27.02.2013 Views

conspectus of researchon copper metabolism and requirements

conspectus of researchon copper metabolism and requirements

conspectus of researchon copper metabolism and requirements

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A CONSPECTUS OF RESEARCH ON COPPER<br />

METABOLISM AND REQUIREMENTS OF MAN<br />

KARL E. MASON -<br />

Consultant—NIAMDD, National Institutes <strong>of</strong> Health,<br />

Bethesda, Maryl<strong>and</strong> 20014<br />

Pages 1979-2066<br />

THE JOURNAL OF NUTRITION<br />

VOLUME 109, NUMBER 11, NOVEMBER 1979<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


TABLE OF CONTENTS<br />

PAGE<br />

Introduction 1981<br />

Copper in the human body 1982<br />

Copper proteins 1983<br />

Ceruloplasmin (ferroxidase I ) 1984<br />

Superoxide dismutase 1986<br />

Cytochrome c oxidase 1987<br />

Lysyl oxidase 1987<br />

Tyrosinase (phenoloxidase ) 1987<br />

Dopamine /?-hydroxylase 1988<br />

Metallothionein 1988<br />

Other cuproproteins 1988<br />

Absorption <strong>of</strong> <strong>copper</strong> 1989<br />

Mechanisms 1990<br />

Amount 1991<br />

Transport <strong>of</strong> <strong>copper</strong> 1991<br />

Intestine to liver 1991<br />

Metabolism <strong>and</strong> distribution 1992<br />

Copper in blood 1993<br />

Excretion <strong>of</strong> <strong>copper</strong> 1994<br />

Biliary excretion 1995<br />

Salivary excretion 1996<br />

Gastrointestinal excretion 1996<br />

Urinary excretion 1997<br />

Sweat loss 1997<br />

Menstrual loss 1997<br />

Copper in the diet 1997<br />

Copper in foods 1997<br />

Dietary intake <strong>of</strong> <strong>copper</strong> 1998<br />

Copper <strong>metabolism</strong> in prenatal <strong>and</strong> postnatal life 2000<br />

Influence <strong>of</strong> pregnancy 2000<br />

Influence <strong>of</strong> oral contraceptives 2001<br />

Placental transfer 2002<br />

Infancy <strong>and</strong> childhood 2002<br />

Dietary <strong>copper</strong> deficiency 2004<br />

Menkes' disease 2005<br />

Manifestations 2005<br />

Metabolic abnormalities 2007<br />

Therapy 2008<br />

Animal models 2009<br />

Wilson's disease 2009<br />

Nature <strong>of</strong> the disease 2009<br />

Metabolic abnormalities 2010<br />

Therapy 2012<br />

Related disorders 2013<br />

Hypocupremia 2014<br />

Hypercupremia 2015<br />

Copper toxicity 2020<br />

Interrelationships between <strong>copper</strong> <strong>and</strong> other elements 2022<br />

Human <strong>requirements</strong> 2024<br />

Infants 2025<br />

Young children <strong>and</strong> adolescents 2030<br />

Adults 2032<br />

Resume 2036<br />

Acknowledgments 2039<br />

Literature cited . . 2039<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


INTRODUCTION<br />

The discovery <strong>of</strong> <strong>copper</strong>, following that<br />

<strong>of</strong> gold <strong>and</strong> silver, goes back to the post<br />

glacial epoch in southwestern Asia, espe<br />

cially the semi-arid regions <strong>of</strong> Central<br />

Anatolia <strong>and</strong> Iran, during the period 6000<br />

to 3000 B.C. (834). The later Bronze Age<br />

(3000-1000 B.C.) takes its name from the<br />

use during this period <strong>of</strong> bronze, an alloy<br />

<strong>of</strong> <strong>copper</strong> <strong>and</strong> tin. The word <strong>copper</strong> is de<br />

rived from the Latin cuprum, a corrup<br />

tion <strong>of</strong> cyprium, named after the isl<strong>and</strong> <strong>of</strong><br />

Cyprus which was an important source <strong>of</strong><br />

<strong>copper</strong> about 3000 B.C. Thus, aside from<br />

gold <strong>and</strong> silver, which were employed<br />

chiefly for ornamental purposes, <strong>copper</strong><br />

represents the first metal to be used by<br />

mankind for more practical purposes. The<br />

alloys <strong>of</strong> <strong>copper</strong> <strong>and</strong> tin (bronze), <strong>copper</strong><br />

<strong>and</strong> zinc (brass), <strong>and</strong> <strong>of</strong> <strong>copper</strong>, zinc <strong>and</strong><br />

nickel (nickel silver or German silver),<br />

have had a tremendous impact upon<br />

human development over many past<br />

centuries.<br />

Beginning about the time <strong>of</strong> Hippocrates<br />

(400 B.C.) <strong>copper</strong> compounds were com<br />

monly prescribed in the treatment <strong>of</strong> men<br />

tal, pulmonary <strong>and</strong> other diseases. During<br />

the 19th century many different <strong>copper</strong><br />

compounds came into use in the unsuc<br />

cessful treatment <strong>of</strong> a wide variety <strong>of</strong><br />

human diseases (447). Copper amulets<br />

were also in vogue. Not until about 150<br />

years ago was <strong>copper</strong> recognizd as a nor<br />

mal constituent <strong>of</strong> blood. And as early as<br />

1900, Abderhalden (1) recorded that ani<br />

mals kept on a whole milk diet developed<br />

an anemia that could not be prevented by<br />

additions <strong>of</strong> inorganic iron, <strong>and</strong> recog<br />

nized the fact that some other mysterious<br />

substance, probably organic, was wanting.<br />

But the thought that <strong>copper</strong> should ever<br />

be considered an important component <strong>of</strong><br />

the diet for either animals or man was<br />

quite remote until the second decade <strong>of</strong><br />

this century, following closely on the heels<br />

<strong>of</strong> the discovery <strong>of</strong> vitamins A, B, C, D<br />

<strong>and</strong> E. At this time there appeared the<br />

reports <strong>of</strong> Hart et al. (311, 312) <strong>and</strong> Waddell<br />

et al. (812) corroborating the obser<br />

vations <strong>of</strong> Abderhalden <strong>and</strong> indicating that<br />

1981<br />

either extracts or the ash <strong>of</strong> dried cabbage,<br />

corn meal <strong>and</strong> chlorophyll, all essentially<br />

iron-free, definitely favored assimilation<br />

<strong>and</strong> utilization <strong>of</strong> iron in hemoglobin build<br />

ing in rabbits fed a whole milk diet. Also,<br />

at about this same time, McHargue (507)<br />

recorded results <strong>of</strong> studies on rats fed puri<br />

fied diets deficient in <strong>copper</strong>, zinc <strong>and</strong>/or<br />

manganese in which he employed impro<br />

vised glass-lined cages. This represents the<br />

first known use <strong>of</strong> cages <strong>of</strong> this type. Mc<br />

Hargue concluded that manganese in par<br />

ticular, <strong>and</strong> possibly <strong>copper</strong> <strong>and</strong> zinc, have<br />

important functions in animal <strong>metabolism</strong>.<br />

There followed the classic studies <strong>of</strong><br />

Hart, Steenbock, Waddell <strong>and</strong> Elvehjem<br />

(313) demonstrating that rats fed ex<br />

clusively on milk developed an anemia<br />

which was responsive to iron only after the<br />

addition <strong>of</strong> <strong>copper</strong>; also, that the same<br />

relationships prevailed in chicks fed diets<br />

<strong>of</strong> milk <strong>and</strong> rice ( 187). Later came evi<br />

dence from experimental studies with pigs<br />

( 188) that whereas impure organic salts <strong>of</strong><br />

iron cured nutritional anemia, the pure<br />

salts failed to do so unless supplemented<br />

with small amounts <strong>of</strong> <strong>copper</strong>. Recognition<br />

<strong>of</strong> the clinical importance <strong>of</strong> these early<br />

observations was first given by Mills (520,<br />

521) <strong>and</strong> Josephs (389) who reported that<br />

<strong>copper</strong> supplements accelerated hemo<br />

globin synthesis in hypochromic anemia <strong>of</strong><br />

infants treated with iron salts. Although<br />

several investigators were not in agree<br />

ment (274, 275, 476), others confirmed<br />

these findings (186, 399, 455, 799) <strong>and</strong> ex<br />

tended them to hypochromic microcytic<br />

anemia <strong>of</strong> adults (521). The early history<br />

<strong>and</strong> later developments are detailed in<br />

several reviews (99, 540, 693). During this<br />

same period appeared Tompsett's report<br />

( 785 ) <strong>of</strong> the first <strong>copper</strong> balance study car<br />

ried out on 17 human subjects, indicating<br />

that the normal daily intake appeared to<br />

vary from 2.0 to 2.5 mg/day. In the same<br />

Received for publication October 16, 1978.<br />

1 Requests for reprints should be directed to Nutri<br />

tion Institute. Science <strong>and</strong> Education Administration,<br />

Building 307. Room 217, USDA. Beltsville. Maryl<strong>and</strong><br />

20705.<br />

- Deceased December S. 1978.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1982 KARL E. MASON<br />

year Daniels <strong>and</strong> Wright (142) reported<br />

the first balance study on young children<br />

(4-6 years old) indicating an average in<br />

take <strong>of</strong> 1.48 mg/day <strong>and</strong> a requirement<br />

not less than 0.10 mg/kg/day. These esti<br />

mates are in remarkably good agreement<br />

with those recorded in the later literature<br />

(see p. 2032). Thus, the stage was set<br />

for an extensive exploration <strong>of</strong> the metab<br />

olism, deficiencies, excesses <strong>and</strong> require<br />

ments <strong>of</strong> <strong>copper</strong> in man witnessed during<br />

the past half century.<br />

An overview <strong>of</strong> what has transpired dur<br />

ing this period should include: 1) a vast<br />

number <strong>of</strong> studies on <strong>copper</strong> depletion<br />

<strong>and</strong> effects <strong>of</strong> <strong>copper</strong> supplementation in<br />

laboratory animals; 2) recognition <strong>of</strong> natu<br />

rally occurring deficiency <strong>of</strong> <strong>copper</strong> in farm<br />

animals, especially cattle <strong>and</strong> sheep, in geo<br />

graphic areas where there exists a defi<br />

ciency <strong>of</strong> <strong>copper</strong> in the soil <strong>and</strong> vegeta<br />

tion; 3) exhaustive analyses <strong>of</strong> the <strong>copper</strong><br />

content <strong>of</strong> plant <strong>and</strong> animal tissues, in<br />

cluding those <strong>of</strong> man; 4) recognition <strong>of</strong><br />

states <strong>of</strong> <strong>copper</strong> deficiency in the human<br />

infant reared on diets similar to those em<br />

ployed in inducing <strong>copper</strong> deficiency states<br />

in experimental animals, combined with<br />

states <strong>of</strong> protein calorie malnutrition, in<br />

fection <strong>and</strong> other metabolic disorders;<br />

5) the effects <strong>of</strong> parenteral alimentation,<br />

especially in infants suffering from devel<br />

opmental anomalies <strong>of</strong> the alimentary tract<br />

<strong>and</strong> post-surgical stresses; 6) recognition<br />

<strong>of</strong> two genetically determined abnormali<br />

ties <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> in man ( Menkes'<br />

kinky-hair, or steely-hair, syndrome affect<br />

ing primarily young infants <strong>and</strong> Wilson's<br />

disease, affecting the adolescent <strong>and</strong> adult,<br />

together with therapeutic measures for the<br />

same; <strong>and</strong> 7) exhaustive studies <strong>of</strong> the<br />

many <strong>copper</strong>-containing proteins distrib<br />

uted throughout the blood <strong>and</strong> other tissues,<br />

<strong>and</strong> their role in metabolic processes <strong>of</strong><br />

man <strong>and</strong> lower animals.<br />

In the present review it is not possible<br />

to consider the first three categories <strong>of</strong> re<br />

search mentioned above, other than to<br />

make reference to certain observations<br />

which have particular relevance to the un<br />

derst<strong>and</strong>ing <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> <strong>and</strong> re<br />

quirements <strong>of</strong> man. For additional infor<br />

mation on the first areas <strong>of</strong> research men<br />

tioned the reader is referred to a rather<br />

extensive series <strong>of</strong> reviews (6, 7, 32, 71,<br />

99, 139, 140, 185, 211, 257, 319, 461, 493,<br />

779, 798).<br />

COPPER IN THE HUMAN BODY<br />

Many opinions have been expressed con<br />

cerning the total <strong>copper</strong> content <strong>of</strong> the<br />

human body. More than 40 years ago Chou<br />

<strong>and</strong> Adolph (115), in studies based upon<br />

analyses <strong>of</strong> nine organs from two adults at<br />

autopsy, in which they found an average <strong>of</strong><br />

about 116 mg, estimated that the human<br />

body contained between 100 <strong>and</strong> 150 mg<br />

<strong>of</strong> <strong>copper</strong>. Since then estimates have been<br />

reduced. Cartwright <strong>and</strong> Wintrobe (105)<br />

considered 80 mg <strong>of</strong> <strong>copper</strong> to be a more<br />

reasonable estimate for a 70-kg man. Sass-<br />

Kortsak (666), on the basis <strong>of</strong> data <strong>of</strong><br />

Tipton <strong>and</strong> Cook (781), calculated a mean<br />

<strong>of</strong> 75 mg, with a range <strong>of</strong> 50 to 120 mg.<br />

A slightly lower estimate <strong>of</strong> 70 mg has been<br />

given recently by Sumino et al. (762),<br />

based upon analyses <strong>of</strong> 18 different organs<br />

<strong>and</strong> tissues <strong>of</strong> 30 Japanese subjects, victims<br />

<strong>of</strong> accidental deaths, 28 <strong>of</strong> whom ranged<br />

in age from 20 to more than 60 years.<br />

These investigators also estimated that<br />

about one-third <strong>of</strong> body <strong>copper</strong> was in the<br />

liver <strong>and</strong> brain combined, one-third in the<br />

musculature, <strong>and</strong> the remaining third dis<br />

persed in other tissues. The mean content<br />

<strong>of</strong> <strong>copper</strong> in human liver is about \5% <strong>of</strong><br />

total body <strong>copper</strong> (668).<br />

It has long been recognized that the<br />

liver <strong>and</strong> brain contain a much higher con<br />

centration <strong>of</strong> <strong>copper</strong> than other organs <strong>and</strong><br />

tissues, amounting to about 8 mg in each<br />

<strong>of</strong> these organs ( 105). The liver content<br />

is, in large part, related to its function as<br />

a storage organ for <strong>copper</strong> <strong>and</strong> also as the<br />

only site <strong>of</strong> synthesis <strong>and</strong> release <strong>of</strong> ceruloplasmin.<br />

Copper is unevenly distributed<br />

in the brain. While some investigators re<br />

port very little difference in the <strong>copper</strong><br />

content <strong>of</strong> grey <strong>and</strong> white matter <strong>of</strong> the<br />

cerebral cortex (102, 138, 613), others have<br />

found a considerably higher content in the<br />

grey than in the white matter ( 134, 138,<br />

178, 780, 828). The substantia nigra <strong>and</strong><br />

locus ceruleus, both components <strong>of</strong> the<br />

grey matter, are exceptionally rich in cop<br />

per ( 134, 178). Possible relationships <strong>of</strong><br />

the pigmented nerve cells <strong>of</strong> the locus<br />

ceruleus to their content <strong>of</strong> melanin <strong>and</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1983<br />

to tyrosinase have been suggested <strong>and</strong> ex<br />

plored by in vitro studies with no positive<br />

results, possibly due to the use <strong>of</strong> necropsy<br />

material rather than fresh tissue (178).<br />

Gubler et al. (285) record mean <strong>copper</strong><br />

values (in terms <strong>of</strong> /*g/g wet weight) <strong>of</strong><br />

6.3, 6.5, 5.7, 4.2, 2.6 <strong>and</strong> 1.7, repsectively,<br />

for whole brain, cerebellum, basal ganglia,<br />

cerebral cortex, brain stem <strong>and</strong> cervical<br />

spinal cord. These data are based on five<br />

adult males who died following traumatic<br />

injuries.<br />

Compared to the liver <strong>and</strong> brain, lesser<br />

levels <strong>of</strong> <strong>copper</strong> are found in the heart,<br />

kidney, pancreas, spleen, lungs, bone <strong>and</strong><br />

skeletal muscle, diminishing generally in<br />

the order mentioned (102, 115, 182, 208,<br />

285, 397, 509, 691, 762, 786). Gubler et al.<br />

(285 ) give mean values (/¿g/gwet weight )<br />

<strong>of</strong> 5.3, 3.2, 2.2, 1.0 <strong>and</strong> 0.9, respectively, for<br />

liver, heart, kidney, spleen <strong>and</strong> skeletal<br />

muscle. The total <strong>copper</strong> content <strong>of</strong> the<br />

whole liver, brain, kidney, heart <strong>and</strong><br />

spleen, respectively, is estimated to be 8.0,<br />

8.0, 1.2, 0.9 <strong>and</strong> 0.1 mg (105).<br />

In the fetus <strong>and</strong> infant, the distribution<br />

<strong>of</strong> <strong>copper</strong> is quite different from that in the<br />

adult. During fetal life there is a progres<br />

sive increase in percentage <strong>of</strong> <strong>copper</strong> <strong>and</strong><br />

iron in the body, while that <strong>of</strong> zinc re<br />

mains relatively constant (704), such that<br />

at birth the liver <strong>and</strong> spleen contain about<br />

1/2 the <strong>copper</strong>, l/4th the zinc <strong>and</strong> l/8th<br />

the iron in the whole body (846). Liver <strong>of</strong><br />

the newborn has an exceptionally high con<br />

centration <strong>of</strong> <strong>copper</strong>, approximately 6 to<br />

10 times that <strong>of</strong> adult man (538, 844, 846).<br />

After the first few months <strong>of</strong> life these con<br />

centrations decrease rapidly to those <strong>of</strong> the<br />

adult (69, 565, 845). During the transition<br />

from infancy to the early years <strong>of</strong> life, there<br />

is a decrease in <strong>copper</strong> concentration in<br />

kidney, heart <strong>and</strong> spleen <strong>and</strong> an increase<br />

in brain (69, 845), which is relatively low<br />

in the newborn (780).<br />

On the basis <strong>of</strong> analyses <strong>of</strong> major organs<br />

<strong>of</strong> man in different geographic areas Forssen<br />

(222) states that the Finns have some<br />

what lower <strong>copper</strong> levels than Americans,<br />

<strong>and</strong> that peoples <strong>of</strong> Africa <strong>and</strong> the Near<br />

<strong>and</strong> Far East have levels 1.5 to 2 times<br />

those <strong>of</strong> the Finns. Whether these obser<br />

vations may or may not reflect differences<br />

in soils, dietary habits or ethnic factors is<br />

not clear. They are in accord with earlier<br />

observations <strong>of</strong> Schroeder et al. (691) who<br />

found that other races have larger mean<br />

amounts <strong>of</strong> <strong>copper</strong> in aorta, kidney, liver,<br />

lung <strong>and</strong> spleen than do Americans, Swiss<br />

<strong>and</strong> African Caucasoids, <strong>and</strong> that Orientals<br />

have especially high values.<br />

The levels <strong>of</strong> <strong>copper</strong> in human hair have<br />

been the subject <strong>of</strong> numerous studies in<br />

the hope that such information might pro<br />

vide some measure <strong>of</strong> the <strong>copper</strong> status <strong>of</strong><br />

the body, especially states <strong>of</strong> <strong>copper</strong> de<br />

ficiency. Wide individual variations with<br />

respect to age <strong>and</strong> sex (415), to hair pig<br />

mentation (357) <strong>and</strong> to exogenous con<br />

tamination (298) have indicated that cop<br />

per levels in hair have little meaningfulness<br />

in evaluating the status <strong>of</strong> <strong>copper</strong> in<br />

man (798). However, a recent report<br />

(378) states that determination <strong>of</strong> <strong>copper</strong><br />

in hair may be useful in evaluating total<br />

liver content <strong>of</strong> <strong>copper</strong>.<br />

COPPER PROTEINS<br />

Many proteins in tissues have the ca<br />

pacity to form <strong>copper</strong> complexes. Some <strong>of</strong><br />

these do not occur in mammalian species,<br />

but appear only in lower animal forms <strong>and</strong><br />

plants (e.g., hemocyanin, lacease, ascorbic<br />

acid oxidase, polyphenol oxidases, turacine).<br />

There have come to be recognized a<br />

large number <strong>of</strong> cuproproteins <strong>of</strong> mam<br />

malian species in which <strong>copper</strong> is part <strong>of</strong><br />

the molecular structure <strong>and</strong> in which there<br />

is a characteristic ratio between moles <strong>of</strong><br />

protein <strong>and</strong> atoms <strong>of</strong> associated <strong>copper</strong>.<br />

By virtue <strong>of</strong> these characteristics <strong>and</strong> the<br />

fact that the contained <strong>copper</strong> does not<br />

dissociate during isolation <strong>of</strong> the protein,<br />

these cuproproteins function as enzymes<br />

<strong>and</strong> are <strong>of</strong>ten grouped with other metalcontaining<br />

enzymes, all <strong>of</strong> which are re<br />

ferred to as "metalloproteins." Those ac<br />

cepted in this category include ceruloplasmin,<br />

Superoxide dismutase, cytochrome c<br />

oxidase, lysyl oxidase, tyrosinase <strong>and</strong> dopamine<br />

ß-hydroxylase. One other important<br />

metalloprotein, metallothionein, lacks enzymic<br />

properties but is capable <strong>of</strong> binding<br />

<strong>copper</strong> as well as certain other heavy<br />

metals. Several plasma <strong>and</strong> connective tis<br />

sue oxidases isolated from mammalian<br />

organs <strong>and</strong> tissues are at least <strong>copper</strong> de<br />

pendent (monoamine oxidase, spermine<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1984 KARL E. MASON<br />

oxidase, diamine oxidase, benzylamineoxidase,<br />

etc.) but their significance in hu<br />

man <strong>metabolism</strong> is rather obscure. These<br />

proteins will be discussed in the general<br />

order mentioned. It may be noted that this<br />

panorama <strong>of</strong> cuproproteins has been sub<br />

ject to frequent changes in identification,<br />

description, terminology <strong>and</strong> functional at<br />

tributes over recent years. Hence, some<br />

statements <strong>and</strong> views expressed may be con<br />

sidered in a state <strong>of</strong> flux subject to consid<br />

erable revision as new advances are made.<br />

Ceruloplasmin (ferroxidase I)<br />

The classic studies <strong>of</strong> Holmberg <strong>and</strong><br />

Laurell (346, 347 ) described a blue plasma<br />

<strong>copper</strong>-containing protein which they<br />

named "ceruloplasmin." They reported that<br />

it was an «-globulinrepresenting almost all<br />

the <strong>copper</strong> present in mammalian plasma,<br />

<strong>and</strong> differed remarkably from all other<br />

such proteins in its molecular weight <strong>of</strong><br />

about 151,000 daltons, its <strong>copper</strong> content<br />

<strong>of</strong> about 0.32% <strong>and</strong> its content <strong>of</strong> eight<br />

atoms <strong>of</strong> <strong>copper</strong> per molecule. Human<br />

ceruloplasmin has been highly purified <strong>and</strong><br />

crystallized as tetragonal crystals (537).<br />

According to Scheinberg <strong>and</strong> Morell (676),<br />

who provide an excellent review <strong>of</strong> the sub<br />

ject, its molecular weight may vary from<br />

132,000 to 160,000, depending upon the<br />

method employed. More recently, it has<br />

been reported that its molecular weight is<br />

134,000 ±3,000, <strong>and</strong> that the number <strong>of</strong><br />

<strong>copper</strong> atoms varies from 6 to 6.6 (653).<br />

Of these, about one-half are in the cupric<br />

<strong>and</strong> the other half in the cuprous state<br />

(395). The nature <strong>of</strong> the <strong>copper</strong>-protein<br />

bond is not known. It is also recognized<br />

that ceruloplasmins from different animals<br />

show some cross-reactivity (395) <strong>and</strong> that<br />

they differ in p-phenylenediamine oxidase<br />

activity (502). Two other blue oxidases,<br />

ascorbate oxidase <strong>and</strong> lacease are enzymes<br />

found only in the plant world, where<br />

ceruloplasmin does not exist. An excellent<br />

comparison <strong>of</strong> the chemical structure <strong>and</strong><br />

physiological properties <strong>of</strong> these three ox<br />

idases is given by Dawson et al. (151).<br />

Ceruloplasmin contains about 8% car<br />

bohydrate, composed principally <strong>of</strong> glucosamine,<br />

mannose <strong>and</strong> galactose. Almost,<br />

if not all, <strong>of</strong> its oligosaccharide side chains<br />

are terminated by a sialic acid residue, ap<br />

parently essential for its survival in the cir<br />

culation (550). Copper is incorporated into<br />

ceruloplasmin only at the time <strong>of</strong> its syn<br />

thesis in the liver <strong>and</strong> the liver is its only<br />

site <strong>of</strong> synthesis (439, 742, 824). In the<br />

blood stream ceruloplasmin does not ex<br />

change its <strong>copper</strong> with other <strong>copper</strong> com<br />

plexes in the serum or blood cells. In vitro,<br />

<strong>copper</strong> is released from ceruloplasmin only<br />

after acidification, indicating strong protein<br />

binding <strong>of</strong> <strong>copper</strong>. Ceruloplasmin is hetero<br />

geneous, existing in several forms depend<br />

ing upon its prosthetic carbohydrate<br />

groups (65, 535).<br />

A moderate oxidase activity <strong>of</strong> cerulo<br />

plasmin toward a variety <strong>of</strong> substrates, <strong>of</strong><br />

which p-phenylenediamine is the best, was<br />

recognized by Holmberg <strong>and</strong> Laurell (348)<br />

in 1951. This enzyme reaction, as employed<br />

in the method <strong>of</strong> Ravin (629), has pro<br />

vided a useful means <strong>of</strong> qualitatively mea<br />

suring ceruloplasmin in body fluids. There<br />

has also been developed an immunological<br />

method using highly purified human ceru<br />

loplasmin as an antigen to incite specific<br />

antibody, usually in rabbits (339, 490, 674).<br />

Careful studies <strong>of</strong> Rosenberg et al. (644)<br />

demonstrate that both methods yield com<br />

parable results. Although ceruloplasmin is<br />

primarily a plasma protein, it is found also<br />

in synovial, ascitic <strong>and</strong> cerebrospinal fluids<br />

(744).<br />

Much interest has centered around this<br />

protein not only because <strong>of</strong> the mystery<br />

surrounding its true physiological functions<br />

but also because <strong>of</strong> impairment <strong>of</strong> its syn<br />

thesis <strong>and</strong> other possible derangements in<br />

Wilson's disease (p. 2009) <strong>and</strong> its low plasma<br />

levels associated with Menkes' kinky-hair<br />

(steely-hair) syndrome, a genetically de<br />

termined <strong>copper</strong>-deficiency disease in chil<br />

dren (p. 2005). It is <strong>of</strong> interest that in the<br />

early studies <strong>of</strong> Holmberg <strong>and</strong> Laurell,<br />

who were aware <strong>of</strong> recent evidence <strong>of</strong><br />

abnormalities <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> in<br />

Wilson's disease, ceruloplasmin plasma<br />

levels were found to be normal in a pa<br />

tient said to have Wilson's disease but who,<br />

several years later, was found not to be a<br />

victim <strong>of</strong> that disease. Hence, as stated by<br />

Scheinberg (671 ), "The capstone <strong>of</strong> physi<br />

ological significance to these discoveries<br />

ironically <strong>and</strong> undeservedly eluded them/'<br />

This same type <strong>of</strong> study carried out by<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1985<br />

Scheinberg <strong>and</strong> Gitlin (674) laid the basis<br />

<strong>of</strong> the concept that Wilson's disease is<br />

usually characterized by a lifelong defi<br />

ciency or absence <strong>of</strong> ceruloplasmin, <strong>and</strong><br />

that this deficiency is autosomal recessive<br />

in nature.<br />

Advances in knowledge concerning ceru<br />

loplasmin, as well as the role <strong>of</strong> <strong>copper</strong> in<br />

human <strong>metabolism</strong>, have in large part been<br />

the consequence <strong>of</strong> intensive research on<br />

the nature, cause <strong>and</strong> treatment <strong>of</strong> Wilson's<br />

disease, resulting in truly voluminous lit<br />

erature. In contrast, investigations con<br />

cerning Menkes" disease have focused<br />

largely on the role <strong>of</strong> metallothionein-like<br />

cuproproteins <strong>and</strong> defects in intestinal ab<br />

sorption <strong>of</strong> <strong>copper</strong>. Here also, in the in<br />

terim since its first recognition in 1962<br />

(513), an extensive literature has evolved.<br />

On the other side <strong>of</strong> the ledger are ad<br />

vances made during the past 12 years in<br />

elucidating the role <strong>of</strong> <strong>copper</strong> in iron me<br />

tabolism. These have, in large part, re<br />

solved questions in the minds <strong>of</strong> those<br />

investigators <strong>of</strong> 50 years ago (311, 313)<br />

who first recognized the important role <strong>of</strong><br />

<strong>copper</strong> in nutrition.<br />

The role <strong>of</strong> ceruloplasmin in biological<br />

processes began to receive some rational<br />

explanation about 1960, with evidence that<br />

in vitro it catalyzed the oxidation <strong>of</strong> fer<br />

rous iron ( 141). Further investigation <strong>of</strong><br />

this oxidase activity <strong>of</strong> ceruloplasmin pro<br />

vided indications that it represented an<br />

enzyme in human plasma responsible for<br />

oxidation <strong>of</strong> ferrous iron, <strong>and</strong> that the latter<br />

was the substrate for its greatest activity<br />

(504, 583, 585). Based on these findings,<br />

Osaki et al. (583) proposed that the name<br />

ferroxidase may be more useful than desig<br />

nating this enzyme as a "sky-blue substance<br />

from plasma." Since then, ceruloplasmin<br />

<strong>and</strong> ferroxidase I have become synonymous<br />

terms. However, in the discussion to follow<br />

the more common designation "ceruloplas<br />

min" will be used.<br />

The hypothesis proposed was that by<br />

this mechanism ceruloplasmin may play an<br />

important biological role in the release <strong>and</strong><br />

transfer <strong>of</strong> iron from storage cells to plasma<br />

transferrin. This concept was promptly<br />

supported by studies on <strong>copper</strong>-deficient<br />

swine (445, 446, 625), <strong>and</strong> by liver per<br />

fusion studies on dogs <strong>and</strong> swine (584).<br />

The studies on <strong>copper</strong>-deficient swine<br />

clearly demonstrated the effectiveness <strong>of</strong><br />

ceruloplasmin in counteracting the defec<br />

tive movement <strong>of</strong> iron from hepatic cells,<br />

reticuloendothelial cells <strong>and</strong> the intestinal<br />

mucosa to the plasma. This general subject<br />

has been extensively discussed <strong>and</strong> re<br />

viewed elsewhere (211, 226-230, 390, 446).<br />

The current concept <strong>of</strong> ceruloplasmin<br />

function in iron <strong>metabolism</strong> appears to be<br />

as follows. For normal hemoglobin syn<br />

thesis iron must be transported from stor<br />

age sites in the liver, reticuloendothelial<br />

system <strong>and</strong> intestine to the bone marrow<br />

by transferrin. In the storage sites iron is<br />

present in the ferric state, as ferritin. This<br />

iron can be reduced by reduced rib<strong>of</strong>lavin<br />

<strong>and</strong> rib<strong>of</strong>lavin derivatives, liberating fer<br />

rous iron from the ferritin. This ferrous<br />

iron is then oxidized catalytically back to<br />

ferric iron by virtue <strong>of</strong> the ferroxidase ac<br />

tivity <strong>of</strong> ceruloplasmin, allowing the Fe3*<br />

to combine with apotransferrin, as the<br />

initial step in the mobilization <strong>of</strong> stored<br />

iron.<br />

The mechanism <strong>of</strong> iron transfer from the<br />

storage cell to transferrin has not been<br />

clearly established. It is possible that Fe2+<br />

<strong>and</strong> ceruloplasmin interact to form a ferric<br />

intermediate that transfers iron to apo<br />

transferrin by a specific lig<strong>and</strong> exchange<br />

reaction (850). In any case, Fe3* combines<br />

with transferrin <strong>and</strong> provides the progeni<br />

tors <strong>of</strong> the erythrocytes in the bone mar<br />

row with the necessary iron for hemoglobin<br />

synthesis. As has been expressed (230),<br />

the life cycle <strong>of</strong> the <strong>copper</strong> in ceruloplas<br />

min is a one-time journey to the tissues or<br />

a return to the liver for resynthesis.<br />

Ceruloplasmin is a multifunctional pro<br />

tein involved not only in the mobilization<br />

<strong>of</strong> plasma iron but also in <strong>copper</strong> transport<br />

<strong>and</strong> in regulation <strong>of</strong> biogenic amines. The<br />

suggestion <strong>of</strong> Broman (65) that it func<br />

tions as a <strong>copper</strong>-transport protein has been<br />

well substantiated by animal studies indi<br />

cating that its <strong>copper</strong> atoms are trans<br />

ferred to cytochrome c oxidase <strong>and</strong> prob<br />

ably to other <strong>copper</strong>-containing proteins <strong>of</strong><br />

body tissues (230, 365). Close correla<br />

tions between low serum ceruloplasmin<br />

<strong>and</strong> low cytochrome c oxidase in leuco<br />

cytes in Wilson's disease (715) suggest<br />

that the same is true in man. Ceruloplas-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1986 KARL E. MASON<br />

min also has the capacity to oxidize natu<br />

rally occurring substances such as sero<br />

tonin, melatonin, epinephrine <strong>and</strong> norepinephrine,<br />

<strong>and</strong> may possibly play an<br />

important role in the control <strong>of</strong> blood <strong>and</strong><br />

tissue levels <strong>of</strong> biogenic amines (585).<br />

There are also suggestions that abnormali<br />

ties in <strong>copper</strong> <strong>metabolism</strong> may be involved<br />

in Parkinson's disease (34). For further<br />

details concerning the multifunctional na<br />

ture <strong>of</strong> ceruloplasmin, its biological func<br />

tions <strong>and</strong> catalytic activity the reader is<br />

referred to the recent reviews <strong>of</strong> Frieden<br />

<strong>and</strong> Hsieh (230) <strong>and</strong> <strong>of</strong> Sass-Kortsak <strong>and</strong><br />

Beam (668).<br />

Ceruloplasmin is not the only compound<br />

with ferroxidase-like activity in human<br />

plasma. In 1969, Lee et al. (444) reported<br />

the presence <strong>of</strong> citrate, differing from<br />

ceruloplasmin in that it is not inhibited by<br />

azide <strong>and</strong> yet has the same capacity to<br />

accelerate oxidation <strong>of</strong> ferrous ion to ferric<br />

ion <strong>and</strong>, possibly, to accelerate the rate <strong>of</strong><br />

reaction <strong>of</strong> ferric ion with transferrin. Ad<br />

ditional mechanisms, perhaps not involving<br />

<strong>copper</strong> directly, have been implicated in<br />

iron translocation (56a). A deterrent to<br />

recognition <strong>of</strong> a role <strong>of</strong> ceruloplasmin in<br />

hematopoietic functions <strong>of</strong> man has been<br />

the finding that many subjects suffering<br />

from Wilson's disease may have no demon<br />

strable plasma ceruloplasmin <strong>and</strong> yet show<br />

no evidence <strong>of</strong> iron-deficiency anemia.<br />

This anomaly seems now to have a reason<br />

able explanation with the isolation <strong>of</strong> an<br />

other cuproprotein from human serum by<br />

Topham <strong>and</strong> Frieden (788) which nor<br />

mally accounts for about 1% <strong>of</strong> the total<br />

ferroxidase activity. It has a molecular<br />

weight <strong>of</strong> about 800,000 daltpns <strong>and</strong> con<br />

tains approximately 0.8% <strong>copper</strong>. Its desig<br />

nation as ferroxidase II seems quite appro<br />

priate. It is a lipoprotein with a cholesterol<br />

<strong>and</strong> phosphatidylcholine content <strong>of</strong> ap<br />

proximately 207o- It differs from cerulo<br />

plasmin also in its yellow color <strong>and</strong> its lack<br />

<strong>of</strong> p-phenylenediamine oxidase activity,<br />

<strong>and</strong> may be responsible for the mainte<br />

nance <strong>of</strong> near-normal iron <strong>metabolism</strong>,<br />

despite low-levels or absence <strong>of</strong> plasma<br />

ceruloplasmin, in Wilson's disease. Whether<br />

citrate plays a comparable role is still a<br />

question. Furthermore, most <strong>of</strong> the new<br />

postulations with respect to the roles <strong>of</strong> the<br />

ferroxidases <strong>and</strong> citrate are based upon in<br />

vitro studies on human blood <strong>and</strong> observa<br />

tions on experimental animals. Their appli<br />

cability to man seems reasonable but re<br />

mains to be established.<br />

Other intriguing aspects <strong>of</strong> ceruloplas<br />

min are: 1) its increased plasma levels in<br />

response to estrogenic hormones, as in<br />

users <strong>of</strong> oral contraceptives <strong>and</strong> pregnant<br />

women; 2) its very low levels in plasma<br />

<strong>of</strong> the fetus <strong>and</strong> newborn; 3) its rapid<br />

synthesis by the newborn infant through<br />

utilization <strong>of</strong> a special neonatal hepatomitochondrocuprein<br />

not found at any other<br />

stage <strong>of</strong> life; 4) its stabilization at adult<br />

plasma levels at or about puberty; 5) its<br />

low serum levels in the genetically deter<br />

mined Wilson's <strong>and</strong> Menkes' diseases;<br />

<strong>and</strong> 6) suggestions that <strong>copper</strong> is incor<br />

porated into cytochrome c oxidase only if<br />

it is presented to the cell as ceruloplasmin<br />

(3, 65). These topics will be considered<br />

later.<br />

Superoxide dismutase<br />

Almost 40 years ago, Mann <strong>and</strong> Keilin<br />

(486) isolated two blue <strong>copper</strong> proteins<br />

from bovine erythrocytes <strong>and</strong> liver which<br />

they designated hemocuprein <strong>and</strong> hepatocuprein,<br />

respectively. Both proteins had<br />

molecular weights <strong>of</strong> about 35,000 daltons<br />

<strong>and</strong> contained 0.34% <strong>copper</strong>. Similar pro<br />

teins were later isolated from human eryth<br />

rocytes (erythrocuprein) by Markowitz et<br />

al. (490), from human brain (cerebrocuprein)<br />

by Porter <strong>and</strong> Ainsworth (612)<br />

<strong>and</strong> from adult human liver (hepatocuprein)<br />

by Porter et al. (616).<br />

Subsequently, Carneo <strong>and</strong> Deutsch (95)<br />

clearly demonstrated that these <strong>copper</strong><br />

proteins were identical <strong>and</strong> proposed the<br />

term cytocuprein to encompass them. They<br />

later considered the term inappropriate,<br />

since the protein also contained 2-g atoms<br />

<strong>of</strong> zinc per mole (96). On the basis that<br />

these cuproproteins catalyze the dismutation<br />

<strong>of</strong> superoxide-free radical ions, <strong>and</strong><br />

thus have true enzymatic function, the<br />

designation "superoxide dismutase" was<br />

proposed by McCord <strong>and</strong> Fridovich (500,<br />

501), <strong>and</strong> is now in common usage. The<br />

primary function <strong>of</strong> superoxide dismutase<br />

appears to be that <strong>of</strong> scavenging the inter<br />

mediates <strong>of</strong> oxygen reduction in aerobic<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1987<br />

organisms, namely Superoxide aniónradical<br />

(500). Superoxide dismutase catalyzes the<br />

conversion <strong>of</strong> the Superoxide radical to<br />

hydrogen peroxide plus oxygen <strong>and</strong> the<br />

hydrogen peroxide is removed by catalyses<br />

<strong>and</strong> peroxidases. Thus, Superoxide dismu<br />

tase helps protect the cell from the damag<br />

ing effects <strong>of</strong> oxygen toxicity.<br />

Cytochrome c oxidase<br />

Although cytochrome c oxidase has been<br />

recognized as a <strong>copper</strong> <strong>and</strong> heme contain<br />

ing protein for almost 40 years, the state<br />

<strong>and</strong> function <strong>of</strong> its <strong>copper</strong> component have<br />

been very difficult to clarify. The history<br />

<strong>of</strong> these explorations, up to 1966, has been<br />

well reviewed by Beinert (43) <strong>and</strong> Wharton<br />

<strong>and</strong> Gibson (837). It has not yet been<br />

possible to clearly establish its molecular<br />

weight, or whether it contains one or two<br />

<strong>copper</strong> ions <strong>and</strong> one or two heme groups.<br />

This enzyme is found in all aerobic cells<br />

<strong>and</strong> is mainly responsible for the introduc<br />

tion <strong>of</strong> oxygen into the oxidative machinery<br />

that produces energy for biochemical syn<br />

thesis <strong>and</strong> for physical activity. As the<br />

terminal enzyme in the electron transport<br />

chain, it catalyzes the oxidation <strong>of</strong> reduced<br />

cytochrome c by molecular oxygen <strong>and</strong>, in<br />

the process, oxygen is reduced to water. It<br />

represents an enzyme vital to essentially<br />

all forms <strong>of</strong> life, by virtue <strong>of</strong> serving as the<br />

terminal enzyme in the oxidative phosphorylation<br />

process <strong>of</strong> living cells.<br />

A significant decrease in cytochrome c<br />

oxidase activity is considered a major cause<br />

<strong>of</strong> neural <strong>and</strong> cardiac abnormalities ob<br />

served in the <strong>of</strong>fspring <strong>of</strong> different animal<br />

species fed diets deficient in <strong>copper</strong>. Neural<br />

lesions varying from defective myelination<br />

to necrosis occur in lambs <strong>and</strong> goats (361,<br />

798), in the guinea pig (201, 202) <strong>and</strong> in<br />

the rat (92, 401 ). Myocardial abnormalities<br />

ranging from focal failure <strong>of</strong> tissue respi<br />

ration to myocardial hypertrophy <strong>and</strong><br />

acute cardiac failure occur in cattle (798),<br />

swine (707) <strong>and</strong> rats (3, 92, 241, 316).<br />

Lysyl oxidase<br />

This <strong>copper</strong>-containing enzyme, lysyl<br />

oxidase, is one <strong>of</strong> the amine oxidases (308 )<br />

but is given separate consideration here<br />

because <strong>of</strong> its well established status <strong>and</strong><br />

special importance. It has now been par<br />

tially purified from several sources (308,<br />

601, 648a, 650, 716). Its major function<br />

appears to be to catalyze the oxidative deamination<br />

<strong>of</strong> e-amino groups <strong>of</strong> peptidyl<br />

lysine or hydroxylysine to form «-aminoadipic-S-semialdehyde<br />

derivatives as a first<br />

step in the cross-linking <strong>of</strong> immature elastin<br />

<strong>and</strong> collagen into stabile fibrils. In collagen,<br />

the cross-links are derived from either ly<br />

sine or hydroxylysine. In elastin, however,<br />

hydroxylysine <strong>and</strong> hydroxylysine-derived<br />

cross-links are not present.<br />

The story <strong>of</strong> lysyl oxidase goes back to<br />

early studies <strong>of</strong> experimental <strong>copper</strong>-defi<br />

ciency in the chick (331, 571, 734) <strong>and</strong><br />

pigs (93, 94, 129, 707) in which dissecting<br />

aneurisms <strong>and</strong> sometimes rupture <strong>of</strong> the<br />

aorta <strong>and</strong> large vessels were noted. These<br />

vascular defects were ascribed to abnor<br />

malities <strong>of</strong> the elastic component <strong>of</strong> the<br />

vascular wall <strong>and</strong> to low tissue levels <strong>of</strong><br />

<strong>copper</strong>. These observations coincided in<br />

time with the demonstration by Partridge<br />

et al. (594) that the vital crosslinking<br />

groups in elastin, which they named "desmosine"<br />

<strong>and</strong> "isodesmosine," were formed<br />

from lysine. Other studies on <strong>copper</strong>-defi<br />

cient chicks (117) gave evidence <strong>of</strong> a role<br />

<strong>of</strong> <strong>copper</strong> in crosslinking <strong>of</strong> collagen. It is<br />

now clear that the basis for these observa<br />

tions was the role <strong>of</strong> <strong>copper</strong> as a c<strong>of</strong>actor<br />

for lysyl oxidase (648a).<br />

Further, a foundation was laid for the<br />

development <strong>of</strong> current concepts related<br />

to the role <strong>of</strong> <strong>copper</strong> with respect to bio<br />

chemical <strong>and</strong> structural abnormalities seen<br />

in collagen <strong>and</strong> elastin in experimental ani<br />

mals, livestock (798) <strong>and</strong> non-domestic<br />

animals (219). Furthermore, one can ob<br />

serve an example <strong>of</strong> application <strong>of</strong> knowl<br />

edge gained from experimentally induced<br />

deficiency in the chick <strong>and</strong> lower animals<br />

to a better underst<strong>and</strong>ing <strong>of</strong> human dis<br />

orders, since many <strong>of</strong> the manifestations<br />

<strong>of</strong> Menkes' kinky-hair syndrome (513), a<br />

congenital state <strong>of</strong> <strong>copper</strong>-deficiency in<br />

young children, are also characterized by<br />

vascular <strong>and</strong> skeletal defects. For further<br />

details, the reader is referred to several<br />

recent reviews (93, 130, 568-570, 648a,<br />

650) <strong>and</strong> top. 2009.<br />

Tyrosinase ( phenoloxidase )<br />

This cuproprotein enzyme contains about<br />

Q.2c/f <strong>copper</strong>, or 1 atom per molecule (68),<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1988 KARL E. MASON<br />

<strong>and</strong> has a molecular weight <strong>of</strong> about 33,000<br />

daltons. Actually it may represent a series<br />

<strong>of</strong> cuproproteins which catalyze a series <strong>of</strong><br />

reactions that convert tyrosine to melanin<br />

(213, 479). The enzymatic activity is<br />

thought to be associated with the mitochondrial<br />

component <strong>of</strong> cells. The skin <strong>and</strong><br />

uveal tissues <strong>of</strong> the eye in human albinos<br />

have no demonstrable tyresinase activity;<br />

hence, the absence <strong>of</strong> melanin. Decreased<br />

production <strong>of</strong> tyrosinase is responsible for<br />

the loss <strong>of</strong> hair pigmentation in animals<br />

deficient in <strong>copper</strong> <strong>and</strong> in infants with<br />

Menkes' steely-hair syndrome.<br />

Dopamine ß-hijdroxylase<br />

This cuproprotein (3,4-dihydroxyphenylethylamine<br />

ß-hydroxylase) is an oxidase<br />

containing 4 to 7 <strong>copper</strong> atoms per mole<br />

cule <strong>and</strong> having a molecular weight <strong>of</strong><br />

about 290,000 daltons (232). It was origi<br />

nally isolated from beef adrenals <strong>and</strong> later<br />

from cattle brain <strong>and</strong> hearts. In experimen<br />

tal animals it appears to serve a function<br />

in catalyzing the conversion <strong>of</strong> dopamine<br />

to form norepinephrine (568, 570). A com<br />

parable role in man may be assumed but<br />

has not been proven.<br />

Metallothionein<br />

The rather tortuous history <strong>of</strong> identifica<br />

tion <strong>and</strong> nomenclature <strong>of</strong> <strong>copper</strong> proteins<br />

leading up to the proper recognition <strong>of</strong><br />

Superoxide dismutase has been somewhat<br />

paralleled by the history <strong>of</strong> metallothionein.<br />

This designation was given by Kagi<br />

<strong>and</strong> Vallee (392, 393) to a protein iso<br />

lated from equine <strong>and</strong> human kidney, with<br />

a molecular weight <strong>of</strong> about 10,000 daltons,<br />

a content <strong>of</strong> 26 sulfhydryl groups per mole,<br />

<strong>and</strong> a capacity to bind zinc <strong>and</strong> cadmium<br />

as well as <strong>copper</strong>. Metallothionein is not<br />

an enzyme. By virtue <strong>of</strong> its high content<br />

<strong>of</strong> sulfhydryl groups it binds <strong>copper</strong> by<br />

forming mercaptides. In fact, it may repre<br />

sent a family <strong>of</strong> metallothioneins specifi<br />

cally designed for the binding <strong>of</strong> either<br />

one metal or specific groups <strong>of</strong> metals such<br />

as <strong>copper</strong>, zinc <strong>and</strong> cadmium.<br />

Accumulating knowledge <strong>of</strong> metallothionein<br />

or metallothionein-like proteins, with<br />

variable affinities for <strong>copper</strong>, especially as<br />

they occur <strong>and</strong> function in the intestinal<br />

mucosa <strong>and</strong> liver, may well add greatly to<br />

our underst<strong>and</strong>ing <strong>of</strong> the two clinical dis<br />

orders <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> in man;<br />

namely, Wilson's disease <strong>and</strong> Menkes'<br />

steely-hair syndrome. For example, one<br />

recognized <strong>and</strong> basic defect in Menkes'<br />

disease is an inadequate transport <strong>of</strong> cop<br />

per across the intestinal mucosa (145,<br />

147). It is possible that the retention <strong>of</strong><br />

abnormal amounts <strong>of</strong> <strong>copper</strong> in the in<br />

testinal mucosa involves increased affinity<br />

<strong>of</strong> a mucosal metallothionein or <strong>of</strong> another<br />

protein not normally involved in <strong>copper</strong><br />

transport (351). Furthermore, there is evi<br />

dence that the usual metallothionein con<br />

cerned with storage <strong>and</strong> release <strong>of</strong> ab<br />

sorbed <strong>copper</strong> in the liver may, in Wilson's<br />

disease, be <strong>of</strong> an abnormal type with a<br />

binding constant about four times greater<br />

than normal ( 197).<br />

An unusual variant <strong>of</strong> metallothionein,<br />

referred to as neonatal hepatomitochondrocuprein,<br />

has been isolated from immature<br />

bovine liver <strong>and</strong> from human newborn<br />

liver (615). It contains 25% cystine <strong>and</strong><br />

about 49¿<strong>copper</strong>, which is at least 10 times<br />

that <strong>of</strong> adult hepatocuprein. It increases<br />

just before birth <strong>and</strong> decreases rapidly<br />

during the first few months <strong>of</strong> postnatal<br />

life, as it is released for synthesis <strong>of</strong> ceruloplasmin,<br />

which is present in plasma in<br />

small amounts at birth. It is thought to<br />

represent a special storage type <strong>of</strong> protein<br />

to tide the newborn infant over the early<br />

period <strong>of</strong> life when breast milk does not<br />

meet normal <strong>requirements</strong> (610 ). Although<br />

concentrated in the heavy mitochondrial<br />

fraction, it is not a true mitochondrial con<br />

stituent in that some <strong>of</strong> it may be localized<br />

in lysosomes <strong>of</strong> a "heavy" type, <strong>and</strong> prob<br />

ably represents a polymer <strong>of</strong> metallothio<br />

nein (614).<br />

Other cuproproteins<br />

Since the identification <strong>and</strong> characteriza<br />

tion <strong>of</strong> a sulfhydryl-rich cuproprotein in<br />

human liver with a molecular weight <strong>of</strong><br />

8,000 to 10,000 daltons, designated L-6D<br />

(536, 703), there have been described<br />

similar cuproproteins derived from chick<br />

intesane (733), rat liver (856), rat intes<br />

tine ( 198), adult human liver ( 74 ) <strong>and</strong><br />

human fetal liver (654). These proteins<br />

differ somewhat with respect to estimated<br />

molecular weight, <strong>copper</strong> content <strong>and</strong><br />

amino-acid components, especially cysteine<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1989<br />

<strong>and</strong> thionein, which may reflect differences<br />

in methods employed in isolation <strong>and</strong><br />

analysis as well as species differences in<br />

composition. There is good reason to be<br />

lieve that they have important functions<br />

in <strong>copper</strong>-homeostatic mechanisms such as<br />

storage, transport <strong>and</strong> detoxification, espe<br />

cially in the intestine <strong>and</strong> liver. Unques<br />

tionably, future research will clarify many<br />

<strong>of</strong> these differences <strong>and</strong> delineate more<br />

clearly the physiological <strong>and</strong> biochemical<br />

role(s) <strong>of</strong> these low-molecular weight cuproproteins.<br />

Monoamine oxidases. Aside from lysyl<br />

oxidase, there are other amine oxidases that<br />

are present in connective tissues (116, 330,<br />

334, 335). It is now presumed that these<br />

oxidases serve in deamination <strong>of</strong> norepinephrine,<br />

serotonin <strong>and</strong> histamine. Amine<br />

oxidases, presumably containing <strong>copper</strong>,<br />

derived from beef <strong>and</strong> swine plasma have<br />

been highly purified <strong>and</strong> crystallized (73,<br />

308, 649, 807, 867). A monoamine oxidase<br />

from human plasma has also been purified<br />

(505) <strong>and</strong> is said to increase in states <strong>of</strong><br />

congestive heart failure <strong>and</strong> parenchymal<br />

liver disease (506). However, whether or<br />

not this enzyme is <strong>copper</strong> dependent is not<br />

clear.<br />

Diamine oxidase. Purification <strong>of</strong> diamine<br />

oxidase from pig kidney has been carried<br />

out by many investigators since 1943. Its<br />

crystallization was first reported by<br />

Yamada et al. (866) who described it as a<br />

pink <strong>copper</strong>-protein containing 2.17 atoms<br />

<strong>of</strong> <strong>copper</strong> per molecule, capable <strong>of</strong> oxidiz<br />

ing histamine, cadaverine, putrescine <strong>and</strong><br />

other like substances. The identity <strong>of</strong> this<br />

enzyme with histiminase had previously<br />

been proposed by Mondovi et al. (534).<br />

Whether this enzyme plays a role in human<br />

<strong>metabolism</strong> remains to be determined.<br />

Albocuprein I <strong>and</strong> II. These two color<br />

less cuproproteins, neither <strong>of</strong> which possess<br />

enzyme activity or undergo alterations in<br />

pathological states, have been isolated<br />

from human brains (238). Both contain<br />

hexoses. Albocuprein II may be the pri<br />

mary <strong>copper</strong>-containing protein <strong>of</strong> the<br />

brain (550).<br />

Uncase (urate oxidase}. This cuproprotein,<br />

found in the kidney <strong>and</strong> liver <strong>of</strong> lower<br />

mammals, has a molecular weight <strong>of</strong> about<br />

110,000, a <strong>copper</strong> content <strong>of</strong> 0.6% <strong>and</strong> is<br />

involved in the catabolism <strong>of</strong> uric acid.<br />

There are no recognized effects <strong>of</strong> its de<br />

ficiency or excess in animals. It does not<br />

occur in primates (478).<br />

Tryptophan-2,3-dioxygenase. This heme<br />

protein with a molecular weight <strong>of</strong> 167,000<br />

daltons <strong>and</strong> 2 cuprous atoms per molecule,<br />

isolated from rat liver cytosol (694), is<br />

said to catalyze the insertion <strong>of</strong> molecular<br />

oxygen into the pyrrole ring <strong>of</strong> L-tryptophan<br />

(58).<br />

Pink <strong>copper</strong> protein. A pink <strong>copper</strong> pro<br />

tein with a molecular weight <strong>of</strong> about<br />

32,000 has been isolated from human erythrocytes<br />

(631). The biological function <strong>of</strong><br />

this protein still remains to be demon<br />

strated.<br />

Mitochondrial monoamine oxidase. This<br />

enzyme, previously obtained in highly puri<br />

fied form from many sources (beef <strong>and</strong> hog<br />

plasma, human plasma, rabbit serum, liver<br />

<strong>and</strong> kidney <strong>of</strong> several animal species, <strong>and</strong><br />

human placenta) has been isolated from<br />

human liver, <strong>and</strong> identified as a flavoprotein<br />

with a molecular weight <strong>of</strong> 64,000<br />

(563). It is said to have the ability to<br />

oxidize epinephrine <strong>and</strong> serotonin. On the<br />

other h<strong>and</strong>, its status as a cuproenzyme has<br />

since been questioned (730).<br />

The large number <strong>of</strong> cuproproteins <strong>and</strong><br />

the multiplicity <strong>of</strong> their enzymatic func<br />

tions, as well as the homeostatic mecha<br />

nisms involved in normal <strong>metabolism</strong> <strong>of</strong><br />

<strong>copper</strong>, emphasize its great importance in<br />

mammalian nutrition. For further aspects<br />

<strong>of</strong> cuproproteins, the reader is referred to a<br />

series <strong>of</strong> reviews (191-195, 211, 308, 309,<br />

350, 458, 550, 568-570, 634, 650, 663, 671,<br />

676).<br />

ABSORPTION OF COPPER<br />

As is true <strong>of</strong> most metals, absorption <strong>of</strong><br />

<strong>copper</strong> is regulated at the level <strong>of</strong> the in<br />

testinal mucosa <strong>and</strong> excretion is predomi<br />

nantly through the intestinal tract, either<br />

via the bile or as nonabsorbed <strong>copper</strong>.<br />

Urinary excretion is negligible in normal<br />

healthy man, amounting to about 1 to 2%<br />

<strong>of</strong> the intake.<br />

Although the site <strong>of</strong> maximal absorption<br />

<strong>of</strong> <strong>copper</strong> varies among different mam<br />

malian species, in man absorption occurs<br />

primarily in the stomach <strong>and</strong> duodenum.<br />

This conclusion is based upon observations<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1990 KARL E. MASON<br />

that after oral administration <strong>of</strong> radio<br />

active <strong>copper</strong> the isotope appears rapidly<br />

in the blood, reaching maximum levels<br />

within 1 to 3 hours, as further discussed<br />

below. Concepts <strong>of</strong> the processes <strong>of</strong> absorp<br />

tion <strong>of</strong> <strong>copper</strong> from dietary sources in man<br />

are based in large part upon studies <strong>of</strong><br />

experimental animals.<br />

Animal studies indicate that at least two<br />

mechanisms are concerned in <strong>copper</strong> ab<br />

sorption ( 132, 256 ). One <strong>of</strong> these, pre<br />

sumably an energy-dependent one, in<br />

volves the absorption <strong>of</strong> complexes <strong>of</strong> cop<br />

per <strong>and</strong> amino acids. There is also evidence<br />

that L-amino acids facilitate the absorption<br />

<strong>of</strong> <strong>copper</strong>, <strong>and</strong> that absorption progres<br />

sively decreases with increasing molecular<br />

size <strong>of</strong> <strong>copper</strong>-amino acid complexes (408 ).<br />

The other mechanism is an enzymatic one<br />

involving the binding <strong>of</strong> <strong>copper</strong> to, <strong>and</strong><br />

successive release from, macromolecular<br />

proteins.<br />

Studies <strong>of</strong> experimental animals indicate<br />

that mechanisms <strong>of</strong> <strong>copper</strong> storage <strong>and</strong><br />

transfer involve not only metallothionein as<br />

first identified in the chick intestinal mu<br />

cosa (733), but that there also may exist<br />

a variety <strong>of</strong> metallothioneins, differing<br />

slightly in amino-acid content <strong>and</strong> metalbinding<br />

characteristics (518, 562). There<br />

is real need for better determination <strong>of</strong> the<br />

extent to which findings in experimental<br />

animals have application to the problem <strong>of</strong><br />

<strong>copper</strong> absorption <strong>and</strong> <strong>metabolism</strong> in man.<br />

This applies also to the many factors in<br />

animals which are known to interfere with<br />

<strong>copper</strong> absorption through various mecha<br />

nisms (competition for binding sites by<br />

zinc, perhaps to a much lesser extent by<br />

cadmium; interactions between molyb<br />

denum, sulphates <strong>and</strong> <strong>copper</strong>; the effects <strong>of</strong><br />

dietary phytates, <strong>and</strong> the influence <strong>of</strong><br />

ascorbic acid intake). In the case <strong>of</strong> the<br />

latter, dietary deficiency results in in<br />

creased liver <strong>and</strong> plasma <strong>copper</strong> (337),<br />

whereas increased oral intake decreases<br />

the absorption <strong>and</strong> retention <strong>of</strong> <strong>copper</strong> in<br />

the chick (333), rabbit (370), pig (254)<br />

<strong>and</strong> rat (199). Moreover, in the pig, high<br />

intake <strong>of</strong> ascorbic acid can overcome the<br />

effects <strong>of</strong> excess <strong>copper</strong> either by inter<br />

fering with <strong>copper</strong> absorption or by in<br />

creasing the absorption <strong>and</strong> utilization <strong>of</strong><br />

iron (254). Such evidence raises questions<br />

as to whether due consideration has been<br />

given to the secondary effects that may be<br />

related to the somewhat astronomical hu<br />

man intakes <strong>of</strong> ascorbic acid currently in<br />

vogue. It is also important to note that the<br />

type, configuration <strong>and</strong> degree <strong>of</strong> polymeri<br />

zation <strong>of</strong> amino acids present in the in<br />

testine can influence the absorption <strong>of</strong> cop<br />

per (798). Moreover, little is known re<br />

garding the chemical forms <strong>of</strong> <strong>copper</strong> in<br />

foods, <strong>and</strong> the influence <strong>of</strong> different meth<br />

ods <strong>of</strong> cooking upon its availability.<br />

The great difficulty in determining that<br />

portion <strong>of</strong> dietary <strong>copper</strong> which is ab<br />

sorbed becomes apparent when one con<br />

siders the many variable factors affecting<br />

<strong>copper</strong> absorption such as: competition for<br />

protein-binding sites in the intestinal lumen<br />

<strong>and</strong> mucosa; inhibition <strong>of</strong> binding at these<br />

sites; difficulties in measuring the amount<br />

<strong>of</strong> <strong>copper</strong> secreted by the bile, by accessory<br />

gl<strong>and</strong>s <strong>of</strong> the digestive tract <strong>and</strong> by the in<br />

testinal mucosa; <strong>and</strong> possible reabsorption<br />

by the intestinal mucosa <strong>of</strong> some <strong>of</strong> the<br />

secreted <strong>copper</strong>. Excellent reviews <strong>of</strong> this<br />

subject have been presented by Dowdy<br />

(169), Evans (192), Hambidge <strong>and</strong> Wairavens<br />

(301) <strong>and</strong> Van Campen (804).<br />

Mechanisms<br />

The general concept <strong>of</strong> the mechanism<br />

involved in <strong>copper</strong> absorption is as follows:<br />

from ingested foodstuff <strong>copper</strong> is released<br />

either as ionic <strong>copper</strong> or as a <strong>copper</strong>amino<br />

acid complex. In the intestinal<br />

lumen there exists a high molecular weight<br />

protein which binds <strong>copper</strong> <strong>and</strong> preferen<br />

tially releases it to the plasma membranes<br />

on the luminal side <strong>of</strong> the absorptive cells<br />

<strong>of</strong> the mucosa. Within the absorptive cells<br />

is metallothionein (or metallothionein-like<br />

proteins) rich in sulfhydryl groups, which<br />

binds <strong>copper</strong> through formation <strong>of</strong> mercaptide<br />

bonds. Since this cuproprotein<br />

serves as a storage depot <strong>and</strong> also releases<br />

<strong>copper</strong> to the plasma cell membrane on the<br />

serosal side, it is considered to provide one<br />

<strong>of</strong> the protective <strong>and</strong> regulatory mecha<br />

nisms in <strong>copper</strong> homeostasis. However, it<br />

is not quite that simple, since its binding to<br />

<strong>copper</strong> is constantly in competition with<br />

other trace elements <strong>and</strong> can also be in<br />

fluenced by other dietary components such<br />

as the sulphate radical, phytates, fiber <strong>and</strong><br />

ascorbic acid.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1991<br />

Dynamic studies with radioactive cop<br />

per have yielded important information. In<br />

man, oral administration <strong>of</strong> 64Cu or 67Cu is<br />

followed by a prompt appearance <strong>of</strong> the<br />

isotope in the blood serum, indicating at<br />

least major absorption from the stomach<br />

<strong>and</strong> duodenum (40, 42, 80, 179, 387, 832).<br />

Within 1 or 2 hours the isotope is bound<br />

to serum albumin <strong>and</strong> amino acids (41,<br />

80). There follows a sharp decline as the<br />

isotope is taken up by the liver. Subse<br />

quently, there occurs increased activity <strong>of</strong><br />

the serum for 48 to 72 hours as the liver<br />

incorporates the radioisotope into newly<br />

synthesized ceruloplasmin <strong>and</strong> releases it<br />

into the blood (40, 41, 80, 179). That not<br />

immediately extracted by the liver remains<br />

in the serum attached to albumin or amino<br />

acids, or is used to maintain erythrocyte<br />

<strong>copper</strong> levels.<br />

Amount<br />

The proportion <strong>of</strong> dietary <strong>copper</strong> that is<br />

actually absorbed is very important in the<br />

making <strong>of</strong> judgments on balance studies<br />

<strong>and</strong> their bearing upon normal human re<br />

quirements for <strong>copper</strong>. Unfortunately the<br />

information currently available is both<br />

meager <strong>and</strong> somewhat inconclusive. Van<br />

Ravensteyn (805) estimated that about<br />

25% <strong>of</strong> <strong>copper</strong> (as CuSO4) added to the<br />

diet <strong>of</strong> normal men, is absorbed. Later,<br />

Cartwright <strong>and</strong> Wintrobe ( 105) stated that<br />

about 32% <strong>of</strong> ingested <strong>copper</strong> is absorbed.<br />

Early studies employing oral <strong>and</strong> intra<br />

venous administration <strong>of</strong> 64Cu to small<br />

numbers <strong>of</strong> control subjects in investiga<br />

tions primarily designed to determine<br />

whether or not there is an absorption de<br />

fect in Wilson's disease gave quite variable<br />

results, in terms <strong>of</strong> the percentage <strong>of</strong> the<br />

dose recovered in the feces over periods<br />

<strong>of</strong> 3 to 4 days (41, 80, 498). Furthermore,<br />

since radio-<strong>copper</strong> is both excreted into<br />

<strong>and</strong> absorbed by the gastrointestinal tract,<br />

fecal excretion provides a measure <strong>of</strong> re<br />

tention but not <strong>of</strong> true absorption. Assum<br />

ing that after 48 hours the serum concen<br />

tration <strong>of</strong> 64Cu is proportional to either an<br />

intravenous dose or to a certain fraction <strong>of</strong><br />

an oral dose absorbed, Sternlieb (736)<br />

estimates that on the basis <strong>of</strong> studies on<br />

49 normal subjects the mean absorption <strong>of</strong><br />

an oral dose <strong>of</strong> 2 mg <strong>of</strong> <strong>copper</strong> daily, is<br />

0.8 mg, or 40%. Weber et al. (832), em<br />

ploying similar methodology, concluded<br />

that the net absorption <strong>of</strong> orally administerred<br />

<strong>copper</strong> varies from 15 to 97%, with<br />

a mean <strong>of</strong> about 60%. A more sophisticated<br />

approach by Strickl<strong>and</strong> et al. (752), in<br />

volving four normal adults given 64Cu<br />

orally <strong>and</strong> ti7Cu intravenously, with <strong>copper</strong><br />

absorption calculated by whole body<br />

counting <strong>and</strong> by plasma 64Cu <strong>and</strong> 07Cu<br />

concentrations, gave a mean <strong>copper</strong> ab<br />

sorption value <strong>of</strong> 56% (range 40-70%). It<br />

was their opinion that if Sternlieb (736)<br />

had made allowance for a 20%) fecal ex<br />

cretion <strong>of</strong> <strong>copper</strong> (753), the three studies<br />

mentioned would have been in close agree<br />

ment. Quite recently King et al. (407) re<br />

ported an overall <strong>copper</strong> absorption <strong>of</strong> 57%<br />

based upon balance studies with the stable<br />

isotope 65Cu. On the basis <strong>of</strong> the evidence<br />

presented above, it seems reasonable to<br />

assume an absorption <strong>of</strong> 40 to 60% <strong>of</strong> the<br />

oral intake <strong>of</strong> <strong>copper</strong>, accepting the fact<br />

that there is wide individual variation.<br />

Copper absorption may be significantly<br />

impaired in states <strong>of</strong> severe, diffuse disease<br />

<strong>of</strong> the small bowel produced by sprue,<br />

lymphosarcoma, or scleroderma (739), or<br />

protein calorie malnutrition (474). In<br />

Menkes' steely-hair syndrome defects in<br />

intestinal transport <strong>and</strong> release constitute<br />

one <strong>of</strong> the primary bases for this disorder<br />

(p. 2007). Information concerning the role <strong>of</strong><br />

the lymphatics in the absorption <strong>of</strong> <strong>copper</strong><br />

is sadly lacking. Sternleib et al. (748) re<br />

port that in the dog <strong>and</strong> man the amount<br />

<strong>of</strong> an oral dose <strong>of</strong> 64Cu absorbed by the<br />

intestinal lymphatics is negligible. On the<br />

other h<strong>and</strong>, Trip et al. (789) found con<br />

centrations <strong>of</strong> <strong>copper</strong> ( non-ceruloplasmic )<br />

in the thoracic duct <strong>of</strong> three patients<br />

equivalent to or higher than in serum. It<br />

must be noted that these subjects suffered<br />

from carcinoma <strong>and</strong> Hodgkin's disease <strong>and</strong><br />

cannot be considered normal. Regrettably,<br />

the impossibility <strong>of</strong> obtaining thoracic duct<br />

lymph from normal healthy subjects <strong>of</strong>fers<br />

little hope <strong>of</strong> determining the role <strong>of</strong> the<br />

intestinal lymphatics in absorption <strong>of</strong><br />

<strong>copper</strong>.<br />

TRANSPORTOF COPPER<br />

Intestine to liver<br />

Following release from the intestinal<br />

mucosa, <strong>copper</strong> becomes bound to albumin<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1992 KARL E. MASON<br />

<strong>and</strong> to amino acids in the portal blood. In<br />

the form <strong>of</strong> these complexes it can be mea<br />

sured colorimetrically following reaction<br />

with diethyldithiocarbamate, a <strong>copper</strong><br />

chelator. It is referred to as "direct react<br />

ing" or "labile" <strong>copper</strong>. By virtue <strong>of</strong> its<br />

homeostatic mechanisms the liver allows a<br />

portion <strong>of</strong> these loosely bound <strong>copper</strong> com<br />

plexes to pass directly to the systemic cir<br />

culation, where they constitute about 1%<br />

<strong>of</strong> plasma <strong>copper</strong>. Upon arrival at the liver,<br />

