2006.<br />

16. Dignam JD, Lebovitz RM <strong>and</strong> Roeder RG. Accurate transcription <strong>in</strong>itiation by<br />

RNA polymerase II <strong>in</strong> a soluble extract from isolated mammalian nuclei. Nucleic Acids<br />

Res 11: 1475-1489, 1983.<br />

17. Efthymiou CA, Mocanu MM <strong>and</strong> Yellon DM. Atorvastat<strong>in</strong> <strong>and</strong> myocardial<br />

reperfusion <strong>in</strong>jury: new pleiotropic effect implicat<strong>in</strong>g multiple prosurvival signal<strong>in</strong>g. J<br />

Cardiovasc Pharmacol 45: 247-252, 2005.<br />

18. Endres M, Laufs U, Huang Z, Nakamura T, Huang P, Moskowitz MA <strong>and</strong> Liao<br />

JK. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase <strong>in</strong>hibitors<br />

mediated by endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 95: 8880-8885,<br />

1998.<br />

19. Glasgow JN, Wood T <strong>and</strong> Perez-Polo JR. Identification <strong>and</strong> characterization <strong>of</strong><br />

nuclear factor kappaB b<strong>in</strong>d<strong>in</strong>g sites <strong>in</strong> the mur<strong>in</strong>e bcl-x promoter. J Neurochem 75: 1377-<br />

1389, 2000.<br />

20. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE,<br />

P<strong>in</strong>g P, Yang Z, Qiu Y <strong>and</strong> Bolli R. <strong>The</strong> late phase <strong>of</strong> ischemic precondition<strong>in</strong>g is<br />

abrogated by targeted disruption <strong>of</strong> the <strong>in</strong>ducible NO synthase gene. Proc Natl Acad Sci<br />

U S A 96: 11507-11512, 1999.<br />

21. Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, Kemp BE<br />

<strong>and</strong> Venema RC. Acute <strong>activation</strong> <strong>and</strong> phosphorylation <strong>of</strong> endothelial nitric oxide<br />

synthase by HMG-CoA reductase <strong>in</strong>hibitors. Am J Physiol Heart Circ Physiol 287:<br />

H560-566, 2004.<br />

22. Hausenloy DJ <strong>and</strong> Yellon DM. New directions for protect<strong>in</strong>g the heart aga<strong>in</strong>st<br />

ischaemia-reperfusion <strong>in</strong>jury: target<strong>in</strong>g the Reperfusion Injury Salvage K<strong>in</strong>ase (RISK)pathway.<br />

Cardiovasc Res 61: 448-460, 2004.<br />

23. Hausenloy DJ <strong>and</strong> Yellon DM. Survival k<strong>in</strong>ases <strong>in</strong> ischemic precondition<strong>in</strong>g <strong>and</strong><br />

postcondition<strong>in</strong>g. Cardiovasc Res 70: 240-253, 2006.<br />

24. Huang B <strong>and</strong> Chen C. An ascorbate-dependent artifact that <strong>in</strong>terferes with the<br />

<strong>in</strong>terpretation <strong>of</strong> the biot<strong>in</strong> switch assay. Free Radic Biol Med 41: 562-567, 2006.<br />

25. Jones S, Gibson M, Rimmer D, Gibson T, Sharp B <strong>and</strong> Lefer D. Direct vascular<br />

<strong>and</strong> cardioprotective effects <strong>of</strong> rosuvastat<strong>in</strong>, a new HMG-CoA reductase <strong>in</strong>hibitor. J Am<br />

Coll Cardiol 40: 1172-1178, 2002.<br />

26. Jones SP, Trocha SD <strong>and</strong> Lefer DJ. Pretreatment with simvastat<strong>in</strong> attenuates<br />

myocardial dysfunction after ischemia <strong>and</strong> chronic reperfusion. Arterioscler Thromb<br />

Vasc Biol 21: 2059-2064, 2001.<br />

27. Kim SF, Huri DA <strong>and</strong> Snyder SH. Inducible nitric oxide synthase b<strong>in</strong>ds, Snitrosylates,<br />

<strong>and</strong> activates cyclooxygenase-2. Science 310: 1966-1970, 2005.<br />

28. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC <strong>and</strong><br />

Walsh K. <strong>The</strong> HMG-CoA reductase <strong>in</strong>hibitor simvastat<strong>in</strong> activates the prote<strong>in</strong> k<strong>in</strong>ase Akt<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 22<br />

<strong>and</strong> promotes angiogenesis <strong>in</strong> normocholeste<strong>role</strong>mic animals. Nat Med 6: 1004-1010,<br />

2000.<br />

29. Liu SF, Ye X <strong>and</strong> Malik AB. Inhibition <strong>of</strong> NF-kappaB <strong>activation</strong> by pyrrolid<strong>in</strong>e<br />

dithiocarbamate prevents In vivo expression <strong>of</strong> pro<strong>in</strong>flammatory genes. Circulation 100:<br />

1330-1337, 1999.<br />

30. Meng W, Ayata C, Waeber C, Huang PL <strong>and</strong> Moskowitz MA. Neuronal NOScGMP-dependent<br />

ACh-<strong>in</strong>duced relaxation <strong>in</strong> pial arterioles <strong>of</strong> endothelial NOS knockout<br />

mice. Am J Physiol 274: H411-415, 1998.<br />

31. Mensah K, Mocanu MM <strong>and</strong> Yellon DM. Failure to protect the myocardium<br />

aga<strong>in</strong>st ischemia/reperfusion <strong>in</strong>jury after chronic atorvastat<strong>in</strong> treatment is recaptured by<br />

acute atorvastat<strong>in</strong> treatment: a potential <strong>role</strong> for phosphatase <strong>and</strong> tens<strong>in</strong> homolog deleted<br />

on chromosome ten? J Am Coll Cardiol 45: 1287-1291, 2005.<br />

32. Planavila A, Laguna JC <strong>and</strong> Vazquez-Carrera M. Atorvastat<strong>in</strong> improves<br />

peroxisome proliferator-activated receptor signal<strong>in</strong>g <strong>in</strong> cardiac hypertrophy by prevent<strong>in</strong>g<br />

nuclear factor-kappa B <strong>activation</strong>. Biochim Biophys Acta 1687: 76-83, 2005.<br />

33. Planavila A, Sanchez RM, Merlos M, Laguna JC <strong>and</strong> Vazquez-Carrera M.<br />

Atorvastat<strong>in</strong> prevents peroxisome proliferator-activated receptor gamma coactivator-1<br />

(PGC-1) downregulation <strong>in</strong> lipopolysaccharide-stimulated H9c2 cells. Biochim Biophys<br />

Acta 1736: 120-127, 2005.<br />

34. Rosanio S, Ye Y, Atar S, Rahman AM, Freeberg SY, Huang MH, Uretsky BF<br />

<strong>and</strong> Birnbaum Y. Enhanced cardioprotection aga<strong>in</strong>st ischemia-reperfusion <strong>in</strong>jury with<br />

comb<strong>in</strong><strong>in</strong>g sildenafil with low-dose atorvastat<strong>in</strong>. Cardiovasc Drugs <strong>The</strong>r 20: 27-36, 2006.<br />

35. Sanada S, Asanuma H, M<strong>in</strong>am<strong>in</strong>o T, Node K, Takashima S, Okuda H, Sh<strong>in</strong>ozaki<br />

Y, Ogai A, Fujita M, Hirata A, Kim J, Asano Y, Mori H, Tomoike H, Kitamura S,<br />

Hori M <strong>and</strong> Kitakaze M. Optimal w<strong>in</strong>dows <strong>of</strong> stat<strong>in</strong> use for immediate <strong>in</strong>farct<br />

limitation: 5'-nucleotidase as another downstream molecule <strong>of</strong> phosphatidyl<strong>in</strong>ositol 3k<strong>in</strong>ase.<br />

Circulation 110: 2143-2149, 2004.<br />

36. Scalia R, Gooszen ME, Jones SP, H<strong>of</strong>fmeyer M, Rimmer DM, 3rd, Trocha SD,<br />

Huang PL, Smith MB, Lefer AM <strong>and</strong> Lefer DJ. Simvastat<strong>in</strong> exerts both anti<strong>in</strong>flammatory<br />