<strong>copper</strong> is released from albumin to hepatocyte<br />

cell membrane receptors from which it<br />

is transferred to the cytosol where it is<br />

bound to metallothionein (or metallothionein-like<br />

cuproproteins ).<br />

Metabolism <strong>and</strong> distribution<br />

Copper apparently binds also to pro<br />

teins other than metallothionein in the hepatocytes,<br />

as revealed by analyses <strong>of</strong> subcellular<br />

fractions <strong>of</strong> the liver <strong>of</strong> laboratory<br />

animals. How applicable these findings are<br />

to man is not clear. In a review <strong>of</strong> the sub<br />

ject Evans (192) lists four different frac<br />

tions as follows: 1) microsomal fraction<br />

containing about 10% <strong>of</strong> liver <strong>copper</strong>, most<br />

<strong>of</strong> which is probably located in newly syn<br />

thesized cuproproteins being prepared for<br />

transport to other sites; 2) nuclear frac<br />

tion, with about 20c/( <strong>of</strong> total liver <strong>copper</strong>,<br />

which may represent a temporary site <strong>of</strong><br />

storage; 3) large granule fraction, with<br />

about the same amount <strong>of</strong> <strong>copper</strong>, contain<br />

ing both mitochondria <strong>and</strong> lysosomes, the<br />

latter being especially involved in seques<br />

tering <strong>copper</strong> prior to biliary excretion; <strong>and</strong><br />

4) the cytosol, containing about one-half<br />

<strong>of</strong> total liver <strong>copper</strong>, in which a small per<br />

centage is in <strong>copper</strong>-dependent enzymes<br />

<strong>and</strong> the predominant portion in the form <strong>of</strong><br />

a <strong>copper</strong>-binding protein similar to metal<br />

lothionein. Evans (192) also describes in<br />

teresting differences in the <strong>copper</strong> content<br />

<strong>of</strong> these cell fractions in the newborn <strong>and</strong><br />

during postnatal development, <strong>and</strong> also<br />

changes observed in animals given dietary<br />

excess <strong>of</strong> <strong>copper</strong>. The latter studies indi<br />

cate that in metallothionein there is prefer<br />

ential binding, after which excess <strong>copper</strong><br />

is distributed to other fractions. He notes<br />

that the binding capacity <strong>of</strong> metallothio<br />

nein is limited, <strong>and</strong> that the lysosomes <strong>and</strong><br />

nuclear proteins assist in maintaining cop<br />

per homeostasis.<br />

Marceau <strong>and</strong> Aspin (488, 489) have<br />

shown that when rats are given [07Cu]ceruloplasmin<br />

intravenously the 67Cu is<br />

taken up by all tissues, but primarily by<br />

the liver where it appears in a specific<br />

protein fraction <strong>of</strong> the hepatocyte cytosol<br />

having a molecular weight <strong>of</strong> 30,000 to<br />

40,000 daltons <strong>and</strong> exhibiting Superoxide<br />

dismutase activity. It also becomes tightly<br />

bound to cytochrome c oxidase in the mito<br />

chondria. Since no [G7Cu]ceruloplasmin is<br />

demonstrable in the cell, it is assumed that<br />

<strong>copper</strong> is released at or within the cell<br />

membrane. In contrast, the G7Cu<strong>of</strong> [n7Cu]albumin<br />

complexes with proteins <strong>of</strong> about<br />

10,000 daltons in the soluble cell fraction<br />

<strong>and</strong> becomes loosely bound to cytochrome<br />

c oxidase. Similar distribution <strong>of</strong> the two<br />

plasma proteins is observed in the rat brain<br />

<strong>and</strong> spleen.<br />

In addition to serving as the major path<br />

way <strong>of</strong> <strong>copper</strong> excretion via the biliary<br />

tract, the liver releases <strong>copper</strong> to maintain<br />

the labile pool <strong>of</strong> <strong>copper</strong> in the serum <strong>and</strong><br />

blood cells. This pool provides <strong>copper</strong> for<br />

incorporation into Superoxide dismutase<br />

<strong>and</strong> into the many other <strong>copper</strong>-containing<br />

enzymes <strong>of</strong> body tissues, some <strong>of</strong> which<br />

may be synthesized in the liver itself. How<br />

ever, a major function <strong>of</strong> the liver is the<br />

synthesis <strong>of</strong> ceruloplasmin. This form <strong>of</strong><br />

tightly bound <strong>copper</strong> is referred to as "in<br />

direct reacting" <strong>copper</strong>, since it requires<br />

acidification to release its 0.3% <strong>copper</strong><br />

which can then be measured, as in the case<br />

<strong>of</strong> "direct reacting" <strong>copper</strong>, by the diethyl<br />

dithiocarbamate reaction. Its more reliable<br />

measurement by enzymatic <strong>and</strong> immunological<br />

methods has been discussed earlier<br />

(p. 1984). Once synthesized, ceruloplasmin<br />

is released by the liver such that it com<br />

prises approximately 93r/f <strong>of</strong> plasma cop<br />

per. In healthy adult humans this level is<br />

remarkably constant. There is no inter<br />

change in the blood stream between ce<br />

ruloplasmin <strong>copper</strong> <strong>and</strong> other forms <strong>of</strong><br />

<strong>copper</strong> (742). Animal studies (741) indi<br />

cate that the liver microsomes are the site<br />

<strong>of</strong> ceruloplasmin synthesis. Despite evi<br />

dence that almost 0.5 mg <strong>of</strong> <strong>copper</strong> is in<br />

corporated into ceruloplasmin daily, close<br />

to the estimated daily absorption from the<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1993<br />

diet (742), the physiological role <strong>of</strong> ceruloplasmin<br />

has only recently begun to be clari<br />

fied (pp. 1984-1986).<br />

Copper in blood<br />

The first evidence <strong>of</strong> the presence <strong>of</strong><br />

<strong>copper</strong> in blood, that <strong>of</strong> the ox, was re<br />

corded in 1830 by Sarzeau (665). The first<br />

demonstration <strong>of</strong> <strong>copper</strong> in human serum<br />

was reported almost 100 years later by<br />

Warburg <strong>and</strong> Krebs (827) <strong>and</strong> Krebs<br />

(426), who employed a catalytic method<br />

developed by Warburg. Although the<br />

values obtained were somewhat below<br />

those currently accepted, they did recog<br />

nize lower levels in normal males (aver.<br />

0.82 /xg/100 ml) than in females (aver.<br />

0.98 ^ig/100 ml), <strong>and</strong> also increased levels<br />

in pulmonary tuberculosis (aver. 1.55 /¿g/<br />

100 ml) <strong>and</strong> in the later stages <strong>of</strong> preg<br />

nancy (aver. 2.07 /¿g/100ml). Quite com<br />

parable values were reported by Locke et<br />

al. (464 ), who were among the first to em<br />

ploy diethyldithiocarbamate as a reagent<br />

for the detection <strong>and</strong> estimation <strong>of</strong> <strong>copper</strong>.<br />

While not recognized at the time, the rou<br />

tine acidification <strong>of</strong> samples necessary for<br />

release <strong>and</strong> measurement <strong>of</strong> <strong>copper</strong> in<br />

ceruloplasmin did not make it possible to<br />

recognize that the increased levels in preg<br />

nancy <strong>and</strong> infectious states were due pri<br />

marily to increases in ceruloplasmin.<br />

Because <strong>of</strong> the diversity <strong>of</strong> chemical, bio<br />

physical <strong>and</strong> immunological methods for<br />

the estimation <strong>of</strong> <strong>copper</strong> <strong>and</strong> ceruloplas<br />

min in blood <strong>and</strong> other tissues for over<br />

more than 50 years, the values presented<br />

in the literature for whole blood, plasma,<br />

serum <strong>and</strong> red cells show considerable<br />

variation. An excellent description <strong>and</strong> ap<br />

praisal <strong>of</strong> methods used up to 1965 has<br />

been presented by Sass-Kortsak (666).<br />

There has not come to the author's atten<br />

tion a comparable review <strong>and</strong> critique <strong>of</strong><br />

methods developed since that time. Even<br />

with the employment <strong>of</strong> a single method<br />

such as atomic absorption spectrometry<br />

values obtained for <strong>copper</strong> levels in serum,<br />

plasma <strong>and</strong> urine vary considerably, due<br />

in large part to differences in preparation<br />

<strong>of</strong> the sample (763).<br />

Blood levels <strong>of</strong> <strong>copper</strong> are commonly<br />

expressed either as serum or plasma levels,<br />

with little or no distinction made be<br />

tween the two. Cartwright ( 100) states<br />

that since the ratio <strong>of</strong> the volume <strong>of</strong> erythrocytes<br />

to leukocytes <strong>and</strong> platelets in nor<br />

mal blood is about 47/0.7, failure to sepa<br />

rate the latter from erythrocytes results in<br />

an insignificant difference in <strong>copper</strong> values<br />

obtained. It must be recognized, however,<br />

that white blood cells do contain a small<br />

amount <strong>of</strong> <strong>copper</strong> (about l/4th the con<br />

centration in erythrocytes) even though<br />

they represent a rather small component<br />

<strong>of</strong> total blood cells. A recent report (646)<br />

records significant differences between<br />

serum <strong>and</strong> plasma <strong>copper</strong> levels in 28 adult<br />

subjects studied on the same day, mean<br />

values being 119 <strong>and</strong> 127 /ug/100 ml, re<br />

spectively. These findings require con<br />

firmation. Investigators suggest that cop<br />

per might be released from platelets,<br />

leukocytes or erythrocytes during coagu<br />

lation <strong>and</strong> clot reaction.<br />

Heilmeyer et al. (319) summarized 10<br />

prior studies on adult humans employing<br />

six different methods <strong>and</strong> proposing nor<br />

mal values ranging from 65 to 200 /¿g/lOO<br />

ml in blood serum. Their own studies<br />

yielded mean values <strong>of</strong> 106.2 /¿g/100ml for<br />

15 males <strong>and</strong> 106.9 /¿g/100ml for 15 fe<br />

males, thus failing to reveal the sex differ<br />

ences reported in later studies. In a review<br />

<strong>of</strong> the literature up to 1950, Cartwright<br />

( 100) gives data from seven different<br />

studies involving a total <strong>of</strong> 184 males <strong>and</strong><br />

274 females from which can be calculated<br />

average mean values <strong>of</strong> 106 <strong>and</strong> 114 /¿g/<br />

100 ml for plasma <strong>of</strong> males <strong>and</strong> females,<br />

respectively. Neale et al. (551 ) report cor<br />

responding mean serum levels <strong>of</strong> 100 <strong>and</strong><br />

108 jug/100 ml for 53 normal subjects <strong>of</strong><br />

each sex. Wintrobe et al. (857) record<br />

plasma <strong>copper</strong> values, <strong>of</strong> 105 ±16 <strong>and</strong><br />

116 ±16 /xg/100 ml for males <strong>and</strong> females,<br />

respectively. An increase in serum <strong>copper</strong><br />

with age is said to occur in males but not<br />

in females (871), but no adequate ex<br />

planation is <strong>of</strong>fered.<br />

In plasma (or serum) most <strong>of</strong> the cop<br />

per is bound to ceruloplasmin as indirect<br />

reacting <strong>copper</strong> (119, 286). In man it was<br />

first estimated that this represents 96% <strong>of</strong><br />

total plasma <strong>copper</strong> (286). There are later<br />

estimates <strong>of</strong> 93% (105) <strong>and</strong> <strong>of</strong> 90% (75,<br />

321). Most investigators now accept 93%.<br />

The remaining <strong>copper</strong>, constituting the<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1994 KARL E. MASON<br />

labile pool, is less firmly bound in large<br />

part to albumin <strong>and</strong> in smaller part to<br />

amino acids (553), especially to histidine,<br />

threonine <strong>and</strong> glutamine (554). The<br />

smaller portion <strong>of</strong> "free" <strong>copper</strong> bound to<br />

amino acids, the existence <strong>of</strong> which was<br />

first demonstrated by Neumann <strong>and</strong> Sass-<br />

Kortsak (553, 554) <strong>and</strong> Sakar <strong>and</strong> Kruck<br />

(658), may be important as a transport<br />

form <strong>of</strong> <strong>copper</strong> in the blood, capable <strong>of</strong><br />

actively diffusing across cell membranes<br />

such as those <strong>of</strong> erythrocytes, whereas al<br />

bumin-bound <strong>copper</strong> preferentially releases<br />

its <strong>copper</strong> to receptor proteins <strong>of</strong> the<br />

plasma membrane <strong>of</strong> hepatocytes <strong>and</strong> other<br />

cells. After exposure <strong>of</strong> human serum to a<br />

centrifugal force greater than necessary to<br />

sediment albumin, <strong>copper</strong> may be demon<br />

strated in serum in the form <strong>of</strong> mixed<br />

amino acid-complexes consisting <strong>of</strong> one<br />

atom <strong>of</strong> <strong>copper</strong> <strong>and</strong> two different amino<br />

acids, predominantly complexes <strong>of</strong> cop<br />

per wittìhistidine, threonine <strong>and</strong> glutamine<br />

(553, 554). Moreover, in ultrafiltrates <strong>of</strong><br />

human serum there can be identified not<br />

only these complexes but also a mixed com<br />

plex <strong>of</strong> histidine-<strong>copper</strong>-threonine (554).<br />

In the red blood cells <strong>copper</strong> exists both<br />

in a labile pool, much like that in the<br />

plasma but proportionately much larger,<br />

<strong>and</strong> also in a firmly bound form, almost<br />

entirely as erythrocuprein ( Superoxide dismutase).<br />

Total erythrocyte <strong>copper</strong> in nor<br />

mal man is about 89 ±11.4 /¿g/100ml <strong>of</strong><br />

packed red cells (492). The labile pool<br />

represents <strong>copper</strong> complexed with amino<br />

acids, freely dialyzable <strong>and</strong> probably in<br />

volved in providing <strong>copper</strong> for Superoxide<br />

dismutase. It contains about 4Q% <strong>of</strong> the<br />

erythrocyte <strong>copper</strong>. The remaining 60% is<br />

almost entirely bouYid to erythrocuprein, a<br />

cuproprotein first isolated by Markowitz et<br />

al. (490), described more fully by Kimmel<br />

et al. (406), <strong>and</strong> later identified as superoxide<br />

dismutase by McCord <strong>and</strong> Fridovich<br />

(501). In addition, a small amount <strong>of</strong> cop<br />

per is thought to be bound to a pink cop<br />

per-binding protein isolated by Reed et al.<br />

(631). This may correspond to the nonerythrocuprein<br />

<strong>copper</strong> fraction observed in<br />

human red blood cells by Shields, et al.<br />

(708). This protein has no amine oxidase<br />

or Superoxide dismutase activity, <strong>and</strong> its<br />

biological function remains to be demon<br />

strated.<br />

It is apparent that neither whole blood,<br />

blood cell nor blood plasma levels <strong>of</strong> cop<br />

per provide useful information regarding<br />

nutritional <strong>copper</strong> status in man. The<br />

erythrocyte <strong>copper</strong> <strong>of</strong> both compartments<br />

is remarkably stable regardless <strong>of</strong> dietary<br />

intake, <strong>and</strong> is not involved in transport <strong>of</strong><br />

<strong>copper</strong> to tissues. The latter function is<br />

mainly ensured by the small compartment<br />

<strong>of</strong> plasma <strong>copper</strong> (about 7c/f <strong>of</strong> the total)<br />

bound largely to albumin <strong>and</strong> to a lesser<br />

degree to amino acids, the latter com<br />

plexes being essential for active transport<br />

<strong>of</strong> <strong>copper</strong> across cell membranes. The al<br />

bumin <strong>and</strong> amino acid-bound forms <strong>of</strong><br />

plasma <strong>copper</strong>, together with minute<br />

amounts <strong>of</strong> free ionic <strong>copper</strong>, represent the<br />

direct reacting <strong>copper</strong> <strong>of</strong> serum which may<br />

increase with intake only temporarily be<br />

fore liver homeostasis comes into play. The<br />

much larger compartment <strong>of</strong> ceruloplasmin<br />

<strong>copper</strong> is generally not influenced by di<br />

etary intake <strong>of</strong> <strong>copper</strong> but does react to a<br />

great variety <strong>of</strong> conditions responsible for<br />

states <strong>of</strong> hypocupremia <strong>and</strong> hypercupremia,<br />

as discussed later (pp. 2014-2020).<br />

A small diurnal variation in plasma <strong>copper</strong><br />

has been reported (434, 460).<br />

EXCRETION OF COPPER<br />

As previously stated (p. 1991) in normal<br />

man perhaps up to 40 to 60% <strong>of</strong> dietary<br />

<strong>copper</strong> is actually absorbed, with the gas<br />

tric <strong>and</strong> duodenal mucosa playing the<br />

major role. Such estimates are, in large<br />

part, based upon differences between oral<br />

<strong>and</strong> intravenous intake <strong>and</strong> fecal excretion,<br />

since urinary excretion <strong>of</strong> <strong>copper</strong> plays a<br />

very minor role. Therefore, the real prob<br />

lem in evaluating these differences lies in<br />

determining what fecal excretion truly<br />

represents. Presumably, it represents unabsorbed<br />

dietary <strong>copper</strong> plus <strong>copper</strong> ex<br />

creted via the biliary tract (a major fac<br />

tor), salivary gl<strong>and</strong>s <strong>and</strong> gastric <strong>and</strong> in<br />

testinal mucosae, minus <strong>copper</strong> which may<br />

be reabsorbed by the gastrointestinal tract<br />

in the course <strong>of</strong> transit. Aside from these<br />

considerations are losses <strong>of</strong> <strong>copper</strong> via<br />

sweat <strong>and</strong> the menses, which are measur<br />

able with a limited degree <strong>of</strong> accuracy. It<br />

is hoped that the discussion to follow may<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1995<br />

delineate the state <strong>and</strong> lack <strong>of</strong> current<br />

knowledge concerning many <strong>of</strong> the physi<br />

ological mechanisms mentioned.<br />

Biliary excretion<br />

Sheldon <strong>and</strong> Ramage (705) were the<br />

first to note the presence <strong>of</strong> <strong>copper</strong> in bile<br />

<strong>and</strong> to suggest that this represents a chan<br />

nel <strong>of</strong> excretion. They also hypothesized,<br />

on the basis <strong>of</strong> the high values obtained<br />

from gall bladder bile, that the body may<br />

attempt to conserve its supply <strong>of</strong> <strong>copper</strong><br />

by reabsorption through the highly vascu<br />

lar wall <strong>of</strong> the gall bladder. The latter re<br />

mains an unsettled question. An isolated<br />

report <strong>of</strong> phenomenally high concentra<br />

tion in pigment gall stones (689 ) seems not<br />

to have been confirmed.<br />

In 1944 Van Ravensteyn (805) stated<br />

that "We could not find in the medical lit<br />

erature any data on <strong>copper</strong> excretion with<br />

the bile or via the intestinal wall in man<br />

after administration <strong>of</strong> <strong>copper</strong> by mouth<br />

or by intravenous injection <strong>of</strong> <strong>copper</strong> com<br />

pounds." In his studies he found that, un<br />

like iron, oral <strong>copper</strong> had little effect upon<br />

blood levels, but caused a marked increase<br />

in bile <strong>and</strong> feces. He also discussed the<br />

possible reabsorption <strong>of</strong> biliary <strong>copper</strong> by<br />

the small intestine <strong>and</strong> <strong>of</strong> fecal <strong>copper</strong> by<br />

the colon. For the latter there is little or no<br />

evidence. This suggestion was based upon<br />

his observations that biliary excretion <strong>and</strong><br />

fecal excretion did not run parallel, follow<br />

ing intravenous injections <strong>of</strong> a non-toxic<br />

organic salt <strong>of</strong> <strong>copper</strong>. For the duodenal<br />

bile <strong>of</strong> eight normal subjects, Van Raven<br />

steyn found the average <strong>copper</strong> content to<br />

be 0.118 mg/100 ml (range 0.03-0.20 mg/<br />

100 ml). These may be compared to an<br />

average content <strong>of</strong> 0.2 mg/100 ml (range<br />

0.06-0.32 mg/100 ml) for common duct<br />

bile in three subjects, <strong>and</strong> <strong>of</strong> 0.48 mg/100<br />

ml (range 0.09-1.07 mg/100 ml) in gall<br />

bladder bile from 19 cases <strong>of</strong> chronic chole<br />

cystitis, obtained at the time <strong>of</strong> operation<br />

for bladder stones, as reported the same<br />

year by Judd <strong>and</strong> Dry ( 391 ).<br />

As noted by the next investigators to<br />

contribute to this subject ( 105), a number<br />

<strong>of</strong> factors makes it very difficult to deter<br />

mine with a reasonable degree <strong>of</strong> accuracy<br />

the amount <strong>of</strong> <strong>copper</strong> excreted via the<br />

biliary tract. The daily outflow is inter<br />

mittent <strong>and</strong> may vary from 250 to 1,100<br />

ml/day. Bile cannot be collected quanti<br />

tatively from normal subjects, even those<br />

with exterioration <strong>of</strong> the bile duct or in<br />

dwelling T-tube, since in these situations<br />

the volume <strong>of</strong> bile flow is not normal.<br />

Moreover, <strong>copper</strong> in bile aspirated from<br />

the gall bladder during surgery or post<br />

mortem is considerably concentrated as<br />

compared to liver bile or duodenal bile,<br />

<strong>and</strong> the latter is subject to contamination<br />

by duodenal contents <strong>and</strong> the tubes used<br />

for the collection. It is reported ( 105) that<br />

<strong>copper</strong> in gall bladder bile obtained post<br />

mortem from six normal subjects ranged<br />

from 0.024 to 0.54 mg/100 ml, with an<br />

average value <strong>of</strong> 0.329 mg/100 ml. One<br />

subject with a cutaneous bile fistula follow<br />

ing complete obstruction <strong>of</strong> the common<br />

duct excreted an average <strong>of</strong> 0.46 mg/100<br />

ml <strong>copper</strong> per day. Another subject with<br />

primary biliary cirrhosis <strong>and</strong> T-tube drain<br />

age, gave an average value <strong>of</strong> 0.05 mg/100<br />

ml (range 0.03-0.95 mg/100 ml) in bile<br />

collected daily for 17 days. No data on<br />

total daily output <strong>of</strong> <strong>copper</strong> were obtained.<br />

In their conclusions, Cartwright <strong>and</strong><br />

Wintrobe ( 105) state that assuming a daily<br />

intake <strong>of</strong> 2.0 to 5.0 mg <strong>of</strong> <strong>copper</strong>, 0.6 to 1.6<br />

mg (32%) is absorbed. From 0.01 to 0.06<br />

mg is excreted in urine, 0.1 to 0.3 mg<br />

passes directly into the bowel, <strong>and</strong> 0.5 to<br />

1.3 mg is excreted in the bile. The latter<br />

estimate is, in reasonable accord with a<br />

later report <strong>of</strong> Frommer (235) indicating<br />

that in 10 control subjects biliary excretion<br />

approximated 1.2 mg/day, based upon bile<br />

aspirated from the duodenum after over<br />

night fasting. Walshe (822) states that in<br />

subjects with external biliary drainage up<br />

to 107' <strong>of</strong> ingested labeled <strong>copper</strong> can be<br />

recovered in the bile within 24 hours.<br />

Human bile is said to contain <strong>copper</strong>binding<br />

complexes <strong>of</strong> low <strong>and</strong> high molecu<br />

lar weight, the former predominating in<br />

hepatic bile <strong>and</strong> the latter in gall bladder<br />

bile (263, 266). However, the high molecu<br />

lar weight fractions may represent artifacts<br />

in Chromatographie procedures, <strong>and</strong> essen<br />

tially all <strong>of</strong> the <strong>copper</strong> may be bound to<br />

complexes <strong>of</strong> low molecular weight (4,000-<br />

8,000 daltons) (236), as observed in bile<br />

<strong>of</strong> the rat ( 196) which, by the way, pos<br />

sesses no gall bladder. The question <strong>of</strong> an<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1996 KARL E. MASON<br />

enterohepatic circulation <strong>of</strong> <strong>copper</strong>, con<br />

sidered unlikely on the basis <strong>of</strong> the macromolecular<br />

complexes <strong>of</strong> <strong>copper</strong> predomi<br />

nating in the gall bladder bile (266), now<br />

justifies more critical study.<br />

More recently evidence has been found<br />

that the mechanism <strong>of</strong> <strong>copper</strong> excretion<br />

may involve its complexing with taurochenodeoxycholate<br />

in the liver, thereby<br />

preventing its reabsorption from the upper<br />

intestine, with subsequent splitting <strong>of</strong> the<br />

complex in the lower intestine where reabsorption<br />

<strong>of</strong> the bile acid but not <strong>of</strong> cop<br />

per may take place (454). Other evidence,<br />

also based upon bile from T-tubes, sug<br />

gests that orally administered 04Cu be<br />

comes combined with conjugated bilirubins<br />

(503 ). It is obvious that there is still much<br />

more to be learned about the binding <strong>of</strong><br />

<strong>copper</strong> in bile <strong>and</strong> its possible reabsorbability.<br />

Salivary excretion<br />

Little or no attention had been given to<br />

the presence <strong>of</strong> <strong>copper</strong> in saliva until 1952<br />

when Dreizen et al. ( 170) reported finding<br />

in the whole saliva <strong>of</strong> 14 normal humans<br />

(48 samples) a mean <strong>copper</strong> concentration<br />

<strong>of</strong> 25.6 /Ag/100 ml. In general agreement<br />

with these findings are those <strong>of</strong> De Jorge<br />

et al. (157) based on 40 normal, fasting<br />

subjects, giving a mean value <strong>of</strong> 31.7 /¿g/<br />

100 ml, <strong>and</strong> <strong>of</strong> Gollan et al. (264) based on<br />

18 normal subjects <strong>and</strong> providing a mean<br />

value <strong>of</strong> 29 /¿g/100ml. The ' <strong>copper</strong> <strong>of</strong><br />

saliva is in the labile form, since reactions<br />

for ceruloplasmin are negative (157). If<br />

one considers the daily output <strong>of</strong> saliva to<br />

be 1.5 liters (range 1-2 liters), the total<br />

daily excretion <strong>of</strong> <strong>copper</strong> would amount to<br />

from 0.38 to 0.47 mg, on the basis <strong>of</strong> the<br />

data recorded above. There is also evi<br />

dence that the <strong>copper</strong>-binding substances<br />

in saliva retain their activity after transit<br />

through the stomach to the site <strong>of</strong> absorp<br />

tion in the small intestine. De Jorge et al.<br />

(157) also report mean <strong>copper</strong> values <strong>of</strong><br />

submaxillary, parotid <strong>and</strong> pancreas re<br />

moved from 10 postmortem cases as 1.43,<br />

0.55 <strong>and</strong> 0.85 mg/100 g dry weight <strong>of</strong> tis<br />

sue, respectively.<br />

Gastrointestinal excretion<br />

In his pioneer studies on the <strong>metabolism</strong><br />

<strong>of</strong> <strong>copper</strong> in man, Van Ravensteyn (805)<br />

found an average <strong>copper</strong> concentration <strong>of</strong><br />

0.023 mg/100 ml (range 0.01-0.04 mg/100<br />

ml) in gastric juice <strong>of</strong> eight normal sub<br />

jects. Some 27 years later, other data were<br />

provided by Gollan et al. (265) who, in<br />

four normal subjects, found a mean con<br />

centration <strong>of</strong> 0.034 mg/100 ml (range 0.02-<br />

0.96 mg/100 ml). In the latter studies<br />

gastric juice free <strong>of</strong> swallowed saliva <strong>and</strong><br />

nasopharyngeal secretions was aspirated<br />

from fasting subjects, <strong>and</strong> particulate mat<br />

ter was removed by centrifugation at 2,000<br />

X g for 20 minutes. Accepting the values<br />

reported by Gollan et al. (265), employing<br />

exacting collecting <strong>and</strong> analytical pro<br />

cedures, <strong>and</strong> considering current estimates<br />

that the daily volume <strong>of</strong> gastric secretions<br />

approximates 3 liters (range 2-4 liters), it<br />

can be calculated that the gastric mucosa<br />

secretes approximately 1.0 mg/day.<br />

The only recorded study <strong>of</strong> duodenal<br />

secretion <strong>of</strong> <strong>copper</strong> is that <strong>of</strong> Gollan (263 ).<br />

Normal <strong>and</strong> secretin-stimulated aspirates<br />

<strong>of</strong> the duodenum, obtained from fasting<br />

normal subjects through a tube positioned<br />

such as to exclude gastric contents (<strong>and</strong><br />

presumably to also exclude bile <strong>and</strong> pan<br />

creatic secretions) indicates the presence<br />

<strong>of</strong> <strong>copper</strong>-binding substances <strong>of</strong> low molec<br />

ular weight such as also found in saliva<br />

<strong>and</strong> gastric juice. Gollan presents evidence<br />

that the latter binding substances retain<br />

their activity after transit through the<br />

stomach to the site <strong>of</strong> absorption in the<br />

small intestine. He also postulates that<br />

these secretions, through their capacity to<br />

solubilize the metal at an alkaline pH, may<br />

enhance the availability <strong>of</strong> <strong>copper</strong> for ab<br />

sorption.<br />

Relatively little attention has been given<br />

to, or estimates made <strong>of</strong>, the amount <strong>of</strong><br />

<strong>copper</strong> released into the feces via the ex<br />

tensive dehiscence <strong>of</strong> epithelial cells <strong>of</strong> the<br />

intestinal mucosa. In these cells there is a<br />

considerable amount <strong>of</strong> <strong>copper</strong> bound to<br />

metallothionein or metallothionein-like pro<br />

teins, functioning in <strong>copper</strong> storage <strong>and</strong> in<br />

protection against excess <strong>copper</strong> intake.<br />

Considering that the absorptive cells lining<br />

intestinal villi are replaced every 5 to 6<br />

days in man (475), this contribution <strong>of</strong><br />

<strong>copper</strong> to the intestinal contents <strong>and</strong> to<br />

the fecal output may be quite significant,<br />

since it is thought to be nonabsorbable<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1997<br />

(192). It may represent 17% <strong>of</strong> the daily<br />

fecal excretion (301). It certainly justifies<br />

more consideration as a factor in evaluat<br />

ing <strong>copper</strong> excretion <strong>and</strong> maintenance <strong>of</strong><br />

<strong>copper</strong> balance in the human organism.<br />

Questions arise concerning the fate <strong>of</strong><br />

the large amount <strong>of</strong> <strong>copper</strong> bound to sub<br />

stances <strong>of</strong> low molecular weight (amino<br />

acids <strong>and</strong> peptides) which is excreted via<br />

the saliva, gastric juice <strong>and</strong> duodenal se<br />

cretions. Unfortunately, studies presented<br />

record many data but make few predic<br />

tions as to what the findings may mean<br />

with regard to <strong>copper</strong> absorption or metab<br />

olism. Some <strong>of</strong> this <strong>copper</strong> may be reabsorbed<br />

<strong>and</strong> some may be added to the<br />

fèces, but the relative amounts are un<br />

known. And, in addition, the physiological<br />

catabolism <strong>of</strong> ceruloplasmin may add<br />

about 0.1 mg to fecal excretion <strong>of</strong> <strong>copper</strong><br />

per day (814).<br />

Urinary excretion<br />

Estimates <strong>of</strong> <strong>copper</strong> lost in the urine are<br />

somewhat variable, apparently due to dif<br />

ferences in sensitivity <strong>and</strong> accuracy <strong>of</strong><br />

methods used, <strong>and</strong> possible contamination<br />

from extraneous sources. Early reports are<br />

summarized by Butler <strong>and</strong> Newman (83)<br />

who, in a study <strong>of</strong> 12 healthy adults, re<br />

ported mean excretion values <strong>of</strong> 18.0 jug/<br />

day, (range 3.9-29.6 fig/day). Values re<br />

ported since that time are in reasonable<br />

accord with these results. If one selects<br />

from the literature those reports based<br />

upon 10 or more adult subjects, chrono<br />

logically recording results in terms <strong>of</strong><br />

/«.g/dayexcreted in the urine, the values<br />

are: 18 (113); 18 (765); 20 (253); 37<br />

(398) <strong>and</strong> 52 (153). These values are all<br />

within the range <strong>of</strong> 10 to 60 /¿g/daypro<br />

posed by Cartwright <strong>and</strong> Wintrobe ( 106).<br />

Thus, urinary excretion <strong>of</strong> <strong>copper</strong>, amount<br />

ing to approximately 0.5 to 3.0$ <strong>of</strong> the<br />

daily intake, places the main excretory re<br />

sponsibility on fecal excretion. There still<br />

remains the possibility that the human<br />

kidney possesses the capacity for tubular<br />

reabsorption <strong>of</strong> <strong>copper</strong>.<br />

Sweat loss<br />

The loss <strong>of</strong> <strong>copper</strong> through sweat has<br />

received limited consideration. The pioneer<br />

studies <strong>of</strong> Consolazio et al. ( 122) record<br />

that on a constant dietary intake <strong>of</strong> <strong>copper</strong><br />

(3.5 mg) <strong>and</strong> in an environment <strong>of</strong> 37.8°<br />

<strong>and</strong> humidity <strong>of</strong> 50$;, three normal sub<br />

jects showed a significant negative <strong>copper</strong><br />

balance. During 10 days <strong>of</strong> observation the<br />

sweat loss from the men averaged 1.6 mg/<br />

day, or about 45% <strong>of</strong> their total dietary in<br />

take. Consequently, the negative balance<br />

averaged 1.1 mg/day. Mitchell <strong>and</strong> Hamil<br />

ton (528) found an average <strong>of</strong> 58 /¿g/li ter<br />

in the sweat <strong>of</strong> four adult males under hot,<br />

humid conditions. Another report (343)<br />

records for 33 males after sauna bathing<br />

an average excretion <strong>of</strong> 550 ±350 /^g/liter<br />

in the sweat. In view <strong>of</strong> these data it ap<br />

pears that the loss <strong>of</strong> <strong>copper</strong> through sweat<br />

is much greater than heret<strong>of</strong>ore recog<br />

nized. In fact, Hohnadel et al. (343) <strong>and</strong><br />

Sunderman et al. (764) extol the possible<br />

virtues <strong>of</strong> the sauna bath as a therapeutic<br />

method for increasing the excretion <strong>of</strong> toxic<br />

metals, such as <strong>copper</strong> in Wilson's disease.<br />

Technical methods defy measurements <strong>of</strong><br />

<strong>copper</strong> loss through insensible perspiration.<br />

Menstrual loss<br />

Data on the loss <strong>of</strong> <strong>copper</strong> via menstrual<br />

flow is likewise meager. For four menstrual<br />

periods in three subjects values <strong>of</strong> 0.19,<br />

0.24, 0.39 <strong>and</strong> 0.61 mg per period (aver.<br />

0.47 mg) are given by Ohlson <strong>and</strong> Daum<br />

(572). Comparable average values <strong>of</strong> 0.32,<br />

0.48, 0.65 <strong>and</strong> 0.74 mg <strong>copper</strong> for four<br />

consecutive periods in four different sub<br />

jects are recorded by Leverton <strong>and</strong> Binkley<br />

(452), <strong>and</strong> a mean <strong>of</strong> 0.11 ±0.07 mg<br />

per period for 12 adolescent girls is re<br />

ported by Greger <strong>and</strong> Buckley (278 ).<br />

COPPER IN THE DIET<br />

Copper in foods<br />

Copper is ubiquitous in plants <strong>and</strong> ani<br />

mals. Its widespread occurrence in food<br />

was demonstrated in the early reports <strong>of</strong><br />

Lindow et al. (462) <strong>and</strong> <strong>of</strong> Hodges <strong>and</strong><br />

Peterson (341) on the <strong>copper</strong>-content <strong>of</strong><br />

samples <strong>of</strong> commonly used food in the<br />

USA, <strong>and</strong> that <strong>of</strong> Adolph <strong>and</strong> Chou (8) on<br />

Chinese foods. It is well recognized that<br />

the <strong>copper</strong> in foods varies greatly, depend<br />

ing upon the soils from which they have<br />

been obtained, <strong>and</strong> on contamination be<br />

fore <strong>and</strong> after reaching the market place.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


1998 KARL E. MASON<br />

The richest sources in human dietaries are<br />

liver (especially calf, lamb <strong>and</strong> beef),<br />

crustaceans <strong>and</strong> shell fish (especially<br />

oysters). Of somewhat lesser content, <strong>and</strong><br />

roughly in descending order, are nuts <strong>and</strong><br />

seeds, high-protein cereals, dried fruits,<br />

poultry, fish, meats, legumes, root vege<br />

tables, leafy vegetables, fresh fruits <strong>and</strong><br />

non-leafy vegetables. One <strong>of</strong> the lowest <strong>of</strong><br />

commonly used foods is cow's milk. The<br />

exceptionally high <strong>copper</strong> content <strong>of</strong> the<br />

Atlantic coast oyster, which may vary<br />

widely with the season <strong>and</strong> with degrees<br />

<strong>of</strong> contamination <strong>of</strong> environmental waters,<br />

is not true <strong>of</strong> the Pacific or the Australian<br />

oyster (290).<br />

Throughout the literature one repeatedly<br />

finds the statement that the average North<br />

American diet provides 3 to 5 mg <strong>of</strong> <strong>copper</strong><br />

per day. Because <strong>of</strong> the widespread pres<br />

ence <strong>of</strong> <strong>copper</strong> in foods <strong>and</strong> in drinking wa<br />

ter, especially that obtained via <strong>copper</strong><br />

pipes, it is difficult to devise a balanced diet<br />

composed <strong>of</strong> natural foodstuffs that contains<br />

less than 1 mg per day (50 /¿g/cal/day),<br />

according to Schroeder et al. (691) who<br />

give extensive data on <strong>copper</strong> in foods,<br />

beverages <strong>and</strong> water <strong>of</strong> many types. They<br />

also state that to provide such a diet the<br />

following foods must be avoided; most<br />

meats, shellfish, vegetables, phospholipids,<br />

legumes, fruits, nuts, some grains, gelatin,<br />

tea, c<strong>of</strong>fee, s<strong>of</strong>t drinks, beer <strong>and</strong> distilled<br />

liquors. Such a diet would be low in pro<br />

tein, monotonous <strong>and</strong> marginally deficient<br />

in several essential trace metals. In con<br />

trast, they estimate that a diet <strong>of</strong> only 1,200<br />

calories, with 100 calories from each <strong>of</strong> the<br />

high <strong>copper</strong> foods (oysters, clams, pork,<br />

margarine, turnips, carrots, mushrooms,<br />

rhubarb, papaya, nuts, grapenuts <strong>and</strong><br />

orange juice) would contain approximately<br />

34 mg <strong>of</strong> <strong>copper</strong>.<br />

There have been many other published<br />

lists giving the <strong>copper</strong> content <strong>of</strong> com<br />

monly used foods. A rather extensive list<br />

<strong>of</strong> <strong>copper</strong> <strong>and</strong> other inorganic elements in<br />

foods used in hospital menus has been<br />

presented by Gormican (273). A recent<br />

<strong>and</strong> complete compilation <strong>of</strong> data pertain<br />

ing to the <strong>copper</strong> content <strong>of</strong> foods, as re<br />

corded by investigators worldwide, is that<br />

<strong>of</strong> Pennington <strong>and</strong> Galloway (595). Of the<br />

222 references used in their literature sur<br />

vey only 104 specified the methods used,<br />

many <strong>of</strong> which represented individual<br />

modification <strong>of</strong> other methods. Methods <strong>of</strong><br />

expressing values obtained were indeed<br />

numerous <strong>and</strong> <strong>of</strong>ten difficult to reduce to<br />

a common denominator. Aside from vari<br />

able contamination <strong>of</strong> water, reagents <strong>and</strong><br />

glassware in analytical procedures, factors<br />

such as <strong>copper</strong> content <strong>of</strong> soil, water source,<br />

season, <strong>and</strong> use <strong>of</strong> fertilizers, insecticides,<br />

pesticides <strong>and</strong> fungicides raised serious<br />

questions concerning the validity <strong>of</strong> values<br />

reported for the <strong>copper</strong> content <strong>of</strong> the vast<br />

list <strong>of</strong> food items recorded.<br />

Hughes et al. (366) give analyses for<br />

<strong>copper</strong> in a great variety <strong>of</strong> commercially<br />

prepared baby foods. Highest levels were<br />

found in those containing beef liver <strong>and</strong><br />

high protein cereals (2.64 <strong>and</strong> 1.85 mg/100<br />

g, respectively). Next in order were other<br />

precooked cereal foods (range 0.78-0.26<br />

mg/100 g), as compared to 0.04 to 0.30<br />

mg/100 ml in human milk (pp. 2025-2026).<br />

Vegetables, fruits <strong>and</strong> desserts were vari<br />

ably lower. Cooked cereals, which fre<br />

quently are the first non-milk foods <strong>of</strong>fered<br />

to infants, if they are <strong>of</strong> high protein quality,<br />

will provide a large part <strong>of</strong> their require<br />

ment. It was their opinion that by the time<br />

infants reach 6 months <strong>of</strong> age the variety<br />

<strong>of</strong> supplementary foods normally <strong>of</strong>fered<br />

should, in most cases, meet or exceed the<br />

generally accepted requirement <strong>of</strong> 0.05<br />

mg/kg/day.<br />

From what has been said, it is apparent<br />

that most populations appear to have an<br />

adequate dietary intake <strong>of</strong> <strong>copper</strong>, which<br />

well justifies previous opinions that a recog<br />

nizable state <strong>of</strong> <strong>copper</strong> deficiency in adult<br />

man is not likely to be recognized. But<br />

this does not imply that some diets may<br />

not be decidedly marginal, as discussed in<br />

the following section. Such matters are con<br />

stantly <strong>of</strong> concern in any review <strong>of</strong> reports<br />

on dietary intake <strong>and</strong> on balance studies<br />

which represent the basic information<br />

necessary for the determination <strong>of</strong> human<br />

<strong>copper</strong> <strong>requirements</strong>.<br />

Dietary intake <strong>of</strong> <strong>copper</strong><br />

Before progressing to a discussion <strong>of</strong><br />

human dietary needs <strong>of</strong> <strong>copper</strong> for adult<br />

man it may be pertinent to review what<br />

has been recorded concerning the usual<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 1999<br />

dietary intake in various countries <strong>of</strong> the<br />

world. At the beginning it should be recog<br />

nized that in the vast majority <strong>of</strong> such<br />

analyses <strong>copper</strong> has <strong>of</strong>ten been only one <strong>of</strong><br />

many trace elements under investigation<br />

<strong>and</strong> <strong>of</strong>ten has been secondary compared to<br />

iron, zinc, <strong>and</strong> other elements. Unfortu<br />

nately, there have been almost no studies<br />

in which <strong>copper</strong> has been the only, or<br />

even the primary, focus <strong>of</strong> attention.<br />

On the basis <strong>of</strong> studies conducted in<br />

Engl<strong>and</strong>, New Zeal<strong>and</strong> <strong>and</strong> the United<br />

States, Underwood (798) estimates that<br />

most western-style mixed diets provide<br />

adults with 2 to 4 mg/day. Guthrie <strong>and</strong><br />

Robinson (292) think that the <strong>copper</strong><br />

status <strong>of</strong> some New Zeal<strong>and</strong>ers may be<br />

inadequate. In India, in adults consuming<br />

rice <strong>and</strong> wheat diets, the <strong>copper</strong> intake<br />

may be as much as 4.5 to 5.8 mg/day<br />

(154). Estimated daily intakes for adults<br />

in other countries have been reported as:<br />

2.26 to 7.3 mg (mean 4.10) in Kiev <strong>and</strong> 11<br />

other cities <strong>of</strong> the Ukraine (239); 1.29 to<br />

6.39 mg for inmates <strong>of</strong> old people's homes<br />

in Switzerl<strong>and</strong> (688); about 2.0 mg for<br />

New Zeal<strong>and</strong>ers (511); 1.5 mg for inhabi<br />

tants <strong>of</strong> an isolated Polynesian isl<strong>and</strong> (510);<br />

2 to 4 mg for Japanese (543) <strong>and</strong> about<br />

2.0 mg for Taiwanese (793). In the latter<br />

study, a control subject maintained on a<br />

low <strong>copper</strong> diet for 2 weeks, providing a<br />

daily intake <strong>of</strong> 1.34 mg, maintained a posi<br />

tive <strong>copper</strong> balance <strong>of</strong> 0.12 mg. Unfortu<br />

nately, the methods employed for analysis<br />

<strong>of</strong> <strong>copper</strong> were not stated. On the other<br />

h<strong>and</strong>, it is estimated that in 20 USDA diets<br />

examined the mean <strong>copper</strong> intake would<br />

provide 1.05 mg/day (419).<br />

Recent <strong>and</strong> well planned studies based<br />

upon analyses <strong>of</strong> <strong>copper</strong> <strong>and</strong> zinc content<br />

<strong>of</strong> duplicate samples <strong>of</strong> daily diets <strong>of</strong> 22<br />

subjects ( 14-64 years <strong>of</strong> age ) over a 14-day<br />

period, provide valuable information (344,<br />

860). Considering a 6-day average (after<br />

8 days <strong>of</strong> adjustment) for each subject,<br />

the mean daily intake <strong>of</strong> <strong>copper</strong> was 1.01<br />

mg day ±0.4. This is considerably below<br />

estimates <strong>of</strong> 1.62 mg/day given by Hartley<br />

et al. (314), <strong>and</strong> 1.34 mg/day by Tu et al.<br />

(793), but in good agreement with the<br />

estimates <strong>of</strong> 1.05 mg by Klevay et al. (419).<br />

There has also been an increasing aware<br />

ness <strong>of</strong> an inadequacy <strong>of</strong> not only <strong>copper</strong><br />

but also other trace elements <strong>and</strong> certain<br />

vitamins in the usual hospital diets (67,<br />

273, 419). It is true that most patients are<br />

hospitalized over a sufficiently short period<br />

such that they can rely on liver <strong>and</strong> other<br />

tissue storage to compensate for inade<br />

quate intake. The problem <strong>of</strong> long term<br />

parenteral nutrition is a separate issue<br />

which will be discussed later (pp. 2028,<br />

2034). However, it may be noted that a<br />

recent study <strong>of</strong> regular, vegetarian <strong>and</strong><br />

renal diets in a hospital situation, based on<br />

diets collected over 7 consecutive days, in<br />

dicate a mean daily <strong>copper</strong> intake <strong>of</strong> 0.90,<br />

1.10 <strong>and</strong> 0.51 mg (67), respectively. For<br />

subjects with Wilson's disease such diets<br />

would be most desirable. For others, they<br />

may be marginal or inadequate.<br />

Analyses <strong>of</strong> school lunches have given<br />

but rather fragmentary evidence <strong>of</strong> the<br />

<strong>copper</strong> content <strong>of</strong> the American diet for<br />

children <strong>and</strong> adolescents. A survey <strong>of</strong> such<br />

lunches served 6th grade children in 300<br />

schools in 19 states <strong>of</strong> the USA (544, 545)<br />

indicates an average content <strong>of</strong> 0.34 mg/<br />

day (range 0.06-2.19 mg). Considering<br />

one-third <strong>of</strong> the daily intake represented,<br />

the average intake would amount to about<br />

1.0 mg/day. These values are somewhat<br />

less than those reported in metabolic<br />

studies <strong>of</strong> 7 to 9 year-old children fed diets<br />

typical <strong>of</strong> low income groups in the south<br />

eastern USA, recording mean daily intakes<br />

<strong>of</strong> 1.67 mg/day (618). On the basis <strong>of</strong> mg/<br />

kg/food consumed, values given for insti<br />

tutionalized children in Samark<strong>and</strong> are<br />

0.46 to 1.62 (620), <strong>and</strong> for the same in 28<br />

USA cities are 0.44 to 0.87 (548).<br />

Waslein (830) reports that data col<br />

lected on the <strong>copper</strong> content <strong>of</strong> the diet <strong>of</strong><br />

377 babies from the USA indicated a wide<br />

range <strong>of</strong> from 7 to 170 /*g/kg body weight,<br />

or 0.18 to 0.92 mg/day. Total daily intakes<br />

<strong>of</strong> <strong>copper</strong> ranged from an average <strong>of</strong> 0.16<br />

for 1-month old infants to 0.38 mg for<br />

6-month old infants, 50 to 607o <strong>of</strong> the in<br />

take coming from milk. Furthermore, in<br />

takes <strong>of</strong> children participating in balance<br />

studies or living in institutions in the USA<br />

or USSR had mean <strong>copper</strong> intakes <strong>of</strong> 0.9<br />

to 2.2 mg/day, <strong>and</strong> similar studies on<br />

adults in the United Kingdom <strong>and</strong> New<br />

Zeal<strong>and</strong> gave values <strong>of</strong> 1.7 <strong>and</strong> 2.4 mg/day,<br />

respectively. However, the average <strong>copper</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2000 KARL E. MASON<br />

intake <strong>of</strong> 5.8 mg/ day from diets in India,<br />

determined on composites made from selfselected<br />

diets in a dozen locations through<br />

out the country ( 154), is more than double<br />

the mean found for diets in developed<br />

countries, for which no explanation is<br />

given. In evaluating such reported data<br />

one must consider not only the differences<br />

in methods <strong>of</strong> assay <strong>and</strong> <strong>of</strong> care against<br />

contamination but also differences in sam<br />

ple preparation <strong>and</strong> differences in food<br />

preparation in different countries. There<br />

is also need to consider phytate <strong>and</strong> fiber<br />

content <strong>of</strong> diets, which may influence ab<br />

sorption or utilization <strong>of</strong> dietary <strong>copper</strong>.<br />

From what has been said, it is quite ap<br />

parent that data based upon the daily in<br />

take <strong>of</strong> <strong>copper</strong> by peoples in different parts<br />

<strong>of</strong> the globe give relatively little guidance<br />

as to what the minimal or optimal level <strong>of</strong><br />

intake may be.<br />

COPPER METABOLISM IN PRENATAL<br />

AND POSTNATAL LIFE<br />

A preceding section has dealt with the<br />

labile <strong>and</strong> the more firmly protein-bound<br />

types <strong>of</strong> <strong>copper</strong> in the blood cells <strong>and</strong><br />

blood serum or plasma <strong>of</strong> normal adult<br />

man. Briefly stated, the labile pools repre<br />

sent about 40 <strong>and</strong> 1%, <strong>and</strong> the proteinbound<br />

pools (superoxide dismutase <strong>and</strong><br />

ceruloplasmin ) approximately 60 <strong>and</strong> 93$,<br />

<strong>of</strong> the <strong>copper</strong> present in blood cells <strong>and</strong><br />

plasma, respectively. The ratio <strong>of</strong> cell to<br />

plasma <strong>copper</strong> is about 0.70 ( 100). The<br />

<strong>copper</strong> content <strong>of</strong> the red blood cells re<br />

mains remarkably constant, little influenced<br />

by dietary intake or metabolic stresses<br />

(286, 435). That <strong>of</strong> the plasma is subject<br />

to rather remarkable changes during preg<br />

nancy, reflecting the influence <strong>of</strong> hormones,<br />

particularly estrogens, upon the synthesis<br />

<strong>and</strong> release <strong>of</strong> ceruloplasmin.<br />

There exists a vast literature dealing<br />

with 1) the increase <strong>of</strong> maternal blood<br />

<strong>copper</strong> levels during pregnancy <strong>and</strong> the<br />

influence <strong>of</strong> estrogenic hormones; 2) the<br />

role <strong>of</strong> the placenta in transfer <strong>of</strong> <strong>copper</strong><br />

to the fetus; 3) the role <strong>of</strong> fetal liver in<br />

storage <strong>of</strong> <strong>copper</strong> to meet inadequacies <strong>of</strong><br />

mammary transfer during early lactation<br />

<strong>and</strong> 4) postnatal changes in blood <strong>copper</strong><br />

levels in the infant <strong>and</strong> adolescent. Knowl<br />

edge <strong>and</strong> interpretation <strong>of</strong> these processes<br />

are <strong>of</strong> importance not only in determining<br />

the role <strong>of</strong> <strong>copper</strong> in reproductive physi<br />

ology <strong>and</strong> neonatal development in man,<br />

but also in obtaining a better underst<strong>and</strong><br />

ing <strong>of</strong> human <strong>requirements</strong> <strong>of</strong> <strong>copper</strong> for<br />

the infant <strong>and</strong> adolescent. It is the pur<br />

pose <strong>of</strong> this section to review briefly what<br />

has been learned concerning the rather<br />

complex changes, not yet clearly under<br />

stood, which occur in the pregnant mother,<br />

fetus <strong>and</strong> young infant.<br />

Influence <strong>of</strong> pregnancy<br />

It seems remarkable that the first investi<br />

gators to demonstrate the presence <strong>of</strong> cop<br />

per in human blood (827) should also<br />

have been the first to recognize not only<br />

normal sex differences but also increased<br />

levels <strong>of</strong> <strong>copper</strong> in the blood <strong>of</strong> pregnant<br />

women (426). These observations were<br />

soon verified by many other investigators<br />

( 181, 184, 206, 294, 318, 345, 348, 434, 464,<br />

556, 561, 577-579, 655, 660, 787). However,<br />

the significance <strong>of</strong> these findings remained<br />

obscure until evidence was presented that<br />

similar increases occur in infants receiving<br />

diethylstilbestrol therapeutically for treat<br />

ment <strong>of</strong> hemophilia (794), <strong>and</strong> in adults <strong>of</strong><br />

either sex receiving estrogens (183, 245,<br />

368, 651) but not in those receiving pro<br />

gesterone or <strong>and</strong>rogens (183). These in<br />

vestigations suggest that increased plasma<br />

<strong>copper</strong> levels in pregnancy could be ex<br />

plained by increased levels <strong>of</strong> estrogens,<br />

but this may not be the total story.<br />

Beginning during the first trimester <strong>of</strong><br />

pregnancy, there occurs a progressive in<br />

crease in maternal plasma <strong>copper</strong> levels.<br />

In groups <strong>of</strong> pregnant women at successive<br />

lunar months <strong>of</strong> gestation, values have<br />

been reported to increase progressively<br />

from 146.1 to 277.6 jig/100 ml (181), <strong>and</strong><br />

131 to 213 Mg/100 ml (757), <strong>and</strong> from 172<br />

to 273 /ig/100 ml (54). Similar data are<br />

presented by others (158, 524). The in<br />

creased plasma <strong>copper</strong> levels <strong>of</strong> pregnancy<br />

have been well documented (23, 54, 77,<br />

152, 231, 255, 318, 320, 324, 527, 574, 578,<br />

686, 687, 847, 858, 878). The <strong>copper</strong> con<br />

tent <strong>of</strong> erythrocytes <strong>of</strong> mother <strong>and</strong> fetus<br />

remains remarkably constant ( 181, 345 ).<br />

Hence, the striking rise in plasma <strong>copper</strong><br />

during pregnancy to about 2 to 3 X normal<br />

is attributable almost entirely to increased<br />

synthesis <strong>of</strong> ceruloplasmin (324, 491, 673).<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2001<br />

Since there are no known alterations in<br />

absorption or excretion, the major source<br />

<strong>of</strong> the non-dietary <strong>copper</strong> for this synthesis<br />

is presumably the maternal liver. Direct<br />

evidence in support <strong>of</strong> this assumption is<br />

the much lower concentration <strong>of</strong> <strong>copper</strong><br />

in the liver (as compared to other organs<br />

examined) in pregnant as compared to<br />

nonpregnant women, all victims <strong>of</strong> acci<br />

dental death (524), <strong>and</strong> very low liver<br />

<strong>copper</strong> levels in women succumbing to<br />

late toxemia <strong>of</strong> pregnancy associated with<br />

unusually high serum ceruloplasmin levels<br />

(628). Assuming also increments <strong>of</strong> about<br />

25% in plasma volume during gestation<br />

(166), maintenance <strong>of</strong> high plasma <strong>copper</strong><br />

levels places special dem<strong>and</strong>s upon ma<br />

ternal tissue stores. Associated with in<br />

creased plasma ceruloplasmin levels <strong>of</strong><br />

<strong>copper</strong> there occurs a reciprocal decrease<br />

in plasma zinc levels both in states <strong>of</strong><br />

pregnancy (152, 300, 324, 388, 843) <strong>and</strong><br />

following use <strong>of</strong> oral contraceptives (297),<br />

although the latter statement has been<br />

questioned (579). Differences in competi<br />

tive binding <strong>of</strong> these two elements under<br />

special circumstances may explain these<br />

inverse relationships <strong>of</strong> zinc <strong>and</strong> <strong>copper</strong><br />

during gestation.<br />

Richterich et al. (638), comparing their<br />

data with that <strong>of</strong> prior investigators (338,<br />

491, 673), indicate general agreement that<br />

1) ceruloplasmin blood levels in pregnant<br />

women are two to three times those <strong>of</strong><br />

nonpregnant women, <strong>and</strong> that 2) the<br />

levels in mothers at term are approximately<br />

eight times those in umbilical cord blood.<br />

Ceruloplasmin values recorded are quite<br />

comparable, whether obtained by the en<br />

zymatic method <strong>of</strong> Ravin (629) or the<br />

immunological method <strong>of</strong> Hitzig (339).<br />

Maternal serum <strong>copper</strong> levels return to<br />

non-pregnant levels over a period <strong>of</strong> 4<br />

weeks or more following legal abortion<br />

(54) <strong>and</strong> normal delivery (388, 561, 777).<br />

Since estrogen production <strong>and</strong> serum<br />

ceruloplasmin levels are not proportional<br />

during pregnancy, <strong>and</strong> since blood estro<br />

gens decrease rapidly after abortion or<br />

delivery compared to ceruloplasmin levels,<br />

questions are raised as to whether estrogenie<br />

stimuli alone are responsible for the<br />

increase <strong>of</strong> serum <strong>copper</strong> in pregnancy. A<br />

similar dilemma relates to the increase in<br />

serum <strong>copper</strong> levels, over <strong>and</strong> above those<br />

<strong>of</strong> normal pregnancy, observed in pre<br />

eclampsia <strong>and</strong> eclampsia (205, 527, 552,<br />

578, 628, 777, 847, 858, 868), <strong>and</strong> in a case<br />

<strong>of</strong> hydatidiform mole (318). Evidence that<br />

maternal serum <strong>copper</strong> levels show even<br />

greater increases with intervening infec<br />

tious diseases <strong>and</strong> malignant processes has<br />

led to suggestions that increased serum<br />

<strong>copper</strong> levels in pregnancy reflect a re<br />

sistance reaction <strong>of</strong> the maternal organism<br />

to continuous invasion <strong>of</strong> the fetus into the<br />

maternal circulation (181). Another con<br />

cept relates these changes to a conse<br />

quence <strong>of</strong> hormonal adaptation <strong>of</strong> the<br />

maternal organism to the increased meta<br />

bolic <strong>and</strong> hormonal dem<strong>and</strong>s <strong>of</strong> pregnancy<br />

(167).<br />

Influence <strong>of</strong> oral contraceptives<br />

Reference has been made to early ob<br />

servations (183, 651, 794) <strong>of</strong> the thera<br />

peutic use <strong>of</strong> estrogens <strong>and</strong> the ensuing in<br />

crease in plasma levels <strong>of</strong> ceruloplasmin<br />

which, in turn, suggested an explanation<br />

for the comparable phenomenon observed<br />

previously in pregnant women. To this<br />

may be added evidence (98) that in nor<br />

mal individuals oral contraceptives cause<br />

marked increases in serum <strong>copper</strong> levels<br />

involving increased synthesis <strong>of</strong> ceruloplas<br />

min, <strong>of</strong>ten greater than that observed in<br />

the state <strong>of</strong> pregnancy. Since that time<br />

there has arisen a rather extensive litera<br />

ture on the effect <strong>of</strong> oral contraceptives<br />

<strong>and</strong> intrauterine <strong>copper</strong> devices in the<br />

human female.<br />

Since this topic has been well reviewed<br />

in recent years (589, 723, 771), it will not<br />

be subject to further consideration here.<br />

However, it must be emphasized that the<br />

continued use <strong>of</strong> oral contraceptives has<br />

been, <strong>and</strong> will continue to be, an impor<br />

tant factor in influencing <strong>copper</strong> homeostasis<br />

in women. Estrogens, whether en<br />

dogenous or exogenous, have a remark<br />

able capacity to stimulate synthesis <strong>of</strong><br />

ceruloplasmin in the liver <strong>and</strong> to increase<br />

urinary excretion <strong>of</strong> <strong>copper</strong>. The extent to<br />

which prolonged use <strong>of</strong> oral contraceptives<br />

may decrease body <strong>copper</strong> storage <strong>and</strong><br />

modify the daily <strong>copper</strong> requirement has<br />

not been examined. It does justify special<br />

study.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2002 KARL E. MASON<br />

Placental transfer<br />

Nonceruloplasmin <strong>copper</strong> readily crosses<br />

the placenta by passive diffusion, <strong>and</strong> its<br />

concentration in erythrocytes <strong>and</strong> plasma<br />

<strong>of</strong> mother <strong>and</strong> fetus is relatively constant<br />

throughout gestation (181, 673). Total<br />

<strong>copper</strong> in cord blood is about 1/4 to 1/5<br />

that in maternal blood (181, 464, 552, 556,<br />

561, 660, 673, 686). Studies in which blood<br />

<strong>of</strong> the umbilical vein (placenta to fetus)<br />

<strong>and</strong> umbilical artery (fetus to placenta)<br />

have been analyzed for <strong>copper</strong> give values<br />

<strong>of</strong> 53.4 to 40.0 fig/100 ml (556), 54.9 <strong>and</strong><br />

40.2 Mg/100 ml (167) <strong>and</strong> 74.4 <strong>and</strong> 41.8<br />

/ig/100 ml (770), respectively. Such find<br />

ings clearly indicate an important role <strong>of</strong><br />

the placenta in transfer <strong>of</strong> <strong>copper</strong> from<br />

mother to fetus. The high <strong>copper</strong> concen<br />

tration in the placenta (525, 605), liver<br />

<strong>and</strong> other fetal organs <strong>and</strong> tissues, referred<br />

to later, indicates the efficiency <strong>of</strong> this<br />

transfer.<br />

Questions <strong>of</strong> placental transfer <strong>and</strong> <strong>of</strong><br />

fetal synthesis <strong>of</strong> ceruloplasmin have never<br />

been satisfactorily clarified. It has been<br />

assumed that its large molecular size pre<br />

cludes placental transfer (673), although<br />

this may not be a valid conclusion (339).<br />

There are possibilities that with pro<br />

nounced thinning <strong>of</strong> the hemoendothelial<br />

membrane <strong>of</strong> placental villi, <strong>and</strong>/or tiny<br />

breaks therein during late phases <strong>of</strong> ges<br />

tation, some ceruloplasmin may be trans<br />

ferred to the fetal circulation (552). Also,<br />

one cannot exclude the possibility that<br />

ceruloplasmin may actually cross the pla<br />

centa, <strong>and</strong> that its rate <strong>of</strong> utilization <strong>and</strong><br />

breakdown may be equivalent to or greater<br />

than its rate <strong>of</strong> transfer (666). Although<br />

apoceruloplasmin can be identified immunologically<br />

in plasma <strong>of</strong> the newborn<br />

(496, 714), there is no evidence that ce<br />

ruloplasmin can be synthesized by the<br />

fetus. It is assumed that synthesis by the<br />

fetal liver does not begin until shortly<br />

after birth. In the domestic pig neither<br />

apoceruloplasmin nor ceruloplasmin ap<br />

pear in die piglet serum until about 15<br />

hours after birth (108, 109). In view <strong>of</strong><br />

these facts, the presence <strong>of</strong> small amounts<br />

<strong>of</strong> ceruloplasmin in cord blood <strong>of</strong> the new<br />

born (338, 606, 639, 673) suggests its<br />

transport from placenta to fetus. If this be<br />

so, the time over which this transfer may<br />

take place <strong>and</strong> its magnitude is unknown,<br />

<strong>and</strong> almost impossible to determine. A<br />

question which naturally arises is whether<br />

the fetus has or needs a ferroxidase type<br />

<strong>of</strong> enzyme, as a substitute for lack <strong>of</strong><br />

ceruloplasmin, to provide for the intensive<br />

hemopoietic activities <strong>of</strong> the fetal liver,<br />

spleen <strong>and</strong> bone marrow during fetal life.<br />

Somewhat ancillary to this discussion are<br />

observations <strong>of</strong> Widdowson et al. (842)<br />

that <strong>copper</strong> concentration in the liver <strong>of</strong> 30<br />

fetuses representing the 20th to 41st weeks<br />

<strong>of</strong> gestation were consistently high (aver<br />

age 6.4, range 3.5-9.3 mg/100 g fresh<br />

tissue), as compared to values <strong>of</strong> 0.5 mg/<br />

100 g fresh tissue for adult human liver,<br />

lyengar <strong>and</strong> Apte (377) give values <strong>of</strong><br />

4.76, 4.37, 4.38 <strong>and</strong> 4.23 mg/100 g fresh<br />

tissue for livers <strong>of</strong> 38 fetuses <strong>of</strong> gestational<br />

ages less than 28, 28 to 32, 33 to 36 <strong>and</strong><br />

37 to 40 weeks, respectively. On the other<br />

h<strong>and</strong>, Sultanova (761) reports that the<br />

more premature the infant the lower are<br />

the fetal liver reserves, while Butt et al.<br />

(85) find lower hepatic <strong>copper</strong> values in<br />

full term infants than in prematures.<br />

Neither study provides the firm data char<br />

acterizing the first two studies (377, 842)<br />

mentioned. Significantly lower levels <strong>of</strong><br />

total <strong>copper</strong> <strong>and</strong> ceruloplasmin in cord<br />

blood <strong>of</strong> neonates <strong>of</strong> undernourished<br />

mothers compared to those <strong>of</strong> well nour<br />

ished mothers suggest that poor nutri<br />

tional states <strong>of</strong> the mother are reflected in<br />

reduced capacity <strong>of</strong> the fetal liver to syn<br />

thesize proteins in general, <strong>and</strong> cerulo<br />

plasmin in particular (429).<br />

According to one investigator (526),<br />

amniotic fluid contains <strong>copper</strong> <strong>and</strong> other<br />

bioelements in about the same concen<br />

tration as in the maternal plasma <strong>and</strong>, by<br />

virtue <strong>of</strong> its being swallowed in appre<br />

ciable amounts, provides an additional<br />

supply to the developing fetus. However,<br />

other investigators report the presence <strong>of</strong><br />

very small amounts or only traces <strong>of</strong> cop<br />

per in this fluid (303, 321, 324, 564),<br />

which is in accord with the concept <strong>of</strong> the<br />

amniotic fluid as a protein-poor dialysate<br />

diluted with fetal urine.<br />

Infanctj <strong>and</strong> childhood<br />

Following normal delivery a series <strong>of</strong> in<br />

teresting <strong>and</strong> not fully explained events<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2003<br />

occur in mother <strong>and</strong> infant. Maternal levels<br />

<strong>of</strong> serum <strong>copper</strong> decrease to non-pregnant<br />

levels during the first 2 weeks postpartum<br />

(100, 206, 293, 294, 561). This is ascribed<br />

to the abrupt cessation <strong>of</strong> estrogenic<br />

stimuli for ceruloplasmin synthesis. At the<br />

same time, infant levels <strong>of</strong> serum <strong>copper</strong>,<br />

which are lower at birth than at any pe<br />

riod <strong>of</strong> life, promptly increase until adult<br />

levels are attained between the 2nd <strong>and</strong><br />

3rd months <strong>of</strong> life (91, 293, 325, 690).<br />

This is due almost entirely to increased<br />

synthesis <strong>of</strong> ceruloplasmin by the infant's<br />

liver. In other studies, estimates <strong>of</strong> the age<br />

at which adult values are reached vary<br />

from about 3 to 6 months (338, 494, 638),<br />

to 9 to 12 months (411, 606). Several in<br />

vestigators report that after adult serum<br />

<strong>copper</strong> levels are attained during the first<br />

2 or 3 months <strong>of</strong> life, these levels rise sig<br />

nificantly above normal after the 4th<br />

month (758 ) or during the 2nd year <strong>of</strong> life<br />

(131, 362, 656), <strong>and</strong> then gradually de<br />

cline to adult levels at puberty. Sass-<br />

Kortsak (666) gives mean values <strong>of</strong> 140,<br />

129 <strong>and</strong> 117 /¿g/100ml for 2-, 6- <strong>and</strong> 10year<br />

old children. Hrgovic <strong>and</strong> Hrgovic<br />

(362) record mean values <strong>of</strong> 179, 151, 133<br />

<strong>and</strong> 111 Mg/100 ml for age groups 0 to 5,<br />

5 to 10, 10 to 15 <strong>and</strong> 15 to 18 years. No<br />

sex differences are apparent until puberty,<br />

after which the effect <strong>of</strong> female estrogens<br />

on increased serum <strong>copper</strong> levels becomes<br />

manifest. Similar observations have been<br />

reported by other investigators (573, 776).<br />

Neither the reason for, nor the significance<br />

<strong>of</strong> these fluctuations in early life has been<br />

elucidated.<br />

Immunological methods have identified<br />

an apoceruloplasmin in newborn infant<br />

plasma in concentrations similar to that<br />

<strong>of</strong> ceruloplasmin in the adult, thus indi<br />

cating that only the inability to charge the<br />

apoprotein with its normal complement <strong>of</strong><br />

<strong>copper</strong> is underdeveloped at birth (714).<br />

Similar observations have been made in<br />

studies with piglets (108, 109, 523).<br />

On the other h<strong>and</strong>, remarkable changes<br />

occur in the liver <strong>of</strong> the newborn, which<br />

contains about one-half the <strong>copper</strong> in the<br />

body <strong>and</strong> a concentration, in terms <strong>of</strong> cop<br />

per per unit weight, 5 to 10 times that <strong>of</strong><br />

the adult liver (843, 846). A large com<br />

ponent <strong>of</strong> this <strong>copper</strong> is bound to hepatic<br />

initochondrocuprein, first isolated <strong>and</strong> de<br />

scribed by Porter et al. (615). This cop<br />

per-storage protein, found only in the fetus<br />

<strong>and</strong> newborn, is thought to represent a<br />

<strong>copper</strong>-rich polymerized form <strong>of</strong> metallothionein<br />

which sequesters <strong>copper</strong> prior to<br />

birth (611, 614). Liver <strong>copper</strong> rapidly<br />

disappears during the first few months <strong>of</strong><br />

life (69, 627, 846), releasing <strong>copper</strong> for<br />

ceruloplasmin synthesis <strong>and</strong> the general<br />

needs <strong>of</strong> tissues <strong>of</strong> the rapidly growing in<br />

fant. The ceruloplasmin synthesized by the<br />

neonate is identical to that <strong>of</strong> the adult<br />

(870). Thus there is a logical explanation<br />

for the early reports <strong>of</strong> Kleinman <strong>and</strong><br />

Klinke (414) <strong>and</strong> Morrison <strong>and</strong> Nash<br />

(538) that the concentration <strong>of</strong> <strong>copper</strong> in<br />

the liver <strong>of</strong> newborn <strong>and</strong> young infants is<br />

6- to 18-fold that <strong>of</strong> adults.<br />

Although <strong>copper</strong> <strong>and</strong> ceruloplasmin<br />

blood levels are lower in the newborn than<br />

at any other period <strong>of</strong> life, the <strong>copper</strong> con<br />

centration in fetal <strong>and</strong> neonatal organs <strong>and</strong><br />

tissues is much higher than in the adult<br />

(207, 248, 414, 565, 781). The studies <strong>of</strong><br />

Fazekas (207), based upon analysis <strong>of</strong> 29<br />

different organs <strong>and</strong> tissues <strong>of</strong> 109 fetuses<br />

<strong>and</strong> full-term infants <strong>of</strong> varied gestational<br />

age, indicate that in addition to liver, the<br />

concentration <strong>of</strong> <strong>copper</strong> in muscle, skin,<br />

adrenal gl<strong>and</strong>s <strong>and</strong> thyroid is particularly<br />

high compared to that <strong>of</strong> adults. The cop<br />

per content <strong>of</strong> the placenta is also rather<br />

high (525, 605). The high concentrations<br />

<strong>of</strong> <strong>copper</strong> in organs <strong>and</strong> tissues <strong>of</strong> the<br />

newborn decrease gradually to normal<br />

levels during the first year <strong>of</strong> postnatal life<br />

(69, 248, 565).<br />

The unusually high concentrations <strong>of</strong><br />

<strong>copper</strong> in liver <strong>and</strong> other tissues <strong>of</strong> the<br />

neonate appear to represent a reserve to<br />

assure an adequacy <strong>of</strong> <strong>copper</strong> for syn<br />

thesis <strong>of</strong> ceruloplasmin <strong>and</strong> other <strong>copper</strong>containing<br />

proteins to meet metabolic<br />

needs for hematopoietic, maturational <strong>and</strong><br />

other functions in the rapidly growing in<br />

fant <strong>and</strong> adolescent prior to puberty. These<br />

changes naturally create difficulties in<br />

reaching definitive conclusions concerning<br />

the dietary <strong>requirements</strong> during these early<br />

years <strong>of</strong> human development. For other<br />

details concerning the role <strong>of</strong> <strong>copper</strong> in<br />

pregnancy, <strong>and</strong> in prenatal <strong>and</strong> postnatal<br />

development, the reader is referred to a<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2004 KARL E. MASON<br />

number <strong>of</strong> informative reviews (461, 533,<br />

666, 843).<br />

DIETARY COPPER DEFICIENCY<br />

There appear repeated statements in the<br />

literature that in view <strong>of</strong> the ubiquitous<br />

occurrence <strong>of</strong> <strong>copper</strong> in foods <strong>of</strong> every<br />

type, <strong>and</strong> lack <strong>of</strong> evidence <strong>of</strong> any recog<br />

nized manifestations <strong>of</strong> <strong>copper</strong> deficiency<br />

such as commonly observed after dietary<br />

depletion <strong>of</strong> <strong>copper</strong> in experimental ani<br />

mals or under natural conditions in farm<br />

animals, man appears to be free <strong>of</strong> hazards<br />

<strong>of</strong> a state <strong>of</strong> <strong>copper</strong> deficiency. However,<br />

there has developed convincing evidence<br />

that a <strong>copper</strong> deficiency state can occur in<br />

man, even though it may be <strong>of</strong> rare oc<br />

currence <strong>and</strong> as the result <strong>of</strong> rather special<br />

types <strong>of</strong> situations.<br />

A syndrome characterized by hypocupremia,<br />

hyp<strong>of</strong>erremia, hypoproteinemia,<br />

edema <strong>and</strong> hypochromic anemia, respon<br />

sive to oral <strong>copper</strong> but not to iron, has<br />

been observed in infants fed diets limited<br />

largely to milk (432, 437, 758, 796, 797,<br />

874). In certain cases, especially those <strong>of</strong><br />

Ulstrom et al. (796, 797), a fundamental<br />

defect in protein <strong>metabolism</strong> at the cellular<br />

level may have been a primary factor,<br />

rather than exhaustion <strong>of</strong> neonatal <strong>copper</strong><br />

stores (874). The fact that infants 6 to 18<br />

months <strong>of</strong> age usually have been involved<br />

suggests a relation to periods <strong>of</strong> life when<br />

initial liver storage <strong>of</strong> <strong>copper</strong> has been<br />

depleted, combined with prolonged main<br />

tenance on milk diets <strong>and</strong> increased de<br />

m<strong>and</strong>s for <strong>copper</strong> during a period <strong>of</strong> rapid<br />

growth. However, the possibility <strong>of</strong> de<br />

grees <strong>of</strong> protein depletion sufficient to im<br />

pair retention <strong>of</strong> dietary <strong>copper</strong> deserved<br />

consideration.<br />

Maintenance <strong>of</strong> two infants (one 8 days<br />

old with multiple congenital anomalies,<br />

<strong>and</strong> the other 10 months old) for 4 to 5<br />

months on a milk diet identical to one<br />

which produced <strong>copper</strong> deficiency in pig<br />

lets, caused neither anemia nor hypocupremia<br />

(101). Comparable results were<br />

obtained in the studies <strong>of</strong> Wilson <strong>and</strong><br />

Lahey (854) involving seven premature<br />

infants with mean body weight <strong>of</strong> 1.24 kg<br />

fed a similar milk diet for 7 to 10 weeks.<br />

It was concluded that small premature in<br />

fants fed a diet providing approximately<br />

15 /xg/kg/day <strong>of</strong> elemental <strong>copper</strong> over a<br />

2 to 3-month period do not differ, by any<br />

<strong>of</strong> the criteria used, from prematures fed<br />

five or more times this amount. However, it<br />

should be recognized that at this period<br />

such infants could be utilizing liver stores<br />

<strong>of</strong> <strong>copper</strong>, <strong>and</strong> that the depletion period<br />

was much shorter than that required for<br />

production <strong>of</strong> a deficiency state in piglets<br />

with a relatively more rapid rate <strong>of</strong> growth.<br />

Not until 1964 was a state <strong>of</strong> dietary<br />

<strong>copper</strong> deficiency documented in humans<br />

when Cordano et al. (126, 128) reported<br />

finding in infants, recovering from maras<br />

mus on exclusive milk diets, deficiency<br />

manifestations (anemia, decreased plasma<br />

<strong>copper</strong> <strong>and</strong> ceruloplasmin levels, intermit<br />

tent neutropenia, severe osteoporosis <strong>and</strong><br />

pathological fractures) quite comparable<br />

to those observed after experimental cop<br />

per deficiency in pigs (436). Similar find<br />

ings were observed in a 6-year old child<br />

with severe chronic intestinal malabsorption,<br />

who gave a dramatic response to cop<br />

per therapy (127). In a later report,<br />

Graham <strong>and</strong> Cordano (276) state that in a<br />

series <strong>of</strong> 173 infants suffering from severe<br />

malnutrition <strong>and</strong> chronic diarrhea, admit<br />

ted to the British American Hospital, Lima,<br />

Peru, over a period <strong>of</strong> 6 years, 62 instances<br />

<strong>of</strong> <strong>copper</strong> deficiency were identified, <strong>of</strong><br />

which 44 were judged to have been de<br />

pleted <strong>of</strong> <strong>copper</strong> prior to admission. The<br />

peak incidence was at 7 to 9 months <strong>of</strong><br />

age. Responses to oral <strong>copper</strong> therapy in<br />

dicated that repletion <strong>of</strong> total serum cop<br />

per was more important than restoration <strong>of</strong><br />

ceruloplasmin in correction <strong>of</strong> the defi<br />

ciency state (352). Instances <strong>of</strong> <strong>copper</strong> de<br />

pletion have also been observed in infants<br />

with chronic diarrhea in the United States<br />

(354).<br />

There have also appeared more recent<br />

reports <strong>of</strong> neonatal <strong>copper</strong> deficiency in a<br />

premature infant 3 months old (17), in<br />

three very small premature infants during<br />

their third month <strong>of</strong> life (280), in a pre<br />

mature infant 3 months <strong>of</strong> age (700), <strong>and</strong><br />

in a premature infant at 6 months <strong>of</strong> age<br />

(25). Neutropenia, low plasma ceruloplas<br />

min <strong>and</strong> osteoporosis have been among the<br />

manifestations regularly observed. Favor<br />

able response to oral <strong>copper</strong> has usually<br />

been reported. Although none <strong>of</strong> the in-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2005<br />

vestigators make reference to it, the clini<br />

cal <strong>and</strong> pathological findings reported bear<br />

striking resemblance to many <strong>of</strong> those<br />

characteristic <strong>of</strong> Menkes' steely-hair syn<br />

drome (p. 2007). A comparable picture<br />

has been observed in an infant maintained<br />

for some months on total parenteral nutri<br />

tion following surgery for ileal atresia<br />

(394) <strong>and</strong> in others treated likewise for<br />

protracted diarrhea (463). Also, a state<br />

<strong>of</strong> <strong>copper</strong> deficiency has been described<br />

in a 12-year old child <strong>and</strong> an adult after<br />

prolonged total parenteral therapy follow<br />

ing extensive bowel resection ( 177). In<br />

all cases there was a good response to cop<br />

per therapy.<br />

It is worthy <strong>of</strong> note that in all instances<br />

where a naturally occurring <strong>copper</strong> de<br />

ficiency has been observed, as described<br />

above, only premature infants have been<br />

involved. This is in accord with the fact<br />

that premature infants do not benefit from<br />

the additional <strong>copper</strong> storage in the liver<br />

<strong>and</strong> other tissues acquired by the fullterm<br />

infant, <strong>and</strong> are customarily main<br />

tained for longer periods on natural milk<br />

or milk formulae before having access to<br />

cereals <strong>and</strong> other foods. Furthermore, pre<br />

matures have much lower <strong>copper</strong> reserves<br />

in the liver <strong>and</strong> spleen than do full-term<br />

infants, <strong>and</strong> show a negative <strong>copper</strong> bal<br />

ance during the first month <strong>of</strong> life which<br />

tends to become positive only after the<br />

second month <strong>of</strong> life (761). Suggestions<br />

that consideration should be given to<br />

special supplementation <strong>of</strong> the premature<br />

infant formula with <strong>copper</strong> (843) appears<br />

to be well justified.<br />

The major manifestations <strong>of</strong> <strong>copper</strong> de<br />

ficiency in infancy, <strong>and</strong> their relationship<br />

to decreased activity <strong>of</strong> <strong>copper</strong>-containing<br />

proteins, justify brief summarization.<br />

1) Neutropenia <strong>and</strong> hypochromic anemia<br />

responsive to oral <strong>copper</strong> but not to oral<br />

iron are early manifestations <strong>of</strong> deficiency,<br />

in large part the result <strong>of</strong> lowered levels <strong>of</strong><br />

ceruloplasmin <strong>and</strong> impaired release <strong>and</strong><br />

transport <strong>of</strong> iron from body stores.<br />

2) Osteoporosis, with enlargement <strong>of</strong><br />

costochondral cartilages, is also an early<br />

phenomenon, followed by cupping <strong>and</strong><br />

flaring <strong>of</strong> metaphyses <strong>of</strong> long bones with<br />

spur formation <strong>and</strong> submetaphyseal frac<br />

ture, periosteal reactions <strong>and</strong> spontaneous<br />

fractures, especially <strong>of</strong> the ribs. These are<br />

usually referred to as "scurvy-like" changes,<br />

<strong>and</strong> may also suggest the "battered child<br />

syndrome." Deficiency <strong>of</strong> <strong>copper</strong>-contain<br />

ing oxidases, essential for the cross-linking<br />

<strong>of</strong> bone collagen, adequately explains these<br />

manifestations.<br />

3) Decreased pigmentation <strong>of</strong> the skin<br />

<strong>and</strong> general pallor <strong>of</strong> <strong>copper</strong>-deficient in<br />

fants, can be attributed to decreased activ<br />

ity <strong>of</strong> tyrosinase, necessary for the produc<br />

tion <strong>of</strong> melanin.<br />

4) In later stages <strong>of</strong> deficiency there<br />

may be neurological abnormalities such<br />

as hypotonia, episodes <strong>of</strong> apnea <strong>and</strong> pos<br />

sible psychomotor retardation, generally<br />

attributed to decreased levels <strong>of</strong> cytochrome<br />

c oxidase.<br />

MENKES' DISEASE<br />

This progressive brain disease inherited<br />

as a sex-linked recessive trait was first<br />

recognized in five young boys (siblings),<br />

<strong>and</strong> its major clinical <strong>and</strong> pathological<br />

manifestations described in 1962 by Menkes<br />

et al. (513). Other cases were soon re<br />

ported by Bray (59) <strong>and</strong> Aguilar et al.<br />

(11). While subsequently referred to as<br />

"kinky-hair" disease <strong>and</strong> "trichopoliodystrophy"<br />

(225), the currently accepted des<br />

ignation is "steely-hair" disease (or syn<br />

drome) proposed by Danks et al. who<br />

( 145) in 1972, first recognized the disease<br />

as an inherited defect in <strong>copper</strong> absorp<br />

tion; in fact, a congenital <strong>copper</strong> deficiency.<br />

Since the term "kinky-hair" implied<br />

crimped hair like that <strong>of</strong> the black races,<br />

whereas that <strong>of</strong> affected infants more<br />

closely resembled depigmentation <strong>and</strong><br />

loss <strong>of</strong> crimp in wool observed in <strong>copper</strong>deficient<br />

sheep (252), "steely-hair" appears<br />

to be more appropriate ( 146). It is said to<br />

occur in 1 <strong>of</strong> 35,000 live births (145). As <strong>of</strong><br />

1977, Ahlgren <strong>and</strong> Vestermark (12) list 42<br />

cases reported in the literature.<br />

Manifestations<br />

Symptoms <strong>of</strong> Menkes' disease usually ap<br />

pear between birth <strong>and</strong> 3 months <strong>of</strong> age,<br />

followed by death prior to the 4th or 5th<br />

year <strong>of</strong> life. The age <strong>of</strong> onset is somewhat<br />

earlier in prematures than in full-term in<br />

fants. Occurrence as late as the 6th year<br />

has been reported (28). Characteristics <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2006 KARL E. MASON<br />

the disease, as originally recorded by<br />

Menkes et al. (513), are: short, broken,<br />

spirally twisted scalp hair (pili torti) with<br />

loss <strong>of</strong> pigment; frequent convulsive sei<br />

zures, failure to thrive or poor weight gain,<br />

mental retardation <strong>and</strong>, at necropsy, wide<br />

spread degenerative changes in the cere<br />

brum <strong>and</strong> cerebellum. To these manifesta<br />

tions have since been added: hypothermia<br />

(56, 72, 145, 148, 168, 225, 530); marked<br />

tortuosity, associated with defects <strong>of</strong> the<br />

internal elastic lamina <strong>and</strong> hyperplasia <strong>of</strong><br />

the overlying intima, <strong>of</strong> large muscular<br />

arteries, particularly those supplying the<br />

brain <strong>and</strong> its appendages (4, 12, 114, 145,<br />

146, 422, 582, 713, 717, 808, 817); excessive<br />

Wormian bone formation (283, 645, 732,<br />

835) <strong>and</strong> pronounced changes in certain<br />

long bones similar to those <strong>of</strong> scurvy <strong>and</strong>/<br />

or the battered child syndrome (56, 145,<br />

168, 669, 713, 717, 732). Biochemically,<br />

there is increased <strong>copper</strong> content <strong>of</strong> the<br />

intestinal mucosa ( 145, 148, 470 ) ; greatly<br />

reduced levels <strong>of</strong> serum <strong>copper</strong> <strong>and</strong> ceruloplasmin<br />

(55, 72, 148, 168, 310, 530, 713,<br />

817) despite normal <strong>copper</strong> levels in<br />

erythrocytes, <strong>and</strong> much reduced levels <strong>of</strong><br />

<strong>copper</strong> in the liver ( 145, 148, 329, 817) <strong>and</strong><br />

brain (145, 817).<br />

Other reports have made reference to<br />

deficient visual functions <strong>and</strong> ocular ab<br />

normalities (49, 310, 453, 697, 717, 863)<br />

<strong>and</strong> to neurogenic bladders with diverticulum<br />

formation (306, 838), presumably due<br />

to defective innervation or vascular abnor<br />

malities. In the only known case <strong>of</strong> Menkes'<br />

disease in a black infant, Volpintesta (809 )<br />

observed a remarkable light skin in con<br />

trast to the dark-skinned parents, an un<br />

usual mottled skin pigmentation in a 7-year<br />

old female sibling, <strong>and</strong> a small degree <strong>of</strong><br />

pili torti in the mother <strong>and</strong> two female<br />

siblings. Manifestations typical <strong>of</strong> Menkes'<br />

syndrome, except for the absence <strong>of</strong> steely<br />

hair, have been reported in a Japanese in<br />

fant by Osaka et al. (582) who question<br />

whether some cases <strong>of</strong> the disease may go<br />

unrecognized because <strong>of</strong> too great a re<br />

liance on the hair abnormality as a diag<br />

nostic feature.<br />

Several new observations have special<br />

relevance to early diagnosis <strong>of</strong> Menkes'<br />

disease. A recently described method for<br />

measuring ceruloplasmin using a dried<br />

blood clot (21) may have value in screen<br />

ing for early diagnosis, but only when ap<br />

plied at 3 months <strong>of</strong> age or later (495).<br />

An intense metachromasia<br />

sue cultures <strong>of</strong> fibroblasts<br />

in primary tis<br />

has interesting<br />

possibilities as a genetic marker in early<br />

diagnosis <strong>and</strong> in identification <strong>of</strong> homozy<br />

gotes <strong>and</strong> hétérozygotes in affected fam<br />

ilies (145, 147). This defective cellular<br />

<strong>metabolism</strong><br />

dicated by<br />

<strong>of</strong> <strong>copper</strong> in fibroblasts is in<br />

other observations that cul<br />

tured skin fibroblasts from subjects<br />

Menkes' disease have an abnormally<br />

with<br />

high<br />

<strong>copper</strong> content (259) <strong>and</strong> also can incor<br />

porate much greater amounts <strong>of</strong> 84Cu from<br />

the medium than do fibroblasts <strong>of</strong> un<br />

affected subjects (358). The <strong>copper</strong> con<br />

tent <strong>of</strong> the culture medium may be critical<br />

in such evaluations. Regrettably, there<br />

exist rather limited prospects that im<br />

provements in early diagnosis will be paral<br />

lelled by more effective therapeutic mea<br />

sures. Widespread degeneration <strong>of</strong> cerebral<br />

grey matter, secondary to degeneration <strong>of</strong><br />

cerebral white matter <strong>and</strong> diffuse atrophy<br />

<strong>of</strong> the cerebral cortex, associated with<br />

bizarre changes in shape <strong>and</strong> arrangement<br />

<strong>of</strong> Purkinje cells, as first described by<br />

Menkes et al. (513), has been confirmed by<br />

later neuropathologic studies ( 11, 251, 336,<br />

624, 802, 810). Nerve tracts <strong>of</strong> the spinal<br />

cord may sometimes be involved (11, 251).<br />

Peripheral nerves are not affected. It is<br />

proposed that these lesions reflect two<br />

types <strong>of</strong> change; viz., cerebral necrosis due<br />

to abnormalities <strong>of</strong> the extracranial arteries,<br />

<strong>and</strong> typical dystrophic lesions in the<br />

cerebellar cortex (810). Confirming <strong>and</strong><br />

extending the original descriptions <strong>of</strong> the<br />

cerebellar lesions by Menkes et al. (513)<br />

<strong>and</strong> Aguilar et al. (Il), ultrastructural<br />

studies <strong>of</strong> the bizarre elaboration <strong>of</strong> perisomatic<br />

dendrites <strong>of</strong> Purkinje cells sug<br />

gest retarded development <strong>of</strong> the somal<br />

membrane <strong>of</strong> these cells (336, 624). Such<br />

evidence is cited in support <strong>of</strong> the concept<br />

that the disease process is operative in<br />

utero (340).<br />

A careful light <strong>and</strong> electron microscopic<br />

study <strong>of</strong> the eye has revealed degeneration<br />

<strong>of</strong> retinal ganglion cells, loss <strong>of</strong> nerve fibers,<br />

optic atrophy, abnormal pigment epithe<br />

lium <strong>and</strong> abnormal elastin in Bruch's mem<br />

brane (863). A similar study <strong>of</strong> aorta <strong>and</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2007<br />

skin in Menkes' disease has demonstrated<br />

abnormalities <strong>of</strong> elastic fibers similar to<br />

those observed in animal studies on <strong>copper</strong><br />

deficiency (566). Reported ultrastructural<br />

changes in skeletal muscle (251) have not<br />

been confirmed (717). Neurochemical<br />

studies on two infants whose neuropathology<br />

was described by Aguilar et al. (Il)<br />

record abnormally low levels <strong>of</strong> polyunsaturated<br />

glycerophosphates, especially in<br />

the frontal gray matter, <strong>and</strong> accumulation<br />

<strong>of</strong> oxidized lipid products in the neurones,<br />

suggesting an interference with the molec<br />

ular machinery <strong>of</strong> the cells (567). These<br />

observations have been both challenged<br />

(469) <strong>and</strong> confirmed (645). French et al.<br />

(224, 225) who proposed the term "trichopoliodystrophy"<br />

report much reduced<br />

levels <strong>of</strong> cytochrome a <strong>and</strong> a3 in mitochon<br />

dria <strong>of</strong> brain, muscle <strong>and</strong> liver, <strong>and</strong> con<br />

clude that deficient terminal respiration<br />

<strong>and</strong> failure <strong>of</strong> tissue energetics, secondary<br />

to diminished body <strong>copper</strong> content, may<br />

explain some <strong>of</strong> the neuropathology <strong>of</strong><br />

Menkes' disease. Significantly reduced<br />

levels <strong>of</strong> erythrocyte Superoxide dismutase<br />

<strong>and</strong> <strong>of</strong> dopamine ß-hydroxylasemay have<br />

bearing upon manifestations <strong>of</strong> the disease<br />

(645).<br />

Metabolic abnormalities<br />

Danks et al. (145, 147) propose that the<br />

primary defect in Menkes' disease is dimin<br />

ished ability to transfer <strong>copper</strong> across ab<br />

sorptive cells <strong>of</strong> the intestinal mucosa to<br />

the serosal side <strong>and</strong> the portal circulation.<br />

While considering this an important factor,<br />

Bucknall et al. (72), based upon studies<br />

on a 3-month old infant, speculate that<br />

neurological damage may occur in utero,<br />

perhaps as a result <strong>of</strong> defective placental<br />

transport <strong>of</strong> <strong>copper</strong>. This is supported by<br />

reports <strong>of</strong> the occurrence <strong>of</strong> one or more<br />

manifestations <strong>of</strong> Menkes' disease at term<br />

or within the week thereafter (283, 513,<br />

530). However, defective placental trans<br />

port may not provide the total answer.<br />

Heydorn et al. (329) <strong>and</strong> Horn et al.<br />

(359) consider that defective binding <strong>of</strong><br />

<strong>copper</strong> in the fetal liver or atypical distri<br />

bution in fetal tissues may be involved.<br />

The conclusions <strong>of</strong> Heydorn et al. (329)<br />

are based upon tissue analyses <strong>of</strong> a fetus<br />

suspected <strong>of</strong> Menkes' disease, obtained by<br />

therapeutic abortion at 18 weeks gesta<br />

tion. Compared to four normal fetuses <strong>of</strong><br />

15 to 21 weeks gestation, <strong>copper</strong> concen<br />

trations in brain, lung, spleen, kidney, pan<br />

creas, muscle, skin <strong>and</strong> placenta were<br />

several times greater than, but liver cop<br />

per was only about one-third, that <strong>of</strong> con<br />

trols. Yet, the estimated total <strong>copper</strong> con<br />

tent <strong>of</strong> all fetuses was essentially the same.<br />

These findings, until substantiated, do not<br />

eliminate possibilities <strong>of</strong> defective placental<br />

transfer. However, they do raise questions<br />

regarding <strong>copper</strong> storage in fetal liver <strong>and</strong><br />

atypical distribution <strong>of</strong> <strong>copper</strong> in other<br />

fetal tissues <strong>and</strong> organs in Menkes' disease<br />

(329, 635).<br />

Menkes' disease <strong>and</strong> nutritional <strong>copper</strong><br />

deficiency have certain features in com<br />

mon; 1) usual occurrence in infancy;<br />

2) subnormal plasma levels <strong>of</strong> <strong>copper</strong> <strong>and</strong><br />

ceruloplasmin; 3) tortuosity <strong>and</strong> defects in<br />

elastin <strong>of</strong> the aorta due to lack <strong>of</strong> lysyl<br />

oxidase; 4) scorbutic-like changes in costochondral<br />

junctions <strong>and</strong> epiphyses <strong>of</strong> long<br />

bones; <strong>and</strong> 5) decreased pigmentation <strong>of</strong><br />

skin or hair. Menkes' disease differs from<br />

the state <strong>of</strong> dietary <strong>copper</strong> deficiency in<br />

the following respects: 1) alterations <strong>of</strong><br />

hair structure <strong>and</strong> decreased pigmentation<br />

<strong>of</strong> hair, the latter attributable to lack <strong>of</strong><br />

tyrosinase; 2) highly variable <strong>and</strong> <strong>of</strong>ten<br />

extensive lesions involving both white <strong>and</strong><br />

gray matter <strong>of</strong> the cerebrum <strong>and</strong> cerebel<br />

lum, usually ascribed to lack <strong>of</strong> cytochrome<br />

oxidase <strong>and</strong> Superoxide dismutase which,<br />

in turn, may also be factors involved in<br />

3) hypothermia, a frequently observed<br />

phenomenon; <strong>and</strong> 4) the almost routine<br />

occurrence <strong>of</strong> convulsive seizures <strong>and</strong><br />

mental retardation. To these may be added<br />

5) absence <strong>of</strong> anemia <strong>and</strong> neutropenia <strong>and</strong><br />

6) unresponsiveness to orally administered<br />

<strong>copper</strong> other than significant increases in<br />

plasma levels <strong>of</strong> <strong>copper</strong> <strong>and</strong> ceruloplasmin.<br />

Separate oral <strong>and</strong> intravenous adminis<br />

tration <strong>of</strong> '"Cu, permitting calculation <strong>of</strong><br />

the percentage <strong>of</strong> dose absorbed, indicates<br />

that children with Menkes' disease absorb<br />

only 11 to I3c/c <strong>of</strong> oral <strong>copper</strong> as com<br />

pared to 46^ by unaffected controls, sug<br />

gesting a reduced absorption <strong>of</strong> <strong>copper</strong> as<br />

an important factor in the disorder ( 159).<br />

Also, most <strong>of</strong> the <strong>copper</strong> absorbed is re<br />

tained by the liver for extended periods <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2008 KARL E. MASON<br />

time <strong>and</strong> excretory loss is reduced, thus in<br />

creasing the biological half-life in the body<br />

by two to three times, as compared to nor<br />

mal controls (159, 160). Under similar<br />

circumstances subjects with Wilson's dis<br />

ease show normal absorption <strong>of</strong> <strong>copper</strong><br />

but, because <strong>of</strong> reduced biliary excretion,<br />

the half-life is increased to about the same<br />

degree as in Menkes' disease ( 160 ). Hence,<br />

these two diseases have dissimilarities re<br />

lating to intestinal absorption but similari<br />

ties in inability to release <strong>copper</strong> acquired<br />

by the liver.<br />

Although a defect in the intestinal trans<br />

port <strong>of</strong> <strong>copper</strong> undoubtedly plays an im<br />

portant role in postnatal life, it does not<br />

provide an adequate explanation for the<br />

diverse manifestations <strong>of</strong> Menkes' disease.<br />

With impressive evidence that this disease<br />

begins in utero, it would appear that vary<br />

ing degrees <strong>of</strong> genetic expression may ex<br />

plain differences in postnatal age when<br />

manifestations, such as frequent seizures,<br />

make their appearance. There remain many<br />

important questions the answers to which<br />

will be difficult to obtain. For example,<br />

is there defective placental transfer <strong>of</strong> cop<br />

per comparable to that proposed in the in<br />

testine? Is placental transfer normal, but<br />

the types <strong>of</strong> fetal protein to which <strong>copper</strong><br />

becomes bound abnormal? For this or for<br />

other reasons, is the concentration <strong>of</strong> nor<br />

mally or abnormally bound <strong>copper</strong> in cer<br />

tain tissues <strong>and</strong> organs significantly de<br />

ranged? Are there abnormalities in the<br />

production <strong>of</strong> <strong>copper</strong>-containing enzymes<br />

or in membrane receptors in certain cells<br />

<strong>and</strong> tissues? Obviously, knowledge <strong>of</strong> the<br />

underlying metabolic disturbances in Men<br />

kes' disease is in a state <strong>of</strong> immaturity, but<br />

<strong>of</strong>fers many challenges for future research.<br />

For further details the reader is referred to<br />

some recent reviews (75, 143, 144, 272,<br />

301, 351, 818).<br />

Therapy<br />

Oral administration <strong>of</strong> <strong>copper</strong> salts to<br />

infants with Menkes' disease has been<br />

reported to cause slight clinical improve<br />

ment, such as reduced hypothermia <strong>and</strong><br />

improved hair color, <strong>and</strong> slight increase in<br />

serum <strong>copper</strong> levels (148, 467, 468), but<br />

other investigators find no beneficial effect<br />

(72, 243, 566, 833, 849). Intramuscular<br />

injections <strong>of</strong> <strong>copper</strong> complexed with EDTA<br />

can cause a significant increase in serum<br />

<strong>copper</strong> <strong>and</strong> serum ceruloplasmin (146,<br />

817, 838), as also can a slow subcutaneous<br />

drip <strong>of</strong> <strong>copper</strong> sulphate over a period <strong>of</strong><br />

2 hours every 3 to 4 days (161). In one<br />

case so treated for 5 months a moderately<br />

encouraging clinical response was obtained<br />

( 161). However, Wheeler <strong>and</strong> Roberts<br />

(838) report that while intramuscular in<br />

jections <strong>of</strong> a <strong>copper</strong>-EDTA complex main<br />

tained reasonably normal serum <strong>copper</strong><br />

<strong>and</strong> ceruloplasmin levels for 8 months in<br />

one infant, no clinical improvement was<br />

apparent.<br />

Intravenously administered <strong>copper</strong> in<br />

various forms (<strong>copper</strong> sulphate, <strong>copper</strong><br />

acetate, <strong>copper</strong>-albumin, <strong>copper</strong>-EDTA<br />

complexes <strong>and</strong> human ceruloplasmin) has<br />

produced increases in serum <strong>copper</strong> <strong>and</strong><br />

ceruloplasmin to values approaching nor<br />

mal (72) or essentially normal (146, 161,<br />

282, 283, 833, 849), or no significant change<br />

(243, 244). Usually the period <strong>of</strong> treat<br />

ment has been short (7-10 days) or inter<br />

mittent over somewhat longer periods. In<br />

one instance normal serum <strong>copper</strong> levels<br />

<strong>and</strong> subnormal ceruloplasmin levels were<br />

maintained for more than 9 months by<br />

weekly intravenous infusions (833). A<br />

similar experience with 427 days <strong>of</strong> subcutaneously<br />

administered <strong>copper</strong> as a<br />

CuClo + L-histidine complex, has also been<br />

reported (849). However, in all cases the<br />

disease has pursued its relentless course.<br />

But a faint gleam <strong>of</strong> hope comes from a<br />

report <strong>of</strong> Grover <strong>and</strong> Scrutton (282, 283)<br />

who, employing repeated infusions <strong>of</strong> cop<br />

per sulphate once or twice weekly in an<br />

infant diagnosed as having Menkes' disease<br />

at 3 days <strong>of</strong> age, obtained mental func<br />

tional levels equivalent to 4 months at 6<br />

months <strong>of</strong> age. However, similar treatment<br />

<strong>of</strong> another infant beginning at 4 months <strong>of</strong><br />

age <strong>and</strong> continued for 9 months provided<br />

no improvement. Hence, the answer is<br />

equivocal. Excessive urinary excretion <strong>of</strong><br />

<strong>copper</strong> observed after parenteral therapy<br />

(242, 243, 849) is attributed to decreased<br />

hepatic uptake <strong>of</strong> <strong>copper</strong>, reflecting an ab<br />

normality <strong>of</strong> transport comparable to that<br />

in the intestinal mucosa. These observa<br />

tions suggest that a defect in membrane<br />

transport could explain both the in utero<br />

<strong>and</strong> postnatal deprivation <strong>of</strong> <strong>copper</strong> at<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2009<br />

multiple organ levels including placenta,<br />

intestine <strong>and</strong> liver; however, a favored<br />

alternative is that <strong>of</strong> a defect in intracellular<br />

transport in intestine, liver <strong>and</strong><br />

kidney due to abnormalities in the trans<br />

port <strong>and</strong> storage protein, metallothionein<br />

(242, 244).<br />

From the information currently available,<br />

it seems questionable whether institution<br />

<strong>of</strong> any type <strong>of</strong> therapeutic measure during<br />

the period <strong>of</strong> gestation, if such were pos<br />

sible, would significantly alter the course <strong>of</strong><br />

this genetically determined abnormality <strong>of</strong><br />

<strong>copper</strong> <strong>metabolism</strong>.<br />

Animal models<br />

It seems obvious that there is still much<br />

to be learned regarding the metabolic de<br />

fect in Menkes' disease. Challenging op<br />

portunities for future research are pro<br />

vided by several genetic animal models <strong>of</strong><br />

this disease. One model is a recessive gene<br />

mutation (crinkled, CR) in mice. Such<br />

mice have a smooth coat with thin skin,<br />

delayed pigmentation, early mortality, <strong>and</strong><br />

hair changes closely resembling those <strong>of</strong><br />

Menkes' disease (374). In fact, all three<br />

types <strong>of</strong> hair abnormalities found in<br />

Menkes' disease are demonstrable (373).<br />

The observation that increased dietary in<br />

take <strong>of</strong> <strong>copper</strong> during pregnancy <strong>and</strong> lacta<br />

tion favorably altered the expression <strong>of</strong> the<br />

mutant gene (374) is certainly worthy <strong>of</strong><br />

further exploration. Another model, a sexlinked<br />

"brindled" or "mottled" (MO"r)<br />

mutant in the mouse, is characterized by<br />

subnormal levels <strong>of</strong> lysyl oxidase (648),<br />

plasma ceruloplasmin, decreased <strong>copper</strong><br />

levels in brain <strong>and</strong> liver, increased <strong>copper</strong><br />

in the intestinal wall <strong>and</strong> virtual absence<br />

<strong>of</strong> hair pigmentation (371). Moreover, a<br />

recent study (200) indicates that in the<br />

affected homozygous male both intestinal<br />

absorption <strong>and</strong> hepatic uptake are im<br />

paired, <strong>and</strong> that in the heterozygous fe<br />

male they are intermediate between the<br />

affected male <strong>and</strong> normal mice. Danks<br />

(143, 144) <strong>and</strong> Holtzman (351) present<br />

excellent reviews <strong>of</strong> the literature <strong>and</strong> in<br />

teresting comparisons <strong>of</strong> altered <strong>copper</strong><br />

<strong>metabolism</strong> in the mottled mutant mouse<br />

<strong>and</strong> infants with Menkes' disease. A third<br />

mouse mutant called "quaking" manifests<br />

some <strong>of</strong> the neurological signs <strong>of</strong> <strong>copper</strong>-<br />

deficient animals. Dietary <strong>copper</strong> decreases<br />

their tremors, indicating that <strong>copper</strong> me<br />

tabolism is involved in expression <strong>of</strong> the<br />

gene (396).<br />

Furthermore, Prohaska <strong>and</strong> Wells (621)<br />

describe striking similarities between bio<br />

chemical abnormalities in the brain <strong>of</strong> suck<br />

ling young <strong>of</strong> <strong>copper</strong>-deficient rats <strong>and</strong><br />

those observed in Menkes' disease. These<br />

involve slow growth, abnormal behavior,<br />

decrease in myelin, reduction in cerebellar<br />

cytochrome c oxidase <strong>and</strong> Superoxide dismutase<br />

<strong>and</strong> a 5-fold reduction in brain<br />

<strong>copper</strong>. Extensive lesions <strong>of</strong> the cerebral<br />

cortex <strong>and</strong> mid-brain have also been de<br />

scribed in <strong>copper</strong>-deficient rats (92). In<br />

the guinea pig, which undergoes consid<br />

erable myelination in utero, <strong>copper</strong> de<br />

ficiency causes gross brain abnormalities,<br />

aneurisms, agenesis <strong>of</strong> the cerebellum,<br />

ataxia, wiry nature <strong>and</strong> depigmentation <strong>of</strong><br />

hair, abnormal behavior patterns, <strong>and</strong> de<br />

creased liver <strong>copper</strong> (201). Morphologi<br />

cally, there is underdevelopment <strong>of</strong> myelin<br />

<strong>and</strong> cellular derangement <strong>and</strong> loss <strong>of</strong> neural<br />

elements in the cerebellum (202). Further<br />

study <strong>of</strong> the <strong>copper</strong>-deficient rat <strong>and</strong><br />

guinea pig might well shed further light on<br />

the nature <strong>of</strong> Menkes' disease.<br />

WILSON'S DISEASE<br />

A vast literature has dealt with the na<br />

ture, diagnosis <strong>and</strong> treatment <strong>of</strong> Wilson's<br />

disease. The findings have been well re<br />

corded in a number <strong>of</strong> reports <strong>and</strong> reviews<br />

(37, 38, 46, 137, 262, 267, 555, 666-668,<br />

672, 678, 679, 683, 684, 737, 740, 744, 747,<br />

756, 791, 821, 822). What follows is largely<br />

a summation <strong>of</strong> early observations concern<br />

ing the nature <strong>of</strong> the disease, current con<br />

cepts concerning the metabolic abnormali<br />

ties involved <strong>and</strong> therapeutic measures.<br />

Nature <strong>of</strong> the disease<br />

The history <strong>of</strong> this disease, as well out<br />

lined by Goldstein <strong>and</strong> Owen (262), goes<br />

back to 1912 when Wilson (855) de<br />

scribed a familial disease associated with<br />

cirrhosis <strong>of</strong> the liver <strong>and</strong> neurological mani<br />

festations, occurring predominantly during<br />

the first few decades <strong>of</strong> life. The term<br />

"hepatolenticular degeneration" was coined<br />

in 1921 by Hall (296), who also recognized<br />

the recessive mode <strong>of</strong> inheritance <strong>of</strong> the<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2010 KARL E. MASON<br />

disease. This designation has since been<br />

largely replaced by the term "Wilson's dis<br />

ease." Not until 1953, through the more<br />

extensive studies <strong>of</strong> Beam (36), was the<br />

autosomal recessive nature <strong>of</strong> this inborn<br />

error <strong>of</strong> <strong>metabolism</strong><br />

i.e., that both parents<br />

clearly established;<br />

<strong>of</strong> an affected sub<br />

ject must be hétérozygote carriers <strong>of</strong> the<br />

abnormal gene, <strong>and</strong> that their siblings have<br />

a one to four chance <strong>of</strong> receiving both<br />

genes; i.e., in being homozygous abnormal.<br />

For these reasons, the number <strong>of</strong> affected<br />

individuals is maintained at a relatively<br />

low level in the population, accentuated<br />

only by consanguinity. Other studies over<br />

the period (1912-1954) provided valid<br />

evidence that this disease represented a<br />

state <strong>of</strong> <strong>copper</strong> toxicosis characterized by<br />

1) abnormally high levels <strong>of</strong> <strong>copper</strong> in the<br />

liver <strong>and</strong> brain (102, 134, 258, 316); 2) in<br />

creased urinary excretion <strong>of</strong> <strong>copper</strong> (163,<br />

485, 499, 609, 731, 873); 3) aminoaciduria<br />

(123,<br />

serum<br />

136, 163, 499, 608, 735);<br />

levels <strong>of</strong> ceruloplasmin<br />

4) low<br />

(674);<br />

5) decreased fecal excretion <strong>of</strong> <strong>copper</strong> (41,<br />

80, 581, 753, 873) <strong>and</strong> 6) the occurrence<br />

<strong>of</strong> Kayser-Fleischer rings (134, 258) which<br />

had been shown as early as 1934 to repre<br />

sent excessive accumulations<br />

around the cornea (249).<br />

<strong>of</strong> <strong>copper</strong><br />

Symptoms <strong>of</strong> the disease are decidedly<br />

variable in nature, time <strong>of</strong> onset <strong>and</strong> degree<br />

<strong>of</strong> severity. In the experience <strong>of</strong> some in<br />

vestigators the predominance <strong>of</strong> hepatic<br />

<strong>and</strong> neurological manifestations is about<br />

equally divided. In that <strong>of</strong> others, one or<br />

the other has been predominant. An excel<br />

lent discussion <strong>of</strong> laboratory findings <strong>and</strong><br />

clinical manifestations<br />

Strickl<strong>and</strong> <strong>and</strong> Lev<br />

has been given by<br />

(756), Sass-Kortsak<br />

<strong>and</strong> Beam (668) <strong>and</strong> Tu (791). How<br />

genetic determinants hold in check the<br />

metabolic <strong>and</strong> clinical expression <strong>of</strong> the<br />

disease for such variable periods <strong>of</strong> post<br />

natal life, <strong>and</strong> <strong>of</strong>ten for many decades, is<br />

unexplained.<br />

Wilson's disease<br />

Heterogeneity<br />

may be an<br />

<strong>of</strong><br />

important<br />

the gene<br />

fac<br />

for<br />

tor. One may consider the fact that while<br />

hétérozygote carriers (parents <strong>of</strong> patients<br />

with Wilson's disease ) cannot be identified<br />

clinically, they do differ from normal indi<br />

viduals in showing a prolonged biological<br />

turnover <strong>of</strong> 67Cu (580, 753), reduced<br />

biliary excretion <strong>of</strong> <strong>copper</strong> (581), hyper-<br />

cupriuresis after penicillamine loading<br />

(792) <strong>and</strong> certain renal dysfunctions (448).<br />

Metabolic abnonnalities<br />

The classic form <strong>of</strong> this relatively rare<br />

inborn error <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> is char<br />

acterized by: 1) usual, but not universal,<br />

low serum levels <strong>of</strong> <strong>copper</strong>, primarily <strong>of</strong><br />

ceruloplasmin, suggesting defective syn<br />

thesis <strong>of</strong> this cuproprotein by the liver;<br />

2) abnormally high storage <strong>of</strong> <strong>copper</strong> in<br />

the liver, associated with decreased fecal<br />

excretion <strong>and</strong> chronic liver disease, reflect<br />

ing impaired biliary excretion <strong>of</strong> <strong>copper</strong><br />

<strong>and</strong>/or abnormal <strong>copper</strong> protein binding<br />

by the liver; 3) progressive accumulation<br />

<strong>of</strong> <strong>copper</strong> in the brain, leading to a wide<br />

variety <strong>of</strong> neurological disorders; 4) ac<br />

cumulation <strong>of</strong> <strong>copper</strong> in the kidney, asso<br />

ciated with renal damage, cupruresis <strong>and</strong><br />

aminoaciduria; 5) deposition <strong>of</strong> <strong>copper</strong> in<br />

the cornea, leading to the formation <strong>of</strong><br />

Kayser-Fleischer rings <strong>and</strong>, occasionally,<br />

sunflower-type cataracts (87); <strong>and</strong> 6) epi<br />

sodes <strong>of</strong> hemolysis reflecting a rather sud<br />

den release <strong>of</strong> <strong>copper</strong> from a supersatu<br />

rated <strong>and</strong> cirrhotic liver. Since in normal<br />

man concentration <strong>of</strong> <strong>copper</strong> is higher in<br />

the liver, central nervous system <strong>and</strong> kid<br />

ney than in other organs <strong>and</strong> tissues<br />

(p. 1982) it might be expected that these<br />

levels would be significantly increased in a<br />

state <strong>of</strong> <strong>copper</strong> toxicosis. The report <strong>of</strong> a<br />

high concentration <strong>of</strong> <strong>copper</strong> in the skin <strong>of</strong><br />

two patients with Wilson's disease (113)<br />

warrants verification.<br />

Of particular interest is recent evidence<br />

that in subjects with this disease there is<br />

in the liver an abnormal metallothionein<br />

having a binding constant for <strong>copper</strong> about<br />

4-fold that in normal liver (197). It is<br />

felt that the increased binding affinity <strong>of</strong><br />

this protein alters normal homeostasis such<br />

that decreased biliary <strong>copper</strong> excretion <strong>and</strong><br />

decreased ceruloplasmin synthesis result,<br />

<strong>and</strong> with saturation <strong>of</strong> binding sites in<br />

hepatocytes non-ceruloplasmin <strong>copper</strong> is<br />

released to the serum. Whether this pro<br />

tein, or the presence <strong>of</strong> an abnormal pro<br />

tein <strong>of</strong> similar nature, may explain <strong>copper</strong><br />

accumulation in non-hepatic organs <strong>and</strong><br />

tissues is an unresolved question.<br />

In view <strong>of</strong> the fact that low serum ceru<br />

loplasmin levels are characteristic <strong>of</strong> young<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2011<br />

infants <strong>and</strong> subjects with Wilson's disease,<br />

it is not possible to diagnose this disease<br />

(other than perhaps by liver biopsy) <strong>and</strong><br />

to institute therapeutic measures, prior to<br />

the 3rd month <strong>of</strong> life (638). Largely for<br />

this reason little has been learned about<br />

the presymptomatic manifestations <strong>of</strong> the<br />

disease during early <strong>and</strong> late infancy.<br />

However, the report <strong>of</strong> Scheinberg <strong>and</strong><br />

Sternlieb (682) that <strong>copper</strong> concentrations<br />

in the liver <strong>of</strong> a 3M-year old child with<br />

Wilson's disease were at least 40-fold nor<br />

mal adult levels, does indicate progressive<br />

liver storage prior to clinical manifestation<br />

<strong>of</strong> the disease <strong>and</strong> supports the concept<br />

that the liver is the primary site <strong>of</strong> the dis<br />

order. The latter is characterized by a dis<br />

ruption <strong>of</strong> the normal homeostatic mech<br />

anisms for utilization <strong>and</strong> excretion <strong>of</strong><br />

<strong>copper</strong>. Possibly at fault is the presence <strong>of</strong><br />

either an abnormal protein with high<br />

avidity for <strong>copper</strong>, as proposed by Uzman<br />

et al. in 1956 (801), a similar protein un<br />

usually rich in sulfhydryl groups <strong>and</strong> given<br />

the designation L-6D (536) or a metallothionein-like<br />

protein with a protein-binding<br />

constant about 4-fold that <strong>of</strong> normal man<br />

(197). The concept that the metabolic<br />

defect in Wilson's disease is liver-based is<br />

supported by observations that in two<br />

teen-age boys with Wilson's disease treated<br />

with orthoptic liver transplantation the<br />

extrahepatic manifestations <strong>of</strong> the disease<br />

were significantly reduced (281 ). A similar<br />

response to the same procedure is reported<br />

in a 11-year old boy in whom there was<br />

strong but not incontrovertible evidence <strong>of</strong><br />

Wilson's disease (172).<br />

In the normal infant liver stores <strong>of</strong> cop<br />

per are gradually decreased <strong>and</strong> serum<br />

<strong>copper</strong> levels increased during the first 3<br />

or more months <strong>of</strong> life, until a close to zero<br />

<strong>copper</strong> balance is maintained. According to<br />

a recent evaluation <strong>of</strong> Wilson's disease<br />

(672), there may be an early arrest <strong>of</strong><br />

these postnatal processes, especially abili<br />

ties to synthesize normal amounts <strong>of</strong> ceruloplasmin<br />

<strong>and</strong> to excrete the normal frac<br />

tion <strong>of</strong> dietary <strong>copper</strong> through hepatic<br />

lysosomes (normally an important func<br />

tion <strong>of</strong> lysosomes) into the biliary system.<br />

As a result, <strong>copper</strong> progressively accumu<br />

lates in the liver, leading to inflammatory<br />

reactions, hepatic cell necrosis <strong>and</strong> post-<br />

necrotic cirrhosis. Meanwhile, excessive<br />

amounts <strong>of</strong> non-ceruloplasmin <strong>copper</strong><br />

cause, in an unpredictable manner, ac<br />

cumulation <strong>and</strong> injury to different regions<br />

<strong>of</strong> the brain, the kidney <strong>and</strong> the cornea.<br />

It is somewhat academic to ask whether<br />

administered estrogens or those <strong>of</strong> preg<br />

nancy can significantly influence the low<br />

serum ceruloplasmin levels in Wilson's<br />

disease. Beam (37) finds that synthetic<br />

estrogens may have a significant effect in<br />

some patients but not in others, with no<br />

influence on urinary <strong>copper</strong> excretion. With<br />

somewhat larger oral doses <strong>of</strong> a different<br />

estrogen, German (250) reports improve<br />

ment in some cases <strong>and</strong> accentuation <strong>of</strong><br />

symptoms in others, <strong>and</strong> also notes a cupriuresis<br />

in some cases correlated with in<br />

creased serum levels <strong>of</strong> direct reacting cop<br />

per but not with ceruloplasmin. Subjects<br />

with Wilson's disease have been able to<br />

complete gestation with delivery <strong>of</strong> normal<br />

infants (14, 33, 47, 104, 155, 680). There<br />

is a report <strong>of</strong> one untreated case in which<br />

there was an appreciable increase in ceru<br />

loplasmin, reaching a maximum at delivery<br />

( 104). Effects <strong>of</strong> pregnancy upon the clini<br />

cal status <strong>of</strong> the mothers have been<br />

equivocal. In instances where penicillamine<br />

treatment was discontinued prior to gesta<br />

tion (155) <strong>and</strong> after the first trimester<br />

(680), neither ceruloplasmin levels nor<br />

clinical symptoms were improved. In fact,<br />

in one case occurrence <strong>of</strong> hemolytic anemia<br />

during the 5th month required restoration<br />

<strong>of</strong> therapy (155). In three other instances,<br />

where therapy was maintained throughout<br />

pregnancy, Aere is reported definite ameli<br />

oration <strong>of</strong> clinical manifestations which<br />

continued postpartum for periods <strong>of</strong> a few<br />

weeks (14), 3 months (47) <strong>and</strong> 6 months<br />

(706). Data on serum ceruloplasmin are<br />

fragmentary. The ocurrence <strong>of</strong> several<br />

spontaneous abortions during therapy, both<br />

prior to (47) <strong>and</strong> following (14) preg<br />

nancies, raises questions concerning pos<br />

sible deleterious effects <strong>of</strong> penicillamine<br />

upon the fetus.<br />

Although the <strong>copper</strong>-binding capacity <strong>of</strong><br />

bile is not altered in Wilson's disease<br />

(233), there is increasing evidence that<br />

decreased biliary excretion <strong>of</strong> <strong>copper</strong> repre<br />

sents a major metabolic defect (234, 235,<br />

581, 752, 753), <strong>and</strong> also that this defect<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2012 KARL E. MASON<br />

may reside in the hepatic cell lysosomes<br />

(260, 261, 749, 755) whose catabolic func<br />

tions <strong>and</strong> importance in transfer <strong>of</strong> <strong>copper</strong><br />

to the bile canaliculi are well recognized.<br />

It appears that early in the disease <strong>copper</strong><br />

is diffusely distributed in hepatocytes, later<br />

as more discrete granules, <strong>and</strong> that when<br />

hepatic damage is more widespread it be<br />

comes more localized in the lysosomes,<br />

where it may be less toxic ( 261 ). Delay in<br />

this uptake by lysosomes could be a key<br />

factor in the defective liver transport <strong>of</strong><br />

<strong>copper</strong> in Wilson's disease (721). Ques<br />

tions still remain as to whether abnormal<br />

<strong>copper</strong>-binding proteins or lack <strong>of</strong> un<br />

known cell enzymes involved in transfer<br />

<strong>of</strong> <strong>copper</strong> to, or in release <strong>of</strong> <strong>copper</strong> from,<br />

the lysosomes are responsible. The inter<br />

esting observations <strong>of</strong> Goldfisher <strong>and</strong> Sternlieb<br />

(161) have raised the hypothesis that<br />

Wilson's disease may prove to be a "lysosomal<br />

disease," as discussed in some detail<br />

by Sternlieb et al. (749) <strong>and</strong> Strickl<strong>and</strong> et<br />

al. (755). f<br />

Major results <strong>of</strong> reduced biliary excre<br />

tion are increased <strong>copper</strong> accumulation in<br />

hepatocytes, varying degrees <strong>of</strong> pathology,<br />

jaundice <strong>and</strong> episodes <strong>of</strong> hemolytic anemia,<br />

the latter being secondary to release <strong>of</strong><br />

<strong>copper</strong> from an overloaded <strong>and</strong> damaged<br />

liver into the blood stream. If this release<br />

is sudden, there can be severe damage to<br />

circulating erythrocytes, resulting in repet<br />

itive or fatal episodes <strong>of</strong> hemolytic anemia.<br />

A recent report (516) tabulates pertinent<br />

data on 18 reports involving 28 subjects.<br />

Of these, six presented hemolysis prior to<br />

any diagnosis <strong>of</strong> Wilson's disease <strong>and</strong> 20<br />

showed evidence <strong>of</strong> hemolysis at the time<br />

<strong>of</strong> diagnosis. Evidence <strong>of</strong> hepatic dysfunc<br />

tion was noted in at least 22, whereas<br />

neurological dysfunction was recognized in<br />

only three or four. A more recent report <strong>of</strong><br />

two cases <strong>of</strong> fulminating hemolysis in<br />

Wilson's disease calls attention to acute<br />

renal failure as well as hepatic failure<br />

(302). Hence, this hemolytic manifestation<br />

<strong>of</strong> Wilson's disease has become a more<br />

common phenomenon than previously rec<br />

ognized. In view <strong>of</strong> the fact that there is<br />

an associated marked increase in the cop<br />

per content <strong>of</strong> erythrocytes <strong>and</strong> in the<br />

number <strong>of</strong> Heinz bodies during periods <strong>of</strong><br />

crisis, hemolysis is attributed to increased<br />

oxidative stress due to an excessive ac<br />

cumulation <strong>of</strong> <strong>copper</strong> in the cells (155,<br />

508). Whether this is primarily a mem<br />

brane defect is still an open question<br />

(516). It has been considered (102, 155,<br />

508) a counterpart <strong>of</strong> the well known<br />

"enzootic jaundice" in sheep, the history<br />

<strong>and</strong> nature <strong>of</strong> which has been presented<br />

by Underwood (798). This concept is<br />

strongly supported by a recent study <strong>of</strong><br />

controlled, experimental <strong>copper</strong> poisoning<br />

in sheep demonstrating extensive forma<br />

tion <strong>of</strong> Heinz bodies, predominantly mem<br />

brane-attached, as the first morphological<br />

alteration observed (725). Hepatocellular<br />

<strong>and</strong> renal tubular necrosis were also noted.<br />

Therapy<br />

The chance observation <strong>of</strong> M<strong>and</strong>elbrote<br />

et al. (485), in a study <strong>of</strong> <strong>copper</strong> mobiliza<br />

tion in multiple sclerosis, that one <strong>of</strong> the<br />

control subjects who was later found to<br />

have Wilson's disease was greatly benefited<br />

by treatment with BAL (/3,/3-dimercaptopropanol),<br />

known to have properties <strong>of</strong> a<br />

chelator, provided the first therapeutic<br />

measure, introduced by Cumings in 1948<br />

( 135). While daily intramuscular injections<br />

proved effective in increasing the urinary<br />

output <strong>of</strong> <strong>copper</strong> (39, 46, 135, 163), there<br />

was no effect upon the aminoaciduria or<br />

other clinical manifestations. The same was<br />

true when BAL treatment was combined<br />

with intravenous casein hydrolysate <strong>and</strong><br />

oral potassium sulfide, the latter forming<br />

an insoluble <strong>copper</strong> compound in the di<br />

gestive tract (102); <strong>and</strong> also when EDTA<br />

( ethylenediamine-tetra-acetic acid, or "ver<br />

sene") was extensively tested (46). Nine<br />

weeks <strong>of</strong> estrogen treatment <strong>of</strong> an adult<br />

male with Wilson's disease failed to im<br />

prove serum <strong>copper</strong> or ceruloplasmin<br />

levels (652). Intravenous use <strong>of</strong> a purified<br />

concentrate <strong>of</strong> human ceruloplasmin also<br />

proved ineffective (681). These discourag<br />

ing results, together with the adverse side<br />

effects <strong>of</strong> BAL therapy, stimulated search<br />

for better measures.<br />

In 1956 Walshe (820) described the re<br />

markable effectiveness <strong>of</strong> oral DL-penicillamine<br />

as a chelating agent capable <strong>of</strong> mark<br />

edly increasing the urinary output <strong>of</strong><br />

<strong>copper</strong>. A few years later die less toxic<br />

D-penicillamine (ß,/3-dimethylcysteine) be-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2013<br />

came available <strong>and</strong> has since been ex<br />

tensively used, <strong>of</strong>ten in combination with<br />

low-<strong>copper</strong> diets, in the treatment <strong>of</strong> Wil<br />

son's disease. If instituted during early<br />

phases <strong>of</strong> the disease, especially in asymp<br />

tomatic patients, it can gradually reduce<br />

excessive tissue levels to reasonably nor<br />

mal levels <strong>and</strong> provide assurance <strong>of</strong> a nor<br />

mal life expectancy provided no adverse<br />

reactions occur (24, 156, 745, 746, 821). In<br />

such instances, which are rare, Walshe<br />

(823) proposes the use <strong>of</strong> tetraethylene<br />

tetramine dihydrochloride. This compound,<br />

which is cheap <strong>and</strong> easy to prepare, has<br />

not been found to be associated with toxic<br />

reactions. It is very effective as a chelating<br />

agent, <strong>and</strong> its mobilization <strong>of</strong> <strong>copper</strong> may<br />

differ from the action <strong>of</strong> penicillamine<br />

(823). It has not been produced commer<br />

cially, but would seem to justify more<br />

thorough testing as an inexpensive thera<br />

peutic agent. Beneficial effects <strong>of</strong> L-dopa<br />

as an adjunct to a <strong>copper</strong>-deficient diet<br />

<strong>and</strong> oral penicillamine are reported (246)<br />

but not verified.<br />

Despite disappearance <strong>of</strong> disease symp<br />

toms <strong>and</strong> remarkable improvement in liver<br />

function following penicillamine therapy<br />

for 2 to 7 years (277) <strong>and</strong> 9 to 13 years<br />

(156), hypocupremia, hypoceruloplasminenia<br />

<strong>and</strong> hypercupruria have persisted<br />

( 156) <strong>and</strong> no more than limited improve<br />

ment in liver morphology has been ob<br />

served in most cases (277). One exception<br />

is that <strong>of</strong> a 10-year old girl in whom 27<br />

months <strong>of</strong> penicillamine treatment not only<br />

abolished clinical symptoms but greatly<br />

improved liver morphology (204). Mitochondrial<br />

abnormalities <strong>of</strong> hepatocytes<br />

characteristic <strong>of</strong> Wilson's disease are less<br />

pronounced or absent after 3 to 5 years <strong>of</strong><br />

therapy, which may have relevance to im<br />

proved liver function, but liver structure<br />

is not significantly influenced (738).<br />

Penicillamine has the properties <strong>of</strong> a<br />

lathyrogen, with ability to not only chelate<br />

<strong>copper</strong> but also to inhibit cross-linking in<br />

collagen (381, 560). Gr<strong>and</strong> <strong>and</strong> Vawter<br />

(277) suggest that penicillamine may re<br />

tard the formation <strong>of</strong> permanent scars if<br />

begun prior to the onset <strong>of</strong> the cirrhotic<br />

process, as it appears to do in the case <strong>of</strong><br />

chronic active hepatitis (440). Once cir<br />

rhosis is established one might expect some<br />

thinning <strong>of</strong> fibrous scars with prolonged<br />

therapy (277). It is disappointing that<br />

morphological <strong>and</strong> ultrastructural studies<br />

on biopsies <strong>of</strong> liver exposed to many years<br />

<strong>of</strong> penicillamine therapy make no com<br />

ment on changes observed in liver col<br />

lagen (204, 738 ). Another feature <strong>of</strong> peni<br />

cillamine action that justifies further ex<br />

ploration is the generalized loss <strong>of</strong> taste<br />

acuity in a variable number <strong>of</strong> subjects<br />

with scleroderma, rheumatoid arthritis,<br />

cystinuria <strong>and</strong> idiopathic pulmonary fibrosis<br />

given penicillamine treatment, <strong>and</strong><br />

the restoration to normal after oral admin<br />

istration <strong>of</strong> <strong>copper</strong> (323). That only 4% <strong>of</strong><br />

Wilson's disease subjects under the same<br />

treatment show hypogeusia is attributed to<br />

the fact that only rarely are their tissue<br />

stores <strong>of</strong> <strong>copper</strong> sufficiently reduced (323 ).<br />

A further complexity is presented by a<br />

case <strong>of</strong> hypogeusia in a patient with mul<br />

tiple myeloma which responded effectively<br />

to either oral <strong>copper</strong> or oral zinc (322).<br />

The role <strong>of</strong> <strong>copper</strong> in taste acuity is still<br />

questionable.<br />

Low-<strong>copper</strong> diets <strong>of</strong>ten used in addition<br />

to penicillamine treatment <strong>of</strong> patients with<br />

Wilson's disease, usually providing 1.0 to<br />

1.5 mg <strong>copper</strong>, not only exclude a number<br />

<strong>of</strong> generally consumed foods but also are<br />

monotonous <strong>and</strong> <strong>of</strong> low nutritional value<br />

(90). In predominantly rice-eating coun<br />

tries, such as Taiwan, preparation <strong>and</strong><br />

acceptance <strong>of</strong> such diets present no great<br />

problem (754, 755, 793). A vegetarian diet<br />

is said to be highly effective in decreasing<br />

positive <strong>copper</strong> balance <strong>and</strong> in increasing<br />

fecal output, due perhaps to <strong>copper</strong> bind<br />

ing to some unabsorbed component <strong>of</strong> the<br />

diet (90). There appears to be no confir<br />

mation <strong>of</strong> these observations.<br />

Related disorders<br />

Two other abnormalities <strong>of</strong> <strong>copper</strong> me<br />

tabolism, both associated with low serum<br />

levels <strong>of</strong> ceruloplasmin justify brief men<br />

tion. Gahlot et al. (240) describe 15 cases<br />

<strong>of</strong> primary retinitis pigmentosa unrespon<br />

sive to conventional treatment. Serum<br />

ceruloplasmin levels were very low <strong>and</strong><br />

urinary <strong>copper</strong> excretion very high, al<br />

though serum <strong>copper</strong> levels were normal<br />

or nearly normal. The investigators sug<br />

gest that this retinal pigmentary distur-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2014 KARL E. MASON<br />

bance, in certain cases at least, may not be<br />

an abiotrophy but a condition <strong>of</strong> chronic<br />

<strong>copper</strong> toxicity reflecting an inborn error<br />

in <strong>copper</strong> <strong>metabolism</strong>. The results <strong>of</strong><br />

penicillamine treatment, said to be in<br />

progress, <strong>and</strong> further exploration <strong>of</strong> these<br />

observations by others, will be anticipated<br />

with much interest.<br />

There has also been described, in three<br />

brothers, a hereditary disorder character<br />

ized by dementia, spastic dysarthria, verti<br />

cal eye movement paresis, gait disturbance,<br />

splenomegaly <strong>and</strong> an abnormal <strong>metabolism</strong><br />

<strong>of</strong> <strong>copper</strong> (851). The disorder is prepubertal<br />

in onset <strong>and</strong> progresses slowly<br />

over many years. Copper kinetic studies<br />

the unique combination <strong>of</strong> dementia,<br />

splenomegaly, <strong>and</strong> abnormalities <strong>of</strong> speech,<br />

vision <strong>and</strong> gait favor the view that this<br />

condition represents a new syndrome dis<br />

tinct from Wilson's disease. As far as can<br />

be determined, no comparable cases have<br />

since been reported. Both abnormalities<br />

may possibly prove to be variants <strong>of</strong> Wil<br />

son's disease.<br />

Wilson's disease is not the only disorder<br />

in which high liver levels <strong>of</strong> <strong>copper</strong> occur.<br />

Chronic active liver disease closely resem<br />

bles Wilson's disease in changes in hepatic<br />

function <strong>and</strong> morphology, but can be dif<br />

ferentiated from the latter in that ceruloplasmin<br />

levels are elevated in about 50 %<br />

<strong>of</strong> the cases <strong>and</strong> not below normal levels<br />

in others (442), <strong>and</strong> the cupriuria after<br />

penicillamine treatment is comparable to<br />

that <strong>of</strong> normal individuals (473).<br />

One other liver disease requires special<br />

consideration. Levels <strong>of</strong> liver <strong>copper</strong> quite<br />

comparable to <strong>and</strong> even greater than those<br />

found in Wilson's disease occur in pri<br />

marily biliary cirrhosis (215, 369, 721, 722,<br />

862), a chronic, slowly progressive disease<br />

with evidence <strong>of</strong> extrahepatic biliary ob<br />

struction (223). Unlike the situation in<br />

Wilson's disease, plasma clearance <strong>and</strong><br />

liver uptake <strong>of</strong> intravenous 84Cu are normal<br />

(721). Similar conclusions were reached<br />

by Fleming et al. (215) on the basis <strong>of</strong><br />

other evidence, including a new observa<br />

tion that patients with primary biliary cir<br />

rhosis also had significantly increased levels<br />

<strong>of</strong> <strong>copper</strong> in the renal cortex <strong>and</strong> spleen.<br />

In a study involving an extensive evalua<br />

tion <strong>of</strong> 81 patients with primary biliary<br />

cirrhosis, Kayser-Fleischer rings were found<br />

in three cases, <strong>and</strong> also in another patient<br />

with chronic active liver disease (216). In<br />

the three patients mentioned, <strong>copper</strong> in<br />

serum, urine <strong>and</strong> liver were significantly<br />

elevated, resembling conditions seen in<br />

Wilson's disease except for the high serum<br />

<strong>copper</strong> <strong>and</strong> capacity to incorporate radio<strong>copper</strong><br />

into ceruloplasmin. Concentration<br />

<strong>of</strong> liver <strong>copper</strong> above a specified level <strong>of</strong><br />

250 /Ag/g <strong>of</strong> dry tissue, previously consid<br />

ered as one <strong>of</strong> the four or five criteria for<br />

diagnosis <strong>of</strong> Wilson's disease, now appears<br />

to have limited value with accumulated<br />

indicate similarities to those <strong>of</strong> hétérozyevidence<br />

that such elevated concentrations<br />

gote carriers <strong>of</strong> Wilson's disease. However, occur in the two types <strong>of</strong> liver disease just<br />

mentioned. Furthermore, the presence <strong>of</strong><br />

Kayser-Fleischer rings can no longer be<br />

considered pathognomonic <strong>of</strong> Wilson's<br />

disease.<br />

HYPOCUPREMIA<br />

Previous sections have dealt with<br />

Menkes' syndrome <strong>and</strong> states <strong>of</strong> <strong>copper</strong> de<br />

ficiency in premature infants in which low<br />

blood levels <strong>of</strong> <strong>copper</strong>, especially <strong>of</strong> cerulo<br />

plasmin, are associated with various other<br />

manifestations <strong>of</strong> <strong>copper</strong> deficiency. States<br />

<strong>of</strong> hypocupremia without any evidence <strong>of</strong><br />

dietary <strong>copper</strong> deficiency characterize Wil<br />

son's disease <strong>and</strong> occur, somewhat in<br />

frequently, in a variety <strong>of</strong> other metabolic<br />

<strong>and</strong> disease situations. Certain <strong>of</strong> these<br />

justify recording.<br />

The terms "hypocupremia" <strong>and</strong> "hypercupremia"<br />

were introduced by Sachs et al.<br />

(655) whose excellent review <strong>of</strong> early<br />

studies on <strong>copper</strong> <strong>and</strong> iron in human blood,<br />

<strong>and</strong> their newer contributions, are worthy<br />

<strong>of</strong> note. Hypocupremia is defined as a<br />

serum <strong>copper</strong> level <strong>of</strong> 80 ¿ig/100ml or less<br />

(106). Since 93% <strong>of</strong> serum <strong>copper</strong> is nor<br />

mally bound to ceruloplasmin, hypocu<br />

premia must <strong>of</strong> necessity be synonymous<br />

with hypoceruloplasminemia, except in un<br />

usual circumstances. A syndrome charac<br />

terized by hypocupremia, hyp<strong>of</strong>erremia,<br />

hypoproteinemia, edema <strong>and</strong> hypochromatic<br />

anemia has been described in infants<br />

<strong>and</strong> children <strong>and</strong> attributed to either a<br />

dietary deficiency <strong>of</strong> <strong>copper</strong> <strong>and</strong> iron, with<br />

hypoproteinemia considered a secondary<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2015<br />

effect <strong>of</strong> iron depletion (432, 437, 759,<br />

874), to a transient dysproteinemia (796,<br />

797), or to inability to synthesize the apoenzyme<br />

<strong>of</strong> ceruloplasmin (412). Other<br />

studies by Schubert <strong>and</strong> Lahey (692),<br />

based upon 14 infants with the above men<br />

tioned syndrome <strong>and</strong> 54 infants with irondeficiency<br />

anemia but no hypocupremia,<br />

led to the hypothesis that an initial severe<br />

deficiency <strong>of</strong> iron results in marked anemia<br />

<strong>and</strong> consequent protein depletion which,<br />

in turn, causes impaired <strong>copper</strong> retention<br />

<strong>and</strong> resultant development <strong>of</strong> the complete<br />

syndrome.<br />

Reduced serum levels <strong>of</strong> <strong>copper</strong>, cerulo<br />

plasmin, iron <strong>and</strong> protein are also charac<br />

teristic <strong>of</strong> kwashiorkor (76, 180, 269, 305,<br />

402, 433, 632, 664) <strong>and</strong> marasmus (305,<br />

402, 532). Only one investigator reports<br />

no significant change in marasmus (269).<br />

There are other findings that in kwashior<br />

kor <strong>and</strong> marasmus both plasma <strong>and</strong> erythrocyte<br />