<strong>and</strong> cardioprotective effects <strong>in</strong> apolipoprote<strong>in</strong> E-deficient mice. Circulation<br />

103: 2598-2603, 2001.<br />

37. Sharp BR, Jones SP, Rimmer DM <strong>and</strong> Lefer DJ. Differential response to<br />

myocardial reperfusion <strong>in</strong>jury <strong>in</strong> <strong>eNOS</strong>-deficient mice. Am J Physiol Heart Circ Physiol<br />

282: H2422-2426, 2002.<br />

38. Sh<strong>in</strong>mura K, Nagai M, Tamaki K, Tani M <strong>and</strong> Bolli R. COX-2-derived<br />

prostacycl<strong>in</strong> mediates opioid-<strong>in</strong>duced late phase <strong>of</strong> precondition<strong>in</strong>g <strong>in</strong> isolated rat hearts.<br />

Am J Physiol Heart Circ Physiol 283: H2534-2543, 2002.<br />

39. Sh<strong>in</strong>mura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, Bhatnagar A <strong>and</strong><br />

Bolli R. Cyclooxygenase-2 mediates the cardioprotective effects <strong>of</strong> the late phase <strong>of</strong><br />

ischemic precondition<strong>in</strong>g <strong>in</strong> conscious rabbits. Proc Natl Acad Sci U S A 97: 10197-<br />

10202, 2000.<br />

40. Sh<strong>in</strong>mura K, Xuan YT, Tang XL, Kodani E, Han H, Zhu Y <strong>and</strong> Bolli R.<br />

Inducible nitric oxide synthase modulates cyclooxygenase-2 activity <strong>in</strong> the heart <strong>of</strong><br />

conscious rabbits dur<strong>in</strong>g the late phase <strong>of</strong> ischemic precondition<strong>in</strong>g. Circ Res 90: 602-<br />

608, 2002.<br />

Copyright Information<br />

Page 22 <strong>of</strong> 35


Page 23 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 23<br />

41. Sironi L, Banfi C, Brioschi M, Gelosa P, Guerr<strong>in</strong>i U, Nobili E, Gianella A,<br />

Paoletti R, Tremoli E <strong>and</strong> Cim<strong>in</strong>o M. Activation <strong>of</strong> NF-kB <strong>and</strong> ERK1/2 after<br />

permanent focal ischemia is abolished by simvastat<strong>in</strong> treatment. Neurobiol Dis 22: 445-<br />

451, 2006.<br />

42. Spencer AG, Woods JW, Arakawa T, S<strong>in</strong>ger, II <strong>and</strong> Smith WL. Subcellular<br />

localization <strong>of</strong> prostagl<strong>and</strong><strong>in</strong> endoperoxide H synthases-1 <strong>and</strong> -2 by immunoelectron<br />

microscopy. J Biol Chem 273: 9886-9893, 1998.<br />

43. Tavackoli S, Ashitkov T, Hu ZY, Motamedi M, Uretsky BF <strong>and</strong> Birnbaum Y.<br />

Simvastat<strong>in</strong>-<strong>in</strong>duced myocardial protection aga<strong>in</strong>st ischemia-reperfusion <strong>in</strong>jury is<br />

mediated by <strong>activation</strong> <strong>of</strong> ATP-sensitive K+ channels. Coron Artery Dis 15: 53-58, 2004.<br />

44. Tiefenbacher CP, Kapitza J, Dietz V, Lee CH <strong>and</strong> Niroom<strong>and</strong> F. Reduction <strong>of</strong><br />

myocardial <strong>in</strong>farct size by fluvastat<strong>in</strong>. Am J Physiol Heart Circ Physiol 285: H59-64,<br />

2003.<br />

45. Tsatsanis C, Androulidaki A, Venihaki M <strong>and</strong> Margioris AN. Signall<strong>in</strong>g networks<br />

regulat<strong>in</strong>g cyclooxygenase-2. Int J Biochem Cell Biol 38: 1654-1661, 2006.<br />

46. Wayman NS, Ellis BL <strong>and</strong> Thiemermann C. Simvastat<strong>in</strong> reduces <strong>in</strong>farct size <strong>in</strong> a<br />

model <strong>of</strong> acute myocardial ischemia <strong>and</strong> reperfusion <strong>in</strong> the rat. Med Sci Monit 9: BR155-<br />