<strong>copper</strong> levels are significantly re<br />

duced (402). There is general accord that<br />

the hypocupremia is not due to dietary in<br />

sufficiency <strong>of</strong> <strong>copper</strong> but is secondary to a<br />

state <strong>of</strong> hypoproteinemia <strong>and</strong> inability to<br />

provide adequate amounts <strong>of</strong> the apoprotein<br />

for ceruloplasmin synthesis. Opinions<br />

differ as to whether in kwashiorkor the<br />

<strong>copper</strong> content <strong>of</strong> hair is significantly de<br />

creased (269, 474) or unaffected (76,<br />

443). A report describing marked hypercupremia<br />

in Filipino children <strong>and</strong> attrib<br />

uted to states <strong>of</strong> malnutrition (750) may<br />

well be ascribed to faulty methodology<br />

<strong>and</strong> inadequate controls.<br />

Hypocupremia has also been described<br />

in subjects with non-tropical sprue (78,<br />

101, 284, 739), tropical sprue <strong>and</strong> macrocytic<br />

anemia (86, 106), malabsorption due<br />

to small bowel disease (739), <strong>and</strong> with<br />

both hyperchromic <strong>and</strong> hypochromic<br />

anemia (315). There are also isolated re<br />

ports <strong>of</strong> hypocupremia associated with ex<br />

cessive gastrointestinal loss <strong>of</strong> protein<br />

(814, 869), celiac disease (27), cystic fibrosis<br />

<strong>of</strong> the pancreas (702) <strong>and</strong> the<br />

nephrotic syndrome (78, 101, 106, 491).<br />

In the latter disorder hypoceruloplasminemia<br />

comparable to that in Wilson's dis<br />

ease may occur, attributable primarily to<br />

high urinary loss <strong>of</strong> ceruloplasmin. In the<br />

other states <strong>of</strong> hypocupremia mentioned<br />

above decreased levels <strong>of</strong> serum cerulo<br />

plasmin are characteristic, suggesting qual<br />

itative or quantitative abnormalities <strong>of</strong><br />

protein <strong>metabolism</strong> rather than insufficient<br />

intake or absorption <strong>of</strong> <strong>copper</strong>.<br />

HYPERCUPREMIA<br />

Since the early observations <strong>of</strong> Krebs<br />

(426 ) that hypercupremia is associated not<br />

only with the state <strong>of</strong> pregnancy but also<br />

with many acute <strong>and</strong> chronic infections,<br />

there has accumulated an extensive litera<br />

ture on a wide variety <strong>of</strong> diseases <strong>and</strong> ab<br />

normal physiological states in which hyper<br />

cupremia, predominantly due to hyperceruloplasminemia<br />

occurs. It is beyond the<br />

scope <strong>of</strong> this review to discuss these obser<br />

vations in detail, especially since there<br />

have been provided no well accepted hy<br />

potheses or explanations <strong>of</strong> the mechanisms<br />

involved in this apparent stimulus for in<br />

creased synthesis <strong>and</strong> release <strong>of</strong> ceruloplas<br />

min. However, comments will be made on<br />

certain disease states involving hypercu<br />

premia which appear relevant to the pur<br />

pose <strong>of</strong> this review.<br />

Infectious diseases. Hypercupremia has<br />

been recorded as a phenomenon commonly<br />

associated with chronic <strong>and</strong> acute infec<br />

tious diseases <strong>of</strong> man. The lists recorded<br />

by various investigators are bewildering.<br />

There is general agreement that it is cerulo<br />

plasmin which is primarily increased <strong>and</strong><br />

that during the recovery period, whether<br />

spontaneous or the result <strong>of</strong> therapy, nor<br />

mal levels are restored. This has been well<br />

demonstrated, for example, in cases <strong>of</strong><br />

tuberculosis (61, 319, 542, 593, 655), lep<br />

rosy (403), viral hepatitis, <strong>and</strong> pneumonia<br />

<strong>and</strong> chickenpox (413). In many instances<br />

there has also been recorded a decreased<br />

serum level <strong>of</strong> iron (61, 63, 103) <strong>and</strong> <strong>of</strong><br />

zinc (718), reflecting differences in the<br />

proportions <strong>of</strong> circulating albumins <strong>and</strong><br />

globulins to which these metals may be<br />

bound.<br />

Hématologie disorders. Hypercupremia<br />

is commonly associated with iron deficiency<br />

anemia (100, 103, 319, 879) hemorrhagic,<br />

aplastic <strong>and</strong> pernicious anemias ( 100, 103,<br />

237, 319) <strong>and</strong> sickle cell anemia (576). In<br />

most anemias there is an inverse relation<br />

ship between serum <strong>copper</strong> <strong>and</strong> iron ( 100,<br />

655, 657), but both may be increased in<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2016 KARL E. MASON<br />

pernicious anemia, aplastic anemia <strong>and</strong><br />

thalassemia major ( 103). It should be kept<br />

in mind that in view <strong>of</strong> decreased blood<br />

iron levels in anemia, the increased <strong>copper</strong><br />

levels may be more apparent than real. In<br />

iron deficiency anemia, pernicious anemia<br />

<strong>and</strong> leukemia, as well as in chronic infec<br />

tions, there is an increased <strong>copper</strong> level in<br />

whole blood, red blood cells <strong>and</strong> plasma,<br />

<strong>and</strong> only in iron deficiency anemia is there<br />

an increase in the ratio <strong>of</strong> erythrocyte to<br />

plasma <strong>copper</strong> (100, 592). Aside from<br />

states <strong>of</strong> <strong>copper</strong> toxicity, blood cell <strong>copper</strong><br />

remains quite constant. Since direct react<br />

ing <strong>copper</strong> <strong>of</strong> serum is only about 1% <strong>of</strong><br />

the total, both hypo- <strong>and</strong> hypercupremic<br />

states reflect changes primarily in ceruloplasmin<br />

<strong>copper</strong>. To the present there have<br />

been proposed no acceptable explanations<br />

<strong>of</strong> the basic mechanisms involved, <strong>of</strong> the<br />

tissues from which the <strong>copper</strong> is mobilized,<br />

or the function(s) that hypercupremia<br />

serves. An extensive literature on this sub<br />

ject has been well reviewed elsewhere (7,<br />

44, 100, 211, 319, 666).<br />

Neoplasms. Hypercupremia is a common<br />

feature <strong>of</strong> acute <strong>and</strong> chronic leukemia<br />

(100, 162, 630, 773), lymphatic leukemia<br />

(255), Hodgkin's disease (100, 328, 363,<br />

364, 386, 774, 775), malignant tumors<br />

(255) <strong>and</strong> <strong>of</strong> multiple <strong>and</strong> acute myeloma<br />

(255, 268, 456, 457). In leukemia <strong>of</strong> chil<br />

dren plasma zinc levels are low, <strong>and</strong> the<br />

ratio <strong>of</strong> zinc to <strong>copper</strong> may prove useful<br />

in monitoring the response to treatment<br />

( 162 ). In Hodgkin's disease blood cop<br />

per levels are valuable in evaluating the<br />

disorder itself <strong>and</strong> the effects <strong>of</strong> therapy<br />

(363, 364, 774, 775, 778, 829).<br />

Cases <strong>of</strong> multiple myeloma appear to<br />

present special abnormalities <strong>of</strong> <strong>copper</strong><br />

<strong>metabolism</strong>. Goodman et al. (268) report<br />

a case in a 69-year old woman whose<br />

serum <strong>copper</strong> levels ranged from 20- to 40fold<br />

normal, due entirely to a phenomenal<br />

increase in nonceruloplasmin <strong>copper</strong>. Evi<br />

dence indicated its association with an<br />

abnormal monoclonal immunoglobulin.<br />

More recently, Lewis et al. (457 ) recorded<br />

a quite similar hypercupremia, with blood<br />

<strong>copper</strong> levels as much as 14-fold normal,<br />

in a 41-year old woman manifesting an<br />

early, clinically asymptomatic stage <strong>of</strong> mul<br />

tiple myeloma. Liver (biopsy) was normal<br />

in structure <strong>and</strong> <strong>copper</strong> concentration. In<br />

both cases there was extensive <strong>copper</strong> in<br />

filtration <strong>of</strong> the cornea <strong>and</strong> <strong>of</strong> the anterior<br />

<strong>and</strong> posterior surface <strong>of</strong> the lens, not un<br />

like that seen in the Kayser-Fleischer ring<br />

<strong>of</strong> Wilson's disease. These observations<br />

raise questions regarding the pathognomonic<br />

value <strong>of</strong> the latter <strong>and</strong> also the pos<br />

sible recognition <strong>of</strong> a unique variety <strong>of</strong><br />

multpile myeloma, both <strong>of</strong> which justify<br />

further exploration.<br />

Largely in the hope <strong>of</strong> finding an addi<br />

tional diagnostic criterion <strong>of</strong> value, atten<br />

tion has been given to serum levels <strong>of</strong> cop<br />

per, <strong>and</strong> in some studies to zinc <strong>and</strong> iron,<br />

in subjects with varied types <strong>of</strong> neoplasia.<br />

In osteosarcoma, serum <strong>copper</strong> <strong>and</strong> <strong>copper</strong>zinc<br />

ratios are increased in the primary<br />

phase, further increased following metasta<br />

sis, <strong>and</strong> approach normal levels in patients<br />

whose tumor is amputated <strong>and</strong> show no<br />

clinical sign <strong>of</strong> the disease (212). Also,<br />

<strong>copper</strong> in the bone <strong>of</strong> osteogenic carcinoma<br />

is significantly greater than in normal bone<br />

(384). In lung <strong>and</strong> breast carcinoma the<br />

serum <strong>copper</strong>/iron ratio is high (602, 769 ).<br />

In gastric <strong>and</strong> pulmonary carcinoma serum<br />

<strong>copper</strong> levels are significantly increased,<br />

but not in cases <strong>of</strong> tumors <strong>of</strong> the large in<br />

testine (670). Only one study reports no<br />

differences between the serum <strong>copper</strong> con<br />

tent <strong>of</strong> healthy humans <strong>and</strong> those suffering<br />

from malignant tumors (22 ). Other reports<br />

indicate increased serum <strong>copper</strong> in lymphomas<br />

<strong>and</strong> certain other malignancies<br />

(539), <strong>and</strong> no change in prostatic carci<br />

noma prior to or during radiation therapy<br />

(363). In Hodgkin's disease, leukemia <strong>and</strong><br />

lymphomas, there is general agreement<br />

that serum <strong>copper</strong> levels have merit in<br />

diagnosis <strong>and</strong> in evaluation <strong>of</strong> therapy<br />

(162, 375, 386, 421, 539, 592, 773), as<br />

is also true <strong>of</strong> osteosarcomas (212). How<br />

ever, in none <strong>of</strong> the studies referred to<br />

above has a clear explanation, or even a<br />

challenging hypothesis, been provided<br />

toward explaining the possible mechanisms<br />

involved.<br />

'Neurological diseases. Recognition <strong>of</strong> low<br />

serum ceruloplasmin <strong>and</strong> <strong>copper</strong> levels as<br />

one criterion <strong>of</strong> Wilson's disease led to nu<br />

merous studies on a wide variety <strong>of</strong> neuro<br />

logical diseases <strong>and</strong> disorders, many directed<br />

toward hopes <strong>of</strong> finding other conditions<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2017<br />

wherein increased or decreased levels <strong>of</strong><br />

<strong>copper</strong> might provide a useful diagnostic<br />

measure <strong>of</strong> the disease state. On the whole,<br />

these efforts have proved rather unfruit<br />

ful. Considerable controversy has arisen<br />

regarding schizophrenia <strong>and</strong> other psy<br />

chotic states, following an early report <strong>of</strong><br />

high serum <strong>copper</strong> levels in the majority<br />

<strong>of</strong> 27 cases <strong>of</strong> schizophrenia <strong>and</strong> in cases<br />

<strong>of</strong> manic depression <strong>and</strong> epilepsy (319).<br />

Subsequent studies have indicated a tend<br />

ency toward significant increases in ceruloplasmin<br />

serum levels in schizophrenia (2,<br />

675, 677), in manic depression <strong>and</strong> senile<br />

psychosis (13), but values obtained over<br />

lap with those <strong>of</strong> normal subjects to vari<br />

able degrees. Since the activity <strong>of</strong> <strong>copper</strong><br />

oxidase is reduced as serum ascorbic acid<br />

increases, it is felt that the increased levels<br />

observed in many states <strong>of</strong> mental illness<br />

may reflect low ascorbate intake in sub<br />

jects institutionalized for prolonged pe<br />

riods ( 13, 20 ). Other investigators find no<br />

significant changes in serum <strong>copper</strong> in<br />

schizophrenia (30, 31, 360, 575), or in<br />

brain tissue (279 ). These differences might<br />

relate to the fact that schizophrenics are<br />

very heterogeneous biochemically, such as<br />

in serum levels <strong>of</strong> histamine, in serum<br />

levels <strong>of</strong> zinc <strong>and</strong> manganese, <strong>and</strong> in re<br />

actions to penicillamine <strong>and</strong> to contracep<br />

tive estrogens in particular (596, 597). In<br />

any case, serum <strong>copper</strong> levels have no<br />

diagnostic value (677).<br />

In epilepsy there is said to be an increase<br />

in serum <strong>copper</strong> (70, 89) involving whole<br />

blood, serum <strong>and</strong> blood cell levels (800).<br />

Cerebrospinal fluid <strong>copper</strong> is reported to<br />

be decreased (89) <strong>and</strong> increased (800),<br />

<strong>and</strong> urinary <strong>and</strong> fecal <strong>copper</strong> increased<br />

(800). These unverified <strong>and</strong> somewhat<br />

variant observations probably have little<br />

relevance.<br />

Cardiovascular diseases. More than 25<br />

years ago Vallee (803) reported a pro<br />

nounced hypercupremia during the acute<br />

phase <strong>of</strong> myocardial infarction, which sub<br />

sided during recovery, <strong>and</strong> later Adelstein<br />

et al. (5) demonstrated a linear relation<br />

ship between the serum <strong>copper</strong>, ceruloplasmin<br />

<strong>and</strong> <strong>copper</strong> oxidase activity. These<br />

findings have been well confirmed (405,<br />

806, 831), <strong>and</strong> a reciprocal decrease in<br />

serum zinc has been noted (806, 831). In<br />

myocardial infarction, but not in angina,<br />

coronary insufficiency or myocardial<br />

ischemia, there is also a marked elevation<br />

in serum <strong>of</strong> the zinc-dependent enzymes,<br />

malic <strong>and</strong> lactic dehydrogenase (811), <strong>and</strong><br />

in benzidine oxidase (760). Such findings<br />

naturally raise questions as to whether in<br />

creases in serum ceruloplasmin represent<br />

anything other than a reaction to acute<br />

stress.<br />

There are but a few unconfirmed reports<br />

indicating hypercupremia in atherosclerosis<br />

(53, 659), arteriosclerosis (81, 82) <strong>and</strong><br />

hypertension (287); also, decreased levels<br />

<strong>of</strong> <strong>copper</strong> in the wall <strong>of</strong> larger arteries<br />

(404) <strong>and</strong> coronary arteries (836) <strong>of</strong> sub<br />

jects with atherosclerosis. There is also<br />

described a linear decrease in the <strong>copper</strong><br />

content <strong>of</strong> the wall <strong>of</strong> larger arteries with<br />

increase in degree <strong>of</strong> atherosclerosis (404),<br />

<strong>and</strong> a questionably significant lower level<br />

<strong>of</strong> <strong>copper</strong> in the coronary artery <strong>of</strong> sub<br />

jects with atherosclerosis <strong>and</strong> myocardial<br />

infarction (836), which may reflect de<br />

creased metabolic activity <strong>of</strong> the altered<br />

arterial tissue.<br />

Hemolysis associated with hypercu<br />

premia, usually transient <strong>and</strong> self-limiting,<br />

is a well recognized manifestation <strong>of</strong> Wil<br />

son's disease (see p. 2014). It may occur<br />

also as a fulminating event secondary<br />

to acute liver failure (643), sometimes<br />

combined with acute renal failure (302).<br />

It can be attributed to sudden release <strong>of</strong><br />

nonceruloplasmic <strong>copper</strong> from a damaged<br />

liver <strong>and</strong> excessive accumulation in erythrocytes,<br />

resulting in acute oxidative stress<br />

upon the cells <strong>and</strong> cell membranes (155,<br />

302, 643).<br />

Liver diseases. Considering the key role<br />

<strong>of</strong> the liver in initial storage <strong>of</strong> absorbed<br />

<strong>copper</strong>, in the synthesis <strong>and</strong> release <strong>of</strong><br />

ceruloplasmin, <strong>and</strong> in excretion <strong>of</strong> <strong>copper</strong><br />

via the biliary system, it is to be expected<br />

that metabolic <strong>and</strong> pathologic dysfunctions<br />

<strong>of</strong> this organ might well be reflected in<br />

atypical levels <strong>of</strong> <strong>copper</strong> in the serum, <strong>and</strong><br />

also perhaps in erythrocytes <strong>of</strong> the circu<br />

lating blood. This has been well demon<br />

strated. Serum <strong>copper</strong> levels are signifi<br />

cantly elevated in portal cirrhosis, biliary<br />

tract disease <strong>and</strong> hepatitis (62, 245, 255,<br />

271, 285, 600), possibly reflecting inter<br />

ference with the normal excretion <strong>of</strong> cop-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2018 KARL E. MASON<br />

per via thèbile <strong>and</strong> consequent release <strong>of</strong><br />

an excess into the circulation. Although<br />

states <strong>of</strong> hypocupremia are rare in liver<br />

disease, low serum <strong>copper</strong> levels are re<br />

ported in hemolytic jaundice, hemochromatosis<br />

<strong>and</strong> some types <strong>of</strong> liver cirrhosis (255,<br />

824), presumably the result <strong>of</strong> reduced<br />

capacity <strong>of</strong> the damaged liver to synthesize<br />

ceruloplasmin (824).<br />

Liver biopsies from subjects <strong>of</strong> long<br />

st<strong>and</strong>ing hepatic diseases due to biliary<br />

obstruction regularly show in periportal<br />

hepatocytes accumulations <strong>of</strong> coarse gran<br />

ules staining with the rubeanic acid<br />

method <strong>and</strong> the Mallory-Parker hematoxlin<br />

method for <strong>copper</strong>, <strong>and</strong> reacting positively<br />

to orcein, which indicates the presence <strong>of</strong><br />

sulfhydryl groups, all <strong>of</strong> which suggest the<br />

binding <strong>of</strong> <strong>copper</strong> to a metallothionein<br />

type <strong>of</strong> protein (661, 719, 720). Rubeanic<br />

acid-staining granules <strong>of</strong> similar type have<br />

been described in the livers <strong>of</strong> vineyard<br />

sprayers exposed for many years to <strong>copper</strong><br />

sulfate sprays (599), but this staining pro<br />

cedure is not a particularly reliable test for<br />

liver <strong>copper</strong>. In view <strong>of</strong> the role <strong>of</strong> <strong>copper</strong><br />

as a hepatoxin in sheep (784), it is pos<br />

sible that <strong>copper</strong> may contribute to the de<br />

velopment <strong>of</strong> liver cirrhosis in long-st<strong>and</strong><br />

ing liver cholestasis (661). It should be <strong>of</strong><br />

interest to explore the possible relation <strong>of</strong><br />

these granules to hepatic lysosomes, <strong>and</strong><br />

also to learn what effect penicillamine may<br />

have upon their histochemical picture.<br />

Liver <strong>copper</strong> levels are not altered in<br />

extrahepatic biliary obstruction (862) or in<br />

acute hepatitis, steatosis <strong>of</strong> the liver, he<br />

patic amyloidosis or hemochromatosis<br />

(640). In viral hepatitis, serum <strong>copper</strong><br />

levels are said to be significantly increased<br />

during the acute phase according to one<br />

report (270) <strong>and</strong> during improvement <strong>of</strong><br />

the clinical state according to another<br />

(326 ), but no change in liver <strong>copper</strong> levels<br />

has been reported. Patients with chronic<br />

active hepatitis respond favorably to 5<br />

months or more <strong>of</strong> penicillamine therapy<br />

(440).<br />

Rheumatic diseases. For many centuries<br />

<strong>copper</strong> amulets have been worn, hopefully,<br />

for relief from arthritis, rheumatism <strong>and</strong><br />

many other afflictions <strong>of</strong> man, <strong>and</strong> <strong>copper</strong><br />

has been a common component <strong>of</strong> folk<br />

remedies for arthritis in particular. There<br />

is reported (815) a recent correspondence<br />

<strong>and</strong> questionnaire type <strong>of</strong> study, involving<br />

240 sufferers <strong>of</strong> arthritis/rheumatism, half<br />

<strong>of</strong> whom were previous wearers <strong>of</strong> <strong>copper</strong><br />

bracelets <strong>and</strong> the other half not, r<strong>and</strong>omly<br />

allocated to three treatment groups wear<br />

ing <strong>copper</strong> bracelets or placebo (anodised<br />

aluminum) bracelets, or neither. Prelimi<br />

nary results <strong>of</strong> psychological analyses <strong>of</strong><br />

the questionnaire responses indicate that<br />

"previous users seem to be significantly<br />

worse when not wearing their <strong>copper</strong><br />

bracelets." However, convincing evidence<br />

<strong>of</strong> beneficial effects <strong>of</strong> <strong>copper</strong> bracelets<br />

does not yet exist. These studies did reveal<br />

that surprisingly large amounts <strong>of</strong> <strong>copper</strong><br />

(average <strong>of</strong> 13 mg/month from a 14-g<br />

bracelet) can be absorbed through the<br />

dermis, which would give in 12 months<br />

more than the total amount estimated to be<br />

present in the human body. The rationale<br />

for <strong>copper</strong> therapy in rheumatic diseases<br />

is not at all clear, <strong>and</strong> little or no infor<br />

mation exists concerning <strong>copper</strong> metab<br />

olism in such states other than in rheuma<br />

toid arthritis, <strong>and</strong> that is somewhat con<br />

flicting.<br />

In rheumatoid arthritis, serum <strong>copper</strong><br />

levels are said to be appreciably increased<br />

(133, 423, 559, 604, 622, 623) <strong>and</strong> in the<br />

synovial fluid there is an increased level <strong>of</strong><br />

ceruloplasmin <strong>copper</strong>, as well as <strong>of</strong> iron<br />

<strong>and</strong> zinc (558, 559). On the other h<strong>and</strong>,<br />

mean values for the <strong>copper</strong> levels <strong>and</strong><br />

Superoxide dismutase activity <strong>of</strong> erythrocytes<br />

<strong>of</strong> male <strong>and</strong> female subjects with<br />

rheumatoid arthritis do not differ signifi<br />

cantly from normal controls (696). A<br />

marked elevation <strong>of</strong> nonceruloplasmin<br />

serum <strong>copper</strong> reported by Lorber et al.<br />

(466) has not been substantiated (743),<br />

which may be due to differences in meth<br />

odology (465). However, the more recent<br />

studies <strong>of</strong> Bajpayee (29) in which serum<br />

ceruloplasmin levels were significantly in<br />

creased in rheumatoid arthritis patients on<br />

estrogens, but were normal in female<br />

patients not on estrogens <strong>and</strong> in male<br />

patients, raise serious questions concern<br />

ing the validity <strong>of</strong> data previously reported.<br />

Bajpayee points out that in prior investi<br />

gations no effort was made to segregate,<br />

from the populations studied, those females<br />

who were on estrogen treatment.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2019<br />

Nevertheless, <strong>copper</strong> has received much<br />

attention in the treatment <strong>of</strong> rheumatoid<br />

<strong>and</strong> other forms <strong>of</strong> arthritis. The claimed<br />

efficacy <strong>of</strong> intravenous administration <strong>of</strong><br />

an organic salt <strong>of</strong> <strong>copper</strong> (221) is not<br />

substantiated (795). Penicillamine has<br />

been used with some response in about<br />

80% <strong>of</strong> cases after 6 months or more <strong>of</strong><br />

treatment (88, 380). Efforts have been<br />

made to enhance the effectiveness <strong>of</strong><br />

aspirin, salicylates <strong>and</strong> penicillamine by<br />

forming with them <strong>copper</strong> coordination<br />

compounds. As tested only by the rat<br />

model for evaluating inflammatory <strong>and</strong><br />

antiulcer potentials, these have given<br />

somewhat equivocal results (626, 728,<br />

729 ) depending upon the route <strong>of</strong> adminis<br />

tration <strong>and</strong> the degree <strong>of</strong> tissue irritation<br />

produced. The hypothesis <strong>of</strong> Sorenson<br />

(728, 729) that anti-inflammatory drugs<br />

might react in vivo with available <strong>copper</strong><br />

to generate more effective complexes for<br />

regulation <strong>of</strong> inflammatory or non-inflam<br />

matory states certainly justifies further<br />

exploration. So also does the question <strong>of</strong><br />

whether the higher serum <strong>copper</strong> levels in<br />

females as compared to males bears any<br />

relation to the high female to male ratio<br />

seen in rheumatoid arthritis. Spontaneous<br />

remissions <strong>of</strong> rheumatoid arthritis are<br />

associated with obstructive biliary/liver<br />

disease <strong>and</strong> with pregnancy, characterized<br />

by increased serum ceruloplasmin levels.<br />

These questions are raised by Whitehouse<br />

(841) in his review <strong>and</strong> critical discussion<br />

<strong>of</strong> the topics referred to above. Obviously,<br />

there are fertile fields for new explorations<br />

<strong>of</strong> the possible role <strong>of</strong> <strong>copper</strong> in arthritis<br />

<strong>and</strong> related diseases.<br />

Pellagra. Krishnamachari (427) de<br />

scribes in pellagrins in India a hypercupremia<br />

uniquely due to increase in nonceruloplasmin<br />

<strong>copper</strong> <strong>and</strong> associated with<br />

wide variation in urinary <strong>copper</strong> excretion,<br />

both <strong>of</strong> which return to normal levels after<br />

oral administrations <strong>of</strong> nicotinic acid. On<br />

the basis <strong>of</strong> evidence that the high leucine<br />

content <strong>of</strong> the millet Sorghum vulgäre,a<br />

staple food <strong>of</strong> populations in India, is<br />

causally related to pellagra, healthy adult<br />

volunteers were given 5-g L-leucine for 6<br />

consecutive days. They showed compar<br />

able degrees <strong>of</strong> hypercupremia <strong>and</strong> urinary<br />

loss both <strong>of</strong> which disappeared after leu-<br />

cine withdrawal. This investigator sug<br />

gests that leucine enhances the absorption<br />

<strong>of</strong> dietary <strong>copper</strong> in normal subjects. From<br />

the same area <strong>of</strong> India is the report <strong>of</strong><br />

Deosthale <strong>and</strong> Gopalan (164) that certain<br />

varieties <strong>of</strong> sorghum also greatly increase<br />

serum <strong>copper</strong> levels <strong>and</strong> urinary <strong>copper</strong><br />

excretion, attributable to the high molyb<br />

denum content <strong>of</strong> the sorghum samples.<br />

Unfortunately, serum levels <strong>of</strong> direct react<br />

ing <strong>copper</strong> <strong>and</strong> ceruloplasmin were not<br />

determined. Hence, there is need for more<br />

critical study <strong>of</strong> the possible role <strong>of</strong> leucine<br />

<strong>and</strong>, or molybdenum excesses in producing<br />

the hypercupremia <strong>and</strong> hypercupriuria de<br />

scribed in pellagrins, <strong>and</strong> for confirmation<br />

that the hypercupremia is due primarily<br />

to increased nonceruloplasmin <strong>copper</strong>.<br />

Bantu pellagrins in South Africa are said<br />

to manifest a hypercupremia which is re<br />

duced rapidly after an intramuscular in<br />

jection <strong>of</strong> pantothenic acid, but not after<br />

oral nicotinamide (210). The latter obser<br />

vations carried out 20 years ago, seem not<br />

to have been denied or confirmed.<br />

Skin disorders. Elevated serum <strong>copper</strong><br />

levels occur in psoriasis (400, 430, 531,<br />

751, 859, 872, 875) but not in other derma<br />

toses (872). Although these levels have<br />

been generally attributed to increased<br />

ceruloplasmin, as a reaction to disturbed<br />

keratinization (751, 876), several reports<br />

state that ceruloplasmin levels are normal<br />

(400, 438) unless associated with condi<br />

tions <strong>of</strong> arthritis (423). The tissue <strong>copper</strong><br />

levels <strong>of</strong> psoriatic lesions are no different<br />

from those <strong>of</strong> uninvolved skin, although<br />

zinc levels are increased (529, 531). After<br />

beneficial response to heliotherapy or<br />

thalassotherapy most patients show clini<br />

cal improvement, with return <strong>of</strong> serum<br />

<strong>copper</strong> ceruloplasmin levels toward nor<br />

mal (875). The mechanisms involved are<br />

unknown. With regard to vitíligo,informa<br />

tion is both limited <strong>and</strong> contradictory.<br />

This disorder is said to be characterized<br />

by hypercupremia, which is reduced in<br />

subjects responding favorably to helio<br />

therapy (247, 876), whereas others find<br />

that in about 39% <strong>of</strong> subjects both albu<br />

min-bound <strong>and</strong> ceruloplasmin serum cop<br />

per levels are below the normal range<br />

(372). Again the question <strong>of</strong> methodology<br />

arises.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2020 KARL E. MASON<br />

The states <strong>of</strong> hypercupremia to which<br />

reference has been made clearly indicate<br />

the remarkable homeostatic mechanism in<br />

<strong>copper</strong> <strong>metabolism</strong>. These involve to a<br />

large degree the increased synthesis <strong>of</strong><br />

ceruloplasmin in response to a variety <strong>of</strong><br />

body stresses, including hormonal influ<br />

ences (44). Also, in body states involving<br />

inflammatory reactions, ceruloplasmin may<br />

function in the role <strong>of</strong> an "acute phase<br />

reactant" (48, 636, 637).<br />

COPPER TOXICITY<br />

Hemochromatosis. There is a long history<br />

<strong>of</strong> acute <strong>and</strong> chronic toxicity <strong>of</strong> <strong>copper</strong> in<br />

man. Some <strong>of</strong> this was recorded in 1891 by<br />

Lehmann (448) who was one <strong>of</strong> the earli<br />

est investigators to test the effects <strong>of</strong> vari<br />

ous <strong>copper</strong> salts on experimental animals.<br />

He also states that two <strong>of</strong> his students<br />

showed no ill effects <strong>of</strong> additions <strong>of</strong> up to<br />

10 to 20 mg <strong>of</strong> <strong>copper</strong> sulfate <strong>and</strong> up to<br />

5 to 30 mg <strong>of</strong> <strong>copper</strong> acetate to their daily<br />

beer. This is somewhat greater than a<br />

current estimated toxic level <strong>of</strong> 10 to 15<br />

mg <strong>of</strong> inorganic <strong>copper</strong> for adult man<br />

(75, 865). In 1898, Baum <strong>and</strong> Seeliger<br />

(35) described extensive deposition <strong>of</strong><br />

blood pigments, then designated hematoidin<br />

<strong>and</strong> hemosiderin, in the liver cells<br />

<strong>of</strong> the goat, sheep, dog <strong>and</strong> cat fed <strong>copper</strong><br />

salts. These observations were more ex<br />

tensively explored by Mallory et al. (480-<br />

484) who reported that chronic oral intake<br />

<strong>of</strong> <strong>copper</strong> acetate in the rabbit, sheep <strong>and</strong><br />

monkey produces a condition comparable<br />

to hepatic hemosiderosis in man.<br />

Mallory (481) described in detail the<br />

hepatic changes characteristic <strong>of</strong> human<br />

hemochromatosis (pigment cirrhosis) based<br />

upon 19 necropsies, presenting circum<br />

stantial evidence <strong>of</strong> <strong>copper</strong> toxicity as<br />

basically involved. These interpretations<br />

were supported by other pathologists re<br />

porting liver <strong>copper</strong> levels up to 10-fold<br />

normal in a large series <strong>of</strong> cases <strong>of</strong> hemo<br />

chromatosis (295, 327, 586). Yet Mills<br />

(522) found no evidence <strong>of</strong> hemochroma<br />

tosis in 100 necropsies <strong>of</strong> Korean people<br />

using <strong>copper</strong> <strong>and</strong> brass utensils routinely<br />

in daily life. Although the animal studies<br />

<strong>of</strong> Mallory <strong>and</strong> coworkers (480, 482, 484)<br />

on which their hypothesis <strong>of</strong> the cause <strong>of</strong><br />

hemochromatosis was based were also con<br />

firmed by certain investigators (295, 519),<br />

others attempted in vain to duplicate their<br />

results (218, 587, 607). Differences in sus<br />

ceptibility <strong>and</strong> in levels <strong>and</strong> duration <strong>of</strong><br />

exposure to <strong>copper</strong> salts were proposed<br />

(482) to explain the discrepancies in the<br />

experimental findings.<br />

Copper poisoning in man The oral in<br />

gestion <strong>of</strong> excess <strong>copper</strong> produces a metal<br />

lic taste in the mouth, nausea, vomiting,<br />

epigastric pain, diarrhea <strong>and</strong>, to variable<br />

degrees, jaundice, hemolysis, hemaglobinuria,<br />

hematuria <strong>and</strong> oliguria. The vomitus,<br />

stool <strong>and</strong> saliva may appear blue or green.<br />

In severe cases, anuria, hypotension <strong>and</strong><br />

coma occur. The ingested <strong>copper</strong> is<br />

promptly absorbed from the upper gut <strong>and</strong><br />

rapidly <strong>and</strong> dramatically increases the level<br />

<strong>of</strong> direct reacting <strong>copper</strong> in the blood, due<br />

in large part to its accumulation in the red<br />

blood cells. When this accumulation<br />

reaches a certain level, hemolysis occurs,<br />

whether it be the result <strong>of</strong> oral ingestion<br />

(120, 203, 641), absorption through de<br />

nuded skin (353), dialysis procedures (51,<br />

52, 376, 487) or exchange transfusions<br />

(50). This hemolysis is comparable to that<br />

commonly seen in Wilson's disease, which<br />

is attributed to a sudden release <strong>of</strong> <strong>copper</strong><br />

into the blood stream from a liver dam<br />

aged by an increasing load <strong>of</strong> <strong>copper</strong> un<br />

able to be utilized in ceruloplasmin syn<br />

thesis or excreted via the biliary system<br />

(97, 155, 508, 516). This hemolysis may<br />

reflect, to variable degrees, inhibition <strong>of</strong><br />

erythrocyte glycolysis <strong>and</strong> <strong>of</strong> glucose-6phosphate<br />

dehydrogenase, oxidation <strong>of</strong> glutathione<br />

<strong>and</strong> denaturation <strong>of</strong> hemoglobin<br />

with Heinz body formation (203). A<br />

variety <strong>of</strong> other factors may be involved<br />

(588). Manifestations <strong>of</strong> slow <strong>copper</strong><br />

poisoning <strong>of</strong> a non-fatal type as seen in<br />

<strong>copper</strong> <strong>and</strong> brass workers are well de<br />

scribed by Chatterji <strong>and</strong> Ganguly (111).<br />

There are symptoms <strong>of</strong> laryngitis, bron<br />

chitis, intestinal colic with catarrh <strong>and</strong><br />

diarrhea, general emaciation <strong>and</strong> anemia.<br />

Since much <strong>of</strong> the information on cop<br />

per toxicity comes from instances <strong>of</strong> acci<br />

dental or intentional intake (mostly sui<br />

cide), data concerning oral intake neces<br />

sary to produce symptoms <strong>of</strong> toxicity are<br />

decidedly meager. Ingestion <strong>of</strong> 10 to 15<br />

mg <strong>of</strong> inorganic <strong>copper</strong> will cause nausea,<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2021<br />

vomiting <strong>and</strong> diarrhea <strong>and</strong>, in larger doses,<br />

intravascular hemolysis (75, 865). It has<br />

also been stated ( 685 ) that in India, where<br />

<strong>copper</strong> sulfate is a frequent mechanism for<br />

suicide, such symptoms are seen when<br />

about 10 mg <strong>of</strong> cupric ion are ingested.<br />

Yet, Roberts (641), in reviewing cases <strong>of</strong><br />

<strong>copper</strong> sulfate poisoning admitted to a<br />

large city hospital over 7 years, describes<br />

one individual who knowingly consumed<br />

an estimated 20 g <strong>of</strong> <strong>copper</strong> sulfate two<br />

to three times weekly over a period <strong>of</strong> 4<br />

months (total <strong>of</strong> about 600 g <strong>of</strong> the crys<br />

tals, or about 1.25 g <strong>of</strong> anionic <strong>copper</strong> per<br />

day). Aside from the usual symptoms <strong>of</strong><br />

toxicity, there was an associated hemolytic<br />

anemia, possibly the earliest recorded as<br />

due to <strong>copper</strong> toxicity. There was reason<br />

ably rapid recovery under conventional<br />

procedures <strong>of</strong> that period. Two possible<br />

explanations for this unusually high degree<br />

<strong>of</strong> tolerance to <strong>copper</strong> are that the subject<br />

greatly overestimated his previous intake<br />

<strong>of</strong> <strong>copper</strong> sulfate or that he had adapted<br />

to a high <strong>copper</strong> intake similar to that oc<br />

curring in pigs (767 ).<br />

There are numerous reports <strong>of</strong> accidental<br />

<strong>and</strong> suicidal poisoning from oral intake <strong>of</strong><br />

<strong>copper</strong> sulfate in India (111, 118, 120, 288,<br />

813). In one hospital in India, <strong>of</strong> all cases<br />

<strong>of</strong> accidental poisoning admitted, <strong>copper</strong><br />

sulfate poisoning represented 33.6% <strong>of</strong> 238<br />

admissions in 1961 (120) <strong>and</strong> 26.5% <strong>of</strong><br />

admissions in a 9-month period during<br />

1969-1970 (112). In cases <strong>of</strong> acute <strong>copper</strong><br />

poisoning, analyses <strong>of</strong> urine <strong>and</strong> feces for<br />

<strong>copper</strong> give exceedingly high values (111).<br />

Under more normal circumstances <strong>of</strong><br />

daily living, varied degrees <strong>of</strong> <strong>copper</strong> tox<br />

icity have been recorded, as for example:<br />

1) in young infants presumably exposed<br />

via drinking water <strong>and</strong> cooked foods, to<br />

water derived from all-<strong>copper</strong> storage <strong>and</strong><br />

conduit systems (662, 816); 2) in children<br />

given tablets containing sulfates <strong>of</strong> <strong>copper</strong>,<br />

iron <strong>and</strong> manganese (220) or accidentally<br />

consuming a solution <strong>of</strong> <strong>copper</strong> sulfate<br />

(819); 3) in workers imbibing tea made<br />

from water contaminated by corroded<br />

geysers (557, 701); 4) in consumers <strong>of</strong><br />

carbonated beverages from post-mix type<br />

<strong>of</strong> vending machines with defective valves<br />

(356, 450), or from bottles with corroded<br />

pouring spouts (512); 5) in consumers <strong>of</strong><br />

alcoholic beverages left in <strong>copper</strong>-lined<br />

containers (865) or brewed at home in<br />

metal containers (633); 6) in children<br />

given <strong>copper</strong> sulfate as an emetic (355 ) ;<br />

<strong>and</strong> 7) in subjects after exchange trans<br />

fusions (50) <strong>and</strong> hemodialyses (51, 52,<br />

376, 471, 472, 487, 497), due to <strong>copper</strong><br />

present in tap-water used, or to <strong>copper</strong>containing<br />

valves <strong>and</strong> stopcocks used, in<br />

the conduits. Copper can cross dialyzing<br />

membranes, even against a concentration<br />

gradient, <strong>and</strong> rather small traces <strong>of</strong> <strong>copper</strong><br />

introduced intraveneously are highly toxic.<br />

Frequently, the result is hemolytic anemia.<br />

Hemodialysis has proved to be ineffective<br />

in treating acute <strong>copper</strong> poisoning, but<br />

this may have been due to a delay <strong>of</strong> 13<br />

hours in instituting treatment (10). Bremner<br />

(60) reviews the toxicity <strong>of</strong> <strong>copper</strong><br />

<strong>and</strong> other heavy metals <strong>and</strong> Cohen (121)<br />

discusses health hazards from industrial<br />

exposure to <strong>copper</strong>.<br />

At times it may be difficult in young<br />

infants to determine whether a state <strong>of</strong><br />

toxicosis is attributable to an early phase<br />

<strong>of</strong> Wilson's disease or to high levels <strong>of</strong><br />

<strong>copper</strong> in the family drinking water from<br />

<strong>copper</strong> pipes (816). Ever since the devel<br />

opment <strong>of</strong> metal conduits for potable<br />

water, man has been exposed to possibili<br />

ties <strong>of</strong> zinc poisoning from galvanized<br />

pipes, <strong>and</strong> <strong>of</strong> <strong>copper</strong> poisoning from <strong>copper</strong><br />

conduits <strong>and</strong> storage tanks. In certain city<br />

water supplies, <strong>copper</strong> salts are added to<br />

maintain a concentration <strong>of</strong> about 0.06<br />

ppm to restrict the growth <strong>of</strong> algae in the<br />

reservoirs (550). It is also recognized that<br />

s<strong>of</strong>t waters tend to leach <strong>copper</strong> conduits<br />

more than do hard waters. An impressive<br />

analysis <strong>of</strong> complexities involved in engi<br />

neering design <strong>of</strong> <strong>copper</strong> conduit systems<br />

to reduce the corrosion process itself, <strong>and</strong><br />

to minimize the retention time <strong>of</strong> water in<br />

small-bore tubes, has been presented by<br />

Page (591). Nevertheless, these problems<br />

are more or less controlled by cosmetic<br />

considerations, since water with high cop<br />

per content develops a surface scum due<br />

to formation <strong>of</strong> insoluble <strong>copper</strong> com<br />

pounds. It is generally accepted that a<br />

limit <strong>of</strong> 1 ppm <strong>of</strong> <strong>copper</strong> in supplies <strong>of</strong><br />

drinking water is safe <strong>and</strong> acceptable.<br />

Copper represents one <strong>of</strong> the earliest<br />

additives for enhancement <strong>of</strong> the appeal <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2022 KARL E. MASON<br />

foods such as green peas, beans <strong>and</strong><br />

pickles. The early studies <strong>of</strong> Drummond<br />

(171) failed to demonstrate in experimen<br />

tal animals (dogs, cats) any deleterious<br />

effects from consumption <strong>of</strong> such "greened"<br />

vegetables. It is now generally accepted<br />

that in the processes <strong>of</strong> cooking, canning<br />

<strong>and</strong> storage <strong>of</strong> foods <strong>and</strong> beverages any<br />

increment in <strong>copper</strong> content is largely re<br />

lated to contact with <strong>copper</strong> in the vessels<br />

<strong>and</strong> conduits utilized. In present day<br />

societies hazards are reduced to a mini<br />

mum. These <strong>and</strong> other aspects <strong>of</strong> <strong>copper</strong><br />

toxicity are well reviewed by Lieh (459).<br />

INTERRELATIONSHIPS BETWEEN COPPER<br />

AND OTHER TRACE ELEMENTS<br />

Studies on laboratory <strong>and</strong> farm animals<br />

have revealed numerous interrelationships<br />

between <strong>copper</strong> <strong>and</strong> other trace elements<br />

<strong>and</strong> substances (notably iron, zinc, molyb<br />

denum, cadmium <strong>and</strong> ascorbic acid) in<br />

mammalian <strong>metabolism</strong> ( 332, 333 ). On the<br />

basis <strong>of</strong> some <strong>of</strong> these reactions, Hill <strong>and</strong><br />

Matrone (332) advanced the thesis that<br />

"those elements whose physical <strong>and</strong> chemi<br />

cal properties are similar will act antago<br />

nistically to each other biologically." This<br />

concept has since been well substantiated.<br />

Davies ( 149, 150) classifies interactions<br />

between trace elements as non-competitive,<br />

<strong>and</strong> multi-element reactions. The noncompetitive<br />

type is exemplified by the re<br />

quirement <strong>of</strong> dietary <strong>copper</strong> for mobiliza<br />

tion <strong>of</strong> iron for hemoglobin synthesis, as dis<br />

cussed earlier (pp. 1985-1986), <strong>and</strong> by inter<br />

actions between molybdenum, sulfur <strong>and</strong><br />

<strong>copper</strong> in ruminants as recently reviewed<br />

by Suttle (766) <strong>and</strong> Pitt (603). Inter<br />

actions <strong>of</strong> this type are not predictable<br />

from a knowledge <strong>of</strong> the chemistry <strong>of</strong> the<br />

elements in question, as are those <strong>of</strong> the<br />

competitive type. The latter type is evident<br />

in the mutually antagonistic effects <strong>of</strong> cop<br />

per <strong>and</strong> zinc, such as the protective effect<br />

<strong>of</strong> <strong>copper</strong> in reducing toxicity resulting<br />

from high dietary intakes <strong>of</strong> zinc in chicks<br />

(332); <strong>and</strong> the effect <strong>of</strong> increased dietary<br />

intake <strong>of</strong> zinc in increasing the tolerance<br />

<strong>of</strong> pigs to excess intake <strong>of</strong> <strong>copper</strong> (767,<br />

768). The multi-element type <strong>of</strong> inter<br />

action is seen in studies with chicks where<br />

dietary zinc induces or exacerbates a con<br />

ditioned deficiency <strong>of</strong> <strong>copper</strong> which in<br />

turn restricts the utilization <strong>of</strong> iron (332).<br />

Speaking in general terms, in non-rumi<br />

nants interactions <strong>of</strong> <strong>copper</strong> with iron <strong>and</strong><br />

zinc are <strong>of</strong> particular significance whereas<br />

in ruminants interactions <strong>of</strong> <strong>copper</strong> with<br />

molybdenum in the presence <strong>of</strong> sulfur take<br />

precedence, especially in terms <strong>of</strong> practical<br />

considerations in animal husb<strong>and</strong>ry. Molyb<br />

denum toxicity, long recognized in grazing<br />

cattle in many parts <strong>of</strong> the world, causes<br />

biochemical <strong>and</strong> pathological changes<br />

closely resembling those <strong>of</strong> <strong>copper</strong> defi<br />

ciency, as well recognized in the pioneer<br />

studies <strong>of</strong> Davis (150). They are readily<br />

prevented or cured by <strong>copper</strong> sulfate.<br />

Compared to cattle, sheep are less suscept<br />

ible to high dietary intakes <strong>of</strong> molybdenum<br />

<strong>and</strong> more susceptible to low intake <strong>of</strong><br />

molybdenum, which can lead to chronic<br />

<strong>copper</strong> poisoning (798). Species reactions<br />

vary greatly (603).<br />

Non-ruminants are much more tolerant<br />

<strong>of</strong> excess molybdenum <strong>and</strong> <strong>of</strong> high <strong>copper</strong><br />

intake than are ruminants. Moreover, ef<br />

fects <strong>of</strong> high dietary <strong>copper</strong> can be accen<br />

tuated by low levels <strong>of</strong> zinc <strong>and</strong> iron, <strong>and</strong><br />

low <strong>copper</strong> intake by ascorbic acid which<br />

is thought to interfere with the absorption<br />

<strong>of</strong> <strong>copper</strong>. An interesting difference is that<br />

in ruminants dietary sulfur potentiates a<br />

<strong>copper</strong>-molybdenum antagonism such that<br />

tissue <strong>copper</strong> levels are decreased, whereas<br />

in non-ruminants sulfur alleviates this an<br />

tagonism. Moreover, the capacities <strong>of</strong> di<br />

etary sulfur to accentuate or ameliorate the<br />

toxic effects <strong>of</strong> molybdenum vary with the<br />

<strong>copper</strong> status <strong>of</strong> the animal. Among the<br />

proposals <strong>of</strong>fered to explain the basic<br />

mechanisms involved have been: 1) for<br />

mation in the rumen <strong>of</strong> unabsorbable com<br />

plexes such as thiomolybdate, cupric sulfide<br />

or cupric molybdate; 2) interference<br />

<strong>of</strong> liver uptake <strong>of</strong> <strong>copper</strong> by molybdenum<br />

<strong>and</strong> sulfur; <strong>and</strong> 3) formation <strong>of</strong> stable<br />

complexes <strong>of</strong> <strong>copper</strong> <strong>and</strong> molybdenum in<br />

the plasma. Obviously, much remains to be<br />

clarified.<br />

Copper is quite routinely incorporated<br />

in mineral mixtures added to commercial<br />

livestock feeds to increase rate <strong>of</strong> weight<br />

gain <strong>and</strong> food efficiency <strong>and</strong> is recognized<br />

as a safe ingredient (up to a level <strong>of</strong> 15<br />

ppm), but regulations prohibit molyb<br />

denum additions. Under conditions in<br />

which both forage <strong>and</strong> feeds are naturally<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2023<br />

low in molybdenum, states <strong>of</strong> <strong>copper</strong><br />

toxicity, <strong>of</strong>ten fatal, have occurred in<br />

flocks <strong>of</strong> sheep (798). This practice <strong>of</strong> add<br />

ing excess <strong>copper</strong> without molybdenum to<br />

livestock <strong>and</strong> poultry feeds represents a<br />

potential hazard to the consuming public,<br />

especially to the young infant consuming<br />

baby foods made from liver (71). The<br />

practical as well as the purely scientific<br />

aspects <strong>of</strong> trace element interactions, com<br />

plex as they may be, fully justify some<br />

consideration. For further information on<br />

the complex interrelationships between<br />

molybdenum, sulfate <strong>and</strong> <strong>copper</strong>, the<br />

reader is referred to a number <strong>of</strong> reviews<br />

on the subject (71, 110, 140, 165, 493, 517,<br />

603, 766, 798) <strong>and</strong> to a series <strong>of</strong> recent<br />

research reports (110).<br />

In man, there is but fragmentary evi<br />

dence <strong>of</strong> significant interrelationships <strong>of</strong><br />

<strong>copper</strong> <strong>and</strong> molybdenum, <strong>and</strong> <strong>of</strong> a role <strong>of</strong><br />

molybdenum in human nutrition. By virtue<br />

<strong>of</strong> molybdenum being a component <strong>of</strong><br />

xanthine oxidase, it may participate in the<br />

reduction <strong>of</strong> cellular ferric to ferrous fer<br />

ritin such that high <strong>copper</strong>-molybdenum<br />

ratio may contribute to abnormalities <strong>of</strong><br />

iron <strong>metabolism</strong> <strong>and</strong> utilization (698, 699).<br />

It is postulated that high <strong>copper</strong>-molyb<br />

denum ratios in the American diet may<br />

contribute to iron-deficiency anemias <strong>and</strong><br />

may also have influence upon metabolic<br />

abnormalities <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> such<br />

as seen in Wilson's disease (699). From<br />

India come several interesting reports<br />

dealing with high molybdenum-<strong>copper</strong><br />

ratios. Volunteers fed diets containing<br />

sorghum with increasing content <strong>of</strong> molyb<br />

denum showed increasing levels <strong>of</strong> urinary<br />

<strong>copper</strong> excretion, which appeared to reflect<br />

mobilization <strong>of</strong> <strong>copper</strong> from body stores<br />

(164). In regions where creation <strong>of</strong> large<br />

dams brings about marked changes in trace<br />

element balance in the soil, food grains <strong>and</strong><br />

drinking water tend to acquire a high<br />

molybdenum-<strong>copper</strong> ratio as molybdenum<br />

is leached out by alkaline conditions <strong>and</strong><br />

the ratio possibly increased further by<br />

high fluoride content <strong>of</strong> soils. As a result<br />

the poorest groups <strong>of</strong> the population whose<br />

staple food is sorghum, which accumulates<br />

more molybdenum than rice or wheat, be<br />

come victims <strong>of</strong> genu valgum <strong>and</strong> osteo<br />

porosis <strong>of</strong> the long bones (9, 428). Genu<br />

valgum, previously considered the result <strong>of</strong><br />

fluoride toxicosis, now appears to represent<br />

either a state <strong>of</strong> molybdenosis or one <strong>of</strong><br />

<strong>copper</strong> deficiency induced by excess mo<br />

lybdenum, or a modification <strong>of</strong> either by<br />

high fluoride intake. In experimental <strong>and</strong><br />

farm animals there are characteristic dif<br />

ferences in osseous lesions in these two<br />

conditions, as well described by Asling <strong>and</strong><br />

Hurley (26). In the studies discussed<br />

above no reference is made to the status<br />

<strong>of</strong> farm animals in the same localities, or<br />

to any plan to test effects <strong>of</strong> the sorghum<br />

versus other diets upon experimental ani<br />

mals. Returning to the capacity <strong>of</strong> molyb<br />

denum to reduce tissue <strong>copper</strong> levels <strong>and</strong><br />

to increase urinary excretion <strong>of</strong> <strong>copper</strong>,<br />

Suttle (766) has questioned whether or<br />

not molybdenum might have therapeutic<br />

value in the treatment <strong>of</strong> Wilson's disease,<br />

apparently unaware <strong>of</strong> one report (74) <strong>of</strong><br />

its ineffectiveness in four cases <strong>of</strong> the dis<br />

ease treated for 4 to 11 months.<br />

In the case <strong>of</strong> trace elements occurring<br />

mainly in ionic form, such as molybdenum,<br />

selenium <strong>and</strong> iodine, deficiencies <strong>and</strong> ex<br />

cesses are readily reflected in components<br />

<strong>of</strong> the food chain <strong>and</strong> in not only grazing<br />

animals but also in man himself (515). An<br />

interesting example <strong>of</strong> this <strong>and</strong> <strong>of</strong> <strong>copper</strong>molybdenum<br />

interactions may be cited. In<br />

mountainous areas <strong>of</strong> Russia where the<br />

soil is notoriously high in molybdenum, a<br />

high incidence <strong>of</strong> molybdenum toxicity,<br />

characterized not by genu valgum but by<br />

increased blood xanthine oxidase <strong>and</strong> uric<br />

acid, <strong>and</strong> urinary uric acid, leading to<br />

symptoms <strong>of</strong> gout, was observed in the<br />

population <strong>of</strong> one province but not in that<br />

<strong>of</strong> another where molybdenum intake was<br />

equally high; the difference was ascribed<br />

to significantly higher blood <strong>copper</strong> <strong>and</strong><br />

resultant lower blood molybdenum levels<br />

in the non-affected population (424, 425).<br />

Data pertaining to these studies are sum<br />

marized by Mertz (515). The explanation<br />

proposed is in accord with extensive knowl<br />

edge <strong>of</strong> such interactions in experimental<br />

<strong>and</strong> farm animals.<br />

Interactions between <strong>copper</strong> <strong>and</strong> zinc<br />

have long been recognized in animals <strong>and</strong><br />

man. Excess <strong>of</strong> one is <strong>of</strong>ten associated with<br />

diminution <strong>of</strong> the other in body fluids <strong>and</strong><br />

liver. Competition for binding sites on<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2024 KARL E. MASON<br />

metallothionein or metallothionein-like<br />

proteins, complex as these interactions ap<br />

pear to be (518), provides the best ex<br />

planation. These proteins are present in<br />

the liver, kidney, intestinal mucosa, pan<br />

creas <strong>and</strong> spleen. They play an important<br />

role in <strong>copper</strong> homeostasis. In man, these<br />

reciprocal interactions are less apparent<br />

than in animals where the intake <strong>and</strong> im<br />

balance <strong>of</strong> the elements can be more spe<br />

cifically controlled. However, a striking<br />

example is the reported occurrence <strong>of</strong> typi<br />

cal <strong>copper</strong> deficiency, with microcytic hypochromic<br />

anemia <strong>and</strong> leukopenia, in one<br />

patient, <strong>and</strong> very low levels <strong>of</strong> serum cop<br />

per in 7 <strong>of</strong> 13 others, receiving unusually<br />

high levels <strong>of</strong> zinc for the treatment <strong>of</strong><br />

sickle cell anemia (64). All responded<br />

favorably to daily supplements <strong>of</strong> <strong>copper</strong>.<br />

The question <strong>of</strong> the dietary ratio <strong>of</strong> zinc<br />

to <strong>copper</strong> has been given considerable at<br />

tention by Kelvay (416-418, 420) in sup<br />

port <strong>of</strong> a hypothesis that high zinc to cop<br />

per ratio <strong>and</strong> the associated hypercholesteremia<br />

increase the risk <strong>of</strong> ischemie heart<br />

disease, <strong>and</strong> may also play an important<br />

role in the genesis <strong>of</strong> arteriosclerosis. This<br />

hypothesis has received limited support<br />

(81, 82). Of some relevance are recent ob<br />

servations that myocardial lesions associ<br />

ated with hypercholesteremia occur in rats<br />

fed a <strong>copper</strong>-deficient diet for 7 to 9 weeks<br />

after weaning (16). Cardiac hypertrophy,<br />

subendocardial hemorrhage, necrosis <strong>of</strong><br />

muscle fibers, abnormalities <strong>of</strong> elastic tis<br />

sue <strong>of</strong> the aorta but not <strong>of</strong> the coronary<br />

arteries, <strong>and</strong> occasional heart rupture are<br />

described. In other studies with <strong>copper</strong>deficient<br />

rats similar lesions have been ob<br />

served <strong>and</strong> ascribed to a marked reduction<br />

in cytochrome c oxidase activity (3, 401).<br />

With repletion <strong>of</strong> <strong>copper</strong>, cytochrome c<br />

oxidase activity is normalized, after which<br />

cardiac hypertrophy <strong>and</strong> splenomegaly are<br />

greatly reduced (3). Unquestionably, in<br />

terest has been stimulated, but there is<br />

need for specific research on man directed<br />

toward the possible role <strong>of</strong> zinc/<strong>copper</strong><br />

ratios <strong>and</strong> cholesterol status in ischemie<br />

heart disease.<br />

HUMAN REQUIREMENTS<br />

In discussing <strong>requirements</strong> <strong>of</strong> any nu<br />

trient, a variety <strong>of</strong> terms are in common<br />

usage, such as "basic," "minimal" <strong>and</strong><br />

"optimal" <strong>requirements</strong>; <strong>and</strong> "recom<br />

mended" allowances. An excellent discus<br />

sion <strong>and</strong> definition <strong>of</strong> these terms has been<br />

presented by Mertz (514). According to<br />

his interpretation, the "basic" requirement<br />

for a trace element represents that daily<br />

intake permitting absorption <strong>of</strong> an amount<br />

just sufficient to prevent a state <strong>of</strong> de<br />

ficiency; whereas the "optimal" require<br />

ment represents that daily intake which<br />

will allow maintenance at a near-optimal<br />

level <strong>of</strong> all biological <strong>and</strong> physiological<br />

functions in which the element is involved,<br />

under the various stress conditions <strong>of</strong> life.<br />

The somewhat intermediate term "mini<br />

mal," traditionally used in balance studies,<br />

is defined as that daily intake which equals<br />

the daily excretory loss from the body.<br />

This term best fits the nature <strong>of</strong> the data<br />

on which estimates <strong>of</strong> human <strong>requirements</strong><br />

for <strong>copper</strong> are based. The term "optimal"<br />

is somewhat comparable to the term "rec<br />

ommended dietary allowance." According<br />

to Harper (307), the RDA represents esti<br />

mates <strong>of</strong> the amount <strong>of</strong> an essential nu<br />

trient which "each person in a healthy<br />

population must consume in order to pro<br />

vide reasonable assurance that physiologi<br />

cal needs will be met."<br />

In the case <strong>of</strong> <strong>copper</strong> <strong>requirements</strong>, the<br />

problem is not as simple as it might ap<br />

pear. Most difficult to evaluate are the<br />

reported differences in the <strong>copper</strong> content<br />

<strong>of</strong> foods, diets, body fluids <strong>and</strong> tissues<br />

attributable to the great variety <strong>of</strong> analyti<br />

cal methods employed over the past half<br />

century, <strong>and</strong> to possible contamination <strong>of</strong><br />

samples prior to or during analytical pro<br />

cedures. An excellent discussion <strong>and</strong> criti<br />

cal appraisal <strong>of</strong> methods in use up to 1965<br />

for the determination <strong>of</strong> <strong>copper</strong> <strong>and</strong> ceruloplasmin<br />

in biological materials is presented<br />

by Sass-Kortsak (666). The methods de<br />

scribed have been variably modified <strong>and</strong><br />

newer ones introduced. In some instances<br />

there is rather remarkable agreement be<br />

tween early <strong>and</strong> later reports. In other<br />

instances there appear differences which,<br />

on inspection, might reflect variable sensi<br />

tivity <strong>of</strong> the methods employed. Any ef<br />

fort to identify <strong>and</strong> evaluate methodolo<br />

gies used in particular studies would be<br />

rather futile.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2025<br />

What has been outlined in this con<br />

spectus, up to this point, has been an<br />

assessment <strong>of</strong> past <strong>and</strong> current knowledge<br />

regarding the role that <strong>copper</strong> may play in<br />

the <strong>metabolism</strong> <strong>of</strong> man, with occasional<br />

reference to ancillary information gained<br />

from observations on laboratory <strong>and</strong> farm<br />

animals. Attention has been called to the<br />

distribution <strong>of</strong> <strong>copper</strong> in the body; the<br />

vast array <strong>of</strong> cuproproteins <strong>and</strong> evidence<br />

as to their roles in maintaining functional<br />

<strong>and</strong> morphological integrity <strong>of</strong> specific tis<br />

sues <strong>and</strong> organs; the absorption, transport<br />

<strong>and</strong> excretion <strong>of</strong> <strong>copper</strong>; its omnipresence<br />

in foods; its important roles in prenatal<br />

<strong>and</strong> postnatal life, <strong>and</strong>; the nature <strong>of</strong> states<br />

induced by naturally occurring, experimen<br />

tally induced <strong>and</strong> congenitally determined<br />

<strong>copper</strong> deficiency. It is hoped that this<br />

digest <strong>of</strong> knowledge will provide an ade<br />

quate basis for considerations <strong>of</strong> the mini<br />

mal <strong>copper</strong> <strong>requirements</strong> <strong>of</strong> man.<br />

In considering human <strong>requirements</strong> for<br />

<strong>copper</strong> there are many factors whose in<br />

fluence is exceedingly difficult to evaluate<br />

because <strong>of</strong> limited knowledge available. A<br />

few examples may be cited. That portion <strong>of</strong><br />

dietary <strong>copper</strong> which is actually absorbed<br />

probably varies considerably, depending<br />

upon its chemical state in the foods con<br />

sumed <strong>and</strong> the influence <strong>of</strong> other dietary<br />

components. Best estimates indicate an<br />

absorption <strong>of</strong> 40 to 60% <strong>of</strong> the oral intake<br />

(p. 1991). In addition to the unabsorbed<br />

<strong>copper</strong> <strong>and</strong> biliary <strong>copper</strong> components <strong>of</strong><br />

the feces, inadequate consideration has<br />

been given to contributions provided by<br />

secretions <strong>of</strong> the salivary gl<strong>and</strong>s, gastric<br />

<strong>and</strong> intestinal mucosa <strong>and</strong> pancreas, <strong>and</strong><br />

by dehiscence <strong>of</strong> epithelial cells <strong>of</strong> intesti<br />

nal villi. At least, the extent <strong>of</strong> reabsorption<br />

<strong>of</strong> <strong>copper</strong> released via these various<br />

pathways has not been clearly determined.<br />

Despite frequent statements in the litera<br />

ture that some <strong>of</strong> the <strong>copper</strong> in bile may<br />

be reabsorbed, there exists other evidence<br />

that this <strong>copper</strong> is so firmly bound to pro<br />

teins that it is not reabsorbed by the gall<br />

bladder or intestinal mucosa in any signifi<br />

cant amounts (266).<br />

Balance studies are limited by the pre<br />

cision with which intake <strong>and</strong> output can<br />

be measured. For an element such as cop<br />

per which has a slow rate <strong>of</strong> turnover, a<br />

variable degree <strong>of</strong> intestinal absorption,<br />

strong homeostatic mechanisms <strong>and</strong> an<br />

almost exclusive output via the feces, in<br />

terpretations <strong>of</strong> balance studies becomes<br />

very difficult. The sporadic nature <strong>of</strong> defe<br />

cation <strong>and</strong> rather wide individual variation<br />

make balance studies <strong>of</strong> 7 to 14 days neces<br />

sary for obtaining valid data. Replacement<br />

<strong>of</strong> carmine by polyethylene glycol 4000, as<br />

a fecal marker, should shorten this time<br />

period (848).<br />

Biological availability is also an impor<br />

tant but largely unknown factor. Little is<br />

known about the chemical nature <strong>of</strong> cop<br />

per in foods, the extent to which it may<br />

react with chelating substances such as<br />

dietary fiber, or how its absorption may be<br />

influenced by the protein-binding poten<br />

tialities <strong>of</strong> other trace elements such as zinc<br />

<strong>and</strong> molybdenum. To these factors must<br />

be added the inflence <strong>of</strong> acute <strong>and</strong> chronic<br />

infections, use <strong>of</strong> antimicrobial agents, dys<br />

function <strong>of</strong> the gastrointestinal tract <strong>and</strong><br />

other stress states. Usually, in well con<br />

ducted <strong>copper</strong> balance studies on man,<br />

healthy subjects are selected <strong>and</strong> as many<br />

as possible <strong>of</strong> the above mentioned in<br />

fluences are eliminated. The discussion to<br />

follow will focus on accumulated evidence<br />

from balance studies <strong>and</strong> from experiences<br />

with total parenteral nutrition as to what<br />

may represent the minimal <strong>requirements</strong><br />

<strong>of</strong> man for <strong>copper</strong> during infancy, child<br />

hood <strong>and</strong> adulthood.<br />

Infants<br />

Specific <strong>requirements</strong> <strong>of</strong> healthy human<br />

infants for <strong>copper</strong> have been difficult to<br />

determine with any degree <strong>of</strong> accuracy.<br />

To provide a picture <strong>of</strong> the problem, it<br />

seems appropriate to review current infor<br />

mation with respect to: 1) milk as a source<br />

<strong>of</strong> <strong>copper</strong> for the premature <strong>and</strong> full-term<br />

infant; 2) <strong>copper</strong> balance studies on in<br />

fants; 3) naturally occurring states <strong>of</strong> cop<br />

per deficiency; <strong>and</strong> 4) studies on infants<br />

largely or totally dependent upon total<br />

parenteral nutrition (hyperalimentation )<br />

for extended periods <strong>of</strong> time.<br />

Milk as a source <strong>of</strong> <strong>copper</strong>. It has long<br />

been recognized that the <strong>copper</strong> content<br />

<strong>of</strong> human milk is two to three times higher<br />

than that <strong>of</strong> cow's milk, <strong>and</strong> that the con<br />

tent <strong>of</strong> human colostrum is two to three<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2026 KARL E. MASON<br />

times that <strong>of</strong> later milk (437, 449, 541,<br />

647, 877). Moreover, the somewhat lower<br />

ratio <strong>of</strong> zinc to <strong>copper</strong> (about 4:1) in<br />

human milk may significantly enhance cop<br />

per absorption in breast-fed infants (843).<br />

Cow's milk has a very low content <strong>of</strong><br />

<strong>copper</strong>. Values recorded by different in<br />

vestigators have varied widely, <strong>and</strong> their<br />

documentation would serve no useful pur<br />

pose. Suffice it to say that three <strong>of</strong> the<br />

more recent reports (546, 598, 843) give<br />

values within a range <strong>of</strong> 0.04 to 0.30 mg/<br />

liter. Difference in forage <strong>and</strong> in season <strong>of</strong><br />

the year are largely responsible for varia<br />

tions in values obtained. Special attention<br />

may be called to analyses <strong>of</strong> commercial<br />

milk samples from 65 cities throughout the<br />

USA giving a national mean <strong>of</strong> 0.086<br />

(range 0.04-0.19) mg/liter (547).<br />

The first serious study <strong>of</strong> the <strong>copper</strong><br />

content <strong>of</strong> human milk, by Zondek <strong>and</strong><br />

B<strong>and</strong>mann (877), indicated levels <strong>of</strong> 0.5 to<br />

0.6 mg/liter in 85 samples obtained during<br />

the first 2 months <strong>of</strong> lactation. Munch-<br />

Peterson (541), who carried out 74 analy<br />

ses <strong>of</strong> milk from 10 mothers during the<br />

first 8 days <strong>of</strong> lactation, recorded a mean<br />

content <strong>of</strong> 0.48 mg/liter. He also found<br />

that intravenous administration <strong>of</strong> a watersoluble<br />

compound containing 19% <strong>of</strong> cop<br />

per given to seven other mothers had no<br />

influence on the <strong>copper</strong> content <strong>of</strong> the<br />

milk, even though serum <strong>copper</strong> levels<br />

were greatly increased. This confirmed the<br />

early report <strong>of</strong> Elvehjem et al. (189) that<br />

a 5 to 10-fold increase in dietary intake <strong>of</strong><br />

<strong>copper</strong> had no demonstrable effect on its<br />

level in the milk <strong>of</strong> the cow or goat. This<br />

restriction in mammary transfer <strong>of</strong> <strong>copper</strong><br />

might reflect a homeostatic mechanism for<br />

protection <strong>of</strong> the neonate. Rottger (647)<br />

reported a mean value <strong>of</strong> 0.44 ( range 0.27-<br />

0.84) mg/liter for 15 samples <strong>of</strong> human<br />

milk during early phases <strong>of</strong> lactation.<br />

Munch-Peterson (541) <strong>and</strong> Rottger (647)<br />

independently estimated a daily intake <strong>of</strong><br />

about 0.25 mg/Cu by young infants. In<br />

comparison, other investigators have re<br />

ported higher values for early milk (107,<br />

437, 449) <strong>and</strong> others give values approxi<br />

mately one-half or less than those recorded<br />

above, for mature human milk not identi<br />

fied as early milk (275, 546, 598, 843). A<br />

striking decrease in <strong>copper</strong> content <strong>of</strong> milk<br />

at successive months <strong>of</strong> lactation (11.2,<br />

7.3, 5.4, 4.6 <strong>and</strong> 1.5 /¿g/100ml) is reported<br />

by Kleinbaum (410). Similar data are<br />

given by Hambidge (299).<br />

Noteworthy is the recent <strong>and</strong> extensive<br />

study <strong>of</strong> Picciano <strong>and</strong> Guthrie (598), based<br />

on analyses <strong>of</strong> 350 milk samples from 50<br />

lactating, healthy women (seven samples<br />

each). Copper content varied considerably<br />

among women <strong>and</strong> with the same woman.<br />

Several samples taken over periods <strong>of</strong> days<br />

or weeks were necessary to provide a re<br />

liable estimate <strong>of</strong> the <strong>copper</strong> content <strong>of</strong><br />

milk from any individual. Their mean value<br />

<strong>of</strong> 0.24 (range 0.09-0.63) mg/liter is essen<br />

tially the same as that reported by Murthy<br />

<strong>and</strong> Rhea (546); namely, about 0.24 ±<br />

0.03 mg/kg, on analyses <strong>of</strong> 22 milk sam<br />

ples from lactating women.<br />

Picciano <strong>and</strong> Guthrie (598) calculated<br />

that breastfed infants less than 3 months<br />

<strong>of</strong> age, with a body weight <strong>of</strong> 4 kg <strong>and</strong> a<br />

daily milk intake <strong>of</strong> 850 ml, would ingest<br />

approximately 0.2 mg/day ( or 0.05 mg/kg/<br />

day). These estimates are in good agree<br />

ment with the values <strong>of</strong> 0.25 mg/day <strong>of</strong><br />

Munch-Peterson (541) <strong>and</strong> Rottger (647),<br />

also based upon human milk. They are also<br />

slightly less than estimates <strong>of</strong> 0.05 to 0.10<br />

mg/kg/day based on balance studies with<br />

young children 3 to 6 years <strong>of</strong> age (142,<br />

695), the estimate <strong>of</strong> 0.08 mg/kg/day by<br />

Cartwright ( 100), <strong>and</strong> the statement <strong>of</strong> the<br />

Committee on Recommended Dietary Al<br />

lowances <strong>of</strong> the National Research Council<br />

(549) that "The <strong>requirements</strong> <strong>of</strong> infants<br />

<strong>and</strong> children have been estimated at be<br />

tween 0.05 <strong>and</strong> 0.1 mg/kg <strong>of</strong> body weight<br />

per day; an intake <strong>of</strong> 0.08 mg/kg/day ap<br />

pears to be adequate." The World Health<br />

Organization in its 1973 report (861)<br />

recommends 0.08 mg/kg per day for in<br />

fants <strong>and</strong> young children <strong>and</strong> 0.04 mg/kg<br />

per day for older children. It would seem<br />

that under normal circumstances the cop<br />

per provided by nature in human milk is,<br />

when supplemented by storage in the new<br />

born liver, a reasonably good measure <strong>of</strong><br />

optimal <strong>requirements</strong> during early life.<br />

The premature infant presents special<br />

problems. According to Widdowson et al.<br />

(843) about % <strong>of</strong> fetal <strong>copper</strong> is trans<br />

ferred during the last 10 to 12 weeks <strong>of</strong><br />

gestation. As a consequence, premature in-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2027<br />

fants <strong>of</strong> 28 to 30 weeks gestation, weighing<br />

about 1 kg, have much smaller reserves <strong>of</strong><br />

<strong>copper</strong> in the liver, spleen <strong>and</strong> other tissues<br />

to be called upon postnatally than do fullterm<br />

infants. Sultanova (761) has carried<br />

out <strong>copper</strong> analyses <strong>of</strong> livers <strong>and</strong> spleens<br />

from groups <strong>of</strong> premature infants with<br />

birth weights <strong>of</strong> 1.0 to 1.5, 1.5 to 2.0 <strong>and</strong><br />

2.0 to 2.5 kg, <strong>and</strong> term infants dying soon<br />

after birth. In successive groups there<br />

were definite increases in the <strong>copper</strong> levels<br />

per gram <strong>of</strong> tissue in both organs. Hence,<br />

the smaller the premature the lower the<br />

<strong>copper</strong> concentration in its tissues. As an<br />

other h<strong>and</strong>icap, the premature is usually<br />

obliged to subsist on an exclusive milk<br />

diet for much longer periods than the fullterm<br />

infant. Although in newborn prema<br />

tures <strong>copper</strong> deficiency is unknown, their<br />

status does place them in a more pre<br />

carious situation than full-term infants<br />

when states <strong>of</strong> malnutrition intervene. To<br />

compensate for this, Widdowson et al.<br />

(843) have suggested that premature in<br />

fants be provided a special milk formula<br />

which might assure a retention <strong>of</strong> at least<br />

0.085 mg <strong>of</strong> <strong>copper</strong> per day. Cordano<br />

( 124) feels that for prematures the recom<br />

mended 0.06 mg/100 kcal for infants (18)<br />

should be increased to 0.09 mg/100 kcal<br />

(i.e., 0.1 mg/kg/day). This is the current<br />

recommendation <strong>of</strong> the American Academy<br />

<strong>of</strong> Pediatrics ( 19) for low-birth-rate in<br />

fants.<br />

Balance studies. A pioneer balance study<br />

<strong>of</strong> <strong>copper</strong> in infancy, to which relatively<br />

little has since been added, is that <strong>of</strong><br />

Kleinbaum (409), who studied six breast<br />

fed full-term infants over the 13th to 23rd<br />

days <strong>of</strong> life. Birth weights averaged 3.4<br />

kg, but later weights are not given. Total<br />

<strong>copper</strong> intake <strong>and</strong> output for the 10-day<br />

period averaged 4.74 <strong>and</strong> 4.72 mg, respec<br />

tively. Three infants showed a negative<br />

<strong>and</strong> three a positive <strong>copper</strong> balance.<br />

Hence, these data might be interpreted as<br />

indicating that healthy full-term infants<br />

during the first month <strong>of</strong> life require an<br />

intake <strong>of</strong> approximately 0.5 mg/Cu/day to<br />

keep in positive balance. The 10-day bal<br />

ance study <strong>of</strong> Priev (619) on two infants<br />

8 <strong>and</strong> 3 months <strong>of</strong> age indicates require<br />

ments <strong>of</strong> 0.30 <strong>and</strong> 0.42 mg/day, respec<br />

tively. Similar 10-day balance studies <strong>of</strong><br />

Kleinbaum (409) on 31 premature infants<br />

initiated at ages <strong>of</strong> 2 to 82 days, <strong>and</strong> with<br />

average intakes <strong>of</strong> 0.28 mg reveal a slightly<br />

negative balance in all instances. Hence in<br />

the balance studies described there is<br />

reasonably good accord with a requirement<br />

<strong>of</strong> approximately 0.05 mg/kg/day for<br />

maintaining a positive <strong>copper</strong> balance in<br />

young infants <strong>of</strong> the six infants weighing<br />

in the range <strong>of</strong> 6 to 10 kg.<br />

States <strong>of</strong> <strong>copper</strong> deficiency. In studies<br />

with experimental animals, while the daily<br />

intake necessary to prevent development <strong>of</strong><br />

a deficiency <strong>of</strong> a nutrient provides the most<br />

reliable estimate <strong>of</strong> basic <strong>requirements</strong>, a<br />

determination <strong>of</strong> the smallest intake neces<br />

sary to effect cure <strong>of</strong> an early stage <strong>of</strong><br />

deficiency also provides the next best esti<br />

mate <strong>of</strong> minimal <strong>requirements</strong>. Such pro<br />

cedures are, for many reasons, not applica<br />

ble to man at any age. Even though an<br />

arbitrary level <strong>of</strong> therapy might prove to<br />

be marginal in effect, deficiencies or even<br />

excesses <strong>of</strong> other nutrients, together with<br />

malabsorption <strong>and</strong> diarrhea, are usually<br />

present <strong>and</strong> a simple deficiency state such<br />

as obtainable in experimental animals does<br />

not exist.<br />

Such a situation characterizes the pio<br />

neer studies <strong>of</strong> Cordano et al. ( 126) on<br />

four malnourished infants manifesting<br />

anemia, neutropenia, scurvy-like bone<br />

changes <strong>and</strong> hypocupremia. Rehabilitation<br />

on high caloric diets supplemented with<br />

iron, ascorbic acid, folie acid <strong>and</strong> other<br />

vitamins was incomplete without the addi<br />

tion <strong>of</strong> elemental <strong>copper</strong>. In fact, it was<br />

later recognized that the increased growth<br />

rate resulting from the improved diet<br />

greatly decreased the protective effect <strong>of</strong><br />

the low levels <strong>of</strong> <strong>copper</strong> provided by the<br />

milk diet (28-42 ,ug/kg body weight). On<br />

the basis <strong>of</strong> varied levels <strong>of</strong> <strong>copper</strong> supple<br />

mentation it was estimated that for rapidly<br />

growing infants 6 to 9 months <strong>of</strong> age, with<br />

inadequate stores <strong>of</strong> <strong>copper</strong> <strong>and</strong> main<br />

tained exclusively on milk diets, the daily<br />

requirement for <strong>copper</strong> was greater than<br />

0.042 mg but less than 0.135 mg/kg body<br />

weight. Since each <strong>of</strong> the children weighed<br />

approximately 10 kg at the beginning <strong>of</strong><br />

supplementation, these values are slightly<br />

higher than those derived from balance<br />

studies but approximate the estimated re-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2028 KARL E. MASON<br />

quirements <strong>of</strong> 0.077 to 0.11 mg/kg body<br />

weight for growing pigs (772). In later<br />

studies on 21 similar infants 4 to 19 months<br />

<strong>of</strong> age ( 128), daily supplements <strong>of</strong> greater<br />

than 0.15 mg/kg proved quite adequate<br />

to correct for neutropenia, considered to be<br />

the earliest manifestation <strong>and</strong> most sensi<br />

tive indicator <strong>of</strong> adequacy <strong>of</strong> treatment<br />

<strong>of</strong> <strong>copper</strong> deficiency in man. Subsequently,<br />

oral supplements <strong>of</strong> 2.5 mg/day were<br />

usually employed as a routine measure to<br />

assure much more than estimated require<br />

ments (276).<br />

On the basis <strong>of</strong> his personal experiences,<br />

Cordano (124, 125) recommends that<br />

manufactured formulas for premature in<br />

fants be supplemented with <strong>copper</strong> such<br />

as to provide 0.09 mg/100 kcal, rather than<br />

the 0.06 mg/100 kcal recommended by the<br />

Committee on Nutrition <strong>of</strong> the American<br />

Academy <strong>of</strong> Pediatrics (19) which, since<br />

then, has recognized this need. This pro<br />

vides approximately 0.1 mg/kg/day, <strong>and</strong><br />

is somewhat less than the supplement <strong>of</strong><br />

0.1 to 0.5 mg/day proposed by Ashkenazi<br />

et al. (25) for prematures subsisting on<br />

milk only. In such considerations there has<br />

been recognized a need to make provision<br />

for such commonplace factors as intestinal<br />

interactions between <strong>copper</strong> <strong>and</strong> iron in<br />

iron-fortified formulas (700), régurgita<br />

tion, prolonged diarrhea <strong>and</strong> infections. On<br />

the basis <strong>of</strong> the evidence presented, it<br />

seems that the daily requirement <strong>of</strong> cop<br />

per for young <strong>and</strong> reasonably healthy in<br />

fants may be met by daily intakes <strong>of</strong> 0.05<br />

to 0.1 mg/kg/day.<br />

Total parenteral nutrition. The develop<br />

ment <strong>of</strong> a procedure for providing "total<br />

Sarenteral nutrition" by means <strong>of</strong> an injsate<br />

<strong>of</strong> nutrients introduced via an in<br />

dwelling catheter inserted into a large cen<br />

tral vein by Dudrick et al. (176 )<strong>and</strong> Wilmore<br />

et al. (852, 853) ushered in a new<br />

era in therapeutic nutrition. Its original<br />

application in conjunction with surgical<br />

treatment <strong>of</strong> catastrophic gastrointestinal<br />

anomalies <strong>of</strong> infants has since been widely<br />

extended to the management <strong>of</strong> a variety<br />

<strong>of</strong> gastrointestinal disorders, burns, infec<br />

tions <strong>and</strong> other situations in which subjects<br />

are unable to meet nutritional needs by the<br />

oral route. By appropriate modifications,<br />

this procedure has been effectively ex<br />

tended from its hospital applications to<br />

the prolonged maintenance <strong>of</strong> subjects in<br />

the home environment (66, 304, 385, 441,<br />

711, 724). Total parenteral nutrition, espe<br />

cially when prolonged in infants <strong>and</strong><br />

adults, has provided much new <strong>and</strong> help<br />

ful information concerning <strong>copper</strong> require<br />

ments <strong>of</strong> man.<br />

However, problems arise in the interpre<br />

tation <strong>of</strong> the results. One must first assume<br />

that <strong>copper</strong> introduced parenterally sub<br />

stitutes for that portion <strong>of</strong> orally ingested<br />

<strong>copper</strong> absorbed by the intestinal tract <strong>and</strong><br />

transported to the liver <strong>and</strong> to the systemic<br />

vascular system. While, as discussed pre<br />

viously (p. 1991), it is generally accepted<br />

that roughly 40 to 60% <strong>of</strong> ingested <strong>copper</strong><br />

is absorbed, wide individual variations<br />

exist, due to differences in gastrointestinal<br />

functions, nature <strong>of</strong> the diet, derangements<br />

<strong>of</strong> <strong>metabolism</strong> <strong>and</strong> states <strong>of</strong> stress.<br />

It is noteworthy that in their classic<br />

studies with infants, Dudrick et al. (175,<br />

176) <strong>and</strong> Wilmore et al. (853) took care<br />

to provide in their parenteral fluids both<br />

vitamins <strong>and</strong> minerals. The latter included<br />

zinc, <strong>copper</strong>, manganese, cobalt <strong>and</strong> iodine.<br />

Copper was provided at a level <strong>of</strong> 0.22<br />

mg/kg body weight. This represents a<br />

rather generous supply when compared to<br />

estimated <strong>requirements</strong> <strong>of</strong> 0.05 to 0.10 mg/<br />

kg/day. In any case, failure to follow these<br />

guidelines resulted in occurrence <strong>of</strong> sev<br />

eral cases <strong>of</strong> <strong>copper</strong> deficiency in infants<br />

(25, 394, 463) <strong>and</strong> in adults (177, 808).<br />

Although traces <strong>of</strong> <strong>copper</strong> are present in<br />

fibrin <strong>and</strong> casein hydrolysates <strong>and</strong> in crys<br />

talline amino acid mixtures commonly used<br />

in parenteral solutions, direct analyses (57,<br />

317, 342, 590) demonstrate their variability<br />

<strong>and</strong> inadequacy to meet nutritional needs<br />

for <strong>copper</strong>. The proposed use <strong>of</strong> plasma<br />

transfusions given twice weekly (209 ) does<br />

not compensate for this (704). What is<br />

said <strong>of</strong> <strong>copper</strong> is also true <strong>of</strong> zinc (57, 342,<br />

590 ). Investigators now add trace elements<br />

to the basic hyperalimentation formulae<br />

(174, 214, 367, 382, 383, 709, 710, 712,<br />

724) providing <strong>copper</strong> in approximately<br />

the amount (0.22 mg/kg body weight)<br />

originally proposed by Wilmore et al.<br />

(853). Essentially the same supplement is<br />

recommended by Ricour et al. (639),<br />

Wretling (864) <strong>and</strong> by Karpel <strong>and</strong> Peden<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2029<br />

•-•-ig"S —<br />

S—<br />

•£I2co tì t-.<br />

o—<br />

Csaaili<br />

C's» CO<br />

Tf00<br />

osSi•§!$§§ri—<br />

- '<br />

CIo^*«aBilO•<<br />

J>HiI0011îX'Ss-<br />

p<strong>of</strong>eft-go<br />

"e0-S13<br />

*7LI"3!'S<br />

CU13S<br />

•3'So<br />

,K81<br />

-gë§x•f<br />

äM^Q<br />

o3§gS'£à 1<br />

feP<br />

£S !r<br />

|>o<br />

Ö-^<br />

t»0 •^<br />

1—4*aOi<br />

co<br />

»O IO<br />

•BT31<br />

1ÃŒli8l +<br />

MS W JaS^. o<br />

^.ctîctcoCi+Joc^<br />

C*tt<br />

^-^!><br />

oo1<br />

1—<br />

31<br />

1*<br />

SO i%r<br />

_;"o í»OO<br />

—Ì<br />

fc'SbO ü*3C<br />

**-O<br />

05c3<br />

>,^í V<br />

"¿o<br />

x<br />

Ö •>i£^<br />

^os<br />

CO5 CO<br />

P2<br />

"3*-* "«3<br />

v111¿ceS v<br />

à HhJoh<br />

o"§0COs?c.<br />

1$£r*- <strong>of</strong>income group,<br />

2-sfc't»^i<br />

before balance s•tì'Sco1<br />

ci?ìOSOo^n§01<br />

CO^PCDO+_"coMC»gV2•


2Ü30 KARL E. MASON<br />

(394) after experiences in compensating<br />

for a <strong>copper</strong> deficiency state developing in<br />

an infant with ileal atresia <strong>and</strong> short bowel<br />

syndrome maintained on total parenteral<br />

nutrition for the first 6.75 months <strong>of</strong> life.<br />

In current practice for complete intrave<br />

nous feeding <strong>of</strong> premature infants <strong>of</strong> less<br />

than 1,050 g birth weight, James <strong>and</strong> Mac-<br />

Mahon (383) provide 50 ¿u.g/kg/day <strong>of</strong><br />

<strong>copper</strong>. Quite in accord with these opinions<br />

are those <strong>of</strong> Ashkenazi et al. (25), record<br />

ing <strong>copper</strong> deficiency in a premature infant<br />

6 months old fed a diet <strong>of</strong> only whole milk<br />

<strong>and</strong> 5% cane sugar, <strong>and</strong> in a premature<br />

infant subjected to bowel surgery <strong>and</strong><br />

maintained on parenteral feeding for 3<br />

months. Both responded rapidly to oral<br />

<strong>copper</strong>, <strong>and</strong> investigators recommended<br />

that small premature infants be given sup<br />

plements <strong>of</strong> 0.1 to 0.5 mg <strong>of</strong> <strong>copper</strong> daily<br />

while milk is their only food, or during pro<br />

longed intravenous feeding.<br />

On the basis <strong>of</strong> the evidence cited above,<br />

it seems reasonable to assume that the<br />

daily requirement <strong>of</strong> intravenous <strong>copper</strong><br />

for infants, beyond the age at which they<br />

can depend upon prenatal tissue reserves<br />

( about 2 months ), may be in the range <strong>of</strong><br />

0.1 to 0.2 mg/day. On the assumption that<br />

approximately 40^ <strong>of</strong> orally ingested cop<br />

per is absorbed, this requirement would<br />

be the equivalent <strong>of</strong> 0.25 to 0.5 mg/day <strong>of</strong><br />

oral <strong>copper</strong>. For a 10-kg infant this would<br />

represent 0.025 to 0.05 mg/kg/day. Thus,<br />

the information provided by parenteral<br />

nutrition is in general concordance with<br />

that from studies in milk intake, <strong>copper</strong><br />

balance <strong>and</strong> recovery from deficiency<br />

states, which indicate <strong>requirements</strong> <strong>of</strong><br />

about 0.025 to 0.05 mg/kg/day for healthy<br />

full-term infants during early years <strong>of</strong> life,<br />

with somewhat more generous allowances<br />

for premature <strong>and</strong> low-birth-rate infants.<br />

Young children <strong>and</strong> adolescents<br />

The basis for determining the minimal<br />

daily <strong>requirements</strong> <strong>of</strong> <strong>copper</strong> for young<br />

children <strong>and</strong> adolescents is decidedly lim<br />

ited, as is indicated in table 1. Two pioneer<br />

studies on 3- to 6-year old children (142,<br />

695), although carried out 40 or more<br />

years ago, warrant special consideration.<br />

Daniels <strong>and</strong> Wright ( 142) studied five<br />

boys <strong>and</strong> three girls <strong>and</strong> employed two<br />

diets, one high in meat <strong>and</strong> cereals <strong>and</strong> the<br />

other high in cereals without meat, but<br />

similar in <strong>copper</strong> content. After 3 days <strong>of</strong><br />

adjustment to the diet, 5-day balance<br />

studies were made. Mean <strong>copper</strong> intakes,<br />

fecal plus urinary excretions <strong>and</strong> balances<br />

were, respectively, 1.48, 1.03 <strong>and</strong> +0.45<br />

mg/day. It was concluded that diets for<br />

children <strong>of</strong> pre-school age should include<br />

not less than 0.10 mg/kg/day <strong>of</strong> <strong>copper</strong>.<br />

Scoular (695) carried out similar balance<br />

studies on three boys <strong>of</strong> the same age,<br />

based upon three different but well con<br />

trolled diets. On the average, <strong>copper</strong> in<br />

takes, fecal <strong>and</strong> urinary losses <strong>and</strong> reten<br />

tions were, respectively, 1.36, 0.60, <strong>and</strong><br />

+0.76 mg/kg/day. In their best judgment,<br />

the minimal requirement <strong>of</strong> boys <strong>of</strong> that<br />

age would be between 0.053 <strong>and</strong> 0.085<br />

mg/kg/day. Similar conclusions were<br />

reached by Macy (477) in balance studies<br />

on school children 8 <strong>and</strong> 11 years <strong>of</strong> age.<br />

It may be noted that both <strong>of</strong> these esti<br />

mates fall within the range <strong>of</strong> estimated<br />

<strong>copper</strong> <strong>requirements</strong> for infants (0.05-0.1<br />

mg/kg/day) as discussed above.<br />

Balance studies carried out by Engel et<br />

al. (190) on groups <strong>of</strong> 12 girls 6 to 10<br />

years <strong>of</strong> age, during summer months <strong>of</strong><br />

1956, 1958 <strong>and</strong> 1962, employing liberal pro<br />

tein, low animal protein <strong>and</strong> vegetarian<br />

type diets, leave open questions concern<br />

ing <strong>requirements</strong>. Calculations made (by<br />

writer) from the data given indicate that<br />

the first two <strong>of</strong> these diets provided aver<br />

age <strong>copper</strong> intakes <strong>of</strong> 0.04 <strong>and</strong> 0.037 mg/<br />

kg/day <strong>and</strong> <strong>copper</strong> balances <strong>of</strong> —0.01<strong>and</strong><br />

—0.08mg/day, respectively. Comparable<br />

values for the vegetarian diet were 0.12<br />

mg/kg/day <strong>and</strong> +1.02 mg/day. These data<br />

would suggest a minimal intake somewhat<br />

less than proposed in the two studies just<br />

described. However, Engel et al. ( 190)<br />

estimated, by regression analysis, that the<br />

daily intake in their studies was 1.3 mg/<br />

day, <strong>and</strong> that the suggested allowance be<br />

2.5 mg/day. In this suggestion was in<br />

cluded a sweat loss <strong>of</strong> 0.5 mg/day <strong>and</strong> a<br />

safety margin <strong>of</strong> 0.7 mg/day, added to the<br />

1.3 mg/day intake. For matters <strong>of</strong> com<br />

parison, sweat loss was not incorporated in<br />

other balance studies recorded, <strong>and</strong> the<br />

estimated loss appears to be more than<br />

generous for the subjects. Furthermore, the<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


s<br />

&5°.S0<br />

0lì»"oPH<br />

o^—•3'S<br />

tT"*<br />

i•«OaM<br />

d."io i«^-v-— * ^3<br />

|W<br />

8tJ<br />

-gPQ<br />

S<<br />

•§H<br />

».WI.111*^<br />

|<br />

ÈS15":»1<br />

1Jjfe<br />

COPPER METABOLISM AND REQUIREMENTS OF MAN 2031<br />

£S3 *<br />

ss<<br />

Weo» W<br />

«".^.§<br />

00«g<br />

mW00s,<br />

•8 'e°<br />

1<br />

~.co<br />

^ca*"1 p ^.Ã2- , ^" u<br />

—° e *'ß c<br />

l.0"!'^Sili M'S'S<br />

-si"ìr^!i?^o s'S<br />

"*^~ 35 S o-Sá? "Si<br />

^S >*j^"O*JL'2s<br />

COC^iO^feB<br />

='a<br />

§>"'&!z<br />

^«"JZ<br />

UŒZ•I2<br />

g—<br />

'S '<br />

' »rt<br />

to•a as<br />

c«IJJte<br />

«t£<br />

**-•suaifefefe^"èr-H<br />

u «JL'"ffiffiSfeC C£M<br />

^^NS2¿^ ^ï<br />

•,^^t^~O×eL5<br />

^v<br />

o«tí<br />

||O<br />

0)•C'C"S<br />

o' o<br />

-H-H-HO3-H<br />

Oo' --ÃŒt~ -i<br />

•*'—•<br />

^^V<br />

C.>^.S5X!<br />

«aCJa<br />

a1"ca^T^|il|"-- gì<br />

-2.t- * ^S's<br />

^-1 ^- u<br />

¿ o3^it^03<br />

^d • C • S<br />

"^><br />

3~'&<br />

'"g<br />

^"H"3<br />

"*«<br />

'S«<br />

*î<br />

1£ "o<br />

P3 K£<br />

3OÜ¡II«•


2032 KARL E. MASON<br />

cant changes in <strong>copper</strong> <strong>requirements</strong> occur.<br />

Considering the rather bizarre food intakes<br />

<strong>and</strong> eating habits <strong>of</strong> this segment <strong>of</strong> popu<br />

lations, there is real need for <strong>copper</strong> bal<br />

ance studies on pre-college teenagers.<br />

Except for the inconclusive observations <strong>of</strong><br />

Dawson et al. ( 152 ), no consideration has<br />

been given to the special nutritional re<br />

quirements, including those <strong>of</strong> <strong>copper</strong>, in<br />

teen-age pregnancies. Considering that in<br />

such situations there is need to meet<br />

growth <strong>requirements</strong> <strong>of</strong> the adolescent<br />

mother as well as those <strong>of</strong> the developing<br />

fetus, it may be assumed that <strong>requirements</strong><br />

are appreciably greater than in adult preg<br />

nant women.<br />

Adults<br />

Since adults are past the growing phase<br />

<strong>of</strong> life, <strong>copper</strong> <strong>requirements</strong> are expressed<br />

in terms <strong>of</strong> mg/day rather than as mg/kg/<br />

day, as in the case <strong>of</strong> infants <strong>and</strong> adoles<br />

cents.<br />

Dietary intake. An earlier section (pp.<br />

1998-1999) deals with the wide variation in<br />

<strong>copper</strong> content <strong>of</strong> human diets in various<br />

countries <strong>and</strong> <strong>of</strong> individuals <strong>of</strong> different<br />

ages. Table 2 summarizes additional data<br />

from studies in which the daily dietary<br />

intake <strong>of</strong> <strong>copper</strong> (<strong>of</strong>ten as only one <strong>of</strong><br />

many trace elements), exclusive <strong>of</strong> <strong>copper</strong><br />

balance, was <strong>of</strong> primary concern. Indian<br />

diets, which are predominately vegetarian<br />

in composition, are notably high in <strong>copper</strong><br />

content. Analyses <strong>of</strong> diets <strong>of</strong> ovovegetarian<br />

<strong>and</strong> nonvegetarian populations in India by<br />

Soman (727) indicate, by writers's calcu<br />

lation from the data given, intakes <strong>of</strong> about<br />

5.7 <strong>and</strong> 7.1 mg/day, respectively. An ex<br />

ceptionally high content <strong>of</strong> <strong>copper</strong> in<br />

Indian diets is also reported by De ( 154)<br />

as shown in table 3. These values are con<br />

siderably in excess <strong>of</strong> those reported from<br />

other countries. Only in the studies <strong>of</strong><br />

Guthrie (289, 291) is mention made <strong>of</strong> the<br />

influence <strong>of</strong> liver, well known to be much<br />

higher in <strong>copper</strong> than other food constitu<br />

ents. In other studies in which composi<br />

tion <strong>of</strong> the diet employed is given, liver has<br />

not been listed as an ingredient. Somewhat<br />

surprising are the low <strong>copper</strong> levels found<br />

in student diets (White), hospital diets<br />

(Gormican; Brown et al.) <strong>and</strong> self-selected<br />

diets (Holden et al.). The values reported<br />

are appreciably lower than those for com<br />

parable types <strong>of</strong> diets in the balance<br />

studies recorded in table 3. The studies<br />

summarized in table 2 merely give some<br />

picture <strong>of</strong> variations in the <strong>copper</strong> intake <strong>of</strong><br />

small groups <strong>of</strong> individuals in several dif<br />

ferent countries. They provide no valid in<br />

formation concerning <strong>requirements</strong> for<br />

<strong>copper</strong>, since there is no evidence <strong>of</strong> their<br />

ability to maintain positive balance over<br />

long periods <strong>of</strong> time. To a certain extent<br />

the same may be said <strong>of</strong> traditional balance<br />

studies such as recorded in table 3, but<br />

the latter do provide data on <strong>copper</strong> re<br />

tention, in terms <strong>of</strong> intake less fecal excre<br />

tion. While they provide data over only a<br />

limited period <strong>of</strong> days or weeks, they do<br />

represent a measure <strong>of</strong> daily <strong>requirements</strong><br />

somewhat equivalent to that provided by<br />

total parenteral nutrition.<br />

Balance studies. Table 3 summarizes, in<br />

chronological sequence, data pertaining to<br />

balance studies on human adults. In 6 <strong>of</strong><br />

the first 10 studies, extending from 1934 to<br />

1954, the estimated requirement ranges<br />

from 2.0 to 2.6 mg/day. These data pro<br />

vided the basis for the wide acceptance <strong>of</strong><br />

2.0 or 2.0 to 2.5 mg as the daily require<br />

ment <strong>of</strong> <strong>copper</strong> for adult man. However,<br />

Cartwright <strong>and</strong> Wintrobe (106) later state<br />

that at lower levels <strong>of</strong> intake adjustments<br />

may be made to reduce <strong>copper</strong> excretion<br />

such that the daily requirement would be<br />

less than 2 mg <strong>and</strong> might even be negli<br />

gible. Presumably, a major factor in this<br />

adjustment would be a call upon <strong>copper</strong><br />

stores in the liver <strong>and</strong> other organs.<br />

The levels <strong>of</strong> <strong>copper</strong> intake reported by<br />

Holt <strong>and</strong> Scoular (349) are truly excessive<br />

<strong>and</strong> the investigators, noting the much<br />

lower values recorded by Leverton <strong>and</strong><br />

Binkley (452) for college students fed<br />

similar diets, somewhat naively attribute<br />

this difference to "a regional effect upon<br />

the composition <strong>of</strong> food." Considering also<br />

the unreasonably low fecal <strong>and</strong> urinary<br />

loss <strong>and</strong> high retention values (calculated<br />

from tabular data reported but not com<br />

mented upon in the report) the atypical<br />

results recorded suggest unknown defects<br />

in methodology. The somewhat high cop<br />

per content <strong>of</strong> Indian diets <strong>of</strong> De ( 154) is<br />

in accord with the observations <strong>of</strong> Soman<br />

(727), table 1. Whether the predominantly<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


î1co<br />

1stW<br />

»a«a3<br />

COPPER METABOLISM AND REQUIREMENTS OF MAN 2033<br />

„" -g^<br />

CO>•<br />

co'ig "OC«*--H<br />

^I5<br />

2>B•S C^12 t<br />

7?ow^^îs-cS. i^^1-3y.gìY<br />

Et»fe s<br />

QJO ni O Cu<br />

®MCßO<br />

£Ci PU O C»<br />

ci•9VSogC4O<br />

IOIMICihO1feT(M8?2!1<br />

i-*O<br />

JgoJ<br />

NVV11«~.£cc|sUfieu<br />

*T3•S<br />

-wr- -^<br />

c's•<br />

C—>% . .— 0) ^<br />

O"or -Q-^- V<br />

î"S„^<br />

O ^ *fe<br />

tí-t-s aizo"oUZ


2034 KARL E. MASON<br />

vegetarian type <strong>of</strong> diet, differences in cop<br />

per content <strong>of</strong> soil <strong>and</strong>/or water, contami<br />

nation through common use <strong>of</strong> tinned-cop<br />

per cooking utensils, or some combination<br />

<strong>of</strong> these factors can provide an explanation<br />

is speculative. The estimated minimal re<br />

quirement <strong>of</strong> 2.0 mg is based upon statisti<br />

cal analyses <strong>of</strong> the balance data ( 154). The<br />

data <strong>of</strong> De ( 154) clearly support observa<br />

tions <strong>of</strong> others (100, 451, 452) that as di<br />

etary <strong>copper</strong> intake increases there is an<br />

increase in the amount retained, up to an<br />

intake <strong>of</strong> about 8 mg/day. It should also<br />

be noted that in the diets used by Butler<br />

<strong>and</strong> Daniel (84) a mineral <strong>and</strong> baking<br />

powder mix was added, providing at two<br />

meals a total <strong>of</strong> 2.37 mg <strong>of</strong> <strong>copper</strong> per day,<br />

thus explaining the high levels <strong>of</strong> intake<br />

<strong>and</strong> output. However, there is no valid<br />

basis for their concluding statement that<br />

"a <strong>copper</strong> allowance <strong>of</strong> 4.5 to 5.0 mg is<br />

needed to cover the <strong>requirements</strong> <strong>of</strong> all<br />

healthy young women, depending on cli<br />

matic conditions."<br />

The study <strong>of</strong> Kyer <strong>and</strong> Bethel (431) is<br />

the only known report on <strong>copper</strong> require<br />

ments <strong>of</strong> the pregnant woman. In view <strong>of</strong> a<br />

2- to 3-fold increase in serum ceruloplasmin<br />

during gestation, presumably attained<br />

through calls upon storage depots <strong>of</strong> the<br />

liver <strong>and</strong> other organs <strong>and</strong> tissues, an in<br />

crease in daily intake <strong>of</strong> <strong>copper</strong> to replace<br />

this tissue depletion would be anticipated.<br />

In this study a healthy young woman was<br />

maintained during the last 3 months <strong>of</strong> her<br />

pregnancy <strong>and</strong> for 2 weeks after delivery<br />

on a uniform diet providing a daily intake<br />

<strong>of</strong> about 2.2 mg <strong>of</strong> <strong>copper</strong>. At this level <strong>of</strong><br />

intake she was able to meet normal needs<br />

for pregnancy <strong>and</strong> early lactation.<br />

Balance studies carried out during the<br />

past 14 years, represented by the last eight<br />

listed in table 3, indicate that levels less<br />

than 2 mg <strong>and</strong> sometimes not greatly in<br />

excess <strong>of</strong> 1 mg may maintain positive cop<br />

per balance. Such conclusions are in gen<br />

eral accord with information provided by<br />

parenteral nutrition studies, as discussed<br />

in the following section. Nevertheless, it is<br />

important to bear in mind that at these<br />

low levels <strong>of</strong> intake there is, as yet, no<br />

means <strong>of</strong> determining to what extent body<br />

mechanisms <strong>of</strong> <strong>copper</strong> homeostasis may in<br />

volve decreases <strong>of</strong> <strong>copper</strong> stored in the<br />

liver <strong>and</strong> other tissues <strong>of</strong> the body.<br />

Total parenteral nutrition. The advent <strong>of</strong><br />

total parenteral nutrition (hyperalimentation)<br />

<strong>and</strong> its application to problems <strong>of</strong><br />

post-surgical nutrition <strong>and</strong> gastrointestinal<br />

disorders has added greatly to knowledge<br />

<strong>of</strong> <strong>copper</strong> utilization <strong>and</strong> <strong>requirements</strong>. A<br />

number <strong>of</strong> observations which have par<br />

ticular relevance to adult human require<br />

ments for <strong>copper</strong> warrant consideration at<br />

this point.<br />

Shils et al. (712) report the case <strong>of</strong> an<br />

adult male, with bowel resected from the<br />

third part <strong>of</strong> the duodenum to the ascend<br />

ing colon, who was maintained in good<br />

nutritional status solely on parenteral feed<br />

ing for many months. The basic parenteral<br />

fluid was essentially devoid <strong>of</strong> <strong>copper</strong>, but<br />

was supplemented with various trace ele<br />

ments which included 0.40 mg <strong>copper</strong>/day.<br />

Bergstrom et al. (45) describe a 43-year<br />

old woman suffering from epilepsy <strong>and</strong><br />

cerebral damage due to CO^. intoxication<br />

from a fire, who was maintained for 7<br />

months <strong>and</strong> 13 days on total parenteral<br />

nutrition, with an estimated daily intake<br />

<strong>of</strong> 0.10 mg/day <strong>of</strong> <strong>copper</strong>.<br />

Perhaps more impressive is similar treat<br />

ment <strong>of</strong> a 36-year old woman during a 10month<br />

period in a hospital following resec<br />

tion <strong>of</strong> her intestinal tract between the<br />

duodenum <strong>and</strong> descending colon (790).<br />

During her hospitalization she gained 34<br />

pounds. Subsequently, after mastering the<br />

technique <strong>of</strong> administering her parenteral<br />

fluids at home, she was able to carry out<br />

her household duties effectively. Through<br />

out the postoperative period her parenteral<br />

solution provided 0.018 mg/day <strong>of</strong> <strong>copper</strong>.<br />

The only other source <strong>of</strong> <strong>copper</strong>, the 100<br />

mg <strong>of</strong> protein hydrolysate, might have<br />

provided about 0.075 mg/day <strong>and</strong> ac<br />

counted for a total intake <strong>of</strong> 0.093 mg/day.<br />

Essentially the same experience, with em<br />

ployment <strong>of</strong> a similar parenteral fluid sup<br />

plemented with 0.06 mg/day is reported<br />

by Langer et al. (441) in the management<br />

<strong>of</strong> two women, 21 <strong>and</strong> 34 years <strong>of</strong> age, fol<br />

lowing extensive intestinal resection. These<br />

two reports (441, 790) appear to indicate<br />

that the minimal daily intravenous require<br />

ment for adult man may well be less than<br />

the proposed additions <strong>of</strong> 0.3 to 0.4 mg/day<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2035<br />

to solutions used for total patenterai nutri<br />

tion for prolonged periods (177, 711, 712,<br />

864). To these, <strong>of</strong> course, must be added<br />

the amount contributed by the casein hydrolysate<br />

or other protein components <strong>of</strong><br />

the infúsate. These vary considerably in<br />

their <strong>copper</strong> content. Somewhat contrary<br />

to these estimates is the report <strong>of</strong> Mc-<br />

Kenzie et al. (511) that in seven adult<br />

patients in a surgical intensive care unit a<br />

parenteral infúsate providing 0.09 to 0.8<br />

mg <strong>of</strong> <strong>copper</strong> resulted in a negative bal<br />

ance in all cases.<br />

Some useful information has also come<br />

from studies concerned with <strong>copper</strong> levels<br />

required to compensate for states <strong>of</strong> cop<br />

per deficiency resulting from an inade<br />

quacy in parenteral fluids. An excellent<br />

example is the study <strong>of</strong> Vilter et al. (808).<br />

In a 56-year old woman with malabsorption<br />

<strong>and</strong> severe systemic sclerosis <strong>of</strong> the<br />

intestine, maintained on total parenteral<br />

nutrition for 2.5 months, they observed<br />

typical manifestations <strong>of</strong> <strong>copper</strong> deficiency.<br />

For 4 months she had shown leucopenia,<br />

neutropenia <strong>and</strong> a hypocellular bone mar<br />

row, considered typical manifestations <strong>of</strong><br />

<strong>copper</strong> deficiency. Serum <strong>copper</strong> was very<br />

low (0.02 fig/ml ) <strong>and</strong> serum ceruloplasmin<br />

was not demonstrable. Intravenous admin<br />

istration <strong>of</strong> 1 mg/day for 7 days resulted in<br />

an excellent response, still evident 90 days<br />

later. Hence 7 mg <strong>of</strong> <strong>copper</strong> sulfate dis<br />

tributed over 90 days, equivalent to 0.077<br />

mg <strong>of</strong> <strong>copper</strong> per day, represented more<br />

than minimal <strong>requirements</strong> for this woman.<br />

Here again, a reasonable estimate <strong>of</strong> cop<br />

per acquired via the protein hydrolysate<br />

component might increase the uptake to<br />

approximately 0.1 mg/day.<br />

Dunlap et al. ( 177) describe a state <strong>of</strong><br />

<strong>copper</strong> deficiency in a 45-year old woman<br />

<strong>and</strong> a 12-year old girl receiving long-term<br />

parenteral nutrition following extensive<br />

bowel surgery. The older subject, after<br />

almost total dependence on parenteral<br />

feeding for about 17 months, developed<br />

anemia <strong>and</strong> neutropenia which responded<br />

rapidly to oral <strong>copper</strong> sulfate (5 mg CuSO4<br />

or 1.25 mg elemental <strong>copper</strong>) daily, which<br />

was continued for 45 days. With discon<br />

tinuation <strong>of</strong> <strong>copper</strong>-therapy for about one<br />

month, deficiency symptoms were again<br />

apparent <strong>and</strong> responded well to 1.6 mg<br />

<strong>copper</strong> sulfate (0.4 mg/day) given intra<br />

venously. After 2 weeks the daily dose was<br />

increased to 1 mg <strong>copper</strong> for 5 weeks. Sub<br />

sequently, she was on a parenteral dose <strong>of</strong><br />

0.4 mg <strong>copper</strong> daily <strong>and</strong> showed no evi<br />

dence <strong>of</strong> recurrence <strong>of</strong> hématologieabnor<br />

malities. The younger subject, who had<br />

been dependent entirely on parenteral<br />

nutrition for only 4 months, showed neutro<br />

penia (but no anemia) which also re<br />

sponded to oral <strong>copper</strong> therapy. The fact<br />

that oral <strong>copper</strong> was effectively absorbed<br />

by both subjects, in whom the duodenum<br />

had been anastomosed to the transverse<br />

colon, provides additional evidence that<br />

the stomach <strong>and</strong> duodenum play a major<br />

role in the absorption <strong>of</strong> <strong>copper</strong> in man.<br />

Of special interest are the data derived<br />

from studies on the older subject clearly<br />

indicating that a daily parenteral intake <strong>of</strong><br />

0.4 mg <strong>of</strong> elemental <strong>copper</strong> effected a<br />

rapid recovery from a deficiency state.<br />

The observations <strong>of</strong> Vilter et al. ( 808 ), also<br />

carried out on a single adult woman, are in<br />

close agreement with those <strong>of</strong> Dunlap et<br />

al. (177).<br />

One conclusion that may be justified<br />

from these two studies is that the "uncom<br />

plicated" minimal intravenous requirement<br />

<strong>of</strong> <strong>copper</strong> for man may well be less than<br />

0.4 mg per day. By "uncomplicated" is<br />

meant under situations where ingested<br />

<strong>copper</strong> is not being subjected to the in<br />

fluence <strong>of</strong> many other components <strong>of</strong> the<br />

diet (other trace elements which compete<br />

for binding sites, dietary fiber, phytates,<br />

etc.) or may otherwise interfere with maxi<br />

mal absorption. Assuming a 40 to 60% ab<br />

sorption <strong>of</strong> oral <strong>copper</strong>, this would repre<br />

sent an oral intake <strong>of</strong> approximately 1 mg/<br />

day.<br />

Two recent examples <strong>of</strong> the inadequacy<br />

<strong>of</strong> parenteral infusâtescommonly in use in<br />

hospitals can be cited. Weekly serum cop<br />

per determinations on eight adult patients<br />

receiving total parenteral nutrition for 3 to<br />

13 weeks revealed a progressive decrease<br />

<strong>of</strong> serum <strong>copper</strong> <strong>and</strong> three patients showed<br />

severe hypocupremia. The infúsate had no<br />

detectable <strong>copper</strong>. All responded rapidly to<br />

oral <strong>copper</strong> feeding (217). Another study<br />

(726) describes a progressive decline in<br />

plasma <strong>copper</strong> (<strong>and</strong> also zinc) in 13 sub<br />

jects with active gastrointestinal disorders<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2036 KARL E. MASON<br />

maintained on total parenteral nutrition for<br />

8 days to 7.5 weeks (mean, 4.5 weeks).<br />

The infúsate, providing nitrogen as crystal<br />

line L-amino acids, contained no <strong>copper</strong><br />

detectable by a method sensitive to 20<br />

itg/liter. Usually more than 2 months <strong>of</strong><br />

total parenteral nutrition with unsupplemented<br />

infusâtesare required before clini<br />

cal evidence <strong>of</strong> <strong>copper</strong> deficiency becomes<br />

apparent (590 ). The need for more general<br />

inclusion <strong>of</strong> trace elements, especially cop<br />

per <strong>and</strong> zinc, in parenteral fluids is obvious.<br />

Despite the widely recognized need for<br />

adequate provision <strong>of</strong> <strong>copper</strong> <strong>and</strong> other<br />

trace elements in intravenous solutions,<br />

recommendations <strong>and</strong> practices <strong>of</strong> differ<br />

ent investigators reveal wide variations.<br />

According to the calculations presented<br />

by Jacobson <strong>and</strong> Wester (379), the rec<br />

ommendations for <strong>copper</strong> in trace element<br />

mixtures per 24 hours in total parenteral<br />

nutrition for 70 kg adults vary from 1.54<br />

mg (173), 1.0 mg (709, 710), 0.11 mg<br />

(367), 0.3 mg (864) <strong>and</strong> 0.1 mg (379). It<br />

is the opinion <strong>of</strong> Jacobson <strong>and</strong> Wester<br />

(379) that a daily intake <strong>of</strong> 0.3 mg repre<br />

sents the best recommendation. This again<br />

represents an oral intake less than 1 mg/<br />

day.<br />

It is <strong>of</strong> particular interest to find that<br />

data based upon milk intake in infants <strong>and</strong><br />

upon balance studies <strong>and</strong> prolonged main<br />

tenance with total parenteral nutrition<br />

have shown remarkably good agreement.<br />

Briefly stated, the evidence suggests that<br />

<strong>copper</strong> <strong>requirements</strong> for the maintenance<br />

<strong>of</strong> good health lie within the range <strong>of</strong><br />

0.025 to 0.05 mg/kg for young infants,<br />

0.05 to 0.1 mg/kg for older children <strong>and</strong><br />

adolescents, <strong>and</strong> in the neighborhood <strong>of</strong><br />

1.0 to 1.5 mg/day for adult man.<br />

RESUME<br />

There has been presented a review <strong>of</strong><br />

research findings relative to the distribu<br />

tion <strong>of</strong> <strong>copper</strong> in the human body: the<br />

nature <strong>and</strong> function <strong>of</strong> a large array <strong>of</strong><br />

cuproproteins; the omnipresence <strong>of</strong> <strong>copper</strong><br />

in foods; its absorption, transport <strong>and</strong> ex<br />

cretion; naturally occurring states <strong>of</strong> cop<br />

per deficiency; dietary interrelationships<br />

<strong>and</strong> states <strong>of</strong> toxicity; the congenital dis<br />

orders <strong>of</strong> Menkes' disease <strong>and</strong> Wilson's<br />

disease; <strong>copper</strong> <strong>metabolism</strong> <strong>of</strong> pregnancy,<br />

neonatal <strong>and</strong> postnatal life; <strong>and</strong> <strong>copper</strong> re<br />

quirements <strong>of</strong> infancy, adolescence <strong>and</strong><br />

adulthood as determined by balance<br />

studies <strong>and</strong> data derived from experiences<br />

with parenteral nutrition.<br />

The human body contains approximately<br />

75 mg <strong>of</strong> <strong>copper</strong>, about one-third <strong>of</strong> which<br />

is present in the liver <strong>and</strong> brain. Lesser<br />

concentrations exist in the heart, kidney,<br />

pancreas, spleen, bone <strong>and</strong> skeletal muscle.<br />

In organs <strong>and</strong> tissues <strong>copper</strong> is bound to a<br />

wide variety <strong>of</strong> cuproproteins, most <strong>of</strong><br />

which have properties <strong>of</strong> enzymes. Among<br />

the trace elements <strong>copper</strong> is unique in<br />

terms <strong>of</strong> the large number <strong>of</strong> metabolically<br />

important enzymes <strong>of</strong> which it is an essen<br />

tial component, <strong>and</strong> the wide variety <strong>of</strong><br />

organs <strong>and</strong> tissues in the mammalian<br />

organism whose functional <strong>and</strong> structural<br />

integrity are dependent upon these en<br />

zymes. Of these, ceruloplasmin, Superoxide<br />

dismutase, cytochrome c oxidase, lysyl<br />

oxidase, tyrosinase <strong>and</strong> neonatal mitochrondrocuprein<br />

are recognized as impor<br />

tant in human <strong>metabolism</strong>. Metallothionein<br />

<strong>and</strong> similar low molecular weight cupro<br />

proteins, non-enzymatic in nature, have<br />

roles in <strong>copper</strong> storage <strong>and</strong> detoxification.<br />

Still awaiting further investigation are<br />

other cuproproteins some <strong>of</strong> which might<br />

well prove to have important but as yet<br />

unrecognized roles in human <strong>metabolism</strong>.<br />

Ceruloplasmin, whose biological role has<br />

long been a mystery, is now recognized as<br />

a multifunctional cuproprotein possessing<br />

a broad spectrum <strong>of</strong> oxidase activity. Its<br />

role as feroxidase I in the mobilization <strong>of</strong><br />

plasma iron provides a satisfying answer to<br />

questions raised 50 years ago concerning<br />

the role <strong>of</strong> <strong>copper</strong> in nutritional anemia.<br />

Its role as a cuproprotein transferring cop<br />

per to tissues for the synthesis <strong>of</strong> vitally<br />

important enzymes, the most important<br />

<strong>of</strong> which is cytochrome c oxidase, has been<br />

relatively unexplored. The same may be<br />

said <strong>of</strong> the possible capacity <strong>of</strong> ceruloplas<br />

min to maintain <strong>and</strong> control blood <strong>and</strong> tis<br />

sue levels <strong>of</strong> biogenic amines. In view <strong>of</strong><br />

the importance <strong>of</strong> these amines in normal<br />

brain functions <strong>and</strong> the neurological defi<br />

cits found in both Wilson's <strong>and</strong> Menkes'<br />

disease, this will unquestionably be a fruit<br />

ful area for future investigation, both ex<br />

perimental <strong>and</strong> clinical.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2037<br />

Cytochrome c oxidase, an enzyme vital<br />

to essentially all forms <strong>of</strong> life, has been<br />

clearly shown in experimental <strong>and</strong> farm<br />

animals to be involved in the myelination<br />

<strong>of</strong> nerve fibers <strong>and</strong> in maintaining struc<br />

ture <strong>and</strong> function <strong>of</strong> myocardial tissue.<br />

What relevance such observations may<br />

have to brain <strong>and</strong> cardiac functions in man<br />

<strong>of</strong>fer challenging avenues for future re<br />

search. Aside from lysyl oxidase, well rec<br />

ognized as essential for the cross-linking<br />

<strong>of</strong> elastin <strong>and</strong> collagen, are other monoamine<br />

oxidases in mammalian tissues which<br />

future research may well show to be <strong>of</strong><br />

great importance in the <strong>metabolism</strong> <strong>of</strong><br />

man.<br />

Metallothionein, a nonenzymic cuproprotein,<br />

may well prove to be merely one<br />

<strong>of</strong> a family <strong>of</strong> cuproproteins <strong>of</strong> relatively<br />

low molecular weight playing important<br />

roles in the mechanisms <strong>of</strong> intestinal ab<br />

sorption <strong>and</strong> transport, <strong>and</strong> <strong>of</strong> liver storage<br />

<strong>and</strong> transfer. There is urgent need for bet<br />

ter identification <strong>of</strong> such proteins <strong>and</strong> in<br />

creased knowledge <strong>of</strong> their metabolic roles.<br />

New information <strong>of</strong> this nature may add<br />

greatly to underst<strong>and</strong>ing the nature <strong>and</strong><br />

treatment <strong>of</strong> the two well recognized in<br />

born errors <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> <strong>and</strong><br />

possibly <strong>of</strong> other disorders not yet well<br />

recognized.<br />

Copper is ubiquitous in nature <strong>and</strong> its<br />

relative amount in different foods is well<br />

established. Very little is known regarding<br />

the chemical forms in which it exists in<br />

foods or the influence which methods <strong>of</strong><br />

processing <strong>and</strong> cooking may have upon its<br />

availability. In man, there is only limited<br />

knowledge <strong>of</strong> how absorption <strong>of</strong> available<br />

<strong>copper</strong> may be influenced by interactions<br />

in the gut between it <strong>and</strong> other trace ele<br />

ments, metallothionein-like proteins, di<br />

etary phytates, sulfates <strong>and</strong> ascorbic acid.<br />

Copper is absorbed chiefly by gastric <strong>and</strong><br />

duodenal mucosa, <strong>and</strong> approximately 40<br />

to 60r/c <strong>of</strong> that ingested is actually ab<br />

sorbed, bound to albumin <strong>and</strong> amino acids<br />

<strong>and</strong> transported to the liver. The liver<br />

serves as the control center for <strong>copper</strong><br />

<strong>metabolism</strong> <strong>and</strong> homeostasis by virtue <strong>of</strong><br />

its functions as a major storage depot, the<br />

major site <strong>of</strong> <strong>copper</strong> excretion via the bile<br />

<strong>and</strong> the only site <strong>of</strong> ceruloplasmin syn<br />

thesis.<br />

In blood, the ratio <strong>of</strong> <strong>copper</strong> in red cells<br />

to that in plasma is approximately 0.7. Of<br />

that in erythrocytes, which is remarkably<br />

constant in normal man, 40% is in a labile<br />

form bound to amino acids <strong>and</strong> 60% is<br />

more firmly bound in Superoxide dismutase.<br />

Of the <strong>copper</strong> in blood serum, about<br />

1% is labile, bound more to albumin than<br />

to amino acids, the remaining 93% being<br />

firmly bound as an important component<br />

<strong>of</strong> ceruloplasmin, synthesized only by the<br />

liver.<br />

States <strong>of</strong> hypocupremia in man are rela<br />

tively rare, occur usually in children <strong>and</strong>,<br />

except for high urinary loss <strong>of</strong> ceruloplas<br />

min in the nephrotic syndrome, are gen<br />

erally due to hypoproteinemia <strong>and</strong> inabil<br />

ity to provide adequate amounts <strong>of</strong> apoprotein<br />

for ceruloplasmin synthesis. On the<br />

other h<strong>and</strong> hypercupremia, due almost ex<br />

clusively to hyperceruloplasminemia, is<br />

commonly observed in pregnancy, after<br />

oral intake <strong>of</strong> contraceptives <strong>and</strong> in associ<br />

ation with innumerable disease states <strong>and</strong><br />

disorders. Elevated serum ceruloplasmin<br />

in states where inflammation is involved re<br />

flects its function as an "acute phase reactant";<br />

in non-inflammatory states reasons<br />

for its increase are shrouded in mystery.<br />

There are unsettled questions concern<br />

ing placental transfer <strong>of</strong> ceruloplasmin.<br />

But <strong>of</strong> far greater importance is the need<br />

for much more information on fetal <strong>copper</strong><br />

<strong>metabolism</strong>, including the distribution <strong>and</strong><br />

nature <strong>of</strong> protein binding <strong>of</strong> <strong>copper</strong> in dif<br />

ferent organs <strong>and</strong> tissues <strong>of</strong> the fetus. Such<br />

information is <strong>of</strong> particular relevance to a<br />

better underst<strong>and</strong>ing <strong>of</strong> the basic defect in<br />

Menkes' disease. Because <strong>of</strong> ethical <strong>and</strong><br />

other restrictions, the answers may have to<br />

come from studies on lower primates<br />

which, to date, have not been utilized in<br />

studies on <strong>copper</strong> <strong>metabolism</strong>.<br />

Menkes' steely-hair disease, first de<br />

scribed in 1962, represents a state <strong>of</strong> cop<br />

per deficiency induced in young infants by<br />

a sex-linked recessive defect in <strong>copper</strong> me<br />

tabolism. The primary metabolic defect is<br />

unknown. Some findings suggest a block in<br />

the transfer <strong>of</strong> <strong>copper</strong> across absorptive<br />

cells <strong>of</strong> the intestinal mucosa, but there are<br />

possibilities <strong>of</strong> a defect in placental trans<br />

fer <strong>of</strong> <strong>copper</strong> or the presence <strong>of</strong> an atypi<br />

cal protein-binding <strong>of</strong> <strong>copper</strong> in the liver<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2038 KARL E. MASON<br />

<strong>and</strong> other organs <strong>of</strong> the fetus <strong>and</strong> infant.<br />

An intrauterine defect could explain why<br />

even in infants with early postnatal diag<br />

nosis, therapeutic measures <strong>of</strong> varied types<br />

have done little more than improve serum<br />

<strong>copper</strong> <strong>and</strong> ceruloplasmin levels, while the<br />

disease process continues unabated. The<br />

recent discovery <strong>and</strong> study <strong>of</strong> two genetic<br />

animal models in mice with striking simi<br />

larities to Menkes' disease, combined with<br />

continued study <strong>of</strong> dietary <strong>copper</strong> defi<br />

ciency in the rat <strong>and</strong> guinea pig, <strong>of</strong>fer<br />

challenging opportunities for further inves<br />

tigation <strong>of</strong> the metabolic defect(s) under<br />

lying this disease <strong>and</strong> some remote possi<br />

bility <strong>of</strong> more effective therapeutic mea<br />

sures than currently exist, even though<br />

intervention in utero may be the only<br />

recourse.<br />

Mystery also still surrounds the primary<br />

defect in Wilson's disease (hepatolenticu-<br />

lar degeneration), an autosomal recessive<br />

inborn error <strong>of</strong> <strong>metabolism</strong> first described<br />

in 1912 <strong>and</strong> characterized by the accumu<br />

lation <strong>of</strong> excessive <strong>and</strong> <strong>of</strong>ten toxic amounts<br />

<strong>of</strong> <strong>copper</strong> in the liver, central nervous sys<br />

tem, kidney <strong>and</strong> other tissues. Accumulat<br />

ing evidence points to the liver as the site<br />

<strong>of</strong> metabolic derangement, <strong>and</strong> decreased<br />

biliary excretion <strong>of</strong> <strong>copper</strong> the basic reason<br />

for the progressive increase <strong>of</strong> liver <strong>copper</strong><br />

to toxic levels. Hypotheses proposed sug<br />

gest: 1) the presence in the liver, <strong>and</strong><br />

possibly in other affected tissues, <strong>of</strong> an<br />

intracellular protein having greatly in<br />

creased affinity for the binding <strong>of</strong> <strong>copper</strong>;<br />

2) defects in a liver protein or peptide<br />

serving in a specific "carrier mechanism"<br />

for <strong>copper</strong> or, 3) defective intracellular<br />

transport <strong>of</strong> <strong>copper</strong> secondary to dysfunc<br />

tion <strong>of</strong> hepatocyte lysosomes. The further<br />

pursuit <strong>of</strong> these concepts should open new<br />

vistas concerning the metabolic defect in<br />

Wilson's disease. As an example, recent<br />

evidence <strong>of</strong> dramatic improvement in extrahepatic<br />

manifestations <strong>of</strong> Wilson's dis<br />

ease following orthoptic liver transplanta<br />

tion also supports the concept that the<br />

metabolic defect in Wilson's disease is<br />

liver-based. For more than 20 years the<br />

therapeutic use <strong>of</strong> D-penicillamine, a cop<br />

per chelator, has led to slow clinical im<br />

provement, especially when instituted in<br />

early states <strong>of</strong> the disease. A real need<br />

exists for an improved method for diag<br />

nosis <strong>of</strong> asymptomatic cases <strong>of</strong> the disease,<br />

replacing liver biopsy <strong>and</strong> radio<strong>copper</strong><br />

studies, to permit earlier establishment <strong>of</strong><br />

therapeutic measures. The possible exist<br />

ence <strong>of</strong> a more effective therapeutic agent<br />

seems not to have been given the attention<br />

deserved. There is recent evidence that at<br />

least two liver diseases, primary biliary<br />

cirrhosis <strong>and</strong> chronic active liver disease,<br />

resemble Wilson's disease with respect to<br />

elevated levels <strong>of</strong> liver <strong>copper</strong>. Whether in<br />

these disorders benefits may be derived<br />

from penicillamine therapy has not been<br />

established.<br />

In the development <strong>and</strong> practical appli<br />

cation <strong>of</strong> total parenteral nutrition over the<br />

past 10 years, isolated instances <strong>of</strong> states<br />

<strong>of</strong> <strong>copper</strong> deficiency occurring in children<br />

<strong>and</strong> adult man have emphasized the need<br />

for more serious attention to the content<br />

<strong>of</strong> <strong>copper</strong> <strong>and</strong> other trace elements in<br />

parenteral solutions. Information gained<br />

from experiences with parenteral nutrition<br />

have given strong support to conclusions<br />

reached by balance studies concerning the<br />

minimal <strong>requirements</strong> <strong>of</strong> <strong>copper</strong> for infants<br />

<strong>and</strong> adults. A much greater hazard has<br />

been created by <strong>copper</strong>-contaminated tap<br />

water or <strong>copper</strong>-containing valves <strong>and</strong><br />

stopcocks in conduits employed in hemodialysis,<br />

due to the high toxicity <strong>of</strong> intra<br />

venous <strong>copper</strong>. There are sporadic reports<br />

<strong>of</strong> accidental <strong>and</strong> suicidal poisoning from<br />

oral intake <strong>of</strong> <strong>copper</strong> salts. There is little<br />

or no evidence <strong>of</strong> toxicity from industrial<br />

sources.<br />

Extensive evidence based upon the cop<br />

per content <strong>of</strong> human milk (approximately<br />

three times that <strong>of</strong> cow's milk ), <strong>copper</strong> bal<br />

ance studies <strong>and</strong> experiences with total<br />

parenteral nutrition indicate that <strong>copper</strong><br />

<strong>requirements</strong> for young full-term infants<br />

are 0.025 to 0.05 mg/kg/day, <strong>and</strong> that<br />

those for premature infants are somewhat<br />

greater. Rather limited data, based largely<br />

on balance studies, suggest <strong>requirements</strong><br />

in the range <strong>of</strong> 0.05 to 0.10 mg/kg/day for<br />

young <strong>and</strong> adolescent children. There is a<br />

serious lack <strong>of</strong> information concerning<br />

<strong>copper</strong> <strong>requirements</strong> <strong>of</strong> teenagers, <strong>and</strong><br />

especially pregnant teenagers. It has long<br />

been felt that an adult man requires 2.0<br />

to 2.5 mg <strong>copper</strong> daily. Balance studies <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2039<br />

the past 12 years suggest that a <strong>copper</strong> in<br />

take not much in excess <strong>of</strong> 1 mg/day may<br />

represent the minimal requirement.<br />

There is recent evidence that interactions<br />

between zinc <strong>and</strong> <strong>copper</strong>, <strong>and</strong> between<br />

molybdenum <strong>and</strong> <strong>copper</strong> can seriously in<br />

terfere with absorption <strong>and</strong>/or utilization<br />

<strong>of</strong> <strong>copper</strong> in man, as is well known to be<br />

true <strong>of</strong> domestic <strong>and</strong> laboratory animals.<br />

ACKNOWLEDGMENTS<br />

Preparation <strong>of</strong> this <strong>conspectus</strong> was car<br />

ried out under Contract No. E-13357-ARS-<br />

76 with the Nutrition Institute, United<br />

States Department <strong>of</strong> Agriculture. This is<br />

the last <strong>of</strong> a series <strong>of</strong> <strong>conspectus</strong>es by the<br />

Nutrition Institute, USDA, Beltsville, MD<br />

on the nutritional <strong>requirements</strong> <strong>of</strong> man for<br />

protein, amino acids, vitamin A, calcium,<br />

zinc, vitamin C, iron <strong>and</strong> folacin. All have<br />

been published in previous issues <strong>of</strong> The<br />

Journal <strong>of</strong> Nutrition. The Nutrition Insti<br />

tute wishes to acknowledge the great as<br />

sistance <strong>and</strong> cooperation <strong>of</strong> the Editors <strong>and</strong><br />

reviewers <strong>of</strong> The Journal <strong>of</strong> Nutrition in<br />

making the publication <strong>of</strong> these conspec<br />

tuses possible.<br />

The writer wishes to thank Drs. Walter<br />

Mertz, Robert D. Reynolds <strong>and</strong> G. Thomas<br />

Strickl<strong>and</strong> for their valued judgments <strong>and</strong><br />

constructive criticism <strong>of</strong> the manuscript,<br />

<strong>and</strong> Mrs. Shirley Cress for her patience <strong>and</strong><br />

painstaking preparation <strong>of</strong> the same. Trib<br />

ute is also paid to the late Dr. Isabel Irwin<br />

who, prior to her death March 25, 1975,<br />

had collected an extensive literature on the<br />

subject <strong>of</strong> this <strong>conspectus</strong>.<br />

LITERATURE CITED<br />

1. Abderhalden, E. (1900) Die Beziehungen<br />

des Eisens zur Blutbildung. Ztschr. ßiol.<br />

39, 482-523.<br />

2. Abood, L. G., Gibbs, F. A. & Gibbs, E.<br />

( 1957 ) Comparative study <strong>of</strong> blood ceruloplasmin<br />

in schizophrenia <strong>and</strong> other dis<br />

orders. A.M.A. Arch. Neurol. Psychiat. 77,<br />

643-645.<br />

3. Abraham, P. A. & Evans, J. L. (1972)<br />

Cytochrome oxidase activity <strong>and</strong> cardiac<br />

hypertrophy during <strong>copper</strong> depletion <strong>and</strong><br />

repletion. In: Trace Substances <strong>and</strong> Envi<br />

ronmental Health (Hemphill, D. D., ed. J,<br />

vol. V, pp. 335-347, Univ. Missouri, Colum<br />

bia.<br />

4. Adams, P. C., Str<strong>and</strong>, R. D., Bresnan, M. J.<br />

& Lucky, A. W. (1974) Kinky hair syn<br />

drome: serial study <strong>of</strong> radiological findings<br />

with emphasis on the similarity to the bat<br />

tered child syndrome. Radiol. 112, 401-407.<br />

5. Adelstein, S. J., Coombs, T. L. & Vallee, B.<br />

L. ( 1956 ) Metalloenzymes <strong>and</strong> myocardial<br />

infarction. I. The relation between serum<br />

<strong>copper</strong> <strong>and</strong> ceruloplasmin <strong>and</strong> its catalytic<br />

activity. New Engl. J. Med. 255, 105-109.<br />

6. Adelstein, S. J. & Vallee, B. L. (1961)<br />

Copper <strong>metabolism</strong>, in man. New Engl. I.<br />

Med. 265, 892-897; 941-946.<br />

7. Adelstein, S. J. & Vallee, B. L. (1962)<br />

Copper. In: Mineral Metabolism (Comar,<br />

C. L. & Bronner, F., eds.), vol. 2, part B,<br />

pp. 371-401, Academic Press, New York.<br />

8. Adolph, W. H. & Chou, T. (1933) Cop<br />

per in Chinese food materials. Chinese J.<br />

Physiol. 7, 185-188.<br />

9. Agarwal, A. K. (1975) Crippling cost <strong>of</strong><br />

India's big dam. New Scientist 65, 260-261.<br />

10. Agarwal, B. N., Bray, S. H., Bercz, P.,<br />

Plotzker, R. & Labovitz, E. (1975) Inef<br />

fectiveness <strong>of</strong> hemodialysis in <strong>copper</strong> sul<br />

phate poisoning. Nephron 15, 74-77.<br />

11. Aguilar, M. J., Chadwick, D. L., Okuyama,<br />

K. & Kamoshita, S. (1966) Kinky hair<br />

disease. 1. Clinical <strong>and</strong> pathological features.<br />

J. Neuropath. & Exper. Neurol. 25, 507-<br />

522.<br />

12. Ahlgren,<br />

Menkes' kinky<br />

P. &<br />

hair<br />

Vestermark,<br />

disease. Neuroradiol.<br />

S. (1977)<br />

13,<br />

159-163.<br />

13. Akerfeldt, S. (1957) Oxidation <strong>of</strong> N.Ndimethyl-p-phenylenediamine<br />

by serum from<br />

patients with mental disease. Science 125,<br />

117-119.<br />

14. Albukerk, J. N. (1973) Wilson's disease<br />

<strong>and</strong> pregnancy. A case report. Fértil.Steril.<br />

24, 494-497.<br />

15. Alex<strong>and</strong>er, F. W., Clayton, B. E. & Delves,<br />

H. T. (1974) Mineral <strong>and</strong> trace metal<br />

balances on children receiving normal <strong>and</strong><br />

synthetic diets. Quart. J. Med. 43, 89-111.<br />

16. Allen, K. G. D. & Klevay, L. M. (1978)<br />

Cholesterolemia <strong>and</strong> cardiovascular abnor<br />

malities in rats caused by <strong>copper</strong> deficiency.<br />

Atheroscler. 29, 81-93.<br />

17. Al-Rashid, R. A. & Spangler, J. (1971)<br />

Neonatal <strong>copper</strong> deficiency. New Engl. J.<br />

Med. 285, 841-843.<br />

18. American Academy <strong>of</strong> Pediatrics, Committee<br />

on Nutrition ( 1976 ) Commentary on<br />

breast feeding <strong>and</strong> infant formulas, includ<br />

ing proposed st<strong>and</strong>ards for formulas. Pedi<br />

atrics 57, 278-285.<br />

19. American Academy <strong>of</strong> Pediatrics, Committee<br />

on Nutrition ( 1977 ) Nutritional needs <strong>of</strong><br />

low-birth-weight infants. Pediatrics 60, 519-<br />

530.<br />

20. Angel, C., Leach, B. E., Martens, S., Cohen,<br />

M. & Heath, R. G. (1957) Serum oxida<br />

tion tests in schizophrenic <strong>and</strong> normal sub<br />

jects. A.M.A. Arch. Neurol. Psychiat. 78,<br />

500-504.<br />

21.<br />

screening<br />

Aoki, T. &<br />

method<br />

Nakahashi,<br />

for Wilson's<br />

M. J1977)<br />

disease<br />

New<br />

<strong>and</strong><br />

Menkes' kinky-hair disease. Lancet 2, 1140.<br />

22. Arachi, H., Tornii, S. & Mega, T. (1974)<br />

Studies on the <strong>copper</strong> in the human serum<br />

<strong>and</strong> organs. J. Nara. Med. Assn. 25, 171-<br />

179.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2040 KARL E. MASON<br />