159, 2003.<br />

47. Wolfrum S, Dendorfer A, Schutt M, Weidtmann B, Heep A, Tempel K, Kle<strong>in</strong><br />

HH, Dom<strong>in</strong>iak P <strong>and</strong> Richardt G. Simvastat<strong>in</strong> acutely reduces myocardial reperfusion<br />

<strong>in</strong>jury <strong>in</strong> vivo by activat<strong>in</strong>g the phosphatidyl<strong>in</strong>ositide 3-k<strong>in</strong>ase/Akt pathway. J<br />

Cardiovasc Pharmacol 44: 348-355, 2004.<br />

48. Wolfrum S, Grimm M, Heidbreder M, Dendorfer A, Katus HA, Liao JK <strong>and</strong><br />

Richardt G. Acute reduction <strong>of</strong> myocardial <strong>in</strong>farct size by a hydroxymethyl glutaryl<br />

coenzyme A reductase <strong>in</strong>hibitor is mediated by endothelial nitric oxide synthase. J<br />

Cardiovasc Pharmacol 41: 474-480, 2003.<br />

49. Xu H, Liu P, Liang L, Danesh FR, Yang X, Ye Y, Zhan Z, Yu X, Peng H <strong>and</strong><br />

Sun L. RhoA-mediated, tumor necrosis factor alpha-<strong>in</strong>duced <strong>activation</strong> <strong>of</strong> NF-kappaB <strong>in</strong><br />

rheumatoid synoviocytes: <strong>in</strong>hibitory effect <strong>of</strong> simvastat<strong>in</strong>. Arthritis Rheum 54: 3441-<br />

3451, 2006.<br />

50. Xuan YT, Guo Y, Zhu Y, Han H, Langenbach R, Dawn B <strong>and</strong> Bolli R.<br />

Mechanism <strong>of</strong> cyclooxygenase-2 <strong>upregulation</strong> <strong>in</strong> late precondition<strong>in</strong>g. J Mol Cell Cardiol<br />

35: 525-537, 2003.<br />

51. Xuan YT, Guo Y, Zhu Y, Wang OL, Rokosh G, Mess<strong>in</strong>g RO <strong>and</strong> Bolli R. Role <strong>of</strong><br />

the prote<strong>in</strong> k<strong>in</strong>ase C-epsilon-Raf-1-MEK-1/2-p44/42 MAPK signal<strong>in</strong>g cascade <strong>in</strong> the<br />

<strong>activation</strong> <strong>of</strong> signal transducers <strong>and</strong> activators <strong>of</strong> transcription 1 <strong>and</strong> 3 <strong>and</strong> <strong>in</strong>duction <strong>of</strong><br />

cyclooxygenase-2 after ischemic precondition<strong>in</strong>g. Circulation 112: 1971-1978, 2005.<br />

52. Yamakuchi M, Greer JJ, Cameron SJ, Matsushita K, Morrell CN, Talbot-Fox<br />

K, Baldw<strong>in</strong> WM, 3rd, Lefer DJ <strong>and</strong> Lowenste<strong>in</strong> CJ. HMG-CoA reductase <strong>in</strong>hibitors<br />

<strong>in</strong>hibit endothelial exocytosis <strong>and</strong> decrease myocardial <strong>in</strong>farct size. Circ Res 96: 1185-<br />

1192, 2005.<br />

53. Ye Y, L<strong>in</strong> Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF <strong>and</strong> Birnbaum Y.<br />

Myocardial protection by pioglitazone, atorvastat<strong>in</strong>, <strong>and</strong> their comb<strong>in</strong>ation: mechanisms<br />

<strong>and</strong> possible <strong>in</strong>teractions. Am J Physiol Heart Circ Physiol 291: H1158-1169, 2006.<br />

54. Ye Y, Nishi SP, Manickavasagam S, L<strong>in</strong> Y, Huang MH, Perez-Polo JR, Uretsky<br />

BF <strong>and</strong> Birnbaum Y. Activation <strong>of</strong> peroxisome proliferator-activated receptor-gamma<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 24<br />