23. Ardelt, W., Dehnhard, F. & Shussler, J.<br />

( 1973 ) Serumkupfer und hitzestabile alka<br />

lische Phosphatase bei normaler und patho<br />

logischer Schwangerschaft. Ztschr. Geburt<br />

shilfe Perinatal. 177, 188-192.<br />

24. Arima, M. & Komiya, K. (1970) Preven<br />

tion <strong>of</strong> Wilson's disease: a long term followup.<br />

Paediatr. Univ. Tokyo 18, 22-24.<br />

25. Ashkenazi, A., Levin, S., Djaldetti, M.,<br />

Fishel, E. & Benvenisti, D. (1973) The<br />

syndrome <strong>of</strong> neonatal <strong>copper</strong> deficiency.<br />

Pediatrics 52, 525-533.<br />

26. Asling, C. W. & Hurley, L. S. (1963) The<br />

influence <strong>of</strong> trace elements on the skeleton.<br />

Clin. Orthop. Related Res. 27, 213-262.<br />

27. Axtrup, S. (1946) The Blood Copper in<br />

Anaemias <strong>of</strong> Children with Special Reference<br />

to Premature Cases. P. H. Lindstedts Universitets-Bokh<strong>and</strong>el,<br />

Lund.<br />

28. Baerlocher, K., Nussbaumer, A., Werder,<br />

E. A. & Spycher, M. (1974) Menkes'<br />

kinky hair disease: confirmation <strong>of</strong> <strong>copper</strong><br />

deficiency. Pediat. Res. 8, 135.<br />

29. Bajpayee, D. P. (1975) Significance <strong>of</strong><br />

plasma <strong>copper</strong> <strong>and</strong> caeruloplasmin concen<br />

trations in rheumatoid arthritis. Ann. Rheum.<br />

Dis. 34, 163-165.<br />

30. Bakwin, R. M., Mosbach, E. H. & Bakwin,<br />

H. ( 1958 ) Ceruloplasmin activity in serum<br />

<strong>of</strong> children with schizophrenia. Pediatrics<br />

22, 905-909.<br />

31. Bakwin, R. M., Mosbach, E. H. & Bakwin,<br />

H. ( 1961 ) Concentration <strong>of</strong> <strong>copper</strong> in<br />

serum <strong>of</strong> children with schizophrenia. Pedi<br />

atrics 27, 642-644.<br />

32. Baldassi, G. ( 1940 ) Le funzioni biologiche<br />

del rame (Rassegna). Quad. Nutrizione 7,<br />

250-270.<br />

33. Baldi, E. M. & Gonzales-Somoza, E. ( 1957)<br />

Enfermedad de Wilson y ciclo gravidopuerperal.<br />

Obst. Ginecol. Latino-Amer. 15, 27-<br />

31.<br />

34. Barrass, B. C., Coult, D. B. & Pinder, R. M.<br />

( 1972 ) 3-Hydroxy-4-methoxyphenethylamine:<br />

the endogenous toxin <strong>of</strong> parkinsonism?<br />

J. Pharm. Pharmacol. 24, 499-501.<br />

35. Baum, & Seeliger (1898) Die chronische<br />

Kupfergiftung. Arch. Thierheilk. 24, 80-127.<br />

36. Beam, A. G. (1953) Genetic <strong>and</strong> bio<br />

chemical aspects <strong>of</strong> Wilson's disease. Am. J.<br />

Med. 15, 442-449.<br />

37. Beam, A. G. (1957) Wilson's disease.<br />

An inborn error <strong>of</strong> <strong>metabolism</strong> with multiple<br />

manifestations. Amer. J. Med. 22, 747-757.<br />

38. Beam, A. G. (1960) A genetical analysis<br />

<strong>of</strong> 30 families with Wilson's disease (hepato-<br />

lenticular degeneration). Ann. Hum. Genet.<br />

24, 33-43.<br />

39. Beam, A. G. & Kunkel, H. G. (1952) Bio<br />

chemical abnormalities in Wilson's disease.<br />

J. Clin. Invest. 31, 616.<br />

40. Beam, A. G. & Kunkel, H. G. (1954)<br />

Localization <strong>of</strong> MCu in serum fractions fol<br />

lowing oral administration: an alteration in<br />

Wilson's disease. Proc. Soc. Exp. Biol. &<br />

Med. 85, 44-48.<br />

41. Beam, A. G. & Kunkel, H. G. (1955)<br />

Metabolism studies in Wilson's disease using<br />

"Cu J. Lab. Clin. Med. 45, 623-631.<br />

42.<br />

L.<br />

Beckner,<br />

& O'Reilly,<br />

W. M.,<br />

S.<br />

Strickl<strong>and</strong>,<br />

(1969) External<br />

G. T., Leu<br />

gamma<br />

M<br />

scintillation<br />

<strong>and</strong> other<br />

counting<br />

sites in<br />

<strong>of</strong> "7Cu over<br />

patients with<br />

the liver<br />

Wilson's<br />

disease, family members<br />

Nucí.Med. 10, 320.<br />

<strong>and</strong> controls. T.<br />

43. Beinert, H. (1966) Cytochrome c oxidase:<br />

present knowledge <strong>of</strong> the state <strong>and</strong> function<br />

<strong>of</strong> its <strong>copper</strong> components. In: The Biochem<br />

istry <strong>of</strong> Copper (Peisach, J., Aisen, P. &<br />

Blumberg, W. E., eds.), pp. 213-234, Aca<br />

demic Press, New York.<br />

44. Beisel, W. R. & Pekarek, R.<br />

Acute stress <strong>and</strong> trace element<br />

Internat. Rev. Neurobiol. Suppl.<br />

S. (1972)<br />

<strong>metabolism</strong>.<br />

1, 53-82.<br />

45. Bergstrom,<br />

S. (1972)<br />

K., Bloomstr<strong>and</strong>, R. & Jacobson,<br />

Long-term complete intravenous<br />

nutrition<br />

118-149.<br />

in man. Nutr. Metab. 14, (Suppl.),<br />

46. Bickel, H., Neale, F. C. & Hall, G. (1957)<br />

A clinical <strong>and</strong> biochemical study <strong>of</strong> hepatolenticular<br />

degeneration (Wilson's disease)<br />

Quart. J. Med. 26, 527-558.<br />

47. Bihl, J. H. (1959) The effect <strong>of</strong> preg<br />

nancy<br />

son's disease).<br />

on hepatolenticular<br />

Report <strong>of</strong><br />

degeneration<br />

a case. Amer.<br />

(Wil<br />

J.<br />

Obst. & Gynecol. 78, 1182-1188.<br />

48. Billingham, M. E. J. & Gordon, A. H.<br />

( 1976 ) The role <strong>of</strong> the acute phase reac<br />

tions in inflammation. Agents Actions 6,<br />

195-199.<br />

49. Billings, D. M. & Degnan, M. (1971)<br />

Kinky hair syndrome. A new case <strong>and</strong> a re<br />

view. Am. J. Dis. Child. 121, 447-449.<br />

50. Bloomfield, J. (1969) Copper<br />

tion in exchange transfusions.<br />

731-732.<br />

contamina<br />

Lancet 1.<br />

51. Bloomfield, J., Dixon, S. R. & McCredie, D.<br />

A. (1971) Potential hepatotoxicity <strong>of</strong> cop<br />

per in recurrent hemodialysis. Arch. Int. Med.<br />

128, 555-560.<br />

52. Bloomfield, J., McPherson, J. & George, C.<br />

R. P. (1969) Active uptake <strong>of</strong> <strong>copper</strong><br />

<strong>and</strong> zinc during haemodialysis. Brit. Med. J.<br />

2, 141-145.<br />

53. Bober-V<strong>and</strong>zhura, I. P. (1968) Copper<br />

<strong>metabolism</strong> in atherosclerotic<br />

Arh. 40, 64-66 (Russian).<br />

patients. Terap.<br />

54. Borglin, N. E. & Heijkenskjold, F. (1967)<br />

Studies on serum <strong>copper</strong> in pregnancy. Acta<br />

Obstet. Gynecol. Sc<strong>and</strong>. 46, 119-125.<br />

55. Bourgeois, J., Galy, G., Baltassat, P. &<br />

Béthenod,M. ( 1974 ) Maladie de Menkes.<br />

Etude métabolismedu cuivre dans une ob<br />

servation personnelle. Pédiatrie29, 573-594.<br />

56. Bourgeois, J., Vittori, F., Collombel, C. &<br />

Béthenod,M.<br />

Présentation clinique<br />

(1974)<br />

d'une<br />

^ Maladie<br />

observation<br />

de Menkes.<br />

per<br />

sonelle. Pediatrie 29, 561-572.<br />

56a. Bowering, J., Sanchez, A. M. & Irwin, M. I.<br />

(1976) A <strong>conspectus</strong> <strong>of</strong> research on iron<br />

<strong>requirements</strong> <strong>of</strong> man. J. Nutr. 106, 985-1074.<br />

57. Bozian, R. C. & Shearer, C. (1976) Cop<br />

per, zinc <strong>and</strong> manganese content <strong>of</strong> four<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2041<br />

ammo acid <strong>and</strong> protein hydrolysate prepa<br />

rations. Am. J. Clin. Nutr. 29, 1331-1332.<br />

58. Brady, F. O., Monaco, M. E., Forman, H. J.,<br />

Schutz, G. & Feigelson, P. (1972) On<br />

the role <strong>of</strong> <strong>copper</strong> in activation <strong>of</strong> <strong>and</strong> cataly<br />

sis by tryptophane -2,3-dioxygenase. J. Biol.<br />

Chem. 247, 7915-7922.<br />

59. Bray, P. F. (1965) Sex-linked neurodegenerative<br />

disease associated with monilethrix.<br />

Pediatrics 36, 417-420.<br />

60. Bremner, I. ( 1974 ) Heavy metal toxicities.<br />

Quart. Rev. Biophys. 7, 75-124.<br />

61. Brendstrup, P. (1953) Serum <strong>copper</strong>,<br />

serum iron <strong>and</strong> total iron-binding capacity<br />

<strong>of</strong> serum in acute <strong>and</strong> chronic infections.<br />

Acta Med. Sc<strong>and</strong>. 145, 315-325.<br />

62. Brendstrup, P. (1953) Serum iron, total<br />

iron-binding capacity <strong>of</strong> serum <strong>and</strong> serum<br />

<strong>copper</strong> in acute hepatitis. Acta Med. Sc<strong>and</strong>.<br />

146, 107-113.<br />

63. Brenner, W. (1948) Beiträgezur Kenntris<br />

des Eisen-und Kupferst<strong>of</strong>fwechsels im Kinde<br />

salter. Serumeisen und Serumkupfer bei<br />

akuten und chronischen Infektionen. Ztschr.<br />

Kinderheil. 66, 14-35.<br />

64. Brewer, G. J., Shoomaker, E. B., Leichtman,<br />

D. A., Kruckeberg, W. C., Brewer, L. F. &<br />

Meyers, N. ( 1977 ) The use <strong>of</strong> pharmaco<br />

logical doses <strong>of</strong> zinc in the treatment <strong>of</strong> sickle<br />

cell anemia. In: Zinc Metabolism: Current<br />

Aspects in Health <strong>and</strong> Disease (Brewer, G.<br />

J. & Prasad, A. A., eds.), pp. 241-258, A. R.<br />

Liss, Inc., New York.<br />

65. Broman, L. (1964) Chromatographie <strong>and</strong><br />

magnetic studies on human ceruloplasmin.<br />

Acta Soc. Med. Upsalien 69 (Suppl. 7), 1-<br />

85.<br />

66. Broviac, I. W. & Scribner, B. H. (1974)<br />

Prolonged parenteral nutrition in the home.<br />

Surg. Gyn. Obst. 139, 24-28.<br />

67. Brown, E. D., Howard, M. P. & Smith, J. C.,<br />

Jr. ( 1977 ) The <strong>copper</strong> content <strong>of</strong> regular,<br />

vegetarian <strong>and</strong> renal diets. Federation Proc.<br />

36, 1122.<br />

68. Brown, F. C. & Ward, D. N. (1959)<br />

Studies on mammalian tyrosinase. II Chemi<br />

cal <strong>and</strong> physical properties <strong>of</strong> fractions puri<br />

fied by chromatography. Proc. Exp. Biol.<br />

Med. 100, 701-704.<br />

69. Brückmann, G. & Zondek, S. G. (1939)<br />

Iron, <strong>copper</strong> <strong>and</strong> manganese in human organs<br />

at various ages. Biochem. J. 33, 1845-1857.<br />

70. Brunia, C. H. M. & Buyze, G. (1972)<br />

Serum <strong>copper</strong> levels <strong>and</strong> epilepsy. Epilepsia.<br />

13, 621-625.<br />

71. Buck, W. A. & Ewan, R. C. (1973) Toxi<br />

cology <strong>and</strong> adverse effects <strong>of</strong> mineral im<br />

balance. Clin. Toxicol. 6, 459-485.<br />

72. Bucknall, W. E., Haslam, R. H. A. & Holtzman,<br />

N. A. (1973) Kinky hair syndrome:<br />

response to <strong>copper</strong> therapy. Pediatrics 52,<br />

653-657.<br />

73. Buffoni, F. & Blaschko, H. (1964) Benzylamine<br />

oxidase <strong>and</strong> histaminase: purification<br />

<strong>and</strong> crystallization <strong>of</strong> an enzyme from pig<br />

plasma. Proc. R. Soc. London Ser. B 161,<br />

153-167.<br />

74. Bühler,H. O. & Kägi,H. R. ( 1974 ) Hu<br />

man hepatic metallothioneins. FEBS Letters<br />

39, 229-234.<br />

75. Burch, R. E., Hahn, H. K. J. & Sullivan, J.<br />

F. (1975) Newer aspects <strong>of</strong> the roles <strong>of</strong><br />

zinc, manganese <strong>and</strong> <strong>copper</strong> in human nu<br />

trition. Clin. Chem. 21, 501-520.<br />

76. Burger, F. J. (1974) Changes in the traceelement<br />

concentration in the sera <strong>and</strong> hair<br />

<strong>of</strong> kwashiorkor patients. In: Trace Element<br />

Metabolism in Animals—2 ( Hoekstra, W. G.,<br />

Suttie, J. W., Ganther, H. E. & Mertz, W.,<br />

eds.), pp. 671-674, University Park Press,<br />

Baltimore.<br />

77. Burrows, S. & Pekala, B. (1971) Serum<br />

<strong>copper</strong> <strong>and</strong> ceruloplasmin in pregnancy.<br />

Amer. J. Obstet. & Gynecol. 109, 907-909.<br />

78. Bush, J. A. (1956) The role <strong>of</strong> trace ele<br />

ments in hemopoiesis <strong>and</strong> in the therapy <strong>of</strong><br />

anemia. Pediatrics 17, 586-595.<br />

79. Bush, J. A., Mahoney, J. P., Gubler, C. J.,<br />

Cartwright, G. E. & Wintrobe, M. M.<br />

(1956) Studies on <strong>copper</strong> <strong>metabolism</strong>.<br />

XXI. The transfer <strong>of</strong> radio<strong>copper</strong> between<br />

erythrocyte <strong>and</strong> plasma. J. Lab. Clin. Med.<br />

47, 898-906.<br />

80. Bush, J. A., Mahoney, J. P., Markowitz, H.,<br />

Gubler, C. J., Cartwright, G. E. & Wintrobe,<br />

M. M. ( 1955 ) Studies on <strong>copper</strong> metab<br />

olism. XVI. Radioactive studies in normal<br />

subjects <strong>and</strong> in patients with hepatolenticular<br />

degeneration. J. Clin. Invest. 34, 1766-<br />

1778.<br />

81. Bustamante Bustamante, J., Martin Mateo,<br />

M. C. & DeQuiros, F. B. (1975) Estudio<br />

del cobre, ceruloplasmina y cinc en relación<br />

con el <strong>metabolism</strong>o de los lipidos en arterioscleroticos.<br />

Rev. Clin. Española 139, 243-<br />

246.<br />

82. Bustamante Bustamante, J., Martin Mateo,<br />

M. C., DeQuiros, F. B. & Manchado, O. O.<br />

( 1977 ) Valores séricosde cobre, cerulo<br />

plasmina y lipidos en ancianos: Estudio<br />

comparativo con enfermos arterioscleróticos.<br />

Rev. Clin. Español 146, 27-30.<br />

83. Butler, E. J. & Newman, G. E. ( 1956) The<br />

urinary excretion <strong>of</strong> <strong>copper</strong> <strong>and</strong> its concen<br />

tration in the blood <strong>of</strong> normal human adults.<br />

J. Clin. Pathol. 9, 157-161.<br />

84. Butler, L. C. & Daniel, J. M. (1973) Cop<br />

per <strong>metabolism</strong> in young women fed two<br />

levels <strong>of</strong> <strong>copper</strong> <strong>and</strong> two protein sources.<br />

Am. J. Clin. Nutr. 26, 744-749.<br />

85. Butt, E. M., Nusbaum, R. E., Gilmour, T. C.<br />

& DiDio, S. L. (1958) Trace metal pat<br />

terns in disease states. II. Copper storage<br />

diseases,<br />

rhosis, Wilson's<br />

with consideration<br />

disease, <strong>and</strong><br />

<strong>of</strong><br />

hepatic<br />

juvenile<br />

<strong>copper</strong><br />

cir<br />

<strong>of</strong> the newborn. Am. J. Clin. Pathol. 30,<br />

479-497.<br />

86. Butterworth, C. E., Gubler, C. J., Cartwright,<br />

G. E. & Wintrobe, M. M. (1958) Studies<br />

on <strong>copper</strong> <strong>metabolism</strong>. XXVI Plasma <strong>copper</strong><br />

in patients with tropical sprue. Proc. Soc.<br />

Exp. Biol. Med. 98, 594-597.<br />

87. Cairns, J. E., Williams, H. P. & Walshe,<br />

J. M. (I969) "Sunflower cataract" in<br />

Wilson's disease. Brit. Med. J. 3, 95-96.<br />

88. Camus, J. P., Bénichou, C., Guillien, P.,<br />

Crouzet, J. & Lièvre, J. A. (1971) Traite-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2042 KARL E. MASON<br />

ment de la polyarthrite rhumatoide com<br />

mune par la D-pénicillamine. Rev. Rhum.<br />

Mal. Osteoartic. 38, 809-820.<br />

89. Canelas, H. M., Assis, L. M., De Jorge, F.<br />

B., Tolosa, A. P. M. & Cintra, A. B. U.<br />

( 1964 ) Disorders <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> in<br />

epilepsy. Acta Neurol. Sc<strong>and</strong>. 40, 97-105.<br />

90. Canelas, H. M., De Jorge, F. B. & Tognola,<br />

W. A. (1967) Metabolie balances <strong>of</strong> cop<br />

per in patients with hepatolenticular degen<br />

eration submitted to vegetarian <strong>and</strong> mixed<br />

diets. J. Neurol. Neurosurg. Psychiat. 30,<br />

371-373.<br />

91. Cantarutti, F. & Panzion, F. (1975) Le<br />

modificazioni della cupremia nal periodo<br />

postnatale. Lattente 25, 721-723.<br />

92. Carlton, W. W. & Kelly, W. A. (1969)<br />

Neural lesions in the <strong>of</strong>fspring <strong>of</strong> female<br />

rats fed a <strong>copper</strong>-deficient diet. J. Nutr.<br />

94, 42-52.<br />

93. Carnes, W. H. (1971) Role <strong>of</strong> <strong>copper</strong> in<br />

connective tissue <strong>metabolism</strong>. Federation<br />

Proc. 30, 995-1000.<br />

94. Carnes, W. H., Coulson, W. F., Smith, D.<br />

W. & Weissman, N. (1968) The role <strong>of</strong><br />

<strong>copper</strong> in the circulatory system. In: Trace<br />

Substances in Environmental Health II<br />

(Hemphill, D. D., éd.),pp. 29-40, Univ. <strong>of</strong><br />

Missouri, Columbia.<br />

95. Carrico, R. J. & Deutsch, H. F. (1969)<br />

Isolation <strong>of</strong> human hematocuprein <strong>and</strong> cerebrocuprein.<br />

Their identity with erythrocuprein.<br />

J. Biol. Chem. 244, 6087-6093.<br />

96. Carrico, R. J. & Deutsch, H. F. (1970)<br />

The presence <strong>of</strong> zinc in human cytocuprein<br />

<strong>and</strong> some properties <strong>of</strong> the apoprotein. J.<br />

Biol. Chem. 245, 723-727.<br />

97. Carr-Saunders, E. & Laurence, B. M. (1965)<br />

Wilson's disease presenting as an acute<br />

hemolytic anemia. Proc. Roy. Soc. Med. 58,<br />

614-615.<br />

98. Carruthers, M. E., Hobbs, C. B. & Warren,<br />

R. L. ( 1966 ) Raised serum <strong>copper</strong> <strong>and</strong><br />

caeruloplasmin levels in subjects taking oral<br />

contraceptives. J. Clin. Pathol. 29, 498-500.<br />

99. Cartwright, G. E. (1947) Dietary factors<br />

concerned in erythropoiesis. IV. Minerals.<br />

Blood 2, 256-298.<br />

100. Cartwright, G. E. (1950) Copper metab<br />

olism in human subjects. In: A Symposium<br />

on Copper Metabolism (McElroy, W. D. &<br />

Glass, B., eds. ), pp. 274-314, Johns Hop<br />

kins Press, Baltimore.<br />

101. Cartwright, G. E. (1955) The relation<br />

ship <strong>of</strong> <strong>copper</strong>, cobalt <strong>and</strong> other trace ele<br />

ments to hemopoiesis. Am. J. Clin. Nutr. 3,<br />

11-17.<br />

102. Cartwright, G. E., Hodges, R. E., Gubler,<br />

C. J., Mahoney, J. P., Daum, K., Wintrobe,<br />

M. M. & Bean, W. B. (1954) Studies on<br />

<strong>copper</strong> <strong>metabolism</strong>. XIII Hepatolenticular<br />

degeneration. J. Clin. Invest. 33, 1487-1501.<br />

103. Cartwright, G. E., Huguley, C. M. Jr.,<br />

Ashenbrucker, H., Fay, J. & Wintrobe, M.<br />

W. ( 1948 ) Studies on free erythrocyte<br />

protoporphyrin, plasma iron <strong>and</strong> plasma cop<br />

per in normal <strong>and</strong> anemic subjects. Blood 3,<br />

501-528.<br />

104. Cartwright, G. E., Markowitz, H., Shields,<br />

G. S. & Wintrobe, M. M. (1960) Studies<br />

on <strong>copper</strong> <strong>metabolism</strong>. XXIX. A critical<br />

analysis <strong>of</strong> serum <strong>copper</strong> <strong>and</strong> ceruloplasmin<br />

concentrations in normal subjects, patients<br />

with Wilson's disease <strong>and</strong> relatives <strong>of</strong> pa<br />

tients with Wilson's disease. Am. J. Med.<br />

28, 555-563.<br />

105. Cartwright, G. E. & Wintrobe, M. M. ( 1964)<br />

Copper <strong>metabolism</strong> in normal subjects. Am.<br />

J. Clin. Nutr. 14, 224-232.<br />

106. Cartwright, G. E. & Wintrobe, M. M. ( 1964)<br />

The question <strong>of</strong> <strong>copper</strong> deficiency in man.<br />

Am. J. Clin. Nutr. 15, 94-110.<br />

107. Cavell, P. A. & Widdowson, E. M. (1964)<br />

Intakes <strong>and</strong> excretions <strong>of</strong> iron, <strong>copper</strong>, <strong>and</strong><br />

zinc in the neonatal period. Arch. Dis. Child.<br />

39, 496-501.<br />

108. Chang, I. C., Lee, T. P. & Matrone, G.<br />

( 1975) Development <strong>of</strong> ceruloplasmin in<br />

pigs during the neonatal period. J. Nutr.<br />

105, 624-630.<br />

109. Chang, I. C., Milholl<strong>and</strong>, D. C. & Matrone,<br />

G. (1976) Controlling factors in the de<br />

velopment <strong>of</strong> ceruloplasmin in pigs during<br />

the neonatal growth period. J. Nutr. 206,<br />

1343-1350.<br />

110. Chappell, W. R. & Peterson, K. K. (1976)<br />

Molybdenum in the Environment, vol. 1,<br />

Dekker, New York.<br />

111. Chatterji, S. K. & Ganguly, H. D. (1950)<br />

Copper in human urine <strong>and</strong> faeces. Indian<br />

J. Med. Res. 38, 303-314.<br />

112. Chawla, S. C. & Mehta, S. P. (1973) A<br />

study <strong>of</strong> host <strong>and</strong> environmental factors in<br />

cases <strong>of</strong> accidental poisoning admitted in<br />

Irwin hospital. Indian J. Med. Res. 61, 724-<br />

731.<br />

113. Ch'en, P. ( 1957 ) Abnormalities <strong>of</strong> <strong>copper</strong><br />

<strong>metabolism</strong> in Wilson's disease. A prelimi<br />

nary report. Chinese Med. J. 75, 917-924.<br />

114. Chiossi, F. M., Bertolini, A. & Guarino, M.<br />

(1977) Aspetti angiografiei ed istologici<br />

della malattia di Menkes. Gasimi 9, 65-70.<br />

115. Chou, T. & Adolph, W. H. (1935) Copper<br />

<strong>metabolism</strong> in man. Biochem. J. 29, 476—479.<br />

116. Chou, W. S., Rucker, R. B., Savage, J. E. &<br />

O'Dell, B. L. (1970) Impairment <strong>of</strong> col<br />

lagen <strong>and</strong> elastin crosslinking by an amine<br />

oxidase inhibitor. Proc. Soc. Exp. Biol. Med.<br />

234, 1078-1082.<br />

117. Chou, W. S., Savage, J. E. & O'Dell, B. L.<br />

( 1968 ) Relation <strong>of</strong> monoamine oxidase<br />

activity <strong>and</strong> collagen crosslinking in <strong>copper</strong>deficient<br />

<strong>and</strong> control tissues. Proc. Soc. Exp.<br />

Biol. Med. 228, 948-952.<br />

118. Chowdhury, A. K. R., Ghosh, S. & Pal, D.<br />

( 1961 ) Acute <strong>copper</strong> sulphate poisoning. J.<br />

Ind. Med. Assn. 36, 330-336.<br />

119. Chugh, T. D., Gulati, R. C. & Gupta, S. P.<br />

( 1973 ) A study <strong>of</strong> serum <strong>copper</strong> <strong>and</strong><br />

ceruloplasmin in normal healthy individuals.<br />

Indian J. Med. Sci. 27, 309-312.<br />

120. Chuttani, H. K., Gupta, P. S., Gulati, S. &<br />

Gupta, D. N. (1965) Acute <strong>copper</strong> sulfate<br />

poisoning. Am. J. Med. 39, 849-854.<br />

121. Cohen, S. R. (1974) A review <strong>of</strong> the<br />

health hazards from <strong>copper</strong> exposure. J.<br />

Occup. Med. 26, 621-624.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2043<br />

122. Consolazio, C. F., Nelson, R. A., Matoush,<br />

L. O., Hughes, R. C. & Urone, P. (1964)<br />

The Trace Mineral Losses In Sweat, pp. 1-<br />

14, U.S. Army Med. Res. Nutr. Lab. Report<br />

No. 284.<br />

123. Cooper, A. M., Eckhardt, R. D., Faloon, W.<br />

W. & Davidson, C. S. (1950) Investiga<br />

tion <strong>of</strong> the aminoaciduria in Wilson's disease<br />

(hepatolenticular degeneration): demonstra<br />

tion <strong>of</strong> a defect in renal function. J. Clin.<br />

Invest. 29, 265-278.<br />

124. Cordano, A. (1974) The role played by<br />

<strong>copper</strong> in the physiopathology <strong>and</strong> nutrition<br />

<strong>of</strong> the infant <strong>and</strong> the child. Ann. Nestle 33,<br />

2-16.<br />

125. Cordano, A. (1978) Copper deficiency in<br />

clinical medicine. In: Zinc <strong>and</strong> Copper in<br />

Clinical Medicine (Hambidge, K. M. &<br />

Nichols, B. F., Jr., eds.), pp. 119-126,<br />

Spectrum, New York.<br />

126. Cordano, A., Baertl, I. M. & Graham, G. G.<br />

( 1964 ) Copper deficiency in infancy.<br />

Pediatrics 34, 324-336.<br />

127. Cordano, A. & Graham, G. G. (1966)<br />

Copper deficiency complicating severe<br />

chronic intestinal malabsorption. Pediatrics<br />

38, 596-604.<br />

128. Cordano, A., Placko, R. P. & Graham, G. G.<br />

(1966) Hypocupremia <strong>and</strong> neutropenia in<br />

<strong>copper</strong> deficiency. Blood 28, 280-283.<br />

129. Coulson, W. F. & Carnes, W. H. (1963)<br />

Cardiovascular studies on <strong>copper</strong>-deficient<br />

swine. V. The histogenesis <strong>of</strong> the coronary<br />

artery lesions. Am. J. Pathol. 43, 945-954.<br />

130. Coulson, W. F. (1972) Copper deficiency,<br />

with special reference to the cardiovascular<br />

system. In: Methods <strong>and</strong> Achievements in<br />

Experimental Pathology (Bajusz, E. & Jas<br />

min, G., eds.), vol. 6, pp. 111-138, Karger,<br />

Basel.<br />

131. Cox, D. W. (1966) Factors influencing<br />

serum ceruloplasmin levels in normal indi<br />

viduals. J. Lab. Clin. Med. 68, 893-904.<br />

132. Crampton, R. F., Matthews, D. M. & Poisner,<br />

R. (1965) Observations on the mechanism<br />

<strong>of</strong> absorption <strong>of</strong> <strong>copper</strong> by the small intes<br />

tine. J. Physiol. (London) 178, 111-126.<br />

133. Crouzet, J., Nafziger, J., Guillien, P., Camus,<br />

J.-P. & Lièvre, J.-A. (1973) Étudedu<br />

métabolisme du cuivre dans la polyarthrite<br />

rheumatoide et de l'influence du traitement<br />

par la D-pénicillamine. Rev. Rhuma. 40,<br />

485-489.<br />

134. Cumings, J. N. (1948) The <strong>copper</strong> <strong>and</strong><br />

iron content <strong>of</strong> brain <strong>and</strong> liver in the normal<br />

<strong>and</strong> in hepato-lenticular degeneration. Brain<br />

71, 410-415.<br />

135. Cumings, J. N. (1951) The effects <strong>of</strong><br />

B.A.L. in hepatolenticular degeneration.<br />

Brain 74, 10-22.<br />

136. Cumings, J. N. ( 1954 ) Copper storage in<br />

hepatolenticular degeneration <strong>and</strong> allied dis<br />

eases. Proc. Roy. Soc. Med. 47, 152-154.<br />

137. Cumings, J. N. (1959) Heavy Metals <strong>and</strong><br />

the Brain. Part 1: Copper: hepatolenticular<br />

degeneration, pp. 1-74, Blackwell Sci. Pub.,<br />

Oxford.<br />

138. Cumings, J. N. (1968) Trace metals in<br />

the brain <strong>and</strong> in Wilson's disease. J. Clin.<br />

Pathol. 21, 1-7.<br />

139. Cunningham, I. J. (1931) Some biochemi<br />

cal <strong>and</strong> physiological aspects <strong>of</strong> <strong>copper</strong> in<br />

animal nutrition. Biochem. J. 25, 1267-1294<br />

140. Cunningham, I. J. (1950) Copper <strong>and</strong><br />

molybdenum in relation to diseases <strong>of</strong> cattle<br />

<strong>and</strong> sheep in New Zeal<strong>and</strong>. In: A Symposium<br />

on Copper Metabolism (McElroy, W. D. &<br />

Glass, B., eds.), pp. 246-272, Johns Hop<br />

kins Univ. Press, Baltimore.<br />

141. Curzon, G. & O'Reilly, S. (1960) A<br />

coupled iron-caeruloplasmin oxidation sys<br />

tem. Biochem. Biophys. Res. Comm. 2, 284-<br />

286.<br />

142. Daniels, A. L. & Wright, O. E. (1934)<br />

Iron <strong>and</strong> <strong>copper</strong> retentions in young chil<br />

dren. J. Nutr. 8, 125-138.<br />

143. Danks, D. M. (1975) Steely hair, mottled<br />

mice <strong>and</strong> <strong>copper</strong> <strong>metabolism</strong>. New Engl. J.<br />

Med. 293, 1147-1149.<br />

144. Danks, D. M. (1977) Copper transport<br />

<strong>and</strong> utilisation in Menkes' syndrome <strong>and</strong> in<br />

mottled mice. Inorgan. Persp. Biol. Med. I,<br />

73-100.<br />

145. Danks, D. M., Campbell, P. E., Stevens,<br />

B. J, Mayne, V. & Cartwright, E. (1972)<br />

Menkes's kinky hair syndrome. An inherited<br />

defect in <strong>copper</strong> absorption with widespread<br />

effects. Pediatrics 50, 188-201.<br />

146. Danks, D. M., Cartwright, E. & Stevens,<br />

B. J. (1973) Menkes' steely-hair (kinky<br />

hair) disease. Lancet 1, 891.<br />

147. Danks, D. M., Cartwright, E., Stevens,<br />

B. I. & Townley, R. R. W. (1973) Menkes'<br />

kinky hair disease: further definition <strong>of</strong> the<br />

defect in <strong>copper</strong> transport. Science 179,<br />

1140-1142.<br />

148. Danks, D. M., Stevens, B. J., Campbell, P.<br />

E., Gillespie, J. M., Walker-Smith, J., Blomfield,<br />

J. & Turner, B. (1972) Menkes'<br />

kinky-hair syndrome. Lancet 1, 1100-1103.<br />

149. Davies, N. T. (1974) Recent studies <strong>of</strong><br />

antagonist interactions in the aetiology <strong>of</strong><br />

trace element deficiency <strong>and</strong> excess. Proc.<br />

Nutr. Soc. 33, 293-298.<br />

150. Davis, G. K. (1950) The influence <strong>of</strong><br />

<strong>copper</strong> on the <strong>metabolism</strong> <strong>of</strong> phosphorus <strong>and</strong><br />

molybdenum. In: A Symposium on Copper<br />

Metabolism (McElroy, W. D. & Glass, G.,<br />

eds.), pp. 216-229, J. Hopkins Press, Balti<br />

more.<br />

151. Dawson, C. R., Strothkamp, K. G. & Krul,<br />

K. G. (1975) Ascorbate oxidase <strong>and</strong> re<br />

lated <strong>copper</strong> proteins. Ann. N.Y. Acad. Sci.<br />

258, 209-220.<br />

152. Dawson, E. B., Clark, R. R. & McGanity,<br />

W. J. (1969) Plasma vitamins <strong>and</strong> trace<br />

metal changes during teen-age pregnancy.<br />

Am. J. Obstet. Gynecol. 104, 953-958.<br />

153. Dawson, J. B., Ellis, D. J. & Newton-John,<br />

H. ( 1968 ) Direct estimation <strong>of</strong> <strong>copper</strong> in<br />

serum <strong>and</strong> urine by atomic absorption spectroscopy.<br />

Clin. Chim. Act. 21, 33-42.<br />

154. De, H. N. ( 1949) Copper <strong>and</strong> manganese<br />

<strong>metabolism</strong> with typical Indian dietaries<br />

<strong>and</strong> assessment <strong>of</strong> their requirement for<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2044 KARL E. MASON<br />

the Indian adult. Indian J. Med. Res. 37,<br />

301-309.<br />

155. Deiss, A., Lee, G. R. & Cartwright, G. E.<br />

( 1970 ) Hemolytic anemia in Wilson's dis<br />

ease. Ann. Intern. Med. 73, 413-418.<br />

156. Deiss, A., Lynch, R. E., Lee, G. R. & Cartwright,<br />

G. E. (1971) Long term therapy<br />

<strong>of</strong> Wilson's disease. Ann. Intern. Med. 75,<br />

57-65.<br />

157. De Jorge, F. B., Canelas, H. M., Dias, J. C.<br />

& Cury, L. ( 1964 ) Studies on <strong>copper</strong><br />

<strong>metabolism</strong>. III. Copper contents <strong>of</strong> saliva<br />

<strong>of</strong> normal subjects <strong>and</strong> <strong>of</strong> salivary gl<strong>and</strong>s<br />

<strong>and</strong> pancreas <strong>of</strong> autopsy material. Clin.<br />

Chim. Acta 9, 148-150.<br />

158. De Jorge, F. B., Delascio, D. & Antunes, M.<br />

L. ( 1965 ) Copper <strong>and</strong> <strong>copper</strong> oxidase<br />

concentrations in the blood <strong>of</strong> normal preg<br />

nant women. Obstet. Gynecol. 26, 225-227.<br />

159. Dekaban, A. S., Aamodt, R., Rumble, W. F.,<br />

Johnston, G. S. & O'Reilly, S. (1975)<br />

Kinky hair disease. Study <strong>of</strong> <strong>copper</strong> metab<br />

olism with use <strong>of</strong> "Cu. Arch. Neurol. 32,<br />

672-675.<br />

160. Dekaban, A. S., O'Reilly, S., Aamodt, R. &<br />

Rumble, W. F. (1974) Study <strong>of</strong> <strong>copper</strong><br />

<strong>metabolism</strong> in kinky hair disease ( Menkes'<br />

disease ) <strong>and</strong> in hepatolenticular degenera<br />

tion (Wilson's disease) utilizing '"Cu <strong>and</strong><br />

radioactivity counting in the total body <strong>and</strong><br />

various tissues. Trans. Am. Neurol. Assoc.<br />

99, 106-109.<br />

161. Dekaban, A. S. & Steusing, J. K. (1974)<br />

Menkes' kinky hair disease treated with sub<br />

cutaneous <strong>copper</strong> sulphate. Lancet 2, 1523.<br />

162. Delves, H. T., Alex<strong>and</strong>er, F. W. & Lay, H.<br />

( 1973 ) Copper <strong>and</strong> zinc concentration in<br />

the plasma <strong>of</strong> leukaemic children. Brit. J.<br />

Haematol. 24, 525-531.<br />

163. Denny-Brown, D. & Porter, H. (1951)<br />

The effect <strong>of</strong> BAL ( 2,3-dimercaptopropanol )<br />

on hepatolenticular degeneration (Wilson's<br />

disease). New Engl. J. Med. 245, 917-926.<br />

164. Deosthale, Y. G. & Gopalan, C. (1974)<br />

The effect <strong>of</strong> molybdenum levels in sorghum<br />

(Sorghum vulgäre Pers.) on uric acid <strong>and</strong><br />

<strong>copper</strong> excretion in man. Brit. J. Nutr. 31,<br />

351-355.<br />

165. De Renzo, E. C. (1962) Molybdenum. In:<br />

Mineral Metabolism—An Advanced Treatise<br />

(Comar, C. L. & Bronner, F., eds.), vol. 2,<br />

part B, pp. 483-498, Academic Press, New<br />

York.<br />

166. Dieckmann, W. J. & Wegner, C. R. (1934)<br />

The blood in normal pregnancy. I. Blood <strong>and</strong><br />

plasma volumes. Arch. Intern. Med. 53, 71-<br />

86.<br />

167. Dokumov, S. I. (1968) Serum <strong>copper</strong> <strong>and</strong><br />

pregnancy. Am. J. Obstet. Gynecol. 101,<br />

217-222.<br />

168. Dorn, G., Neuhäuser, G., Heye, D. & Kielhorn,<br />

A. ( 1973 ) Das Kinky-Hair Syndrom<br />

von Menkes. Klin. Paediatr. 185, 480-489.<br />

169. Dowdy, R. P. (1969) Copper <strong>metabolism</strong>.<br />

Am. J. Clin. Nutr. 22, 887-892.<br />

170. Dreizen, S., Spies, H. A., Jr. & Spies, T. D.<br />

( 1952 ) The <strong>copper</strong> <strong>and</strong> cobalt levels <strong>of</strong><br />

human saliva <strong>and</strong> dental caries activity. J.<br />

Dent. Res. 31, 137-142.<br />

171. Drummond, J. C. (1925) The absorption<br />

<strong>of</strong> <strong>copper</strong> during the digestion <strong>of</strong> vegetables<br />

artificially coloured with <strong>copper</strong> salts. Ana<br />

lyst 50, 481-485.<br />

172. Du Bois, R. S., Giles, G., Rodgerson, D. O.,<br />

Lilly, J., Martineaux, G., Halgrimson, C. G.,<br />

Shroter, G., Starzl, T. E., Sternlieb, I. &<br />

Scheinberg, I. H. (1971) Orthotopic liver<br />

transplantation for Wilson's disease. Lancet<br />

l, 505-508.<br />

173. Dudrick, S. J. & Rhoads, J. E. (1971)<br />

New horizons for intravenous feeding. J. Am.<br />

Med. Assn. 225, 939-949.<br />

174. Dudrick, S. J. & Ruberg, R. L. (1971)<br />

Principles <strong>and</strong> practice <strong>of</strong> parenteral nutri<br />

tion. Gastroenterology 61, 901-910.<br />

175. Dudrick, S. J., Gr<strong>of</strong>f, B. & Wilmore, D. W.<br />

( 1969 ) Long term venous catherization in<br />

infants. Surg. Gynecol. Obstet. 129, SOS-<br />

SOS.<br />

176. Dudrick, S. J., Wilmore, D. W., Vars, H. M.<br />

& Rhoades, J. E. (1968) Long-term total<br />

parenteral nutrition with growth, develop<br />

ment <strong>and</strong> positive nitrogen balance. Surg.<br />

64, 134-142.<br />

177. Dunlap, W. M., James, G. W., Ill, & Hume,<br />

D. M. (1974) Anemia <strong>and</strong> neutropenia<br />

caused by <strong>copper</strong> deficiency. Ann. Intern.<br />

Med. 80, 470-476.<br />

178. Earl, C. J. (1961) Anatomical distribu<br />

tion <strong>of</strong> <strong>copper</strong> in human brain. In: Wilson's<br />

Disease, Some Current Concepts, (Walshe,<br />

J. M. & Cumings, J. N., eds.), pp. 18-23,<br />

Blackwell, Oxford.<br />

179. Earl, C. J., Moulton, M. J. & Seiverstone, B.<br />

( 1954 ) Metabolism <strong>of</strong> <strong>copper</strong> in Wilson's<br />

disease <strong>and</strong> in normal subjects: studies with<br />

Cu-64. Am. J. Med. 17, 205-213.<br />

180. Edozien, J. C. & Udeozo, I. O. K. (I960)<br />

Serum <strong>copper</strong>, iron <strong>and</strong> iron binding capacity<br />

in kwashiorkor. J. Trop. Pediat. 6, 60-64.<br />

181. Effkemann, G. & Rottger, H. (1950) Ãœber<br />

den Kupferhaushalt während der Schwanger<br />

schaft. Klin. Wochenschr. 28, 216-220.<br />

182. Eggleton, W. G. E. (1940) The zinc <strong>and</strong><br />

<strong>copper</strong> Contents <strong>of</strong> the organs <strong>and</strong> tissues <strong>of</strong><br />

Chinese subjects. Biochem. J. 34, 991-997.<br />

183. Eisner, P. & Hornykiewicz, O. (1954) Die<br />

beeinflussbarkeit der p-Polyphenoloxydaseaktivität<br />

des menschliehen Blutserums durch<br />

Sexualhormone. Archiv. Gynäkol. JÃ85,251-<br />

257.<br />

184. Eisner, P., Hornykiewicz, O., Linder, A. &<br />

Niebauer, G. ( 1953 ) Ãœberdas vorkommen<br />

einer polyphenoloxydase in serum nicht<br />

gravider und gravider frau. Wien. Klin.<br />

Wochenschr. 65, 193-195.<br />

185. Elvehjem, C. A. (1935) The biological<br />

significance <strong>of</strong> <strong>copper</strong> <strong>and</strong> its relation to iron<br />

<strong>metabolism</strong>. Physiol. Rev. 15, 471-507.<br />

186. Elvehjem, C. A., Duckies, D. & Mendenhal!,<br />

D. R. ( 1937 ) Iron versus iron <strong>and</strong> <strong>copper</strong><br />

in the treatment <strong>of</strong> anemia in infants. Am.<br />

J. Dis. Child. 53, 758-793.<br />

187. Elvehjem, C. A. & Hart, E. B. ( 1929) The<br />

relation <strong>of</strong> iron <strong>and</strong> <strong>copper</strong> to hemoglobin<br />

synthesis in the chick. J. Biol. Chem. 84,<br />

131-141.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2045<br />

188. Elvehjem, C. A. & Hart, E. B. (1932) The<br />

necessity <strong>of</strong> <strong>copper</strong> as a supplement to iron<br />

for hemoglobin formation in the pig. J. Biol.<br />

Chem. 95, 363-370.<br />

189. Elvehjem, C. A., Steenbock, H. & Hart, E. B.<br />

(1929) The effect <strong>of</strong> diet on the <strong>copper</strong><br />

content <strong>of</strong> milk. J. Biol. Chem. S3, 27-34.<br />

190. Engel, R. W., Price, N. O. & Miller, R. F.<br />

( 1967 ) Copper, manganese, cobalt, <strong>and</strong><br />

molybdenum balance in pre-adolescent girls.<br />

J. Nutr. 92, 197-204.<br />

191. Evans, G. W. (1971) Function <strong>and</strong> no<br />

menclature for two mammalian <strong>copper</strong> pro<br />

teins. Nutr. Rev. 29, 195-197.<br />

192. Evans, G. W. (1973) Copper homeostasis<br />

in the mammalian system. Physiol. Rev. 53,<br />

» 535-570.<br />

193. Evans, G. W. (1973) The biological regu<br />

lation <strong>of</strong> <strong>copper</strong> homeostasis in the rat.<br />

World Rev. Nutr. Diet. 17, 225-249.<br />

194. Evans, G. W. (1977) Metabolic disorders<br />

<strong>of</strong> <strong>copper</strong> <strong>metabolism</strong>. In: Advances in Nu<br />

tritional Research, (Draper, H. H., Broquist,<br />

H. P., Henderson, L. M., Kritchevsky, D.,<br />

Pitt, G. A. J., S<strong>and</strong>stead, H. H. & Somogyi,<br />

J. C., eds.), vol. 1, pp. 167-187, Plenum,<br />

New York.<br />

195. Evans, G. W. (1978) New aspects <strong>of</strong> the<br />

biochemistry <strong>and</strong> <strong>metabolism</strong> <strong>of</strong> <strong>copper</strong>. In:<br />

Zinc <strong>and</strong> Copper in Clinical Medicine<br />

(Hambidge, K. M. & Nichols, B. F., Jr., eds.),<br />

pp. 113-118, Spectrum, Jamaica, New York.<br />

196. Evans, G. E. & Cornatzer, W. E. (1971)<br />

Biliary <strong>copper</strong> excretion in the rat. Proc. Soc.<br />

Exp. Biol. Med. 136, 719-721.<br />

197. Evans, G. W., Dubois, R. S. & Hambidge,<br />

K.M. (1973) Wilson's disease: Identifica<br />

tion <strong>of</strong> an abnormal <strong>copper</strong> binding protein.<br />

Science 181, 1175-1176.<br />

198. Evans, G. W. & LeBlanc, F. N. (1976)<br />

Copper-binding protein in rat intestine:<br />

Amino acid composition <strong>and</strong> function. Nutr.<br />

Rep. Internat. 14, 281-288.<br />

199. Evans, G. W., Majors, P. F. & Cornatzer,<br />

W. E. (1970) Ascorbic acid interactions<br />

with metallothionein. Biochem. Biophys. Res.<br />

Comm. 41, 1244-1247.<br />

200. Evans, G. W. & Reis, B. L. ( 1978 ) Im<br />

paired <strong>copper</strong> homeostasis in neonatal male<br />

<strong>and</strong> adult female brindled (Mobr) mice. J.<br />

Nutr. 108, 554-560.<br />

201. Everson, G. J., Huang-Chan, C. T. & Wang,<br />

T. ( 1967 ) Copper deficiency in the guinea<br />

pig. J. Nutr. 43, 533-540.<br />

202. Everson, G. J., Shrader, R. E. & Wang, T.<br />

(1968) Chemical <strong>and</strong> morphological changes<br />

in the brains <strong>of</strong> <strong>copper</strong>-deficient guinea pigs.<br />

J. Nutr. 96, 115-125.<br />

203. Fairbanks, V. F. (1967) Copper sulphateinduced<br />

hemolytic anemia. Inhibition <strong>of</strong> glucose-6-phosphate<br />

dehydrogenase <strong>and</strong> other<br />

possible etiologic mechanisms. Ann. Intern.<br />

Med. 120, 428-432.<br />

204. Falkmer, S., Samuelson, G. & Sjolin, S.<br />

(1970) Penicillamine-induced normaliza<br />

tion <strong>of</strong> clinical signs, <strong>and</strong> liver morphology<br />

<strong>and</strong> histochemistry in a case <strong>of</strong> Wilson's dis<br />

ease. Pediatrics 45, 260-268.<br />

205. Fattah, M. M. A., Ibrahim, F. K., Ramadan<br />

M. A. & Sammour, M. B. (1976) Ceruloplasmin<br />

<strong>and</strong> <strong>copper</strong> level in maternal <strong>and</strong><br />

cord blood <strong>and</strong> in the placenta in normal<br />

pregnancy <strong>and</strong> in pre-eclampsia. Acta Obstet.<br />

& Gynecol. Sc<strong>and</strong>. 55, 383-385.<br />

206. Fay, J., Cartwright, G. E. & Wintrobe, M. M.<br />

(1949) Studies on free erythrocyte protoporphyrin,<br />

serum iron, serum iron-binding<br />

capacity <strong>and</strong> plasma <strong>copper</strong> during normal<br />

pregnancy. J. Clin. Invest. 28, 487-491.<br />

207. Fazekas, I. Gy., Romhányi, I. & Rengei, B.<br />

( 1963 ) Copper content <strong>of</strong> fetal organs.<br />

Kiserl. Orvostud. 15, 230-238. (Hungarian)<br />

208. Fell, G. S., Smith, H. & Howie, R. A. ( 1968)<br />

Neutron activation analysis for <strong>copper</strong> in<br />

biological material applied to Wilsons dis<br />

ease. J. Clin. Pathol. 21, 8-11.<br />

209. Filler, R. M., Eraklis, A. J., Rubin, V. G. &<br />

Das, J. B. (1970) Long-term total parenteral<br />

nutrition in infants. New Engl. J. Med.<br />

281, 589-594.<br />

210. Findlay, G. H. & Venter, I. J. (1958) An<br />

effect <strong>of</strong> pantothenic acid on serum <strong>copper</strong><br />

values in human pellagra. J. Invest. Dermatol.<br />

31, 11.<br />

211. Fisher, G. L. (1975) Function <strong>and</strong> homeo<br />

stasis <strong>of</strong> <strong>copper</strong> <strong>and</strong> zinc in mammals. Sci.<br />

Total Environ. 4, 373-412.<br />

212. Fisher, G. L., Byers, V. S., Shifrine, M. &<br />

Levin, A. S. (1976) Copper <strong>and</strong> zinc levels<br />

in serum from human patients with sarcomas.<br />

Cancer 37, 356-363.<br />

213. Fitzpatrick, T. B., Seiji, M. & McGugan, A.<br />

D. ( 1961 ) Melanin pigmentation. New<br />

Engl. J. Med. 265, 328-332; 374-378; 430-<br />

432.<br />

214. Flack, H. L., Gans, J. A., Serlick, S. E. &<br />

Dudrick, S. J. (1971) The current status<br />

<strong>of</strong> parenteral hyperalimentation. Am. J. Hosp.<br />

Pharm. 28, 326-335.<br />

215. Fleming, C. R., Dickson, E. R., Baggenstoss,<br />

A. H. & McCall, J. T. (1974) Copper <strong>and</strong><br />

primary biliary cirrhosis. Gastroenterology<br />

67, 1182-1187.<br />

216. Fleming, C. R., Dickson, E. R., Wahner, H.<br />

W., Hollenhorst, R. W. & McCall, J. T.<br />

( 1977 ) Pigmented corneal rings in non-<br />

Wilsonian liver disease. Ann. Intern. Med.<br />

86, 285-288.<br />

217. Fleming, C. R., Hodges, R. E. & Hurley, L.<br />

S. (1976) A prospective study <strong>of</strong> serum<br />

<strong>copper</strong> <strong>and</strong> zinc levels in patients receiving<br />

total parenteral nutrition. Am. J. Clin. Nur.<br />

29, 70-77.<br />

218. Flinn, F. B. & Von Glahn, W. C. (1929)<br />

A chemical <strong>and</strong> pathologic study <strong>of</strong> the ef<br />

fects <strong>of</strong> <strong>copper</strong> on the liver. J. Exp. Med.<br />

49, 5-20.<br />

219. Flynn, A., Franzmann, A. W., Arneson, P.<br />

D. & Oldemeyer, J. L. (1977) Indications<br />

<strong>of</strong> <strong>copper</strong> deficiency in a subpopulation <strong>of</strong><br />

Alaskan moose. J. Nutr. 107, 1182-1189.<br />

220. Forbes, G. (1947) Poisoning with a<br />

preparation <strong>of</strong> iron, <strong>copper</strong> <strong>and</strong> manganese.<br />

Br. Med. J. 1, 367-370.<br />

221. Forestier, J. & Certonciny, A. (1946) Le<br />

traitement des rhumatismes chroniques par<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2046 KARL E. MASON<br />

les sels organiques<br />

54, 884-885.<br />

de cuivre. Presse Med.<br />

222. Forssen, A. (1972) Inorganic elements in<br />

the human body. 1. Occurrence <strong>of</strong> Ba, Br,<br />

Ca, Cd, Cs, Cu, K, Mn, Ni, Sn, Sr, Y <strong>and</strong><br />

Zn in the human body. Ann. Med. Exp. Biol.<br />

Fenniae 50, 99-162.<br />

223. Foulk,<br />

H. R.<br />

W. T.,<br />

(1964)<br />

Baggenstoss, A. H. & Buit,<br />

Primary biliary cirrhosis: re-<br />

224.<br />

evaluation by clinical <strong>and</strong> histologie study<br />

<strong>of</strong> 49 cases. Gastroenterology 47, 354-374.<br />

French, J. H., Moore, C. L., Ghatak, N. R.,<br />

Sternlieb,<br />

( 1973 )<br />

L,<br />

Trichopoliodystrophy<br />

Goldfischer, S. & Mirano,<br />

( Menkes'<br />

A.<br />

kinky hair syndrome): A <strong>copper</strong> dependent<br />

deficiency <strong>of</strong> mitochondrial energetics. Pediat.<br />

Res. 7, 386.<br />

225. French, J. H., Sherard, E. S., Lubell, H.,<br />

Brotz, M. & Moore, C. L. (1972) Tri<br />

chopoliodystrophy. 1. Report <strong>of</strong> a case <strong>and</strong><br />

biochemical studies. Arch. Neurol. 26, 229-<br />

244.<br />

226. Frieden, E. (1970) Ceruloplasmin, a link<br />

between <strong>copper</strong> <strong>and</strong> iron <strong>metabolism</strong>. Nutr.<br />

Rev. 28, 87-91.<br />

227. Frieden, E. (1971) Ceruloplasmin, a link<br />

between iron <strong>and</strong> <strong>copper</strong> <strong>metabolism</strong>. In:<br />

Bioinorganic Chemistry, Advances in Chem<br />

istry Series (Gould, R. F., ed.), pp. 292-<br />

321, American Chemical Society, Washing<br />

ton, D.C.<br />

228. Frieden, E. (1973) The ferrous to ferric<br />

cycles in iron <strong>metabolism</strong>. Nutr. Rev. 31,<br />

41-44.<br />

229. Frieden, E. (1974) The biochemical<br />

evolution <strong>of</strong> the iron <strong>and</strong> <strong>copper</strong> proteins.<br />

In: Trace Element Metabolism in Animals—<br />

2. (Hoekstra, W. G., Suttie, J. W., Ganther,<br />

H. E. & Mertz, W., eds.), pp. 105-118,<br />

University Park Press, Baltimore.<br />

230. Frieden, E. & Hsieh, H. S. (1976) Cerulo<br />

plasmin: the <strong>copper</strong> transport protein with<br />

essential oxidase activity. In: Advances in<br />

Enzymology <strong>and</strong> Related Areas <strong>of</strong> Molecular<br />

Biology (Meister, A., ed.), vol. 44, pp. 187-<br />

236, Wiley, New York.<br />

231. Friedman, S., Bahary, C., Eckerling, B. &<br />

Gans, B. (1969) Serum <strong>copper</strong> level as<br />

an index <strong>of</strong> placental function. Obstet.<br />

Gynecol. 33, 189-193.<br />

232. Friedman, S. & Kaufman, S. (1965) 3-4dihydroxyphenylethylamine<br />

/3-hydroxylase : a<br />

<strong>copper</strong> protein. J. Biol. Chem. 240, 552-554.<br />

233. Frommer, D. J. (1971) The binding <strong>of</strong><br />

<strong>copper</strong> by bile <strong>and</strong> serum. Clin. Sci. 41, 485-<br />

493.<br />

234. Frommer, D. J. (1972) The measurements<br />

<strong>of</strong> biliary <strong>copper</strong> secretion in humans. Clin.<br />

Sci. 42, 26P. (Abstract).<br />

235. Frommer, D. J. ( 1974 ) Defective biliary<br />

excretion <strong>of</strong> <strong>copper</strong> in Wilson's disease. Gut<br />

15, 125-129.<br />

236. Frommer, D. J. (1977) Biliary <strong>copper</strong> ex<br />

cretion in man <strong>and</strong> the rat. Digestion 15,<br />

390-396.<br />

237. Fukushima, K., Senda, N., Uenoyama, T.,<br />

Inui, H., Ishigami, S., Kariya, A., Naka, K.,<br />

Iwasaki, T. & Sakao, K. (1951) Copper<br />

deficiency anemia in human adults. Med.<br />

Osaka Univ., English ed. 2, 157-170.<br />

I<br />

238. Fushimi, H., Hamison, C. R. & Ravin, H. A.<br />

(1971) Two new <strong>copper</strong> proteins from<br />

human brains. J. Biochem. 69, 1041-1054.<br />

239. Gabovich, R. D. (1966) Contents <strong>of</strong> some<br />

trace elements in the food in certain cities<br />

<strong>and</strong> towns <strong>of</strong> the USSR. Hygiene Sanitation<br />

31 (7), 41-47.<br />

240. Gahlot, D. K., Khosla, P. K., Makashir, P. D.,<br />

Vasuki, K. & Basu, N. (1976) Copper me<br />

tabolism in retinitis pigmentosa. Br. I.<br />

Ophthal. 60, 770-774.<br />

241. Gallagher, C. H. (1957)<br />

<strong>and</strong> biochemistry <strong>of</strong> <strong>copper</strong><br />

Vet. J. 33, 311-317.<br />

The pathology<br />

deficiency. Austr.<br />

242. Cárnica,<br />

Parenteral<br />

A.<br />

<strong>copper</strong><br />

D. &<br />

in<br />

Fletcher,<br />

Menkes'<br />

S.<br />

kinky-hair<br />

R. (1975),<br />

syn<br />

drome. Lancet 2, 659-660.<br />

243. Cárnica, A. D., Frías,J. L., Easley, J. F. &<br />

Rennert, O. M. (1974) Menkes kinky<br />

hair disease. A defect in metallothionein me<br />

tabolism? In: Birth Defects: Original Article<br />

Series (Bergama, D., ed.), vol. 10, pp. 149-<br />

155.<br />

244.<br />

Studies<br />

Cárnica,<br />

<strong>of</strong><br />

A.,<br />

Ceruloplasmin<br />

Frías,J. & Rennert,<br />

in Menkes'<br />

O. (1973)<br />

kinky<br />

hair disease. Pediat. Res. 7, 387 (Abstr.).<br />

245. Gault, M. H., Stein, J. & Aron<strong>of</strong>f, A. ( 1966)<br />

Serum Ceruloplasmin in hepatobiliary <strong>and</strong><br />

other disorders: significance <strong>of</strong> abnormal<br />

values. Gastroenterology 50, 8-18.<br />

246. Gelmers,<br />

(1973) Wilson's<br />

H. J., Troost,<br />

disease:<br />

J.<br />

modification<br />

& Willemse,<br />

by<br />

J.<br />

L-dopa. Neuropaediatrie 4, 453—457.<br />

247. Genov, D., Bozhokov, B. & Zlatkov, N. B.<br />

(1972) Copper pathochemistry in vitíligo.<br />

Clin. Chem. Acta 37, 207-211.<br />

248. Gerlach, W. (1934) Untersuchungen<br />

den Kupfergehalt menschlicher (und<br />

scher) Organe. Virch. Arch. Pathol.<br />

Physiol. 294, 171-197.<br />

über<br />

tieri<br />

Anat.<br />

249. Gerlach,<br />

Besteht<br />

W.<br />

das<br />

& Rohrschneider, W. (1934)<br />

pigment des Kayser-Fleischer-<br />

Schen Hornhautringes<br />

Wochenschr. 13, 48-49.<br />

aus Silber. Klin.<br />

250.<br />

ation<br />

German,<br />

in <strong>copper</strong><br />

J. L., III.<br />

<strong>metabolism</strong><br />

(1961)<br />

ease. In: Wilson's Disease,<br />

in<br />

Induced<br />

Wilson's<br />

vari<br />

dis<br />

Some Current<br />

Concepts ( Walshe, J. M. & Cumings, J. N.,<br />

eds.), pp. 198-204, Blackwell, Oxford.<br />

251. Ghatak, N. R., Hirano, A., Poon, T. P. &<br />

French, J. H. (1972) Trichopoliodystrophy.<br />

II Pathological changes in skeletal muscle<br />

<strong>and</strong> nervous system. Arch. Neurol. 26, 60-<br />

72.<br />

252. Gillespie, J. M. (1973) Keratin structure<br />

<strong>and</strong> changes with <strong>copper</strong> deficiency. Austr.<br />

J. Derm. 14, 127-131.<br />

253. Giorgio, A. J., Cartwright, G. E. & Wintrobe,<br />

M. M. (1964) Determination <strong>of</strong> urinary<br />

<strong>copper</strong> by means <strong>of</strong> direct extraction with<br />

zinc dibenzyl dithiocarbamate. Am. J. Clin.<br />

Pathol. 41, 22-26.<br />

254. Gipp, W. F., Pond, W. G., Kallfelz, F. A.,<br />

Taster, J. B., Van Campen, D. R., Krook,<br />

L. & Visek, W. J. ( 1974) Effect <strong>of</strong> dietary<br />

<strong>copper</strong>, iron <strong>and</strong> ascorbic acid levels on<br />

hematology, blood <strong>and</strong> tissue <strong>copper</strong>, iron<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2047<br />

<strong>and</strong> zinc concentrations <strong>and</strong> MCu <strong>and</strong> Te<br />

<strong>metabolism</strong> in young pigs. J. Nutr. 104,<br />

532-541.<br />

255. Gisinger, E. (1955) Beiträgezum Kupfer-<br />

St<strong>of</strong>fwechsel. Wein Ztschr. Inn. Med. 36,<br />

168-183.<br />

256. Gitlin, D., Hughes, W. L. & Janeway, C. A.<br />

( 1960 ) Absorption <strong>and</strong> excretion <strong>of</strong> <strong>copper</strong><br />

in mice. Nature 188, 150-151.<br />

257. Glass, B. (1950) A summary <strong>of</strong> the sym<br />

posium on <strong>copper</strong> <strong>metabolism</strong>. In: A Sym<br />

posium on Copper Metabolism, (McElroy,<br />

W. D. & Glass, B., eds.), pp. 7-36, J. Hop<br />

kins Press, Baltimore.<br />

258. Glazebrook, A. J. (1945) Wilson's disease.<br />

Edinb. Med. J. 52, 83-87.<br />

259. Goka, T. J., Stevenson, R. E., Hefferan, P.<br />

M. & Howell, R. R. (1976) Menkes dis<br />

ease: A biochemical abnormality in cultured<br />

human fibroblasts. Proc. Nat. Acad. Sci.<br />

U.S.A. 73, 604-606.<br />

260. Goldfischer, S. (1965) The localization <strong>of</strong><br />

<strong>copper</strong> in the pericanalicular granules (lysosomes)<br />

<strong>of</strong> liver in Wilson's disease (hepato-<br />

lenticular degeneration). Am. J. Pathol. 46,<br />

977-983.<br />

261. Goldfischer, S. & Sternlich, I. (1968)<br />

Changes in the distribution <strong>of</strong> hepatic cop<br />

per in relation to the progression <strong>of</strong> Wilson's<br />

disease (hepatolenticular degeneration). Am.<br />

J. Pathol. 53, 883-902.<br />

262. Goldstein, N. P. & Owen, C. A. (1974)<br />

Introduction: Symposium on Copper Metab<br />

olism <strong>and</strong> Wilson's Disease. Mayo Clinic<br />

Proc. 49, 363-367.<br />

263. Gollan, J. L. (1975) Studies on the nature<br />

<strong>of</strong> complexes formed by <strong>copper</strong> with human<br />

alimentary secretions <strong>and</strong> their influence on<br />

<strong>copper</strong> absorption in the rat. Clin. Sci.<br />

M<strong>of</strong>ee. Med. 49, 237-245.<br />

264. Gollan, J. L., Davis, P. S. & Deller, D. J.<br />

(1971) Binding <strong>of</strong> <strong>copper</strong> by human ali<br />

mentary secretions. Am. J. Clin. Nutr. 24,<br />

1025-1027.<br />

265. Gollan, J. L., Davis, P. S. & Deller, D. J.<br />

(1971) Copper content <strong>of</strong> human alimen<br />

tary secretions. Clin. Biochem. 4, 42-44.<br />

266. Gollan, J. L. & Deller, D. J. (1973) Studies<br />

on the nature <strong>and</strong> excretion <strong>of</strong> biliary <strong>copper</strong><br />

in man. Clin. Sci. 44, 9-15.<br />

267. Gollan, J. L., Stocks, J., Dorm<strong>and</strong>y, T. L.<br />

& Sherlock, S. (1977) Reduced oxidase<br />

activity in the caeruloplasmin <strong>of</strong> two families<br />

with Wilson's disease. J. Clin. Pathol. 30,<br />

81-83.<br />

268. Goodman, S. L, Rodgerson, D. O. & Kauffman,<br />

J. (1967) Hypercupremia in a pa<br />

tient with multiple myeloma. T. Lab. Clin.<br />

Med. 70, 57-62.<br />

269. Gopalan, C., Reddy, V. & Mohan, V. S.<br />

(1963) Some aspects <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong><br />

in protein-calorie malnutrition. J. Pediat.<br />

63, 646-649.<br />

270. Gorczynska, Z. ( 1973 ) On the disturbances<br />

<strong>of</strong> the iron <strong>and</strong> <strong>copper</strong> <strong>metabolism</strong> in the<br />

course <strong>of</strong> viral hepatitis. Rocz. Akad. Bialymstoku,<br />

18, 93-112 (Polish).<br />

271. Gordon, A. H. & Rabinowitch, I. M. (1933)<br />

Yellow atrophy <strong>of</strong> the liver. Report <strong>of</strong> a case,<br />

with particular reference to the <strong>metabolism</strong><br />

<strong>of</strong> <strong>copper</strong>. Arch. Intern. Med. 51, 143-151.<br />

272. Gordon, N. (1974) Menkes' kinky-hair<br />

(steely-hair) syndrome. Devel. Med. Child.<br />

Neural. 16, 827-829.<br />

273. Gormican, A. (1970) Inorganic elements<br />

in foods used in hospital menus. J. Am. Diet.<br />

Assn. 56, 397-403.<br />

274. Goiter, E. (1933) Copper <strong>and</strong> anemia.<br />

Am. J. Dis. Child. 46, 1066-1075.<br />

275. Gorter, E., Grendel, F. & Weyers, W. A. M.<br />

( 1931 ) Le role du cuivre dans l'anémie<br />

infantile. Rev. Franc. Pediat. 7, 747-765.<br />

276. Graham, G. G. & Cordano, A. (1969)<br />

Copper depletion <strong>and</strong> deficiency in the mal<br />

nourished infant. J. Hopkins Med. J. 124,<br />

139-150.<br />

277. Gr<strong>and</strong>, R. J. & Vawter, G. F. (1975)<br />

Juvenile Wilson's disease: Histologie <strong>and</strong><br />

functional studies during penicillamine<br />

therapy. J. Pediatrics 87, 1161-1170.<br />

278. Greger, J. L. & Buckley, S. (1977) Men<br />

strual loss <strong>of</strong> zinc, <strong>copper</strong>, magnesium <strong>and</strong><br />

iron by adolescent girls. Nutr. Rep. Internat.<br />

16, 639-647.<br />

279. Greiner, A. C., Chan, S. C. & Nicolson, G. A.<br />

( 1975 ) Human brain contents <strong>of</strong> calcium,<br />

<strong>copper</strong>, magnesium <strong>and</strong> zinc in some neuro<br />

logical pathologies. Clin. Chim. Acta 64,<br />

2Ã1-213.<br />

280. Griscom, N. T., Craig, J. N. & Neuhauser,<br />

E. B. D. (1971) Systemic bone disease<br />

developing in small premature infants. Pedi<br />

atrics 48, 883-895.<br />

281. Groth, C. G., Dubois, R. S., Corman, J.,<br />

Gustafsson, A., Iwatsuki, S., Rodgerson,<br />

D. O., Halgrimson, C. G. & Starzl, T. E.<br />

( 1973 ) Metabolism effects <strong>of</strong> hepatic re<br />

placement in Wilson's disease. Transplant.<br />

Proc. 5, 829-833.<br />

282. Grover, W. D. & Scrutton, M. C. (1974)<br />

The effect <strong>of</strong> prolonged intravenous therapy<br />

on <strong>copper</strong> <strong>metabolism</strong> in trichopoliodystrophy.<br />

Pediat. Res. 8, 389.<br />

283. Grover, W. D. & Scrutton, M. C. (1975)<br />

Copper infusion therapy in trichopoliodystrophy.<br />

J. Pediat. 86, 216-220.<br />

284. Gubler, C. J. (1956) Copper <strong>metabolism</strong><br />

in man. J. Am. Med. Assn. 161, 530-535.<br />

285. Gubler, C. J., Brown, H., Markowitz, H.,<br />

Cartwright, G. E. & Wintrobe, M. M.<br />

(1957) Studies on <strong>copper</strong> <strong>metabolism</strong>.<br />

XXIII. Portal (Laennec's) cirrhosis <strong>of</strong> the<br />

liver. J. Clin. Invest. 36, 1208-1216.<br />

286. Gubler, C. J., Lahey, M. E., Cartwright,<br />

G. E. & Wintrobe, M. M. (1953) Studies<br />

<strong>of</strong> <strong>copper</strong> <strong>metabolism</strong>. IX. The transporta<br />

tion <strong>of</strong> <strong>copper</strong> in blood. J. Clin. Invest. 32,<br />