(PPAR-gamma) by atorvastat<strong>in</strong> is mediated by 15-deoxy-delta-12,14-PGJ2.<br />

Prostagl<strong>and</strong><strong>in</strong>s Other Lipid Mediat 84: 43-53, 2007.<br />

Copyright Information<br />

Page 24 <strong>of</strong> 35


Page 25 <strong>of</strong> 35<br />

Table 1: Protocol 1: body weight, left ventricular weight, <strong>and</strong> AR.<br />

ATV-<br />

n=10<br />

Wild type <strong>eNOS</strong> -/-<br />

ATV+<br />

n=8<br />

ATV-<br />

n=10<br />

ATV+<br />

n=10<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 25<br />

ATV-<br />

n=10<br />

<strong>iNOS</strong> -/-<br />

ATV+<br />

Body weight (g) 23.0±1.1 24.7±0.5 24.3±0.6 25.1±0.3 24.0±0.7 25.2±0.4<br />

LV weight (mg) 125±1 118±1 119±1 119±1 117±2 118±2<br />

AR (% <strong>of</strong> LV) 44.7±1.0 46.3±1.7 44.8±0.9 45.2±1.8 46.0±1.2 47.0±1.3<br />

AR- ischemic area at risk; IS- <strong>in</strong>farct size; LV- left ventricle.<br />

Copyright Information<br />

n=10


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 26<br />

Table 2: Summary <strong>of</strong> the effects <strong>of</strong> ATV <strong>in</strong> wild-type, <strong>eNOS</strong> -/- <strong>and</strong> <strong>iNOS</strong> -/- mice.<br />

Wild-type <strong>eNOS</strong> -/- <strong>iNOS</strong> -/-<br />

Infarct size - -<br />

<strong>eNOS</strong> expression -<br />

P-<strong>eNOS</strong> expression -<br />

cNOS activity -<br />

<strong>iNOS</strong> expression - -<br />

c<strong>iNOS</strong> activity - -<br />

COX2 expression -<br />

COX2 activity - -<br />

COX2 S-nitrosylation - -<br />

NF B <strong>activation</strong> -<br />

Copyright Information<br />

Page 26 <strong>of</strong> 35


Page 27 <strong>of</strong> 35<br />

Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 27<br />

Figure 1: <strong>The</strong> effect <strong>of</strong> ATV on <strong>in</strong>farct size (IS) <strong>in</strong> the wild-type (WT), <strong>eNOS</strong> -/- <strong>and</strong><br />

<strong>iNOS</strong> -/- mice. ATV limited IS <strong>in</strong> the WT, but not <strong>in</strong> the <strong>eNOS</strong> -/- <strong>and</strong> <strong>iNOS</strong> -/- mice. <strong>The</strong>re<br />

were 8 mice <strong>in</strong> the WT ATV+ group <strong>and</strong> 10 mice <strong>in</strong> each <strong>of</strong> the other groups.<br />

Figure 2: Samples <strong>of</strong> immunoblots <strong>and</strong> densitometric analyses <strong>of</strong> myocardial expression<br />

<strong>of</strong> total <strong>eNOS</strong> (a), Ser-1177 P-<strong>eNOS</strong> (b), <strong>iNOS</strong> (c), <strong>and</strong> COX2 (d) <strong>in</strong> WT, <strong>eNOS</strong> -/- <strong>and</strong><br />

<strong>iNOS</strong> -/- mice with or without ATV pretreatment. Total <strong>eNOS</strong> <strong>and</strong> Ser-1177 P-<strong>eNOS</strong> levels<br />

were <strong>in</strong>creased by ATV <strong>in</strong> the WT <strong>and</strong> <strong>iNOS</strong> -/- mice. <strong>The</strong>re was no expression <strong>of</strong> <strong>eNOS</strong> <strong>in</strong><br />

the <strong>eNOS</strong> -/- mice. ATV augmented <strong>iNOS</strong> levels only <strong>in</strong> the WT mice. On the other h<strong>and</strong>,<br />

ATV <strong>in</strong>creased COX2 levels <strong>in</strong> the WT <strong>and</strong> <strong>eNOS</strong> -/- mice, but not <strong>in</strong> the <strong>iNOS</strong> -/- mice.<br />