405-414.<br />

287. Gumbatov, N. B. (1972) The content <strong>of</strong><br />

cobalt, <strong>copper</strong>, zinc <strong>and</strong> iron in the blood<br />

<strong>of</strong> patients suffering from hypertension.<br />

Terap. Arkh. 44 (4), 65-68 (Russian).<br />

288. Gupta, P. S., Bhargava, S. P. & Sharma, M.<br />

L. ( 1962 ) Acute <strong>copper</strong> sulphate poison<br />

ing with special reference to its management<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2048 KARL E. MASON<br />

with corticosteroid therapy. J. Assn. Phys.<br />

India 10, 287-292.<br />

289. Guthrie, B. E. (1973) Daily dietary in<br />

takes <strong>of</strong> zinc, <strong>copper</strong>, manganese, chromium<br />

<strong>and</strong> cadmium by some New Zeal<strong>and</strong> women.<br />

Proc. Univ. Otago Med. School. 51, 47^9.<br />

290. Guthrie, B. E. (1975) Chromium, man<br />

ganese, <strong>copper</strong>, zinc <strong>and</strong> cadmium content<br />

<strong>of</strong> New Zeal<strong>and</strong> foods. N.Z. Med. J. 82,<br />

418-424.<br />

291. Guthrie, B. E. & Robinson, M. F. (1977)<br />

Dietary intakes <strong>of</strong> manganese, <strong>copper</strong>, zinc<br />

<strong>and</strong> cadmium by New Zeal<strong>and</strong> women. Br.<br />

J. Nutr. 38, 55-63.<br />

292. Guthrie, B. E. & Robinson, M. F. (1978)<br />

The nutritional status <strong>of</strong> New Zeal<strong>and</strong>ers<br />

with respect to manganese, <strong>copper</strong>, zinc <strong>and</strong><br />

cadmium: a review. N.Z. Med. J. 87, 3-8.<br />

293. Hagberg, B., Axtrup, S. & Berfenstam, R.<br />

( 1953 ) Heavy metals ( iron, <strong>copper</strong>, zinc )<br />

in the blood <strong>of</strong> the fetus <strong>and</strong> the infant.<br />

ÉtudesNéo-natal.2, 81-90.<br />

294. Hahn, N., Paschen, K. & Haller, J. (1972)<br />

Des Verhalten von Kupfer, Eisen, Magne<br />

sium, Calcium und Zink bei Frauen mit<br />

normalem Menstruationscyclus, unter Ein<br />

nahme von Ovulationshemmem und in der<br />

Gravidität. Arch. Gynakol. 213, 176-186.<br />

295. Hall, E. M. & Butt, E. M. (1928) Experi<br />

mental pigment cirrhosis due to <strong>copper</strong><br />

poisoning. Its relation to hemochromatosis.<br />

Arch. Pathol. 6, 1-25.<br />

296. Hall, H. C. (1921) La dégénérescence<br />

hépato-lenticularie; maladie de Wilson-<br />

pseudo-sclérose, pp. 190-192, Masson, Paris.<br />

297. Halsted, J. A., Hackley, B. M. & Smith, J.<br />

C., Jr. ( 1968 ) Plasma-zinc <strong>and</strong> <strong>copper</strong> in<br />

pregnancy <strong>and</strong> after oral contraceptives.<br />

Lancet 2, 278.<br />

298. Hambidge, K. M. (1973) Increase in hair<br />

<strong>copper</strong> concentration with increase distance<br />

from the scalp. Am. J. Clin. Nutr. 26, 1212-<br />

1215.<br />

299. Hambidge, K. M. (1976) The importance<br />

<strong>of</strong> trace elements in infant nutrition. Current<br />

Med. Res. Opin. 4 (Suppl. 1), 44-53.<br />

300. Hambidge, K. M. & Droegemueller, W.<br />

( 1974 ) Changes in plasma <strong>and</strong> hair con<br />

centrations <strong>of</strong> zinc, <strong>copper</strong>, chromium, <strong>and</strong><br />

manganese during pregnancy. Obstet. &<br />

Gynecol. 44, 666-672.<br />

301. Hambidge, K. M. & Walravens, P. (1975)<br />

Trace elements in nutrition. In: Practice <strong>of</strong><br />

Pediatrics, vol. 1, chap. 29, pp. 1-40, Harper<br />

& Rowe, Hagerstown, Maryl<strong>and</strong>.<br />

302. Hamlyn, A. N., Gollan, J. L., Douglas, A. P.<br />

& Sherlock, S. (1977) Fulminating Wil<br />

son's disease with haemolysis <strong>and</strong> renal<br />

failure: <strong>copper</strong> studies <strong>and</strong> assessment <strong>of</strong><br />

dialysis regimens. Br. Med. J. 2, 660-663.<br />

303. Hankiewicz, J. & Sevecek, E. (1974)<br />

Untersuchungen über den Kupfer- und<br />

Zeruloplasmingehalt bei Frauen während der<br />

Schwangerschaft und bei solchen mit gewis<br />

sen gynäkologischen Krankheiten. Zentralbl.<br />

Gynäk.96, 905-909.<br />

304. Hankins, D. A., Riella, M. C., Scribner, B.<br />

H. & Babb, A. L. (1976) Whole blood<br />

trace element concentrations during total<br />

parenteral nutrition. Surgery 79, 674-677.<br />

305. Hansen, J. D. L. & Lehmann, B. H. (1969)<br />

Serum zinc <strong>and</strong> <strong>copper</strong> concentrations in<br />

children with protein-calorie malnutrition.<br />

S. African Med. J. 43, 1248-1251.<br />

306. Harcke, H. T., Jr., Capitanio, M. A., Grover,<br />

W. D. & Valdes-Dapena, M. (1977) Blad<br />

der diverticula <strong>and</strong> Menkes' syndrome.<br />

Radiology 124, 459-461.<br />

307. Harper, A. E. (1976) Basis <strong>of</strong> recom<br />

mended dietary allowances for trace ele<br />

ments. In: Trace Elements in Human Health<br />

<strong>and</strong> Disease ( Prasad, A. S. & Oberleas, D.,<br />

eds.), vol. 2, pp. 371-378, Academic Press,<br />

New York.<br />

308. Harris, E. D. & O'Dell, B. L. (1974) Cop<br />

per <strong>and</strong> amine oxidases in connective tissue<br />

<strong>metabolism</strong>. In: Protein-Metal Interactions<br />

Friedman, M., éd.),pp. 267-284, Plenum,<br />

New York.<br />

309. Harris, E. D., Rayton, I. K. & De Groot, J.<br />

E. (1977) A critical role for <strong>copper</strong> in<br />

aortic elastin structure <strong>and</strong> synthesis. Adv.<br />

Exp. Med. Biol. 79, 543-559.<br />

310. Harris, W. O., Jr., Kopp, J. E., Rinaldi, I.<br />

& Peach, W. F., Jr. ( 1975 ) Menkes' kinky<br />

hair syndrome. Va. Med. Monthly 102, 725-<br />

728.<br />

311. Hart, E. B., Elvehjem, C. A., Waddell, J. &<br />

Herrin, R. C. (1927) Iron in nutrition.<br />

IV. Nutritional anemia on whole milk diets<br />

<strong>and</strong> its correction with the ash <strong>of</strong> certain<br />

plant <strong>and</strong> animal tissues or with soluble iron<br />

salts. J. Biol. Chem. 72, 299-320.<br />

312. Hart, E. B., Steenbock, H., Elvehjem, C. A.<br />

& Waddell, J. (1925) Iron in nutrition. I.<br />

Nutritional anemia on whole milk diets <strong>and</strong><br />

the utilization <strong>of</strong> inorganic iron in hemo<br />

globin building. J. Biol. Chem. 65, 67-80.<br />

313. Hart, E. B., Steenbock, H., Waddell, J. &<br />

Elvehjem, C. A. (1928) Iron in Nutri<br />

tion. VII. Copper as a supplement to iron<br />

for hemoglobin building in the rat. J. Biol.<br />

Chem. 77, 797-812.<br />

314. Hartley, T. F., Dawson, J. B. & Hodgkinson,<br />

A. ( 1974 ) Simultaneous measurement <strong>of</strong><br />

Na, K, Ca, Mg, Cu <strong>and</strong> Zn balances in man.<br />

Clin. Chim. Acta 52, 321-333.<br />

315. Hasegawa, M. & Ito, S. (1954) The im<br />

portance <strong>of</strong> <strong>copper</strong> in the treatment <strong>of</strong><br />

anemia. Keio J. Med. 3, 25-34.<br />

316. Haurowitz, F. (1930) Ãœbereine Anomalie<br />

des Kupferst<strong>of</strong>fwechsels. Hoppe-Seyler's<br />

Ztschr. Physiol. Chem. Ã90,72-74.<br />

317. Hauer, E. C. & Kaminski, M. V. (1978)<br />

Trace metal pr<strong>of</strong>ile <strong>of</strong> parenteral nutrition<br />

solutions. Am. J. Clin. Nutr. 31, 264-268.<br />

318. Heijkenskjold, F. & Hedenstedt, S. (1962)<br />

Serum <strong>copper</strong> determinations in normal<br />

pregnancy <strong>and</strong> abortion. Acta Obstet. Gyne<br />

col. Sc<strong>and</strong>. 41, 41-47.<br />

319. Heilmeyer, L., Keiderling, W. & Stüwe,G.<br />

( 1941 ) Kupfer und Eisen als KÃrperigene<br />

Wirkst<strong>of</strong>fe und ihre Bedeutung beim Krank<br />

heitsgeschehen. Fisher, Jena.<br />

320. Hejduk, J. (1963) Untersuchunger über<br />

das Verhalten von Eisen und Kupfer im<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2049<br />

Blutserum der Frauen in der Schwanger<br />

schaft, unter der Geburt, im Wochenbett<br />

sowie bei Neugeborenen. Geburtsh. Gynaek.<br />

160, 187-199.<br />

321. Henkin, R. I. (1971) Newer aspects <strong>of</strong><br />

<strong>copper</strong> <strong>and</strong> zinc <strong>metabolism</strong>. In: New Trace<br />

Metals <strong>and</strong> Nutrition ( Mertz, W. & Cornatzer,<br />

W., eds.), pp. 255-312, Marcel Dekker,<br />

New York.<br />

322. Henkin, R. I. & Bradley, D. F. (1969)<br />

Regulation <strong>of</strong> taste acuity by thiols <strong>and</strong><br />

metal ions. Proc. Nat. Acad. Sci. U.S.A. 62,<br />

30-37.<br />

323. Henkin, R. I., Reiser, H. R., Jaffe, I. A.,<br />

Sternlieb, I. & Scheinberg, I. H. (1967)<br />

Decreased taste sensitivity after D-penicillamine<br />

reversed by <strong>copper</strong> administration.<br />

Lancet 2, 1268-1271.<br />

324. Henkin, R. I., Marshall, J. R. & Meret, S.<br />

(1971) Maternal-fetal <strong>metabolism</strong> <strong>of</strong> cop<br />

per <strong>and</strong> zinc at term. Am. J. Obst. Gynecol.<br />

110, 131-134.<br />

325. Henkin, R. I., Schulman, J. D., Schulman,<br />

C. B. & Bronzert, D. A. (1973) Changes<br />

in total, nondiffusible <strong>and</strong> diffusible plasma<br />

zinc <strong>and</strong> <strong>copper</strong> during infancy. J. Pediat.<br />

82, 831-837.<br />

326. Henkin, R. I. & Smith, F. R. (1972) Zinc<br />

<strong>and</strong> <strong>copper</strong> <strong>metabolism</strong> in acute viral hepa<br />

titis. Am. J. Med. Sci. 264, 401-409.<br />

327. Herkel, W. (1930) Ãœber die Bedeutung<br />

des Kupfers (Zinks und Mangans) in der<br />

Biologie und Pathologie. Beitrag. Pathol.<br />

Anat. Allg. Pathol. 85, 513-551.<br />

328. Herring, W. B., Leavell, B. S., Paixao, L. M.<br />

& Yoe, J. H. (1960) Trace metals in hu<br />

man plasma <strong>and</strong> red blood cells. A study <strong>of</strong><br />

magnesium, chromium, nickel, <strong>copper</strong> <strong>and</strong><br />

zinc. II. Observations <strong>of</strong> patients with some<br />

hématologie diseases. Am. J. Clin. Nutr. 8,<br />

855-863.<br />

329. Heydorn, K., Damsgaard, E., Horn, N., Mikkelsen,<br />

M., Tygstrup, I., Vestermark, S. &<br />

Weber, J. (1975) Extra-hepatic storage<br />

<strong>of</strong> <strong>copper</strong>. A male foetus suspected <strong>of</strong><br />

Menkes' disease. Humangenetik. 29, 171-<br />

175.<br />

330. Hill, C. H. (1969) A role <strong>of</strong> <strong>copper</strong> in<br />

elastin formation. Nutr. Rev. 27, 99-100.<br />

331. Hill, C. H. & Matrone, G. (1961) Studies<br />

on <strong>copper</strong> <strong>and</strong> iron deficiencies in growing<br />

chickens. J. Nutr. 73, 425-431.<br />

332. Hill, C. H. & Matrone, G. (1970) Chemi<br />

cal parameters in the study <strong>of</strong> in vivo <strong>and</strong><br />

in vitro interactions <strong>of</strong> transition elements.<br />

Federation Proc. 29, 1474-1481.<br />

333. Hill, C. H. & Starcher, B. (1965) Effect<br />

<strong>of</strong> reducing agents on <strong>copper</strong> deficiency in<br />

the chick. J. Nutr. 85, 271-274.<br />

334. Hill, C. H., Starcher, B. & Kim, C. (1967)<br />

Role <strong>of</strong> <strong>copper</strong> in the formation <strong>of</strong> elastin.<br />

Federation Proc. 26, 129-133.<br />

335. Hill, J. M. & Kim, C. S. (1967) The de<br />

rangement <strong>of</strong> elastin synthesis in pyridoxine<br />

deficiency. Biochem. Biophys. Res. Comm.<br />

27, 94-99.<br />

336. Hirano, A., Liena, ]. F., French, J. H. &<br />

Ghatak, N. R. (1977) Fine structure <strong>of</strong><br />

the cerebellar cortex in Menkes' kinky-hair<br />

disease. X. Chromosome-linked <strong>copper</strong> malabsorption.<br />

Arch. Neurol. 34, 52-56.<br />

337. Hitier, Y. (1976) Répercussions de la<br />

carence en acide ascorbique sur la céruloplasmine<br />

et le cuivre tissulaire. Internat. J. Vit.<br />

Nutr. Res. 46, 48-57.<br />

338. Hitzig, W. H. (1960) Das Bluteiweissbild<br />

im Säuglingsalter. Habilitationschrift, Zurich<br />

(cited by Richterich, réf.638).<br />

339. Hitzig, W. H. (1961) Das Bluteiweissbild<br />

beim gesunden Säugling.Spezifische Proteinbestimmungen<br />

mit besonderer Berücksich<br />

tigung immunochemischer Methoden. Helv.<br />

Paediat. Acta 16, 46-81.<br />

340. Hockey, A. & Masters, C. L. (1977)<br />

Menkes' kinky (steely) hair disease. Aust.<br />

J. Dermatol. 18, 77-80.<br />

341. Hodges, M. A. & Peterson, W. H. (1931)<br />

Manganese, <strong>copper</strong> <strong>and</strong> iron content <strong>of</strong><br />

serving portions <strong>of</strong> common foods. J. Am.<br />

Diet. Assn. 7, 6-16.<br />

342. H<strong>of</strong>fmann, R. P. & Ashby, D. M. (1976)<br />

Trace element concentrations in commer<br />

cially available solutions. Drug Intell. Clin.<br />

Pharmacol. 10, 74-76.<br />

343. Hohnadel, D. C., Sunderman, F. W., Jr.,<br />

Nechay, M. W. & McNeely, M. D. (1973)<br />

Atomic absorption spectrometry <strong>of</strong> nickel,<br />

<strong>copper</strong>, zinc, <strong>and</strong> lead in sweat collected<br />

from healthy subjects during sauna bathing.<br />

Clin. Chem. 19, 1288-1292.<br />

344. Holden, J. M., Wolf, W. R. & Mertz, W.<br />

(1979) Dietary levels <strong>of</strong> zinc <strong>and</strong> <strong>copper</strong><br />

in self selected diets. J. Am. Diet. Assn. 75,<br />

23-28.<br />

345. Holmberg, C. G. (1941) Ãœber die Ver<br />

teilung des Kupfers zwischen Plasma und<br />

roten BlutkÃrperchen bei extremen physio<br />

logischen Verschiebungen im Cu-Gehalt des<br />

Blutes. Acta Physiol. Sc<strong>and</strong>. 2, 71-77.<br />

346. Holmberg, C. G. & Laurell, C. B. (1948)<br />

Investigations in serum <strong>copper</strong>. II. Isolation<br />

<strong>of</strong> the <strong>copper</strong> containing protein, <strong>and</strong> a de<br />

scription <strong>of</strong> some <strong>of</strong> its properties. Acta<br />

Chem. Sc<strong>and</strong>. 2, 550-556.<br />

347. Holmberg, C. G. & Laurell, C. B. (1951)<br />

Investigations in serum <strong>copper</strong>. III. Coeruloplasmin<br />

as an enzyme. Acta Chem. Sc<strong>and</strong>.<br />

5, 476-480.<br />

348. Holmberg, C. G. & Laurell, C. B. (1951)<br />

Oxidase reactions in human plasma caused by<br />

coeruloplasmin. Sc<strong>and</strong>. J. Lab. Invest. 3,<br />

103-107.<br />

349. Holt, F. & Scoular, F. I. (1946) Iron <strong>and</strong><br />

<strong>copper</strong> <strong>metabolism</strong> <strong>of</strong> young women on selfselected<br />

diets. J. Nutr. 35, 717-723.<br />

350. Holtkamp, H. C. & Van Eijk, H. G. (1975)<br />

Over het vorkomen en de functie van koper<br />

in het menselijk lichaam. Ma<strong>and</strong>schr. Kindergeneeskd.<br />

43, 36-55.<br />

351. Holtzman, N. A. (1976) Menkes' kinky<br />

hair syndrome: a genetic disease involving<br />

<strong>copper</strong>. Federation Proc. 35, 2276-2280.<br />

352. Holtzman, N. A., Charache, P., Cordano, A.<br />

& Graham, G. G. (1970) Distribution <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2050 KARL E. MASON<br />

serum <strong>copper</strong> in <strong>copper</strong> deficiency. Johns<br />

Hopkins Med. J. 126, 34^2.<br />

353. Holtzman, N. A., Elliot, D. A. & Heller, R.<br />

H. (1966) Copper intoxication: report <strong>of</strong><br />

a case with observations on ceruloplasmin.<br />

New Engl. J. Med. 275, 347-352.<br />

354. Holtzman, N. A., Graham, G. G., Charache,<br />

P. & Haslam, R. (1967) Effect <strong>of</strong> <strong>copper</strong><br />

on ceruloplasmin concentration. Pediat. Res.<br />

1, 219.<br />

355. Holtzman, N. A. & Haslam, R. H. A. ( 1968)<br />

Elevation <strong>of</strong> serum <strong>copper</strong> following <strong>copper</strong><br />

sulfate as an emetic. Pediat. 42, 189-193.<br />

356. Hopper, S. H. & Adams, H. S. (1958)<br />

Copper poisoning from vending machines.<br />

Pub. Health. Rep. 73, 910-914.<br />

357. Horcieko, J., Borovansky, J. & DuchÃn, J.<br />

( 1973 ) Verteilung von Zink und Kupfer in<br />

menschlichen Kopfhaar verschiedener Farb<br />

tÃne. Dermatol. Monatsch. 159, 206-209.<br />

358. HÃrn, N. ( 1976) Copper incorporation<br />

studies on cultured cells for prenatal diag<br />

nosis <strong>of</strong> Menkes' disease. Lancet 1, 1156—<br />

1158.<br />

359. Horn, N., Mikkelsen, M., Heydorn, K.,<br />

Damsgaard, E. & Tygstrup, I. (1975)<br />

Copper <strong>and</strong> steely hair. Lancet 1, 1236.<br />

360. Horwitt, M. K., Meyer, B. J., Meyer, A. C.,<br />

Harvey, C. C. & Haffron, D. (1957) Serum<br />

<strong>copper</strong> <strong>and</strong> oxidase activity in schizophrenic<br />

patients. Arch. Neurol. Psychiat. 73, 275-<br />

282.<br />

361. Howell, J. McC. & Davison, A. N. (1959)<br />

The <strong>copper</strong> content <strong>and</strong> cytochrome oxidase<br />

activity <strong>of</strong> tissues from normal <strong>and</strong> swayback<br />

lambs. Biochem. J. 72, 365-368.<br />

362. Hrgovcic, R. & Hrgovcic, M. (1969) Nor<br />

mal serum <strong>copper</strong> levels during childhood.<br />

Jugoslav. Pedijat. 11, 83-94 ( Serbo-crotian ).<br />

363. Hrgovcic, M., Tessmer, C. F., Thomas, F. B.,<br />

Fuller, L. M., Gamble, J. F. & Shullenberger,<br />

C. C. ( 1973 ) Significance <strong>of</strong> serum <strong>copper</strong><br />

levels in adult patients with Hodgkin's dis<br />

ease. Cancer 31, 1337-1345.<br />

364. Hrgovcic, M., Tessmer, C. F., Thomas, F. B.,<br />

Ong, P. S., Gamble, J. F. & Shullenberger,<br />

C. C. ( 1973 ) Serum <strong>copper</strong> observations<br />

in patients with malignant lymphoma. Can<br />

cer 32, 1512-1524.<br />

365. Hsieh, H. S. & Frieden, E. (1975) Evi<br />

dence for ceruloplasmin as a <strong>copper</strong> trans<br />

port protein. Biochem. Biophys. Res. Comm.<br />

67, 1326-1331.<br />

366. Hughes, G., Kelley, V. J. & Stewart, R. A.<br />

(1960) The <strong>copper</strong> content <strong>of</strong> infant foods.<br />

Pediatrics 25, 477^184.<br />

367. Hull, R. L. (1974) Use <strong>of</strong> trace elements<br />

in intravenous hyperalimentation solutions.<br />

Am. J. Hosp. Pharm. 31, 759-761.<br />

368. Humoller, F. L., Mockler, M. P., Holthaus,<br />

J. M. & Mahler, D. L. (1960) Enzymatic<br />

properties <strong>of</strong> ceruloplasmin. J. Lab. Clin.<br />

Med. 56, 222-234.<br />

369. Hunt, A. H., Parr, R. M., Taylor, D. M. &<br />

Trott, G. G. (1963) Relation between<br />

cirrhosis <strong>and</strong> trace metal content <strong>of</strong> liver:<br />

with special reference to primary biliary<br />

cirrhosis <strong>and</strong> <strong>copper</strong>. Br. Med. J. 2, 1498-<br />

1501.<br />

370. Hunt, C. E., Carlton, W. W. & Newberne,<br />

P. M. (1970) Interrelationships between<br />

<strong>copper</strong> deficiency <strong>and</strong> dietary ascorbic acid<br />

in the rabbit. Br. J. Nutr. 24, 61-69.<br />

371. Hunt, D. M. (1974) Primary defect in<br />

<strong>copper</strong> transport underlies mottled mutants<br />

in the mouse. Nature 249, 852-854.<br />

372. Huriez, C., Bizerte, D. & Bialais, M. (1972)<br />

Les troubles du métabolismedu cuivre dans<br />

la vitíligo. Ann. Dermatol. Syphil. 49, 29-<br />

40.<br />

373. Hurley, L. S. (1976) Interaction <strong>of</strong> genes<br />

<strong>and</strong> metals in development. Federation Proc.<br />

35, 2271-2275.<br />

374. Hurley, L. S. & Bell, L. T. (1975) Ameli<br />

oration by <strong>copper</strong> supplementation <strong>of</strong> mutant<br />

gene effects in the crinkled mouse. Proc.<br />

Soc. Exp. Biol. Med. 149, 830-834.<br />

375. Ilicin, G. ( 1971 ) Serum <strong>copper</strong> <strong>and</strong> mag<br />

nesium levels in leukemia <strong>and</strong> malignant<br />

lymphoma. Lancet 2, 1036-1037.<br />

376. Ivanovich, P., Manzler, A. & Drake, R.<br />

(1969) Acute hemolysis following hemodialysis.<br />

Trans. Am. Soc. Artif. Intern.<br />

Organs. 15, 316-318.<br />

377. lyengar, L. & Apte, S. V. (1972) Nutrient<br />

stores in human fetal livers. Br. J. Nutr. 27,<br />

313-317.<br />

378. Jacob, R. A., Klevay, L. M. & Logan, G. M.<br />

( 1978 ) Hair as a biopsy material. V. Hair<br />

metal as an index <strong>of</strong> hepatic metal in rats:<br />

<strong>copper</strong> <strong>and</strong> zinc. Am. J. Clin. Nutr. 31, 477-<br />

480.<br />

379. Jacobson, S. & Wester, P. O. (1977) Bal<br />

ance study <strong>of</strong> twenty trace elements during<br />

total parenteral nutrition in man. Br. J. Nutr.<br />

37, 107-126.<br />

380. Jaffe, I. A. ( 1968 ) Penicillamine in rheu<br />

matoid disease with particular reference to<br />

rheumatoid factor. Postgrad. Med. J. 44<br />

(Suppl.), 34-40.<br />

381. Jaffe, I. A., Merriman, P. & Jacobus, D.<br />

(1968) Copper: relation to penicillamineinduced<br />

defect in collagen. Science 161,<br />

1016-1017.<br />

382. James, B. E. & MacMahon, R. A. (1970)<br />

Trace elements in intravenous fluids. Med. J.<br />

Australia 2, 1161-1163.<br />

383. James, B. E. & MacMahon, R. A. (1976)<br />

Balance studies <strong>of</strong> nine elements during com<br />

plete intravenous feeding <strong>of</strong> small premature<br />

infants. Austr. Pediat. J. 12, 154-162.<br />

384. Janes, J. M., McCall, J. T. & Elveback, L. R.<br />

( 1972 ) Trace metals in human osteogenic<br />

sarcoma. Mayo Clin. Proc. 47, 476-478.<br />

385. Jeejeebhoy, K. N., Zohrab, W. J., Langer,<br />

B., Phillips, M. Jv Kuskis, A. & Anderson,<br />

G. H. (1973) Total parenteral nutrition<br />

at home for 23 months, without complication<br />

<strong>and</strong> with good rehabilitation. A study <strong>of</strong><br />

technical <strong>and</strong> metabolic features. Gastroenterology<br />

65, 811-820.<br />

386. Jensen, K. B., Thorling, E. B. & Andersen,<br />

C. J. ( 1964) Serum <strong>copper</strong> in Hodgkin's<br />

disease. Sc<strong>and</strong>. J. Hematol. 1, 63-74.<br />

387. Jensen, W. N. & Kamin, H. (1957) Cop<br />

per transport <strong>and</strong> excretion in normal sub<br />

jects <strong>and</strong> in patients with Laennec's cir-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2051<br />

rhosis <strong>and</strong> Wilson's disease: A study with<br />

Cu64. J. Lab. Clin. Med. 49, 200-210.<br />

388. Johnson, N. C. (1961) Study <strong>of</strong> <strong>copper</strong><br />

<strong>and</strong> zinc <strong>metabolism</strong> during pregnancy. Proc.<br />

Soc. Exp. Biol. Med. 108, 518-519.<br />

389. Josephs, H. (1931) Treatment <strong>of</strong> anaemia<br />

<strong>of</strong> infancy with iron <strong>and</strong> <strong>copper</strong>. Bull. J.<br />

Hopkins Hosp. 49, 246-258.<br />

390. Josephs, H. W. (1971) The effect <strong>of</strong> cop<br />

per on iron <strong>metabolism</strong>: A clinical study.<br />

Johns Hopkins Med. J. 129, 212-235.<br />

391. Judd, E. S. & Dry, T. J. (1934) The sig<br />

nificance <strong>of</strong> iron <strong>and</strong> <strong>copper</strong> in the bile <strong>of</strong><br />

man. J. Lab. Clin. Med. 20, 609-615.<br />

392. Kagi, J. H. R. & Vallee, B. L. (1960)<br />

Metallothionein: a cadmium <strong>and</strong> zinc-con<br />

taining protein from equine renal cortex. J.<br />

Biol. Chem. 235, 3460-3465.<br />

393. Kagi, J. H. R. & Vallee, B. L. (1961)<br />

Metallothionein: a cadmium <strong>and</strong> zinc-con<br />

taining protein from equine renal cortex.<br />

II. Physico-chemical properties. J. Biol.<br />

Chem. 236, 2435-2442.<br />

394. Karpel, J. T. & Peden, V. H. (1972) Cop<br />

per deficiency in long-term parenteral nu<br />

trition. J. Pediat. 80, 32-36.<br />

395. Kasper, C. B. & Deutsch, H. F. (1963)<br />

Physiochemical studies <strong>of</strong> human ceruloplasmin.<br />

J. Biol. Chem. 238, 2325-2337.<br />

396. Keen, C. L. & Hurley, L. S. (1976) Cop<br />

per supplementation in quaking mutant<br />

mice: reduced tremors <strong>and</strong> increased brain<br />

<strong>copper</strong>. Science 193, 244-246.<br />

397. Kehoe, R. A., Cholak, J. & Story, R. V.<br />

( 1940 ) A spectrochemical study <strong>of</strong> the<br />

normal ranges <strong>of</strong> the concentration <strong>of</strong> certain<br />

trace metals in biological materials. J. Nutr.<br />

79, 579-592.<br />

398. Kehoe, R. A., Cholak, J. & Story, R. V.<br />

( 1940 ) Manganese, lead, tin, aluminum,<br />

<strong>copper</strong> <strong>and</strong> silver in normal biological ma<br />

terial. J. Nutr. 20, 85-97.<br />

399. Keil, H. L. & Nelson, V. E. (1931) The<br />

role <strong>of</strong> <strong>copper</strong> in hemoglobin regeneration<br />

<strong>and</strong> in reproduction. J. Biol. Chem. 93, 49-57.<br />

400. Kekki, M., Koskelo, P. & Lassus, A. (1966)<br />

Serum ceruloplasmin-bound <strong>copper</strong> <strong>and</strong> nonceruloplasmin-bound<br />

<strong>copper</strong> in uncompli<br />

cated psoriasis. J. Invest. Dermatol. 47, 159—<br />

161.<br />

401. Kelly, W. A., Kesterson, J. W. & Garitón,<br />

W. W. ( 1974 ) Myocardial lesions in the<br />

<strong>of</strong>fspring <strong>of</strong> female rats fed a <strong>copper</strong> defi<br />

cient diet. Exper. Molec. Pathol. 20, 40-56.<br />

402. Khalil, M., Kabiel, A., El-Khateeb, S., Aref,<br />

K., El Lozy, M., Jahin, S. & Nasr, F. ( 1974)<br />

Plasma <strong>and</strong> red cell water <strong>and</strong> elements in<br />

protein-caloric malnutrition. Am. J. Clin.<br />

Nutr. 27, 260-267.<br />

403. Khaire, D. S. & Magar, N. G. (1972)<br />

Copper in leprosy blood plasma concentra<br />

tion <strong>and</strong> urinary excretion. Indian J. Med.<br />

Res. 60, 1697-1701.<br />

404. Kh<strong>and</strong>ekar, J. D., Mukerji, D. P., Naik, G.<br />

D. & Sepaha, G. C. (1972) Regional<br />

variation in <strong>copper</strong> content <strong>of</strong> arterial wall.<br />

Experientia 28, 917.<br />

405. Kh<strong>and</strong>ekar, J. D., Mukerji, D. P. & Sepaha,<br />

G. C. ( 1972 ) Serum <strong>copper</strong> <strong>and</strong> iron in<br />

ischemie heart disease. Ind. J. Med. Sci 26<br />

813-818.<br />

406. Kimmel, J. R., Markowitz, H. & Brown, D.<br />

M. (1959) Some chemical <strong>and</strong> physical<br />

properties <strong>of</strong> erythrocuprein. J. Biol. Chem.<br />

234, 46-50.<br />

407. King, J. C., Raynolds, W. L. & Margen, S.<br />

( 1978 ) Absorption <strong>of</strong> stable isotopes <strong>of</strong><br />

iron, <strong>copper</strong> <strong>and</strong> zinc during oral contra<br />

ceptive use. Am. J. Clin. Nutr. 31, 1198-<br />

1203.<br />

408. Kirchgessner, M., Weser, U. & Muller, H. L.<br />

(1967) Cu-Absorption bei Zulag von Glucon-,<br />

Citronen Salicyl- und Oxalsäure.7. Zur<br />

Dynamik der Kupfer absorption. Ztschr.<br />

Tierphysiol. Tierenahrung Futtermittelk. 23,<br />

28-30.<br />

409. Kleinbaum, H. (1962) Kupferst<strong>of</strong>fwech<br />

selbilanzen bei Säuglingen. Ztschr. Kinderheilk.<br />

87, 101-115.<br />

410. Kleinbaum, H. (1962) Ãœber den Kupfer<br />

gehalt der Nahrungsmittel des Kindes.<br />

Ztschr. Kinderheilk. 86, 655-666.<br />

411. Kleinbaum, H. (1963) Überdie Coeruloplasmin-oxydase-Aktivät<br />

im Serum bei ge<br />

sunden Kindern verschiedener Atersklassen.<br />

Ztschr. Kinderkeilk. 88, 11-21.<br />

412. Kleinbaum, H. (1963) Vorübergehende<br />

Hypoproteinamine mit Hypocuprämie und<br />

Eisenmangelänemie bei dystrophen Säuglin<br />

gen. Ztschr. Kinderheilk. 88, 29-34.<br />

413. Kleinbaum, H. (1968) Coeruloplasmin,<br />

direkt reagierendes Kupfer und Gesamptkupfergehalt<br />

bei verschiedenen Infectionskrankheiten<br />

und entzündlichen Zust<strong>and</strong>sbildern.<br />

Ztschr. Kinderheil. 102, 84-94.<br />

414. Kleinmann, H. & Klinke, J. (1929) Ãœber<br />

den Kupfergehalt menschlicher Organe.<br />

Virch. Arch. Path. Anat. Physiol. 275, 422-<br />

435.<br />

415. Klevay, L. M. (1970) Hair as a biopsy<br />

material. II. Assessment <strong>of</strong> <strong>copper</strong> nutriture.<br />

Am. J. Clin. Nutr. 23, 1194-1202.<br />

416. Klevay, L. M. (1974) An association be<br />

tween the amount <strong>of</strong> fat <strong>and</strong> the ratio <strong>of</strong><br />

zinc to <strong>copper</strong> in 71 foods: inferences about<br />

the epidemiology <strong>of</strong> coronary heart disease.<br />

Nutr. Rep. Internat. 9, 393-399.<br />

417. Klevay, L. M. (1975) Coronary heart<br />

disease: the zinc/<strong>copper</strong> hypothesis. Am. J.<br />

Clin. Nutr. 28, 764-774.<br />

418. Klevay, L. M. (1975) The ratio <strong>of</strong> zinc<br />

to <strong>copper</strong> <strong>of</strong> diets in the United States.<br />

N'utr. Rep. Internat. 11, 237-242.<br />

419. Klevay, L. M., Reck, S. & Barcome, D. F.<br />

( 1977 ) United States diets <strong>and</strong> the <strong>copper</strong><br />

requirement. Federation Proc. 36", 1175.<br />

420. Klevay, L. M., Vo-Khactu, K. P. & Jacob,<br />

R. A. ( 1975 ) The ratio <strong>of</strong> zinc to <strong>copper</strong><br />

<strong>of</strong> cholesterol-lowering diets. In: Trace Sub<br />

stances in Environmental Health—IX.<br />

(Hemphill, D. D., éd.),pp. 131-138, Univ.<br />

<strong>of</strong> Missouri, Columbia.<br />

421. Kolaric, K., Rogujic, A. & Fuss, V. (1975)<br />

Serum <strong>copper</strong> levels in patients with solid<br />

tumors. Tumori 61, 173-177.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2052 KARL E. MASON<br />

422. Kopp, N., Tommasi, M., Carrier, H., Pialat,<br />

J., Gilly, J. & Hervé,C. (1975) Neuro<br />

pathologie de la trichopoliodystrophie (Mala<br />

die de Menkes ) : une observation anatomoclinique.<br />

Rev. Neurol. (Paris) 131, 775-789.<br />

423. Koskelo, P., Kekki, M., Virkunen, M., Lassus,<br />

A. & Somer, T. (1966) Serum ceruloplasmin<br />

concentration in rheumatoid arthritis,<br />

ankylosing spondylitis, psoriasis <strong>and</strong> sarcoidosis.<br />

Acta Rheum. Sc<strong>and</strong>. 12, 261-266.<br />

424. Kovalskiy, V. V. & Yarovaya, G. A. (1966)<br />

Molybdenum: infiltrated biochemical prov<br />

inces. Agrokhimiya 8, 68-91 (Russian).<br />

425. Kovalskiy, V. V., Yarovaya, G. A. & Shmavonyan,<br />

D. M. ( 1961 ) Changes in purine<br />

<strong>metabolism</strong> in man <strong>and</strong> animals under con<br />

ditions <strong>of</strong> molybdenum biogeochemical prov<br />

inces. Zh. Obsch. Biol. 22, 179-191 (Rus<br />

sian ).<br />

426. Krebs, H. A. (1928) Ãœberdas Kupfer im<br />

menschlichen Blutserum. Klin. Wochenschr.<br />

7, 584-585.<br />

427. Krishnamachari, K. A. V. R. (1974) Some<br />

aspects <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> in pellagra.<br />

Am. J. Clin. Nutr. 27, 108-111.<br />

428. Krishnamachari, K. A. V. R. (1976) Fur<br />

ther observations on the syndrome <strong>of</strong> en<br />

demic genu valgum <strong>of</strong> South India. Indian<br />

J. Med. Res. 64, 284-291.<br />

429. Krishnamachari, K. A. V. R. & Rao, K. S. J.<br />

(1972) Ceruloplasmin activity in infants<br />

born to undernourished mothers. J. Obst.<br />

Gynaecol. Br. Commwlt. 79, 162-165.<br />

430. Kushnir, M. P. (1972) The role <strong>of</strong> dis<br />

orders <strong>of</strong> <strong>copper</strong> <strong>and</strong> vitamin C <strong>metabolism</strong><br />

in the pathogenesis <strong>of</strong> psoriasis. Vestn. Derm.<br />

Vener. 46, (4), 23-26 (Roumanian) (cited<br />

in Nutr. Abstr. Rev. 43, 1026, 1971).<br />

431. Kyer, J. L. & Bethell, F. H. (1936) The<br />

requirement <strong>of</strong> iron <strong>and</strong> <strong>copper</strong> <strong>and</strong> the in<br />

fluence <strong>of</strong> diet upon hemoglobin formation<br />

during normal pregnancy. J. Biol. Chem. 114,<br />

lx-lxi.<br />

432. Lahey, M. E. (1957) Iron <strong>and</strong> <strong>copper</strong> in<br />

infant nutrition. Am. J. Clin. Nutr. 5, 516—<br />

526.<br />

433. Lahey, M. E., Behar, M., Viteri, F. & Scrim<br />

shaw, N. S. (1958) Values for <strong>copper</strong>,<br />

iron <strong>and</strong> iron-binding capacity in the serum<br />

in kwashiorkor. Pediatrics 22, 72-78.<br />

434. Lahey, M. E., Gubler, C. J., Cartwright, G.<br />

E. & Wintrobe, M. M. (1953) Studies on<br />

<strong>copper</strong> <strong>metabolism</strong>. VI. Blood <strong>copper</strong> in<br />

normal human subjects. J. Clin. Invest. 32,<br />

322-328.<br />

435. Lahey, M. E., Gubler, C. J., Cartwright, G.<br />

E. & Wintrobe, M. M. (1953) Studies on<br />

<strong>copper</strong> <strong>metabolism</strong>. VII. Blood <strong>copper</strong> in<br />

pregnancy <strong>and</strong> various pathologic states. J.<br />

Clin. Invest. 32, 329-339.<br />

436. Lahey, M. E., Gubler, C. J., Chase, M. S.,<br />

Cartwright, G. E. & Wintrobe, M. M.<br />

(1952) Studies on <strong>copper</strong> <strong>metabolism</strong>. II.<br />

Hématologie manifestations <strong>of</strong> <strong>copper</strong> de<br />

ficiency in swine. Blood 7, 1053-1074.<br />

437. Lahey, M. E. & Schubert, W. K. (1957)<br />

New deficiency syndrome occurring in in<br />

fancy. Am. J. Dis. Child 93, 31-34.<br />

438. Lai, S., Rajagopal, G. & Subrahmanyam, K.<br />

(1971) Serum caeruloplasmin in psoriasis.<br />

Indian J. Derm. 16, 103-104.<br />

439. Lang, N. & Renschler, H. E. (1958)<br />

Untersuchungen zum Ort der Coeruloplasminbildung<br />

mit Radiokupfer ("Cu). Ztschr.<br />

Exp. Med. 130, 203-214.<br />

440. Lange, J., Schumacher, K. & Wischer, H. P.<br />

(1971) Die Beh<strong>and</strong>lung des chronisch—<br />

aggressiven Hepatitis mit d-penicillamine.<br />

Deutsch. Med. Wochenschr. 96, 139-145.<br />

441. Langer, B., McHattie, J. D., Zohrab, W. J.<br />

& Jeejeebhoy, K. N. (1973) Prolonged<br />

survival after complete bowel resection using<br />

intravenous alimentation at home. J. Sure.<br />

Res. 75, 226-233.<br />

442. La Russo, N. F., Summerskill, W. H. J. &<br />

McCall, J. T. (1976) Abnormalities <strong>of</strong><br />

chemical tests for <strong>copper</strong> <strong>metabolism</strong> in<br />

from<br />

chronic<br />

Wilson's<br />

active<br />

disease.<br />

liver disease:<br />

Gastroenterology,<br />

differentiation<br />

70,<br />

653-655.<br />

443. Lea, C. M. & Luttrell, V. A. S. (1965)<br />

Copper content <strong>of</strong> hair in kwashiorkor.<br />

Nature 206, 413.<br />

444. Lee, G. R., Nacht, S., Christensen, D., Hansen,<br />

S. P. & Cartwright, G. E. ( 1969) The<br />

contribution <strong>of</strong> citrate to the ferroxidase ac<br />

tivity <strong>of</strong> serum. Proc. Soc. Exp. Biol. Med.<br />

131, 918-923.<br />

445. Lee, G. R., Nacht, S., Lukens, J. N. &<br />

Cartwright, G. E. (1968) Iron <strong>metabolism</strong><br />

in <strong>copper</strong> deficient swine. J. Clin. Invest. 47,<br />

2058-2069.<br />

446. Lee, G. R., Williams, D. M. & Cartwright,<br />

G. E. (1976) Role <strong>of</strong> <strong>copper</strong> in iron me<br />

tabolism <strong>and</strong> heme biosynthesis. In: Trace<br />

Elements in Human Health <strong>and</strong> Disease<br />

(Prasad, A. S. & Oberleas, D., eds.), vol 1,<br />

pp. 373-390, Academic Press, New York.<br />

447. Lehmann, K. B. (1891) Kritische und ex<br />

perimentelle Studien über die hygienishe<br />

Bedeutung des Kupfers. Munch. Med.<br />

Wochenschr. 38, 631-633.<br />

448.<br />

Renal<br />

Leu, M.<br />

function<br />

L. &<br />

in<br />

Strickl<strong>and</strong>,<br />

hétérozygotes<br />

G. T.<br />

for Wilson's<br />

(1971)<br />

disease. Am. J. Med. Sci. 263, 19-24.<br />

449. Leu, M. L., Strickl<strong>and</strong>, G. T. & Gutman, R.<br />

A. (1970) Renal function in Wilson's<br />

disease: response to therapy. Am. J. Med.<br />

Sci. 260, 381-398.<br />

450. Le Van, J. H. & Perry, E. I. (1961) Cop<br />

per poisoning on shipboard. Pub. Health<br />

Rep. 76, 334.<br />

451. Leverton, R. M. (1939) The <strong>copper</strong> me<br />

tabolism <strong>of</strong> young women. J. Nutr. 17, 17.<br />

452. Leverton, R. M. & Binkley E. S. (1944)<br />

The <strong>copper</strong> <strong>metabolism</strong> <strong>and</strong> requirement <strong>of</strong><br />

young women. J. Nutr. 27, 43-53.<br />

453. Levy, N. S., Dawson, W. W., Rhodes, B. J.<br />

& Gamica, A. ( 1974 ) Ocular abnormali<br />

ties in Menkes' kinky hair disease. Am. J.<br />

Ophthalmol. 77, 319-325.<br />

454. Lewis, K. O. (1973) The nature <strong>of</strong> the<br />

<strong>copper</strong> complexes in bile <strong>and</strong> their relation<br />

ship to the absorption <strong>and</strong> excretion <strong>of</strong> cop<br />

per in normal subjects <strong>and</strong> in Wilson's dis<br />

ease. Gut 14, 221-232.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2053<br />

455. Lewis, M. S. (193I) Iron <strong>and</strong> <strong>copper</strong> in<br />

the treatment <strong>of</strong> anemia in children. J. Am.<br />

Med. Assn. 96, 1135-1138.<br />

456. Lewis, R. A., Falls, H. F. & Troyer, D. O.<br />

( 1975 ) Ocular manifestations <strong>of</strong> hypercupremia<br />

associated with multiple myeloma.<br />

Arch. Ophthamol. 93, 1050-1053.<br />

457. Lewis, R. A., Hultquist, D. E., Baker, B. L.,<br />

Falls, H. F., Gershowitz, H. & Penner, J. A.<br />

( 1976 ) Hypercupremia associated with<br />

monoclonal immunoglobulin. J. Lab. Clin.<br />

Med. 88, 375-388.<br />

458. Li, T. K. & Vallee, B. L. ( 1968 ) The bio<br />

chemical <strong>and</strong> nutritional role <strong>of</strong> trace ele<br />

ments. In: Modem Nutrition in Health <strong>and</strong><br />

Disease. (Wohl, M. G. & R. S. Goodhart,<br />

eds.), p. 377, Lea & Febiger, Philadelphia.<br />

459. Lieh, N. P. (1971) Effets toxiques de<br />

certains oligo-éléments.Aliment. Vie 59,<br />

103-153.<br />

460. Lifschitz, M. D. & Henkin, R. I. (1971)<br />

Circadian variation in <strong>copper</strong> <strong>and</strong> zinc in<br />

man. J. Appi. Physiol. 31, 88-92.<br />

461. Linder, M. C. & Munro, H. N. (1973)<br />

Iron <strong>and</strong> <strong>copper</strong> <strong>metabolism</strong> during devel<br />

opment. Enzyme 15, 111-138.<br />

462. Lindow, C. W., Elvehjem, C. A. & Peterson,<br />

W. H. (1929) The <strong>copper</strong> content <strong>of</strong><br />

plant <strong>and</strong> animal foods. J. Biol. Chem. 82,<br />

465-471.<br />

463. Lloyd-Still, J. D., Scwachman, H. & Filler,<br />

R. M. (1973) Protracted diarrhea <strong>of</strong> in<br />

fancy treated by intravenous alimentation. 1.<br />

Clinical studies <strong>of</strong> 16 infants. Am. J. Dis.<br />

Child. 125, 358-364.<br />

464. Locke, A., Main, E. R. & Rosbash, D. O.<br />

( 1932 ) The <strong>copper</strong> <strong>and</strong> non-hemoglobinous<br />

iron contents <strong>of</strong> the blood serum in disease.<br />

J. Clin. Invest. 11, 527-542.<br />

465. Lorber, A. (1969) Communication in<br />

response to Sternlieh et al. 1969. Arth.<br />

Rheum. 12, 459-460.<br />

466. Lorber, A., Cutler, L. S. & Chang, C. C.<br />

( 1968 ) Serum <strong>copper</strong> levels in rheumatoid<br />

arthritis: relationship <strong>of</strong> elevated <strong>copper</strong> to<br />

protein alterations. Arth. Rheum. 11, 65-71.<br />

467. Lott, I. T., DiPaolo, R., Schwartz, D.,<br />

Janowska, S. & Kanfer, J. N. (1975) Cop<br />

per <strong>metabolism</strong> in the steely-hair syndrome.<br />

New Engl. J. Med. 292, 197-199.<br />

468. Lott, I. T., DiPaola, R., Schwartz, D., Kan<br />

fer, J. N. & Moser, H. W. (1975) The<br />

pathogenesis <strong>and</strong> treatment <strong>of</strong> <strong>copper</strong> de<br />

ficiency in steely-hair syndrome. Trans. Am.<br />

Neurol. Assn. 100, 151-154.<br />

469. Lou, H. C., Holmer, G. K., Reske-Nielsen, E.<br />

& Vagn-Hansen, P. (1974) Lipid compo<br />

sition in gray <strong>and</strong> white matter <strong>of</strong> the brain<br />

in Menkes* disease. J. Neurochem. 22, 377-<br />

381.<br />

470. Louis, J., Blanckaert, D., Desbonnets, P.,<br />

Farriaux, J. P. & Fontaine, G. (1975)<br />

Anomalies originales dans une nouvelle ob<br />

servation de maladie de Menkes. Nouv.<br />

Presse Med. 15, 1138.<br />

471. Lyle, W. H. (1967) Chronic dialysis <strong>and</strong><br />

<strong>copper</strong> poisoning. New Engl. J. Med. 276,<br />

1209-1210.<br />

472. Lyle, W. H., Payton, J. E. & Hui M.<br />

(1976) Haemodialysis <strong>and</strong> <strong>copper</strong> fever.<br />

Lancet 1, 1324-1325.<br />

473. Lynch, R. E., Lee, G. R. & Cartwright, G.<br />

E. (1973) Penicillamine-induced cupriuria<br />

in normal subjects <strong>and</strong> in patients with<br />

active liver disease. Proc. Soc. Biol. Med.<br />

142, 128-130.<br />

474. MacDonald, I. & Warren, P. J. (1961)<br />

The <strong>copper</strong> content <strong>of</strong> the liver <strong>and</strong> hair <strong>of</strong><br />

African children with kwashiorkor. Br. I.<br />

Xutr. 15, 593-596.<br />

475. MacDonald, W. C., Trier, J. S. & Everett, N.<br />

B. (1964) Cell proliferation <strong>and</strong> migra<br />

tion in the stomach duodenum, <strong>and</strong> rectum<br />

<strong>of</strong> man: radiographie studies. Gastroenterology<br />

46, 405-417.<br />

476. MacKay, H. M. M. (1933) Copper in the<br />

treatment <strong>of</strong> nutritional anemia in infancy.<br />

Arch. Dis. Childhood 8, 145-154.<br />

477. Macy, I. B. (1944) Feeding school chil<br />

dren to meet dietary needs. J. Am. Dietet.<br />

Assn. 20, 602-608.<br />

478. Mahler, H. R. (1963) Uricase. In: The<br />

Enzymes ( Boyer, P. D., Lardy, H. & Myrback<br />

eds.), vol. 8, part B, pp. 285-296,<br />

Academic Press, New York.<br />

479. Mallette, M. F. (1950) The nature <strong>of</strong> the<br />

<strong>copper</strong> enzymes involved in tyrosine oxida<br />

tion. In: A Symposium on Copper Metab<br />

olism (McElroy, W. D. & Glass, B., eds.),<br />

pp. 48-75, J. Hopkins Press, Baltimore.<br />

480. Mallory, F. B. (1925) The relation <strong>of</strong><br />

chronic poisoning with <strong>copper</strong> to hemochromatosis.<br />

Am. J. Path. 1, 117-133.<br />

481. Mallory, F. B. (1926) Hemochromatosis<br />

<strong>and</strong> chronic poisoning with <strong>copper</strong>. Arch.<br />

Intern. Med. 37, 336-362.<br />

482. Mallory, F. B. & Parker, F., Jr. (1931)<br />

Experimental <strong>copper</strong> poisoning. Am. J.<br />

Pathol. 7, 351-364.<br />

483. Mallory, F. B. & Parker, F., Jr. (1931)<br />

The microchemical demonstration <strong>of</strong> <strong>copper</strong><br />

in pigment cirrhosis. Am. J. Pathol. 7, 365-<br />

371.<br />

484. Mallory, F. B., Parker, F., Jr. & Nye, R. M.<br />

(1921) Experimental pigment cirrhosis due<br />

to <strong>copper</strong> <strong>and</strong> its relation to hemochromatosis.<br />

J. Med. Res. 42, 461-496.<br />

485. M<strong>and</strong>elbrote, B. M., Stanier, M. W., Thomp<br />

son, R. H. S. & Thruston, M. N. (1948)<br />

Studies on <strong>copper</strong> <strong>metabolism</strong> in demyelinating<br />

diseases <strong>of</strong> the central nervous system.<br />

Brain 71, 212-228.<br />

486. Mann, T. & Keilin, D. (1939) Haemocuprein<br />

<strong>and</strong> hepatocuprein, <strong>copper</strong>-protein<br />

compounds <strong>of</strong> blood <strong>and</strong> liver in mammals.<br />

Proc. Roy. Soc. Lond., Series B., 126, SOS-<br />

SIS.<br />

487. Manzler, A. D. & Schreiner, A. W. (1970)<br />

Copper-induced acute hemolytic anemia. A<br />

new complication <strong>of</strong> hemodialysis. Ann. In<br />

tern. Med. 73, 409-412.<br />

488. Marceau, N. & Aspin, N. (1973) The<br />

intracellular distribution <strong>of</strong> the radio<strong>copper</strong><br />

derived from ceruloplasmin <strong>and</strong> from albu<br />

min. Biochim. Biophys. Acta 328, 338-350.<br />

489. Marceau, N. & Aspin, N. (1973) The as<br />

sociation <strong>of</strong> the <strong>copper</strong> derived from cenilo-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2054 KARL E. MASON<br />

plasmiti with cytocuprein. Biochim. Biophys.<br />

Acta 328, 351-358.<br />

490. Markowitz, H., Cartwright, G. E. & Wintrobe,<br />

M. M. (1959) Studies on <strong>copper</strong><br />

<strong>metabolism</strong>. XXVII. Isolation <strong>and</strong> properties<br />

<strong>of</strong> erythrocyte cuproprotein ( erythrocuprein).<br />

J. Biol. Chem. 234, 40-45.<br />

491. Markowitz, H., Gubler, C. J., Mahoney, J. P.<br />

Cartwright, G. E. & Wintrobe, M. M.<br />

(1955) Studies on <strong>copper</strong> <strong>metabolism</strong>. XIV.<br />

Copper, ceruloplasmin <strong>and</strong> oxidase activity<br />

in sera <strong>of</strong> normal human subjects, pregnant<br />

women, <strong>and</strong> patients with infection, hepatolenticular<br />

degeneration <strong>and</strong> the nephrotic<br />

syndrome. J. Clin. Invest. 34, 1498-1508.<br />

492. Markowitz, H., Shields, G. S., Klassen, W.<br />

H., Cartwright, G. E. & Wintrobe, M. M.<br />

( 1961 ) Spectrophotometric determination<br />

<strong>of</strong> total erythrocyte <strong>copper</strong>. Anal. Chem. 33,<br />

1594-1598.<br />

493. Marston, H. R. ( 1952 ) Cobalt, <strong>copper</strong> <strong>and</strong><br />

molybdenum in the nutrition <strong>of</strong> animals <strong>and</strong><br />

plants. Physiol. Rev. 32, 62-111.<br />

494. Masi, M., Paolucci, P., Vecchi, V. & Vivarelli,<br />

F. ( 1975 ) La ceruloplasminemia nel<br />

bambino normale. Minerva Pediat. 27, 1175-<br />

1180.<br />

495. Matsuda, I. (1978) Screening for Wilson's<br />

disease. Lancet 1, 562.<br />

496. Matsuda, I., Pearson, T. & Holtzman, N. A.<br />

( 1974 ) Determination <strong>of</strong> apoceruloplasmin<br />

by radioimmunoas^ay in nutritional <strong>copper</strong><br />

deficiency, Menkes' kinky hair syndrome, Wil<br />

son's disease, <strong>and</strong> umbilical cord blood.<br />

Pediat. Res. 8, 821-824.<br />

497. Matter, B. J., Pederson, J., Psimenos, G. &<br />

Lindeman, R. D. (1969) Lethal <strong>copper</strong><br />

intoxication in hemodialysis. Trans. Soc.<br />

Artif. Intern. Organs 15, 309-315.<br />

498. Matthews, W. B. (1954) The absorption<br />

<strong>and</strong> excretion <strong>of</strong> radio<strong>copper</strong> in hepatolenticular<br />

degeneration (Wilson's disease).<br />

J. Neurol. Neurosurg. Psychiat. 17, 242-246.<br />

499. Matthews, W. B., Milne, M. D. & Bell, M.<br />

( 1952 ) The metabolic disorder in hepatolenticular<br />

degeneration. Quart. J. Med. 21,<br />

425-446.<br />

500. McCord, J. M. & Fridovich, I. (1969)<br />

Superoxide dismutase. An enzymic function<br />

for erythrocuprein (hemocuprein). J. Biol.<br />

Chem. 244, 6049-6055.<br />

501. McCord, J. M. & Fridovich, I. (1970) The<br />

utility <strong>of</strong> Superoxide dismutase in studying<br />

free radical reactions. II. The mechanism <strong>of</strong><br />

the mediation <strong>of</strong> cytochrome c reduction by<br />

a variety <strong>of</strong> electron carriers. J. Biol. Chem.<br />

245, 1374-1377.<br />

502. McCosker, P. J. (1961) Paraphenylenediamine<br />

oxidase activity <strong>and</strong> <strong>copper</strong>-levels in<br />

mammalian plasmas. Nature 190, 887-889.<br />

503. McCullars, G. M., O'Reilly, S. & Brennan,<br />

M. (1977) Pigment binding <strong>of</strong> <strong>copper</strong> in<br />

human bile. Clin. Chim. Acta 74, 33-38.<br />

504. McDermott, J. A., Huber, C. T., Osaki, S.<br />

& Frieden, E. (1968) Role <strong>of</strong> iron in the<br />

oxidase activity <strong>of</strong> ceruloplasmin. Biochem.<br />

Biophys. Acta 151, 541-557.<br />

505. McEwen, C. M., Jr. (1965) Human<br />

plasma monoamine oxidase. 1. Purification<br />

<strong>and</strong> identification. J. Biol. Chem. 240, 2003-<br />

2010.<br />

506. McEwen, C. M., Jr. & Harrison, D. C.<br />

( 1965 ) Abnormalities <strong>of</strong> serum monoamine<br />

oxidase in chronic congestive heart failure.<br />

J. Lab. Clin. Med. 65, 546-559.<br />

507. McHargue, J. S. (1926) Further evidence<br />

that small quantities <strong>of</strong> <strong>copper</strong>, manganese<br />

<strong>and</strong> zinc are factors in the <strong>metabolism</strong> <strong>of</strong><br />

animals. Am. J. Physiol. 77, 245-255.<br />

508. Mclntyre, N., Clink, H. M., Levi, A. J.,<br />

Cummings, J. N. & Sherlock, S. (1967)<br />

Hemolytic anemia in Wilson's disease. New<br />

Engl. J. Med. 276, 439-444.<br />

509. McKenzie, J. M. (1974) Tissue concen<br />

tration <strong>of</strong> cadmium, zinc <strong>and</strong> <strong>copper</strong> from<br />

autopsy samples. N.Z. Med. J. 79, 1016-<br />

1019.<br />

510. McKenzie, J. M., Guthrie, B. E. & Prior,<br />

I. A. M. (1978) Zinc <strong>and</strong> <strong>copper</strong> status<br />

<strong>of</strong> Polynesian residents in the Tokelau<br />

Isl<strong>and</strong>s. Am. J. Clin. Nutr. 31, 422-428.<br />

511. McKenzie, J. M., Van Rij, A. M., Robinson,<br />

M. F. & Guthrie, B. E. (1976) Trace ele<br />

ment balance studies during total parenteral<br />

nutrition. In: Trace Substances in Environ<br />

mental Health, X. University <strong>of</strong> Missouri,<br />

Columbia.<br />

512. McMullen, W. (1971) Copper contami<br />

nation in s<strong>of</strong>t drinks from bottle pourers.<br />

Health Bulletin (Scotl<strong>and</strong>) 29, 94-96.<br />

513. Menkes, J. H., Alter, M., Steigleder, G. K.,<br />

Weakley, D. R. & Sung, J. H. (1962) A<br />

sex-linked recessive disorder with retarda<br />

tion <strong>of</strong> growth, peculiar hair, <strong>and</strong> focal<br />

cerebral <strong>and</strong> cerebellar degeneration. Pedi<br />

atrics 29, 764-779.<br />

514. Mertz, W. (1972) Human <strong>requirements</strong>:<br />

basic <strong>and</strong> optimal. Ann. N.Y. Acad. Sci. 199,<br />

191-201.<br />

515. Mertz, W. (1976) Defining trace element<br />

deficiencies <strong>and</strong> toxicities in man. In: Molyb<br />

denum in the Environment. The Biology <strong>of</strong><br />

Molybdenum. (Chapell, W. R. & Peterson,<br />

K. K., eds.), vol. I, pp. 267-286, Marcel<br />

Dekker, New York.<br />

516. Meyer, R. J. & Zalusky, R. (1977) The<br />

mechanisms <strong>of</strong> hemolysis in Wilson's disease:<br />

study <strong>of</strong> a case <strong>and</strong> review <strong>of</strong> the literature.<br />

Mt. Sinai J. Med. 44, 530-538.<br />

517. Miller, R. F. & Engel, R. W. (1960) In<br />

terrelations <strong>of</strong> <strong>copper</strong>, molybdenum <strong>and</strong> sul<br />

fate sulfur in nutrition. Federation Proc.<br />

19, 666-677.<br />

518. Mills, C. F. (1974) Trace-element inter<br />

actions: effects <strong>of</strong> dietary composition on<br />

the development <strong>of</strong> imbalance <strong>and</strong> toxicity.<br />

In: Trace Element Metabolism in Animals—<br />

2 (Hoekstra, W. G., Suttie, J. W., Ganther,<br />

H. E. & Mertz, W., eds.), pp. 79-90, Uni<br />

versity Park Press, Baltimore.<br />

519. Mills, E. S. (1924) Hemochromatosis<br />

with special reference to its frequency <strong>and</strong><br />

to its occurrence in women. Arch. Intern.<br />

Med. 34, 292-300.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2055<br />

520. Mills, E. S. (1930) The treatment <strong>of</strong><br />

idiopathic ( hypochromic ) anaemia with iron<br />

<strong>and</strong> <strong>copper</strong>. Cañad. Med. Assn. J. 22, 175-<br />

178.<br />

521. Mills, E. S. (1931) Idiopathic hypochromemia.<br />

Am. J. Med. Sci. 182, 554-565.<br />

522. Mills, R. G. (1925) The possible rela<br />

tion <strong>of</strong> <strong>copper</strong> to disease among the Korean<br />

people. J. Am. Med. Assn. 84, 1326-1327.<br />

523. Milne, D. B. & Matrone, G. (1970) Forms<br />

<strong>of</strong> ceruloplasmin in developing piglets. Biochem.<br />

Biophys. Acta 212, 43-49.<br />

524. Mirzakarimov, M. G. (1957) Blood cop<br />

per <strong>of</strong> women during pregnancy. Akusn.<br />

Ginekol. 1, 55-85 (Russian).<br />

525. Mischel, W. (1958) Die anorganischen<br />

Best<strong>and</strong>teile der Placenta. VII. Der Kupfer<br />

genalt der reifen und unreifen, normalen<br />

und pathologischen menschlichen Placenta.<br />

Arch. Gynakol. 191, 1-7.<br />

526. Mischel, W. (1960) Die anorganischen<br />

Best<strong>and</strong>teile des menschlichen Fruchtwassers.<br />

Geburtsh. Frauenheilk. 20, 584-594.<br />

527. Mischel, W. (1961) Ãœber das Verhalten<br />

des Serumkupfers bei der Frau in der nor<br />

malen und gestÃrten Schwangerschaft, im<br />

Wochenbett, in der Nabelschnur sowie bei<br />

verschiedenen gynäkologischen Erkrankun<br />

gen. Ztschr. Geburtsch. Gyn. 155, 197-215.<br />

528. Mitchell, H. H. & Hamilton, T. S. (1949)<br />

The dermal excretion under controlled en<br />

vironmental conditions <strong>of</strong> nitrogen <strong>and</strong> min<br />

erals in human subjects, with particular<br />

reference to calcium <strong>and</strong> iron. J. Biol. Chem.<br />

178, 345-361.<br />

529. Molin, L. & Wester, P. O. (1973) Cobalt,<br />

<strong>copper</strong> <strong>and</strong> zinc in normal psoriatic epi<br />

dermis. Acta Dermatol. Venereol. 53, 477-<br />

480.<br />

530. M011ekaer, A. M. (1974) Case report.<br />

Kinky hair syndrome. Acta Paediat. Sk<strong>and</strong>.<br />

63, 289-296.<br />

531. Molokhia, M. M. & Portnoy, B. (1970)<br />

Neutron activation analysis <strong>of</strong> trace ele<br />

ments in skin. V. Copper <strong>and</strong> zinc in psoria<br />

sis. Br. J. Dermatol. 83, 376-381.<br />

532. MÃnckeberg, F., Vildósola, J., Figueroa, M.,<br />

Oxman, S. & Meneghello, J. (1962) Héma<br />

tologie disturbances in infantile malnutrition.<br />

Values for <strong>copper</strong>, iron, paraphenelene di<br />

amine oxidase <strong>and</strong> iron-binding capacity in<br />

the serum. Am. J. Clin. Nutr. 11, 525-529.<br />

533. Mondorf, A. W., Mackenrodt, G. & Halber<br />

stadt, E. (1971) Coeruloplasmin. Teil I:<br />

Die Biochemie des Coeruloplasmins. Teil II:<br />

Der Einfluss von Ãstrogenen auf den<br />

Coeruloplasmingehalt des Serums. Klin.<br />

Wochnschr. 49, 61-70.<br />

534. Mondovi, B., Rotilio, G., Finazzi, A. &<br />

Scioscia-Santoro, A. ( 1964 ) Purification<br />

<strong>of</strong> pig-kidney diamine oxidase <strong>and</strong> its<br />

identity with histaminase. Biochem. J. 91,<br />

408-415.<br />

535. Morell, A. G. & Scheinberg, I. H. (1960)<br />

Heterogeneity <strong>of</strong> human ceruloplasmin. Sci<br />

ence 131, 930-932.<br />

536. Morell, A. G., Shapiro, J. R. & Scheinberg,<br />

I. H. ( 1961 ) Copper binding protein from<br />

human liver. In: Wilson's Disease, Some<br />

Current Concepts. (Walshe, J. M. & Cumings,<br />

J. N., eds.), p. 36-42, Blackwell, Ox<br />

ford.<br />

537. Morell, A. G., Van Den Hamer, C. I. A. &<br />

Scheinberg, I. H. (1969) Physical <strong>and</strong><br />

chemical studies on ceruloplasmin. VI.<br />

Preparation <strong>of</strong> human ceruloplasmin crys<br />

tals. J. Biol. Chem. 244, 3494-3496.<br />

538. Morrison, D. B. & Nash, T. P., Jr. (1930)<br />

The <strong>copper</strong> content <strong>of</strong> infant livers. J. Biol.<br />

Chem. 88, 479-483.<br />

539. Mortazavi, S. H., Bani-Hashemi, A., Mozafari,<br />

M. & Raffi, A. (1972) Value <strong>of</strong><br />

serum <strong>copper</strong> measurement in lymphomas<br />

<strong>and</strong> several other malignancies. Cancer 29,<br />

1193-1198.<br />

540. Müller,A. H. (1935) Die Rolle des Kup<br />

fers im Organismus mit besonderer Berück<br />

sichtigung seiner Beziehungen zum Blut.<br />

Ergebn. Inn. Med. 48, 444-469.<br />

541. Munch-Petersen, S. (1950) On the <strong>copper</strong><br />

content <strong>of</strong> mother's milk before <strong>and</strong> after<br />

542.<br />

intravenous <strong>copper</strong><br />

Paediat. 39, 378^388.<br />

Munch-Petersen, S.<br />

administration.<br />

(1950) On<br />

Acta<br />

serum<br />

543.<br />

<strong>copper</strong> in patients with pulmonary tuber<br />

culosis. Acta Tuberc. Sc<strong>and</strong>. 24, 132-153.<br />

Murakami, Y. ( 1973 ) A study on the cop<br />

per content in daily food consumption in<br />

Japan. Osaka Shiritsu Daiagku Igaku Zasshi,<br />

22, 13-48 (Japanese).<br />

544. Murphy,<br />

(1971)<br />

lunches.<br />

E. W., Page, L. & Watt, K. B.<br />

Trace minerals in type A school<br />

J. Am. Diet. Assn. 58, 115-122.<br />

545. Murphy, E. W., Watt, B. K. & Page, L.<br />

(1971) Regional variations in vitamin <strong>and</strong><br />

trace element content <strong>of</strong> type A school<br />

lunches. In: Trace Substances in Environ<br />

mental Health, IV. (Hemphill, D. D., ed.),<br />

pp. 194-205, University <strong>of</strong> Missouri, Colum<br />

bia.<br />

546. Murthy, G. K. & Rhea, U. S. (1971) Cad<br />

mium, <strong>copper</strong>, iron, lead, manganese, <strong>and</strong><br />

zinc in evaporated milk, infant products, <strong>and</strong><br />

human milk. J. Dairy Sci. 54, 1001-1005.<br />

547. Murthy, G. K., Rhea, U. S. & Peeler, J. T.<br />

( 1972 ) Copper, iron, manganese, strontium<br />

<strong>and</strong> zinc content <strong>of</strong> market milk. J. Dairy<br />

Sci. 55, 1666-1674.<br />

548. Murthy, G. K., Rhea, U. S. & Peeler, T. T.<br />

( 1973 ) Levels <strong>of</strong> <strong>copper</strong>, nickel, rubidium,<br />