<strong>The</strong>re were 4 mice <strong>in</strong> each group.<br />

Figure 3: Myocardial cNOS activity (a), c<strong>iNOS</strong> activity (b), 6-keto-PGF1 levels (c) <strong>and</strong><br />

COX2 activity (d) <strong>in</strong> WT, <strong>eNOS</strong> -/- <strong>and</strong> <strong>iNOS</strong> -/- mice with or without ATV pretreatment.<br />

ATV augmented cNOS activity <strong>in</strong> the WT <strong>and</strong> <strong>iNOS</strong> -/- mice. In contrast, c<strong>iNOS</strong> activity<br />

was <strong>in</strong>creased by ATV only <strong>in</strong> the WT mice. Similarly, 6-keto-PGF1 levels <strong>and</strong> COX2<br />

activity were augmented by ATV only <strong>in</strong> the WT mice. <strong>The</strong>re were 4 mice <strong>in</strong> each group.<br />

Figure 4: a: EMSA show<strong>in</strong>g <strong>activation</strong> <strong>of</strong> NF B (p50 <strong>and</strong> p65) <strong>in</strong> the WT <strong>and</strong> <strong>iNOS</strong> -/-<br />

mice, but not <strong>in</strong> the <strong>eNOS</strong> -/- mice. <strong>The</strong> NF B <strong>and</strong> the supershift b<strong>and</strong>s are marked with<br />

arrows. b: A sample <strong>of</strong> immunoblot <strong>and</strong> densitometric analysis <strong>of</strong> cytosolic I B show<strong>in</strong>g<br />

a decrease <strong>in</strong> I B levels <strong>in</strong> the WT <strong>and</strong> <strong>iNOS</strong> -/- mice, but not <strong>in</strong> the <strong>eNOS</strong> -/- mice. <strong>The</strong>re<br />

were 4 mice <strong>in</strong> each group.<br />

Copyright Information


Ye Y, et al. Mechanisms <strong>of</strong> COX2 <strong>upregulation</strong> by atorvastat<strong>in</strong> 28<br />

Figure 5: Immun<strong>of</strong>luorescent sta<strong>in</strong><strong>in</strong>g <strong>of</strong> NF B <strong>in</strong> heart tissue <strong>of</strong> WT mice not receiv<strong>in</strong>g<br />

(ATV-) or receiv<strong>in</strong>g (ATV+) ATV. <strong>The</strong> nuclei are sta<strong>in</strong>ed <strong>in</strong> blue (DAPI) <strong>and</strong> NF B p65<br />

<strong>in</strong> red. Translocation <strong>of</strong> NF B <strong>in</strong>to the nuclei is seen <strong>in</strong> the ATV treated mice.<br />

Figure 6: Myocardial COX2, <strong>iNOS</strong>, I B <strong>and</strong> -act<strong>in</strong> levels <strong>and</strong> nuclear p-STAT-1 <strong>and</strong><br />

Lam<strong>in</strong> B levels <strong>in</strong> mice treated with <strong>in</strong>traperitoneal ATV alone or with AG490 (a JAK<br />

<strong>in</strong>hibitor) or SN50 (an NF B <strong>in</strong>hibitor). * p


Page 29 <strong>of</strong> 35<br />

% <strong>of</strong> the Area at risk<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

p


a. b.<br />

c.<br />

d.<br />

Copyright Information<br />

Page 30 <strong>of</strong> 35


Page 31 <strong>of</strong> 35<br />

a. b.<br />

c. d.<br />

Copyright Information


a.<br />

b.<br />

Copyright Information<br />

Page 32 <strong>of</strong> 35


Page 33 <strong>of</strong> 35<br />

ATV-<br />

ATV+<br />

DAPI NF B DAPI + NF B<br />

Copyright Information<br />

X100


Copyright Information<br />

Page 34 <strong>of</strong> 35


Page 35 <strong>of</strong> 35<br />

a.<br />

b.<br />

S- Nitrosylation COX-2<br />

WT <strong>eNOS</strong> -/- <strong>iNOS</strong> -/-<br />

ATV - + - + - +<br />

Copyright Information

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!