<strong>and</strong> strontium in institutional total diets.<br />

Environ. Sci. Technol. 7, 1042-1045.<br />

549. National Research Council ( 1974 ) Recom<br />

mended Dietary Allowances, 8th rev. ed.,<br />

128 pp., Food <strong>and</strong> Nutrition Board, National<br />

Academy <strong>of</strong> Sciences, Washington, D.C.<br />

550.<br />

551.<br />

National Research Council (1977) Cop<br />

per. Committee on Medical <strong>and</strong> Biological<br />

Effects <strong>of</strong> Environmental Pollutants, 115 pp.,<br />

National Academy <strong>of</strong> Sciences, Washington,<br />

D.C.<br />

Neale, F. C. & Fischer-Williams, M. ( 1958)<br />

Copper <strong>metabolism</strong> in normal adults <strong>and</strong> in<br />

clinically<br />

Wilson's disease.<br />

normal<br />

J.<br />

relatives<br />

Clin. Pathol.<br />

<strong>of</strong> patients<br />

11, 441with<br />

447.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2056 KARL E. MASON<br />

552. Neri, A., Eckerling, B. & Bahary, C. (1969)<br />

The <strong>copper</strong> <strong>and</strong> <strong>copper</strong>oxidase content <strong>of</strong><br />

maternal <strong>and</strong> infant umbilical arterial <strong>and</strong><br />

venous blood serum at delivery. Gynaecologia<br />

138, 40-48.<br />

553. Neumann, P. Z. & Sass-Kortsak, A. (1963)<br />

Binding <strong>of</strong> <strong>copper</strong> by serum proteins. Vox<br />

Sang. 8, 111-112.<br />

554. Neumann, P. Z. & Sass-Kortsak, A. (1967)<br />

The state <strong>of</strong> <strong>copper</strong> in human serum: Evi<br />

dence for an amino acid-bound fraction. J.<br />

Clin. Invest. 46, 646-658.<br />

555. Neumann, P. Z. & Silverberg, M. (1967)<br />

Metabolic pathways <strong>of</strong> red blood cell cop<br />

per in normal humans <strong>and</strong> in Wilson's dis<br />

ease. Nature 213, 775-779.<br />

556. Neuweiler, W. (1942) Ãœber die fetale<br />

Resorption von Kupfer aus der Placenta.<br />

Klin. Wochenschr. 21, 521-522.<br />

557. Nicholas, P. O. (1968) Food-poisoning<br />

due to <strong>copper</strong> in the morning tea. Lancet 2,<br />

40-42.<br />

558. Niedermeier, W., Creitz, E. E. & Holley, H.<br />

L. ( 1962 ) Trace metal composition <strong>of</strong><br />

synovial fluid from patients with rheuma<br />

toid arthritis. Arthr. Rheum. 5, 439-444.<br />

559. Niedermeier, W. & Griggs, J. H. (1971)<br />

Trace metal composition <strong>of</strong> synovial fluid<br />

<strong>and</strong> blood serum <strong>of</strong> patients with rheuma<br />

toid arthritis. J. Chron. Dis. 23, 527-536.<br />

560. Nimni, M. E. & Bavetta, L. A. (1965)<br />

Collagen defect induced by pencillamine.<br />

Science 150, 905-907.<br />

560. Nielsen, A. L. (1944) On serum <strong>copper</strong>.<br />

IV. Pregnancy <strong>and</strong> parturition. Acta Med.<br />

Sc<strong>and</strong>. 118, 92-96.<br />

562. Nordberg, G. F., Nordberg, M., Piscator, M.<br />

& Vesterberg, O. (1972) Separation <strong>of</strong><br />

two forms <strong>of</strong> rabbit metallothionein by isoelectric<br />

focusing. Biochem. J. 126, 491-498.<br />

563. Norstr<strong>and</strong>, I. F. & Glantz, M. D. (1973)<br />

Purification <strong>and</strong> properties <strong>of</strong> human liver<br />

monoamine oxidase. Arch. Bioch. Biophys.<br />

158, 1-11.<br />

564. Nusbaum, M. J. & Zettner, A. (1973) The<br />

content <strong>of</strong> calcium, magnesium, <strong>copper</strong>,<br />

iron, sodium, <strong>and</strong> potassium in amniotic<br />

fluid from eleven to nineteen weeks' gesta<br />

tion. Am. J. Obstet. Gynecol. 115, 219-226.<br />

565. Nusbaum, R. E., Alex<strong>and</strong>er, G. V., Butt,<br />

E. M., Gilmour, T. C. & Oidio, S. L. ( 1958)<br />

Some spectrographic studies <strong>of</strong> trace ele<br />

ment storage in human tissues. Soil Sci. 85,<br />

95-99.<br />

566. Oakes, B. W., Danks, D. M. & Campbell, P.<br />

E. (1976) Human <strong>copper</strong> deficiency:<br />

ultrastructural studies <strong>of</strong> the aorta <strong>and</strong> skin<br />

in a child with Menkes' syndrome. Exp.<br />

Mol. Pathol. 25, 82-98.<br />

567. O'Brien, J. S. & Sampson, E. L. (1966)<br />

Kinky hair disease. II. Biochemical studies.<br />

J. Neuropath. Exp. Neurol. 25, 523-530.<br />

568. O'Dell, B. L. (1976) Biochemistry <strong>of</strong><br />

<strong>copper</strong>. Med. Clin. N. Am. 60, 687-703.<br />

569. O'Dell, B. L. (1976) Biochemistry <strong>and</strong><br />

physiology <strong>of</strong> <strong>copper</strong> in vertebrates. In:<br />

Trace Elements in Human Health <strong>and</strong> Dis<br />

ease (Prasad, A. S. & Oberleas, D., eds.),<br />

vol. 1, pp. 391-413, Academic Press. New<br />

York.<br />

570. O'Dell, B. L. (1976) Copper. In: Nutri<br />

tion Reviews. Present Knowledge in Nu<br />

trition, 4th éd.,pp. 302-309, The Nutrition<br />

Foundation, New York.<br />

571. O'Dell, B. L., Hardwick, B. C., Reynolds,<br />

G. & Savage, J. E. (1961) Connective tis<br />

sue defect in the chick resulting from <strong>copper</strong><br />

deficiency. Proc. Soc. Exp. Biol. Med. 108,<br />

402-405.<br />

572. Ohlson, M. A. & Daum, K. (1935) A<br />

study <strong>of</strong> the iron <strong>metabolism</strong> <strong>of</strong> normal<br />

women. J. Nutr. 9, 75-89.<br />

573. Ohtake, M. & Tamura, T. (1976) Serum<br />

zinc <strong>and</strong> <strong>copper</strong> levels in healthy Japanese<br />

children. Tohoku J. Exp. Med. 120, 99-103.<br />

574. Olatunbosun, D. A., Adadevoh, B. K. &<br />

Adeniyi, F. A. ( 1974 ) Serum <strong>copper</strong> in<br />

normal pregnancy in Nigerians. J. Obst.<br />

Gynaecol. Br. Commonw. 81, 475-478.<br />

575. Olatunbosun, D. A., Akindele, M. O., Ada<br />

devoh, B. K. & Asuni, T. ( 1975 ) Serum<br />

<strong>copper</strong> in schizophrenia in Nigerians. Br. J.<br />

Psychiat. 127, 119-121.<br />

576. Olatunbosun, D. A., Isaacs-Sodeye, W. A.,<br />

Adeniyi, F. A. & Adadeovh, B. K. (1975)<br />

Serum-<strong>copper</strong> in sickle-cell anaemia. Lancet<br />

1, 285-286.<br />

577. O'Leary, J. A. (1969) Serum <strong>copper</strong><br />

levels as a measure <strong>of</strong> placental function.<br />

Am. J. Obstet. Gynecol. 105, 636-637.<br />

578. O'Leary, J. A., Novalis, G. S. & Vosburgh,<br />

G. J. (1966) Maternal serum <strong>copper</strong> con<br />

centrations in normal <strong>and</strong> abnormal gesta<br />

tions. Obstet. Gynecol. 28, 112-117.<br />

579. O'Leary, J. A. & Spellacy, W. N. (1969)<br />

Zinc <strong>and</strong> <strong>copper</strong> levels in pregnant women<br />

<strong>and</strong> those taking oral contraceptives. Am. J.<br />

Obstet. Gynecol. 103, 131-132.<br />

580. O'Reilly, S., Strickl<strong>and</strong>, G. T., Weber, P. M.,<br />

Beckner, W. M. & Shipley, L. (1971) Ab<br />

normalities <strong>of</strong> the physiology <strong>of</strong> <strong>copper</strong> in<br />

Wilson's disease. I. The whole body turn<br />

over <strong>of</strong> <strong>copper</strong>. Arch.' Neurol. 24, 385-390.<br />

581. O'Reilly, S., Weber, P. M., Oswald, M. &<br />

Shipley, L. (1971) Abnormalities <strong>of</strong> the<br />

physiology <strong>of</strong> <strong>copper</strong> in Wilson's disease.<br />

III. The excretion <strong>of</strong> <strong>copper</strong>. Arch. Neurol.<br />

25, 28-32.<br />

582. Osaka, K., Sato, N., Matsumoto, S., Ogino,<br />

H., Kodama, S., Yokoyama, S. & Sugiyama,<br />

T. ( 1977 ) Congenital hypocupraemia syn<br />

drome with <strong>and</strong> without steely hair: Report<br />

<strong>of</strong> two Japanese infants. Develop. Med.<br />

Child. Neurol. 19, 62-68.<br />

583. Osaki, S., Johnson, D. A. & Frieden, E.<br />

( 1966) The possible significance <strong>of</strong> the fer<br />

rous oxidase activity <strong>of</strong> ceruloplasmin in<br />

normal human serum. J. Biol. Chem. 241,<br />

2746-2751.<br />

584. Osaki, S., Johnson, D. A. & Frieden, E.<br />

(1971) The mobilization <strong>of</strong> iron from the<br />

perfused mammalian liver by a serum cop<br />

per enzyme, ferroxidase I. J. Biol. Chem.<br />

246, 3018-3023.<br />

585. Osaki, S., McDermott, J. A. & Frieden, E.<br />

( 1964 ) Pro<strong>of</strong> for the ascorbate activity <strong>of</strong><br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2057<br />

ceruloplasmin. J. Biol. Chem. 239, 3570-<br />

3575.<br />

586. Oshima, F. & SchÃnheimer, R. (1929)<br />

Ãœber den Kupfergehalt der normalen Leber<br />

und der Leber bein Hämochromatose, sowie<br />

von Gallensteinen und Gesamptblut. Ztschr.<br />

Physiol. Chem. 180, 254-258.<br />

587. Oshima, F. & Siebert, P. (1930) Experi<br />

mentelle chronische Kupfergiftung, ein<br />

Beitrag zur Frage der Pathogenese der<br />

Hämochromatose. Beitrag. Path. Anat. Pathol.<br />

84, 106-111.<br />

588. Oski, F. A. (1970) Chickee, the <strong>copper</strong>.<br />

Ann. Int. Med. 73, 485-486.<br />

589. Oster, G. & Salgo, M. P. (1977) Copper<br />

in mammalian reproduction. Adv. Pharmacol.<br />

Chemotherapy 14, 327-409.<br />

590. Ota, D. M., Macfadyen, B. V. Jr., Gum, E.<br />

T. & Dudrick, S. J. (1978) Zinc <strong>and</strong> cop<br />

per deficiencies in man during intravenous<br />

hyperalimentation. In: Zinc <strong>and</strong> Copper in<br />

Clinical Medicine, ( Hambidge, K. M. &<br />

Nichols, B. L., eds.), pp. 99-112, Spectrum,<br />

New York.<br />

591. Page, G. G. (1973) Contamination <strong>of</strong><br />

drinking water by corrosion <strong>of</strong> <strong>copper</strong> tubes.<br />

N.Z.J. Sci. 16, 349-388.<br />

592. Pagliardi, E., Giangr<strong>and</strong>i, E. & Vinti, A.<br />

(1958) Erythrocyte <strong>copper</strong> in iron defi<br />

ciency anemia. Acta Hematol. 19, 231-240.<br />

593. Panvalkar, R. S., Kalgi, V. H. & Registe, M.<br />

D. ( 1961 ) Serum <strong>copper</strong> level in normal<br />

human subjects <strong>and</strong> in tuberculosis. Prelimi<br />

nary report. Indian J. Med. Sci. 15, 456-<br />

459.<br />

594. Partridge, S. M., Elsden, D. F., Thomas, J.,<br />

Dorfman, A., Telser, A. & Ho, P-L. ( 1964)<br />

Biosynthesis <strong>of</strong> the elemosine <strong>and</strong> isodesmonsine<br />

cross-bridges in elastin. Biochem. J.<br />

93, 30c.<br />

595. Pennington, J. T. & Calloway, D. H. (1974)<br />

Copper content <strong>of</strong> foods. J. Am. Diet. Assn.<br />

63, 143-153.<br />

596. Pfeiffer, C. C. & Cott, A. (1974) A study<br />

<strong>of</strong> zinc <strong>and</strong> manganese dietary supplements<br />

in the <strong>copper</strong> loaded schizophrenic. In:<br />

Clinical Applications <strong>of</strong> Zinc Metabolism<br />

(Pories, J., Strain, W. H., Hsu, J. M. &<br />

R. L. Woosley, eds.), pp. 260-278, Thomas,<br />

Springfield, Illinois.<br />

597. Pfeiffer, C. C. & Hiev, V. (1972) A study<br />

<strong>of</strong> zinc deficiency <strong>and</strong> <strong>copper</strong> excess in the<br />

schrizophrenias. Internat. Rev. Neurobiol.<br />

1 (Suppl), 141-165.<br />

598. Picciano, M. F. & Guthrie, H. A. (1976)<br />

Copper, iron <strong>and</strong> zinc contents <strong>of</strong> mature<br />

human milk. Am. J. Clin. Nutr. 29, 242-254.<br />

599. Pimentel, J. C. & Menezes, A. P. (1977)<br />

Liver disease in vineyard sprayers. Gastroenterology<br />

72, 275-283.<br />

600. Pineda, E. P., Ravin, H. A. & Rutenberg,<br />

A. M. (1962) Serum ceruloplasmin: ob<br />

servations in patients with cancer, obstruc<br />

tive jaundice, <strong>and</strong> other diseases. Gastroenterology<br />

43, 266-270.<br />

601'. Pinnell, S. R. & Martin, G. R. (1968) The<br />

cross-linking <strong>of</strong> collagen <strong>and</strong> elastin: enzy<br />

matic conversion <strong>of</strong> lysine in peptide link<br />

age to a-amino-adipic-a-semialdenyde (allysine)<br />

by an extract from bone. Proc. Nat.<br />

Acad. Sci. U.S.A. 61, 708-716.<br />

602. Pirrie, R. ( 1952 ) Serum <strong>copper</strong> <strong>and</strong> its<br />

relationship to serum iron in patients with<br />

neoplastic disease. J. Clin. Pathol. 5, 190-<br />

193.<br />

603. Pitt, M. A. (1976) Molybdenum toxicity:<br />

interactions between <strong>copper</strong>, molybdenum<br />

<strong>and</strong> sulphate. Agents Actions 6, 758-769.<br />

604. Plantin, L. O. & St<strong>and</strong>berg, P. O. (1965)<br />

Whole-blood concentrations <strong>of</strong> <strong>copper</strong> <strong>and</strong><br />

zinc in rheumatoid arthritis studied by acti<br />

vation analysis. Acta Rheum. Sc<strong>and</strong>. 11, 30-<br />

34.<br />

605. Poczekaj, J., Hejduk, J. & Chodera, A.<br />

(1963) Behaviour <strong>of</strong> <strong>copper</strong> in trophoblast<br />

<strong>and</strong> in placenta at term. Gynaecologia 155,<br />

155-159.<br />

606. Pojerová, A. & Továrek, J. (1960) Cerulo<br />

plasmin in early childhood. Acta Paediat. 49,<br />

113-120.<br />

607. Poison, C. J. (1929) Chronic <strong>copper</strong><br />

poisoning. Br. J. Exp. Pathol. 10, 241-245.<br />

608. Porter, H. (1949) Amino acid excretion in<br />

degenerative diseases <strong>of</strong> the nervous system.<br />

J. Lab. Clin. Med. 34, 1623-1626.<br />

609. Porter, H. (1951) Copper excretion in the<br />

urine <strong>of</strong> normal individuals <strong>and</strong> <strong>of</strong> patients<br />

with hepatolenticular degeneration (Wilson's<br />

disease). Arch. Biochem. Biophys. 31, 262-<br />

265.<br />

610. Porter, H. (1966) The tissue <strong>copper</strong> pro<br />

teins: cerebrocuprein, erythrocuprein, hepatocuprein,<br />

<strong>and</strong> neonatal hepatic mitochondrocuprein.<br />

In: The Biochemistry <strong>of</strong> Copper,<br />

(Peisach, ]., Aisen, P. & Blumberg, W. E.,<br />

eds.), pp. 159-174, Academic Press, New<br />

York.<br />

611. Porter, H. (1974) The particulate halfcystine-rich<br />

<strong>copper</strong> protein <strong>of</strong> newborn liver.<br />

Relationship to metallothionein <strong>and</strong> subcellu<br />

lar localization in non-mitochondrial particles<br />

possibly representing heavy lysosomes. Bio<br />

chem. Biophys. Res. Comm. 56, 661-668.<br />

612. Porter, H. & Ainsworth, S. (1959) The<br />

isolation <strong>of</strong> the <strong>copper</strong>-containing protein<br />

cerebrocuprein I from normal human brain.<br />

J. Neurochem. 5, 91-98.<br />

613. Porter, H. & Folch, J. (1957) Brain <strong>copper</strong>protein<br />

fractions in the normal <strong>and</strong> in Wil<br />

son's disease. A.M.A. Arch. Neurol. Psychiat.<br />

77, 8-16.<br />

614. Porter, H. & Hills, J. R. (1974) The halfcystine-rich<br />

<strong>copper</strong> protein <strong>of</strong> newborn liver<br />

probable relationship to metallothionein <strong>and</strong><br />

subcellular localization in non-mitochondrial<br />

particles possibly representing heavy lyso<br />

somes. In: Trace Element Metabolism in<br />

Animals—2 ( Hoekstra, W. G., Suttie, J. W.,<br />

Ganther, H. E. & Mertz, W., eds.), pp. 482-<br />

485, University Park Press, Baltimore.<br />

615. Porter, H., Sweeney, M. & Porter, E. M.<br />

( 1964 ) Neonatal hepatic mitochondrocuprein.<br />

II. Isolation <strong>of</strong> the <strong>copper</strong>-containing<br />

subfraction from mitochondria <strong>of</strong> newborn<br />

human liver. Arch. Biochem. Biophys. 104,<br />

97-101.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2058 KARL E. MASON<br />

616. Porter, H., Sweeney, M. & Porter, E. M.<br />

( 1964 ) Human hepatocuprein. Isolation <strong>of</strong><br />

a <strong>copper</strong> protein from the subcellular soluble<br />

fraction <strong>of</strong> adult human liver. Arch. Biochem.<br />

Biophys. 105, 319-325.<br />

617. Price, N. O. & Bunce, G. E. (1972) Ef<br />

fect <strong>of</strong> nitrogen <strong>and</strong> calcium on balance<br />

<strong>of</strong> <strong>copper</strong>, manganese, <strong>and</strong> zinc in pré<br />

adolescent girls. Nutr. Rep. Internat. 5, 275-<br />

280.<br />

618. Price, N. O., Bunce, G. E. & Engel, R. W.<br />

( 1970 ) Copper, manganese, ana zinc bal<br />

ance in préadolescent girls. Am. J. Clin.<br />

Nutr. 23, 258-260.<br />

619. Priev, I. G. (1966) Daily <strong>copper</strong> require<br />

ments <strong>of</strong> children <strong>and</strong> adults. Vopr. Pitan.<br />

25 (3), 61-63 (Russian).<br />

620. Priev, I. G. & Krasny, B. A. ( 1966) Cop<br />

per <strong>and</strong> iron content in the ready-to-eat<br />

dishes at children's institutions <strong>and</strong> in nu<br />

tritional treatment dishes <strong>of</strong> some in-patient<br />

departments <strong>of</strong> the city <strong>of</strong> Samark<strong>and</strong>. Vop.<br />

Pitan. 25, (5), 22-26 (Russian).<br />

621. Prohaska, J. R. & Wells, W. W. (1974)<br />

Copper<br />

brain: a<br />

deficiency<br />

possible model<br />

in the<br />

for Menkes'<br />

developing<br />

steely-<br />

rat<br />

hair disease. J. Neurochem. 23, 91-98.<br />

622. Pshetakovsky, I. L. (1972) Clinical value<br />

<strong>of</strong> studying trace elements (Cu, Ni, Mn)<br />

<strong>and</strong> their pathogenetic role in rheumatoid<br />

arthritis. Terapeut. Arkhiv (Moscow) 44,<br />

(6), 23-27 (Russian).<br />

623. Pshetakovsky, I. L. (1973) Pathogenetic<br />

role <strong>of</strong> trace elements (Cu, Ni, Mn) <strong>and</strong><br />

their diagnostic value in ankylosing spondyloarthritis<br />

(Bechterew's disease). Vop.<br />

Rheum. 13 (2), 17-20 (Russian).<br />

624. Purpura, D. P., Hirano, A. & French, J. H.<br />

(1976) Polydendritic Purkinge cells in<br />

X-chromosome linked <strong>copper</strong> malabsorption:<br />

a Golgi study. Brain Res. 117, 125-129.<br />

625. Ragan, H. A., Nacht, S., Lee, G. R., Bishop,<br />

C. R. & Caitwright, G. E. (1969) Effect<br />

<strong>of</strong> ceruloplasmin on plasma iron in <strong>copper</strong>deficient<br />

swine. Am. J. Physiol. 217, 1320-<br />

1323.<br />

626. Rainsford, K. D. & Whitehouse, M. W.<br />

(1976) Concerning the merits <strong>of</strong> <strong>copper</strong><br />

aspirin as a potential anti-inflammatory drug.<br />

J. Pharm. Pharmacol. 28, 83-86.<br />

627. Ramage, H., Sheldon, J. H. & Sheldon, W.<br />

( 1933 ) A spectrographic investigation <strong>of</strong><br />

the metallic content <strong>of</strong> the liver in child<br />

hood. Proc. Roy. Soc. London, Series B, 113,<br />

308-327.<br />

628. Rasuli, Z. M. (1963) Copper <strong>metabolism</strong><br />

in toxemia <strong>of</strong> late pregnancy. Akush. Ginek<br />

39, 63-66 (Russian).<br />

629. Ravin, H. A. (1961) An improved colonmetric<br />

enzymatic assay <strong>of</strong> ceruloplasmin. J.<br />

Lab. Clin. Med. 58, 161-168.<br />

630. Rechenberger, J. (1957) Serumeisen und<br />

Serumlcupfer bei akuten und chromischen<br />

Leukämien sowie bei Morbus Hodgkin.<br />

Deut. Ztschr. Verdann. St<strong>of</strong>fwech. 17, 78-<br />

85.<br />

631. Reed, D. W., Passon, P. G. & Hultquist, D.<br />

E. (1970) Purification <strong>and</strong> properties <strong>of</strong> a<br />

pink <strong>copper</strong> protein from human erythrocytes.<br />

J. Biol. Chem. 245, 2954-2961.<br />

632. Reiff, B. & Schnieden, H. (1959) Plasma<br />

<strong>copper</strong> <strong>and</strong> iron levels <strong>and</strong> plasma paraphenylene<br />

diamine oxidase activity (plasma<br />

<strong>copper</strong> oxidase activity) in kwashiorkor.<br />

Blood 14, 967-971.<br />

633. Reilly, C. (1972) Zinc, iron <strong>and</strong> <strong>copper</strong><br />

contamination in home-produced alcoholic<br />

drinks. J. Sci. Food Agrie. 23, 1143-1144.<br />

634. Reinhold, J. G. (1975) Trace elements:<br />

a Selective Survey. Clin. Chem. 21, 476-<br />

500.<br />

635. Reske-Nielsen, E., Lou, H. O. C., Anderson,<br />

P. & Vagn-Hansen, P. (1973) Brain<strong>copper</strong><br />

concentration in Menkes' disease.<br />

Lancet 1, 613.<br />

636. Rice, E. W. (1960) Correlation between<br />

serum <strong>copper</strong>, ceruloplasmin activity <strong>and</strong><br />

C-reactive protein. Clin. Chim. Acta 5, 632-<br />

636.<br />

637. Rice, E. W. (1961) Evaluation <strong>of</strong> the<br />

role <strong>of</strong> ceruloplasmin as an acute-phase reactant.<br />

Clin. Chim. Acta 6, 652-655.<br />

638. Richterich, R., Rossi, E., Stillhart, H. &<br />

Gautier, H. (1961) The heterogeneity <strong>of</strong><br />

caeruloplasmin in the newborn. In: Wilson's<br />

Disease. Some Current Concepts (Walshe,<br />

J. M. & Cummings, J. N., eds.), pp. 81-<br />

95, Blackwell Sci. Pub., Oxford.<br />

639. Ricour, C., Dunhamel, J. F., Gross, J.,<br />

Mazihère, B. & Comar,<br />

éléments chez l'enfant<br />

D.<br />

en<br />

(1977)<br />

nutrition<br />

Oligoparenterale<br />

Arch.<br />

exclusive: estimation des besoins.<br />

Franc. Pediat. 34, (Suppl. 7), xcii-c.<br />

640. Ritl<strong>and</strong>,<br />

Hepatic<br />

cretion,<br />

disease.<br />

S., Steinnes, E. & Skrede, S. (1977)<br />

<strong>copper</strong> content, urinary <strong>copper</strong> ex<br />

<strong>and</strong> serum ceruloplasmin in liver<br />

Sc<strong>and</strong>. J. Gastroent. 12, 81-88.<br />

641. Roberts, R. H. (1956) Hemolytic anemia<br />

associated with <strong>copper</strong> sulfate poisoning.<br />

Mississippi Doctor 33, 292-294.<br />

642. Robinson, M. F., McKenzie, J. M., Thom<br />

son, C. D. & van Rij, A. L. (1973) Meta<br />

bolic balance <strong>of</strong> zinc, <strong>copper</strong>, cadmium, iron,<br />

molybdenum <strong>and</strong> selenium in young New<br />

Zeal<strong>and</strong> women. Br. J. Nutr. 30, 195-205.<br />

643. Roche-Sicot, J. & Benhamou, J. P. (1977)<br />

Acute intravascular hemolysis <strong>and</strong> acute liver<br />

failure<br />

Wilson's<br />

associated<br />

disease. Ann.<br />

as a<br />

Intern.<br />

first manifestation<br />

Med. 86, 301<strong>of</strong><br />

303.<br />

644. Rosenberg, E. B., Strickl<strong>and</strong>, G. T., Feng,<br />

Y. S. & Blackwell, R. Q. (1971) Compari<br />

son<br />

for<br />

<strong>of</strong><br />

ceruloplasmin<br />

immunologie<br />

quantitation<br />

<strong>and</strong> enzymatic<br />

in<br />

methods<br />

Wilson's<br />

disease. J. Formosan Med. Assn. 70, 49-53.<br />

645. Rohmer, A., Krug, J. P., Mennesson, M.,<br />

M<strong>and</strong>el, P., Mack, G. & Zawislak, R. (1977)<br />

Maladie de Menkes: Etude de deux enzymes<br />

cupro-dependantes. Pediatrie 32, 447-456.<br />

646. Rosenthal, R. W. & Blackburn, A. (1974)<br />

Higher <strong>copper</strong> concentrations in serum than<br />

in plasma. Clin. Chem. 20, 1233-1234.<br />

647. Rottger, H. ( 1950 ) Kupfer bei Mutter und<br />

Kind. Arch. Gynakol. 177, 650-660.<br />

648. Rowe, D. W., McGoodwin, E. B., Martin,<br />

G. R., Sussman, M. D., Grahn, D., Paris, B.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2059<br />

& Franzblau, C. (1974) A sex-linked de<br />

fect in the cross-linking <strong>of</strong> collagen <strong>and</strong><br />

elastin associated with the mottled<br />

mice. J. Exp. Med. 139, 180-192.<br />

648a. Rucker, R. B. & Murray, J. (1978)<br />

locus in<br />

Crosslinking<br />

amino acids in collagen <strong>and</strong><br />

Am. J. Clin. Nutr. 31, 1221-1236.<br />

649. Rucker, R. B. & O'Dell, B. L.<br />

elastin.<br />

(1971)<br />

Connective tissue amine oxidase. I. Purifica<br />

tion <strong>of</strong> bovine aorta amine oxidase <strong>and</strong> its<br />

comparison with plasma amine oxidase. Biochem.<br />

Biophys. Acta 235, 32-43.<br />

650. Rucker,<br />

elastin.<br />

R. B. & Tom, K.<br />

Am. J. Clin. Nutr.<br />

(1976) Arterial<br />

29, 1021-1034.<br />

651. RUSS, E. M. & Raymunt, J. (1956) In<br />

fluence <strong>of</strong> estrogens on total serum <strong>copper</strong><br />

<strong>and</strong> caeruloplasmin. Proc. Soc. Exp. Biol.<br />

Med. 92, 465-466.<br />

652. Russ, E. M., Raymunt, J. & Pillar, S. (1957)<br />

Effect<br />

concentration<br />

<strong>of</strong> estrogen<br />

in a man<br />

therapy<br />

with<br />

on<br />

Wilson's<br />

ceruloplasmin<br />

disease.<br />

J. Clin. Endocrinol. & Metab. 17, 908-909.<br />

653. RydénL. & BjÃrk,I. (1976) Reinvestiga<br />

tion <strong>of</strong> some physico-chemical <strong>and</strong> chemical<br />

properties <strong>of</strong> human ceruloplasmin (ferroxidase).<br />

Biochem. 15, 3411-3417.<br />

654. Rydén,L. & Deutsch,<br />

ration <strong>and</strong> properties<br />

H. F. (1978)<br />

<strong>of</strong> the major<br />

Prepa<br />

<strong>copper</strong>binding<br />

component in human fetal<br />

identification as metallothionein.<br />

Chem. 253, 519-524.<br />

liver. Its<br />

J. Biol.<br />

655. Sachs, A., Levine, V. E. & Fabian,<br />

( 1935 ) Copper <strong>and</strong> iron in human<br />

Arch. Intern. Med. 55, 227-253.<br />

A. A.<br />

blood.<br />

656. Sachs, A., Levine, V. E. & Fabian, A. A.<br />

(1936) Copper <strong>and</strong> iron in human blood.<br />

IV. Normal children. Arch. Intern. Med. 58,<br />

523-530.<br />

657. Sachs, A., Levine, V. E., Hill, F. C. &<br />

Hughes, R. ( 1943 ) Copper <strong>and</strong> iron in<br />

human blood. Arch. Intern. Med. 71, 489-<br />

501.<br />

658. Sakar, B. & Knick, T. P. A. (1966)<br />

per-am ino acid complexes in human<br />

Cop<br />

serum.<br />

In: Biochemistry <strong>of</strong> Copper (Peisach, J.,<br />

Aison, P. & Blumberg, W. E., eds.), pp.<br />

183-196, Academic Press, New York.<br />

659. Sakharchuk, V. M., Yatsula, G. S. & Rakitskaya,<br />

N. V. ( 1972 ) Clínico-experimental<br />

studies <strong>of</strong> the content <strong>of</strong> some trace elements<br />

in atherosclerosis. Kardiologiya 12 (1), 131-<br />

133 (Russian).<br />

660. Sala, I. & Cambara, L. (1957) Contenuto<br />

in rame e attività ossidasica del plasma ma<br />

terno e funiculare. Lattante 28, 458-470.<br />

661. Salaspuro, M.<br />

Demonstration<br />

P.<br />

<strong>of</strong><br />

& Sipponen, P.<br />

an intracellular<br />

(1976)<br />

<strong>copper</strong>binding<br />

st<strong>and</strong>ing<br />

787-790.<br />

protein by<br />

cholestatic<br />

orcein staining<br />

liver diseases.<br />

in long<br />

Gut 17,<br />

662. Salmon,<br />

Chronic<br />

disease.<br />

M. A. & Wright, T. (1971)<br />

<strong>copper</strong> poisoning presenting as pink<br />

Arch. Dis. Child. 46, 108-110.<br />

663. S<strong>and</strong>stead, H. H. (1975) Some trace ele<br />

ments which are essential for human nutri<br />

tion: zinc, <strong>copper</strong>, manganese <strong>and</strong> chromium.<br />

Prog. Food Nutr. Sei. l, 371-391.<br />

664. S<strong>and</strong>stead, H. H., Shukry,<br />

A. S., Gabr, M. K., Hifney,<br />

A. S., Prasad,<br />

A. E., Mokhtar,<br />

N. & Darby, W. J. (1965) Kwashiorkor<br />

in Egypt. I. Clinical <strong>and</strong> biochemical studies,<br />

with special reference to plasma zinc <strong>and</strong><br />

serum lactic dehydrogenase. Am. I. Clin.<br />

Nutr. 17, 15-26.<br />

665. Sarzeau, A. (1830) Sur la présencedu<br />

cuivre dans les végétaux et dans le sang. J.<br />

Pharm. Sci. Accessoires 16, 505-518.<br />

666. Sass-Kortsak, A. (1965) Copper metab<br />

olism. Adv. Clin. Chem. 8, 1-67.<br />

667. Sass-Kortsak, A. (1975) Wilson's disease.<br />

A treatable liver disease in children.<br />

Clin. North. Amer. 22. 963-984.<br />

668. Sass-Kortsak, A. & Bern, A. G.<br />

Pediat.<br />

(1978)<br />

Hereditary<br />

[Wilson's disease<br />

disorder<br />

( hepatolenticular<br />

<strong>of</strong> <strong>copper</strong> <strong>metabolism</strong>.<br />

degen<br />

eration) <strong>and</strong> Menkes' disease (kinky-hair or<br />

steely-hair syndrome)]. In: The Metabolic<br />

Basis <strong>of</strong> Inherited Disease (St<strong>and</strong>bury,<br />

Wyngaarden, J. B. & Fredrickson,<br />

eds.), pp. 1098-1126, McGraw-Hill,<br />

York.<br />

J. B.,<br />

D. S.,<br />

New<br />

669. Sato, F., Shimura, Y.,<br />

M.,<br />

( 1975<br />

Takita,<br />

) Menkes'<br />

S., Yabuta,<br />

kinky<br />

Yokota, J., Suzuki,<br />

K.<br />

hair<br />

&<br />

disease.<br />

Fukuyama,<br />

A re<br />

Y.<br />

port <strong>of</strong> the first Japanese case <strong>and</strong> review <strong>of</strong><br />

literature. No To Hattatsu (Brain & De<br />

velop.) 7, 132-145.<br />

670. Scanni, A., Licciardello, L., Trovato, M.,<br />

Tomirotti, M. & Biraghi, M. (1977) Serum<br />

<strong>copper</strong> <strong>and</strong> ceruloplasmin levels in patients<br />

with neoplasias localized in the stomach,<br />

large intestine or lung. Tumori 6*3, 175-180.<br />

671. Scheinberg, I. H.<br />

A review. In: The<br />

(Peisach, J., Aisen,<br />

eds.), pp. 513-524,<br />

York.<br />

(1966) Ceruloplasmin.<br />

Biochemistry <strong>of</strong> Copper<br />

P. & Blumberg, W. E.,<br />

Academic Press, New<br />

672. Scheinberg, I. H. (1976) The effects <strong>of</strong><br />

heredity <strong>and</strong> environment on <strong>copper</strong> metab<br />

olism. Med. Clin. N. Amer. 60, 705-712.<br />

673. Scheinberg, I. H., Cook, C. D. & Murphy,<br />

J. A. (1954) The concentration <strong>of</strong> <strong>copper</strong><br />

<strong>and</strong> ceruloplasmin in maternal <strong>and</strong> infant<br />

plasma at delivery. J. Clin. Invest. 33, 963.<br />

674. Scheinberg, I. H. & Gitlin, D.<br />

ficiency <strong>of</strong> ceruloplasmin in<br />

hepatolenticular degeneration<br />

(1952)<br />

patients<br />

(Wilson's<br />

De<br />

with<br />

dis<br />

ease). Science 116, 484-485.<br />

675. Scheinberg, I. H., Harris, R. S., Morell, A.<br />

G. & Dubin, D. (1958) Some aspects <strong>of</strong><br />

the relation <strong>of</strong> ceruloplasmin to Wilson's dis<br />

ease. Neurol. 8 (Suppl. 1), 44-51.<br />

676. Scheinberg, I. H. & Morell, H. G.<br />

Ceruloplasmin. Inorganic Biochem.<br />

319.<br />

(1973)<br />

1, 306-<br />

677. Scheinberg, I. H., Morell, A. G., Harris,<br />

R. S. & Berger, A. (1957) Concentration<br />

<strong>of</strong> ceruloplasmin in plasma <strong>of</strong> schizophrenic<br />

patients. Science 126, 925-926.<br />

678. Scheinberg, I. H. & Stemlieb, I. (1959)<br />

The liver in Wilson's disaese. Gastroenterology<br />

37, 550-564.<br />

679. Scheinberg, I. H. & Sternlieb, I. (1960)<br />

Copper <strong>metabolism</strong>. Pharmacol. Rev. 12,<br />

355-381.<br />

680. Scheinberg, I. H. & Stemlieb, I. (1960)<br />

The long term management <strong>of</strong> hepatolen-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2060 KARL E. MASON<br />

ticular degeneration (Wilson's disease). Am.<br />

J. Med. 29, 316-333.<br />

681. Scheinberg, I. H. & Stemlieb, I. (1960)<br />

Environmental<br />

illness: Wilson's<br />

treatment<br />

disease. Ann.<br />

<strong>of</strong> a<br />

Intern.<br />

hereditary<br />

Med.<br />

53, 1151-1161.<br />

682. Scheinberg, I. H. & Stemlieb, I. (1960)<br />

The pathogenesis <strong>and</strong> clinical significance <strong>of</strong><br />

the liver disease in hepatolenticular degen<br />

eration (Wilson's disease). Med. Clin. N.<br />

Amer. 44, 665-679.<br />

683.<br />

The<br />

Scheinberg,<br />

dual role<br />

I.<br />

<strong>of</strong><br />

H.<br />

the<br />

&<br />

liver<br />

Stemlieb,<br />

in Wilson's<br />

I.<br />

Med. Clin. N. Amer. 47, 815-824.<br />

disease.<br />

(1963)<br />

684. Scheinberg, I. H. & Stemlieb, I. (1975)<br />

Wilson's disease. In: Biology <strong>of</strong> Brain Dys<br />

function (Cauli, C. E., ed.) vol. 3, p. 247-<br />

264, Plenum, Pub., New York.<br />

685.<br />

Copper<br />

Scheinberg,<br />

toxicity<br />

I. H.<br />

<strong>and</strong><br />

& Stemlieb,<br />

Wilson's disease.<br />

I. (1976)<br />

In:<br />

Trace Elements in Human Health <strong>and</strong> Dis<br />

ease (Prasad, A. S. & Oberleas, D., eds.),<br />

vol. I, pp. 415-438, Academic Press, New<br />

York.<br />

686. Schenker, J. G., Jungreis, E. & Polishuk, W.<br />

Z. ( 1969) Serum <strong>copper</strong> levels in normal<br />

<strong>and</strong> pathological pregnancies. Am. J. Obst.<br />

Gynecol. 105, 933-937.<br />

687. Schenker, J. G., Jungreis, E. & Polishuk, W.<br />

Z. (1972) Maternal <strong>and</strong> fetal serum cop<br />

per levels at delivery. Biol. Neonate. 20,<br />

189-195.<br />

688. Schlettwein-Gsell, D. & Seiler, H. (1972)<br />

Analysen und Berechnungen des Gehalts<br />

der Nahrung an Kalium, Natrium, Calcium,<br />

Eisen, Magnesium, Kupfer, Zink, Nickel,<br />

Cobalt, Chrom, Mangan und Vanadium in<br />

Altersheimen und Familien. Mitteil Gebiete<br />

Lebensmittel. Hyg. 63, 188-206.<br />

689. Schonheimer, R. & Herkel, W. (1931)<br />

Ãœber das Vorkommen von Schwermetallen<br />

in menschlichen Gallensteinen. Klin. Wchnschr.<br />

10, 345-346.<br />

690. Schorr, J. B., Morell, A. G. & Scheinberg, I.<br />

H. ( 1958 ) Studies <strong>of</strong> serum ceruloplasmin<br />

during<br />

96, 541.<br />

early infancy. Am. J. Dis. Child.<br />

691. Schroeder, H. A., Nason, A. P., Tipton, I.<br />

H. & Salassa, J. J. (1966) Essential trace<br />

metals in man: Copper. J. Chron. Dis. 19,<br />

1007-1034.<br />

692. Schubert, W.<br />

Copper <strong>and</strong><br />

ing hyp<strong>of</strong>erric<br />

24, 710-733.<br />

K. & Lahey, M. E. (1959)<br />

protein depletion complicat<br />

anemia <strong>of</strong> infancy. Pediatrics<br />

693. Schultze,<br />

<strong>and</strong> blood<br />

M. (1940) Metallic elements<br />

formation. Physiol. Rev. 20, 37-<br />

67.<br />

694. Schutz, G. & Feigelson, P. (1972) Puri<br />

fication <strong>and</strong> properties <strong>of</strong> rat liver tryptophan<br />

oxygenase. J. Biol. Chem. 247, 5327-5332.<br />

695. Scoular, F. I. (1938) A quantitative<br />

study, by means <strong>of</strong> spectrographic analysis,<br />

<strong>of</strong> <strong>copper</strong> in nutrition. J. Nutr. 16, 437-450.<br />

696. Scudder,<br />

(1976)<br />

P., Stocks, J. & Dorm<strong>and</strong>y, T. L.<br />

The relationship between erythrocyte<br />

Superoxide<br />

erythrocyte <strong>copper</strong><br />

dismutase activity <strong>and</strong><br />

levels in normal subjects<br />

<strong>and</strong> in patients with rheumatoid arthritis.<br />

Clin. Chim. Acta 69, 397-403.<br />

697. Seelenfreund, M. H., Gartner, S. & Vinger,<br />

P. F. ;(1968) The ocular pathology <strong>of</strong><br />

Menkes' disease (kinky hair disease). Arch.<br />

Opthalm. SO, 718-720.<br />

698. Seelig, M. S. (1972) Review: relation<br />

ships <strong>of</strong> <strong>copper</strong> <strong>and</strong> molybdenum to iron<br />

<strong>metabolism</strong>. Am. J. Clin. Nutr. 25, 1022-<br />

1037.<br />

699. Seelig, M. S. (1973) Proposed role <strong>of</strong><br />

<strong>copper</strong>-molybdenum interaction in irondeficiency<br />

anemia <strong>and</strong> iron-storage diseases.<br />

Am. J. Clin. Nutr. 26, 657-672.<br />

700. Seely, J. R., Humphrey, G. B. & Matter, B.<br />

J. (1972) Copper deficiency in a prema<br />

ture infant fed an iron-fortified formula. New<br />

Engl. J. Med. 286, 109-110.<br />

701. Semple, A. B., Parry, W. H. & Phillips, D.<br />

E. (1960) Acute <strong>copper</strong> poisoning. An<br />

outbreak traced to contaminated water from<br />

corroded geyser. Lancet 2, 700-701.<br />

702. Shahidi, N. T., Diamond, L. K. & Schwachman,<br />

H. ( 1961 ) Anemia associated with<br />

protein deficiency. A study <strong>of</strong> two cases<br />

with cystic fibrosis. J. Pediat. 59, 533-542.<br />

703. Shapiro, J., Morell, A. G. & Scheinberg, I.<br />

H. ( 1961 ) A <strong>copper</strong>-protein <strong>of</strong> human<br />

liver. J. Clin. Invest. 40, 1081.<br />

704. Shaw, J. C. L. (1973) Parenteral nutri<br />

tion in the management <strong>of</strong> sick low birth<br />

rate infants. Pédiatrie Clin. N. Amer. 20,<br />

333-358.<br />

705. Sheldon, J. H. & Ramage, H. (1931) A<br />

spectrographic analysis <strong>of</strong> human tissues. J.<br />

Biochem. 25, 1608-1627.<br />

706. Sherwin, A. L., Beck, I. T. & McKenna, R.<br />

D. (1960) The cause <strong>of</strong> Wilson's disease<br />

(hepatolenticular degeneration) during preg<br />

nancy <strong>and</strong> after delivery. Cañad.Med. Assn.<br />

J. 83, 160-163.<br />

707. Shields, G. S., Coulson, W. F., Kimball, D.<br />

A., Carnes, W. H., Cartwright, G. E. &<br />

Wintrobe, M. M. (1962) Studies on cop<br />

per <strong>metabolism</strong>. XXXII. Cardiovascular<br />

lesions in <strong>copper</strong>-deficient swine. Am. J.<br />

Pathol. 41, 603-621.<br />

708. Shields, G. S., Markowitz, H., Klassen, W.<br />

H., Cartwright, G. E. & Wintrobe, M. M.<br />

( 1961 ) Studies on <strong>copper</strong> <strong>metabolism</strong>.<br />

XXXI. Erythrocyte <strong>copper</strong>. J. Clin. Invest.<br />

40, 2007-2015.<br />

709. Shils, M. E. (1972) Guide lines for total<br />

parenteral nutrition. J. Am. Med. Assn. 220,<br />

1721-1729.<br />

710. Shils, M. E. (1972) Minerals in total<br />

parenteral nutrition. Drug Intel. Clin. Pharm.<br />

6, 385-393.<br />

711. Shils, M. E. (1975) A program for total<br />

parenteral nutrition at home. Am. J. Clin.<br />

Nutr. 28, 1429-1435.<br />

712. Shils, M. E., Wright, W. L., Turnbull, A. &<br />

Brescia, F. ( 1970 ) Long-term parenteral<br />

nutrition through an external arteriovenous<br />

shunt. Report <strong>of</strong> a case. N. Engl. J. Med.<br />

283, 341-344.<br />

713. Shinomiya, N., Yasuda, T., Arimura, A.,<br />

Aoki, T., Haraoka, K., Niwa, N. & Matsu-<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2061<br />

shima, Y. (1977) Menkes' kinky hair dis<br />

ease—two cases report. No To Shinkei<br />

(Brain & Nerve) 29, 331-339.<br />

714. Shokeir, M. H. K. (1971) Investigations<br />

in the nature <strong>of</strong> ceruloplasmin deficiency in<br />

the newborn. J. Clin. Genet. 2, 223-227.<br />

715. Shokeir, M. H. K. k Schreffler, D. C.<br />

( 1969 ) Cytochrome oxidase deficiency in<br />

Wilson's disease: A suggested ceruloplas<br />

min function. Proc. Nat. Acad. Sci. U.S.A.<br />

62, 867-872.<br />

716. Siegel, R. C., Pinnell, S. R. & Martin, G. R.<br />

(1970) Cross-linking <strong>of</strong> collagen <strong>and</strong><br />

elastin. Properties <strong>of</strong> lysyl oxidase. Biochem<br />

istry 9, 4486-4492.<br />

717. Singh, S. & Bresnan, M. J. (1973) Menkes'<br />

kinky-hair syndrome ( trichopoliodystrophy ).<br />

Low <strong>copper</strong> levels in the blood, hair, <strong>and</strong><br />

urine. Am. J. Dis. Child 125, 572-578.<br />

718. Sinha, S. N. & Gabrieli, E. R. (1970)<br />

Serum <strong>copper</strong> <strong>and</strong> zinc levels in various<br />

pathologic conditions. Am. J. Clin. Pathol.<br />

54, 570-577.<br />

719. Sipponen, P. (1976) Orcein positive hepatocellular<br />

material in long-st<strong>and</strong>ing biliary<br />

diseases. I. Histochemical characteristics. II.<br />

Ultrastructural studies. Sc<strong>and</strong> J. Gastroent.<br />

11, 553-557.<br />

720. Sipponen, P., Hjelt, L., TÃrnkvist, T. &<br />

Salaspuro, M. (1976) X-ray microanalysis<br />

<strong>of</strong> <strong>copper</strong> accumulation in liver in secondary<br />

biliary cirrhosis. Arch. Pathol. 100, 664-666.<br />

721. Smallwood, R. A., Mcllveen, G., Rosenoer,<br />

V. M. & Sherlock, S. (1971) Copper<br />

kinetics in liver disease. Gut 12, 139-144.<br />

722. Smallwood, R. A., Williams, H. A., Rosenoer,<br />

V. M. & Sherlock, S. (1968) Liver-<strong>copper</strong><br />

levels in liver disease. Studies using neutron<br />

activation analysis. Lancet 2, 1310-1313.<br />

723. Smith, J. C., Jr. & Brown, E. D. (1976)<br />

Effects <strong>of</strong> oral contraceptive agents on trace<br />

element <strong>metabolism</strong>: a review. In: Trace<br />

Elements in Human Health <strong>and</strong> Disease<br />

(Prasad, A. S. & Oberleas, D., eds.), vol. II,<br />

pp. 315-345, Academic Press, New York.<br />

724. Solassol, CL, Joyeux, H., Etco, L., Pujol, H.<br />

& Romieu, Cl. ( 1974 ) New techniques<br />

for long-term intravenous feeding: an arti<br />

ficial gut in 75 patients. Ann. Surg. 179,<br />

519—522<br />

725. S01i, N. E. & Nafstad, I. (1976) Chronic<br />

<strong>copper</strong> poisoning in sheep. Structural<br />

changes in erythrocytes <strong>and</strong> organs. Acta<br />

Vet. Sc<strong>and</strong>. 17, 316-327.<br />

726. Solomons, N. W., Layden, T. J., Rosenberg,<br />

I. H., Vo-Khactu, K. & S<strong>and</strong>stead, H. H.<br />

(1976) Plasma trace metals during total<br />

parenteral alimentation. Gastroenterology 70,<br />

1022-1025.<br />

727. Soman, S. D., P<strong>and</strong>ay, V. K., Joseph, K. T.<br />

& Raut, S. J. (1969) Daily intake <strong>of</strong><br />

some major <strong>and</strong> trace elements. Health<br />

Physics 17, 35-40.<br />

728. Sorenson, J. R. J. (1976) Copper chelates<br />

as possible active forms <strong>of</strong> the antiarthritic<br />

agents. J. Med. Chem. 19, 135-148.<br />

729. Sorensen, J. R. J. (1977) Evaluation <strong>of</strong><br />

<strong>copper</strong> complexes as potential anti-arthritic<br />

drugs. J. Pharm. Pharmacol. 29, 450-452.<br />

730. Sourkes, T. L. (1972) Influence <strong>of</strong> spe<br />

cific nutrients on catecholamine synthesis<br />

<strong>and</strong> <strong>metabolism</strong>. Pharmacol. Rev. 24, 349-<br />

359.<br />

731. Spillane, J. D., Keyser, J. W. & Parker, R. A.<br />

( 1952 ) Amino-aciduria <strong>and</strong> <strong>copper</strong> metab<br />

olism in hepatolenticular degeneration. J.<br />

Clin. Pathol. 5, 16-24.<br />

732. Stanley, P., Gwinn, J. L. & Sutcliffe, J.<br />

Menkes'<br />

(1976)<br />

syndrome.<br />

The osseous<br />

Ann. Radiol.<br />

abnormalities<br />

19, 167in<br />

172.<br />

733. Starcher, B. C. (1969) Studies on the<br />

mechanism <strong>of</strong> <strong>copper</strong> absorption in the chick.<br />

J. Nutr. 97, 321-326.<br />

734. Starcher, B., Hill, C. H. & Matrone, G.<br />

( 1964 ) Importance <strong>of</strong> dietary <strong>copper</strong> in<br />

the formation <strong>of</strong> aortic elastin. J. Nutr. 82,<br />

318-322.<br />

735. Stein, W. H., Bearn, A. G. & Moore, S.<br />

( 1954 ) The amino acid content <strong>of</strong> the<br />

blood <strong>and</strong> urine in Wilson's disease. J. Clin.<br />

Invest. 33, 410-419.<br />

736. Sternlieb, I. (1967) Gastrointestinal cop<br />

per absorption in man. Gastroenterology 52,<br />

1038-1041.<br />

737. Sternlieb, I. (1972) ^volution <strong>of</strong> the<br />

hepatic lesion in Wilson's disease (hepato<br />

lenticular degeneration). In: Progress in<br />

Liver Disease, ( Popper, H. & Schaffner, F.,<br />

eds.), vol. 4, pp. 511-525, Gruñe<strong>and</strong> Stratton,<br />

New York.<br />

738. Sternlieb, I. & Feldmann, G. (1976) Ef<br />

fects <strong>of</strong> anti<strong>copper</strong> therapy on hepatocellular<br />

mitochondria in patients with Wilson's dis<br />

ease. An ultrastructural <strong>and</strong> stereological<br />

study. Gastroenterology 71, 457-461.<br />

739. Sternlieb, J. & Janowitz, H. D. (1964)<br />

Absorption <strong>of</strong> <strong>copper</strong> in malabsorption syn<br />

dromes. J. Clin. Invest. 43, 1049-1055.<br />

740. Sternlieb, I., Morell, A. G., Bauer, C. D.,<br />

Combes, B., de Bobes-Stemberg, S. &<br />

Scheinberg, I. H. ( 1961 ) Detection <strong>of</strong> the<br />

heterozygous carrier <strong>of</strong> the Wilson's disease<br />

gene. J. Clin. Invest. 40, 707-715.<br />

741. Sternlieb, I., Morell, A. G. & Scheinberg, I.<br />

H. ( 1962 ) The uniqueness <strong>of</strong> ceruloplas<br />

min in the study <strong>of</strong> plasma protein synthesis.<br />

Trans. Assoc. Amer. Physicians 75, 228-234.<br />

742. Sternlieb, I., Morell, A. G., Tucker, W. D.,<br />

Greene, M. W. & Scheinberg, I. H. (1961)<br />

The incorporation <strong>of</strong> <strong>copper</strong> into ceruloplas<br />

min in vivo: Studies with <strong>copper</strong>" <strong>and</strong><br />

<strong>copper</strong>". J. Clin. Invest. 40, 1834-1840.<br />

743. Sternlieb, I., S<strong>and</strong>son, J. I., Morell, A. G.,<br />

Korotkin, E. & Scheinberg, I. H. (1969)<br />

Nonceruloplasmin <strong>copper</strong> in rheumatoid<br />

arthritis. Arth. Rheum. 12, 458-459.<br />

744. Sternlieb, I. & Scheinberg, I. H. (1961)<br />

Ceruloplasmin in health <strong>and</strong> disease. Ann.<br />

N.Y. Acad. Sci. 94, 71-76.<br />

745. Sternlieb, I. & Scheinberg, I. H. (1964)<br />

Penicillamine therapy for hepatolenticular<br />

degeneration. J. Am. Med. Assn. 189, 748-<br />

754.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2062 KARL E. MASON<br />

746. Stemlieb, I. & Scheinberg, I. H. (1968)<br />

Prevention <strong>of</strong> Wilson's disease in asympto<br />

matic patients. N. Engl. J. Med. 278, 352-<br />

359.<br />

747. Stemlieb, I. & Scheinberg, I. H. (1974)<br />

Wilson's disease. In: The Liver <strong>and</strong> Its<br />

Diseases (Schaffner, F., Sherlock, S. &<br />

Leevy, C. M., eds.), pp. 328-336, Inter<br />

continental Medical Book Corp., New York.<br />

748. Stemlieb, I., van den Hamer, C. J. A. &<br />

Alpert, S. (1967) Role <strong>of</strong> intestinal lym<br />

phatics in <strong>copper</strong> absorption. Nature 216,<br />

824.<br />

749. Stemlieb, I., van den Hamer, C. J. A.,<br />

Morell, A. G., Alpert, S., Gregoriadis, G. &<br />

Scheinberg, I. H. (1973) Lysosomal de<br />

fect <strong>of</strong> hepatic <strong>copper</strong> excretion in Wilson's<br />

disease ( hepatolenticular degeneration). Gastroenterology<br />

64, 99-105.<br />

750. Stransky, E., Dauis-Lawas, D. T. & Lawas<br />

I. L. ( 1952 ) On serum <strong>copper</strong> level <strong>and</strong><br />

its importance in childhood. Ann. Paediat.<br />

179, 1-11.<br />

751. Stratigos, J., Kasimatis, B., Panas, E. &<br />

Capetanakis, J. (1976) Le cuivre et la<br />

céruléoplasminedans le sérumdes psoriasiques.<br />

Ann. Dermatol. Syphil. 103, 584-<br />

587<br />

752. Strickl<strong>and</strong>, G. T., Beckner, W. M. & Leu,<br />

M-L. ( 1972 ) Absorption <strong>of</strong> <strong>copper</strong> in<br />

homozygotes <strong>and</strong> hétérozygotes for Wilson's<br />

disease <strong>and</strong> controls: Isotope tracer studies<br />

with "Cu <strong>and</strong> "Cu. Clin. Sci. 43, 617-625.<br />

753. Strickl<strong>and</strong>, G. T., Beckner, W. M., Leu,<br />

M-L. & O'Reilly, S. (1972) Turnover<br />

studies <strong>of</strong> <strong>copper</strong> in homozygotes <strong>and</strong> hétéro<br />

zygotes for Wilson's disease <strong>and</strong> controls:<br />

Isotope tracer studies with "<strong>copper</strong>. Clin.<br />

Sci. 43, 605-615.<br />

754. Strickl<strong>and</strong>, G. T., Blackwell, R. O. & Watten,<br />

R. H. (1971) Metabolie studies in Wil<br />

son's disease. Evaluation <strong>of</strong> efficacy <strong>of</strong><br />

chelation therapy in respect to <strong>copper</strong> ballance.<br />

Am. J. Med. 51, 31-40.<br />

755. Strickl<strong>and</strong>, G. T., Frommer, D., Leu, M-L.,<br />

Pollard, R., Sherlock, S. & Comings, J. N.<br />

( 1973 ) Wilson's Disease in the United<br />

Kingdom <strong>and</strong> Taiwan. Quart. J. Med. 42,<br />

619-638.<br />

756. Strickl<strong>and</strong>, G. T. & Leu, M-L. (1975)<br />

Wilson's disease: Clinical <strong>and</strong> laboratory<br />

manifestations in 40 patients. Medicine 54,<br />

113-137.<br />

757. Studnitz, W. von & Berezin, D. (1958)<br />

Studies on serum <strong>copper</strong> during pregnancy,<br />

during the menstrual cycle, <strong>and</strong> after ad<br />

ministration <strong>of</strong> oestrogens. Acta Endocrinol.<br />

27, 245-252.<br />

758. Sturgeon, P. ( 1954 ) Studies on iron re<br />

quirements in infants <strong>and</strong> children: 1. Nor<br />

mal values for serum iron, <strong>copper</strong> <strong>and</strong> free<br />

erythrocyte protoporphyrin. Pediatrics 13,<br />

107-125.<br />

759. Sturgeon, P. & Brubaker, C. (1956) Cop<br />

per deficiency in infants: a syndrome char<br />

acterized by hypocupremia, iron deficiency<br />

anemia, <strong>and</strong> hypoproteinemia. Am. J. Dis.<br />

Child. 92, 254-265.<br />

760. Sullivan, J. F. & Hart, K. T. (1960)<br />

Serum benzidine oxidase. J. Lab. Clin. Med.<br />

55, 260-267.<br />

761. Sultanova, G. F. (1970) Peculiarities in<br />

<strong>copper</strong> <strong>metabolism</strong> in the prematurely bom<br />

infants <strong>of</strong> the first months <strong>of</strong> life. Pediatrija<br />

49 (10), 14-18 (Russian).<br />

762. Sumino, K., Hayakawa, K., Shibata, T. &<br />

Kitamura, S. (1975) Heavy metals in<br />

normal Japanese tissues. Amounts <strong>of</strong> 15<br />

heavy metals in 30 subjects. Arch. Environ.<br />

Health 30, 487-494.<br />

763. Sunderman, F. W., Jr. (1973) Atomic ab<br />

sorption spectrometry <strong>of</strong> trace metals in clini<br />

cal pathology. Hum. Pathol. 4, 549-582.<br />

764. Sunderman, F. W., Jr., Hohnadel, D. C.,<br />

Evenson, M. A., Wannamaker, B. B. & Dahl,<br />

D. S. ( 1974) Excretion <strong>of</strong> <strong>copper</strong> in sweat<br />

<strong>of</strong> patients with Wilson's disease during<br />

sauna bathing. Ann. Clin. Lab. Sci. 4, 407-<br />

412.<br />

765. Sunderman, F. W., Jr. & Roszel, N. O.<br />

( 1967 ) Measurements <strong>of</strong> <strong>copper</strong> in bio<br />

logical materials by atomic absorption spec<br />

trometry. Am. J. Clin. Pathol. 48, 286-294.<br />

766. Suttle, N. F. (1974) Recent studies <strong>of</strong><br />

the <strong>copper</strong>-molybdenum antagonism. Proc.<br />

Nutr. Soc. 33, 299-305.<br />

767. Suttle, N. F. & Mills, C. F. (1966) Studies<br />

<strong>of</strong> the toxicity <strong>of</strong> <strong>copper</strong> to pigs. 1. Effects<br />

<strong>of</strong> oral supplements <strong>of</strong> zinc <strong>and</strong> iron salts<br />

on the development <strong>of</strong> <strong>copper</strong> toxicosis. Br.<br />

J. Nutr. 20, 135-137.<br />

768. Suttle, N. F. & Mills, C. F. (1966) Studies<br />

<strong>of</strong> the toxicity <strong>of</strong> <strong>copper</strong> to pigs. 2. Effect <strong>of</strong><br />

protein source <strong>and</strong> other dietary components<br />

on the response to high <strong>and</strong> moderate in<br />

takes <strong>of</strong> <strong>copper</strong>. Br. J. Nutr. 20, 149-161.<br />

769. Tani, P. & Kokkola, K. (1972) Serum<br />

iron, <strong>copper</strong>, <strong>and</strong> iron-binding capacity in<br />

bronchogenic pulmonary carcinoma. Sc<strong>and</strong>.<br />

J. Resp. Dis. (Suppl. 80), 121-128.<br />

770. Taradaiko, Y. V. (1963) The content <strong>of</strong><br />

<strong>copper</strong> in the organism <strong>of</strong> the mother <strong>and</strong><br />

fetus. Akush. Ginek. 39, 59-63 (Russian).<br />

771. Tatum, H. J. (1974) Copper-bearing in<br />

trauterine devices. Clin. Obst. & Gynecol.<br />

17, 93-119.<br />

772. Teague, H. S. & Carpenter, L. E. (1951)<br />

The demonstration <strong>of</strong> a <strong>copper</strong> deficiency<br />

in growing pigs. J. Nutr. 43, 389-399.<br />

773. Tessmer, C. F., Hrgovcic, M., Brown, B. W.,<br />

Wilbur, J. & Thomas, F. B. (1972) Serum<br />

<strong>copper</strong> correlations with bone marrow.<br />

Cancer 29, 173-179.<br />

774. Tessmer, C. F., Hrgovcic, M., Thomas, F.<br />

B., Fuller, L. M. & Castro, J. R. (1973)<br />

Serum <strong>copper</strong> as an index <strong>of</strong> tumor response<br />

to radiotherapy. Radiol. 106, 635-639.<br />

775. Tessmer, C. F., Hrgovcic, M. & Wilbur, J.<br />

( 1973 ) Serum <strong>copper</strong> in Hodgkin's disease<br />

in children. Cancer 31, 303-315.<br />

776. Tessmer, C. F., Krohn, W., Johnston, D.,<br />

Thomas, F. B., Hrgovcic, M. & Brown, B.<br />

( 1973 ) Serum <strong>copper</strong> in children ( 6-12<br />

years old): An age-correction factor. Am. J.<br />

Clin. Path. 60, 870-878.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2063<br />

777. Thompson, R. H. S. & Watson, D. (1949)<br />

Serum <strong>copper</strong> levels in pregnancy <strong>and</strong> in<br />

pre-eclampsia. J. Clin. Pathol. 2, 193-196.<br />

778. Thorling, E. B. & Thorling, K. (1976) The<br />

minations<br />

clinical usefulness<br />

in Hodgkin's<br />

<strong>of</strong> serum<br />

disease.<br />

<strong>copper</strong><br />

A retrospec<br />

deter<br />

tive study <strong>of</strong> 241 patients<br />

Cancer 38, 225-231.<br />

from 1963-1973.<br />

779. Thornton, I. & Alloway, B. J. (1974)<br />

Geochemical aspects <strong>of</strong> the soil-plant-animal<br />

relationship in the development <strong>of</strong><br />

element deficiency <strong>and</strong> excess. Proc.<br />

Soc. 33, 257-274.<br />

trace<br />

Nutr.<br />

780. Tingey, A. H. (1957) The iron, <strong>copper</strong><br />

<strong>and</strong> manganese content <strong>of</strong> the human brain.<br />

J. Mental Sci. 83, 452-460.<br />

781. Tipton, I. H. & Cook, M. J. (1963) Trace<br />

elements in human tissue. Part II. Adult sub<br />

jects from the United States. Health Phys.<br />

9, 103-145.<br />

782. Tipton, I. H., Stewart, P. L. & Dickson, J.<br />

( 1969) Patterns <strong>of</strong> elemental excretion in<br />

long term balance studies. Health Phys. 16,<br />

455-462.<br />

783. Tipton, I. H., Stewart, P. L. & Martin, P. G.<br />

( 1966 ) Trace elements in diets <strong>and</strong> excreta.<br />

Health Phys. 12, 1683-1689.<br />

784. Todd, J. R., Gracey, J. F. & Thompson, R. H.<br />

( 1962 ) Studies on chronic <strong>copper</strong> poison<br />

ing. I. Toxicity <strong>of</strong> <strong>copper</strong> sulphate <strong>and</strong> cop<br />

per acetate in sheep. Br. Vet. J. 118, 482-<br />

491.<br />

785. Tompsett, S. L. (1934) The excretion <strong>of</strong><br />

<strong>copper</strong> in urine <strong>and</strong> faeces <strong>and</strong> its relation<br />

to the <strong>copper</strong> content <strong>of</strong> the diet. Biochem.<br />

J. 28, 2088-2091.<br />

786.<br />

"inorganic"<br />

Tompsett, S.<br />

iron<br />

L.<br />

contents<br />

(1935)<br />

<strong>of</strong><br />

The<br />

human<br />

<strong>copper</strong><br />

tissues.<br />

<strong>and</strong><br />

Biochem. J. 29, 480-486.<br />

787. Tompsett, S. L. & Anderson, D. F. (1935)<br />

The <strong>copper</strong> content <strong>of</strong> the blood in preg<br />

nancy. Br. J. Exp. Pathol. 16, 67-69.<br />

788. Topham, R.<br />

Identification<br />

W.<br />

<strong>and</strong><br />

& Frieden,<br />

purification<br />

E.<br />

<strong>of</strong><br />

(1970)<br />

a nonceruloplasmin<br />

ferroxidase <strong>of</strong> human serum.<br />

J. Biol. Chem. 245, 6698-6705.<br />

789. Trip, J. A., Que, G. S., Botterweg-Span, Y.<br />

& M<strong>and</strong>ema, E. (1969) The state <strong>of</strong> cop<br />

per in human lymph. Clin. Chim. Acta 26,<br />

371-372.<br />

790. Tsallas, G. & Baun, D. C. (1972) Home<br />

care total parenteral alimentation. Am. J.<br />

Hosp. Pharm. 29, 840-846.<br />

791. Tu, J-B. (1963) A genetic biochemical<br />

<strong>and</strong> clinical study <strong>of</strong> Wilson's disease among<br />

Chinese<br />

81-104.<br />

in Taiwan. Acta Paediat. Sinica 4,<br />

792. Tu, J-B. & Blackwell, R. Q. (1967)<br />

Studies on levels <strong>of</strong> penicillamine-induced<br />

cupriuresis in hétérozygotes <strong>of</strong> Wilson's dis<br />

ease. Metabolism 16, 507-513.<br />

793. Tu, J-B., Blackwell, R. Q. & Watten, R. H.<br />

treatment<br />

( 1965 ) Copper<br />

<strong>of</strong> patients<br />

balance<br />

with<br />

studies<br />

Wilson's<br />

during<br />

disease.<br />

the<br />

Metabolism 14, 653-666.<br />

794. Turpin, R., Schmitt-Jubeau, H. & Jerome,<br />

H.<br />

sur<br />

355.<br />

(1950) Action<br />

la cuprémie.C.R.<br />

du diéthylstilboestrol<br />

Soc. Biol. 144, 352-<br />

795. Tyson, T. L., Holmes, H. H. & Ragan, C.<br />

(1950) Copper therapy <strong>of</strong> rheumatoid<br />

arthritis. Am. J. Med. Sci. 220, 418-120.<br />

796. Ulstrom, R. A., Smith, N. J. & Heimlich,<br />

E. M. (1956) Transient dysproteinemia in<br />

infants, a new syndrome: I. clinical studies.<br />

A.M.A. J. Dis. Child. 92, 219-253.<br />

797. Ulstrom, R. A., Smith, N. J., Nakamura, K.<br />

& Heimlich, E. (1957) Transient dyspro<br />

teinemia in infants. II. Studies <strong>of</strong> protein<br />

<strong>metabolism</strong> using amino acid isotopes.<br />

A.M.A. J. Dis. Child. 93, 536-547.<br />

798. UnderwooA, E. J. (1977) Trace Elements<br />

in Human <strong>and</strong> Animal Nutrition, 4th ed.,<br />

Academic Press, New York.<br />

799. Usher, S. J., MacDermot, P. N. & Lozinski,<br />

E. (1935) Prophylaxis <strong>of</strong> simple anemia<br />

in infancy with iron <strong>and</strong> <strong>copper</strong>. Am. J. Dis.<br />

Child. 49, 642-657.<br />

800. Utin, A. V. (1970) Copper <strong>metabolism</strong><br />

<strong>and</strong> its significance in epilepsy. Zn. Nevropatol.<br />

Psikhiat. S.S. Korsakova 70, 721-727<br />

(Russian) (cited in Nutr. Abstr. rev. 41,<br />

662, 1971)<br />

801. Uzman, L. L., Iber, F. L., Chalmers, T. C.<br />

& Knowlton, M. (1956) The mechanism<br />

<strong>of</strong> <strong>copper</strong> deposition in the liver in hepatolenticular<br />

degeneration (Wilson's disease).<br />

M. J. Med. Sci. 231, 511-518.<br />

802. Vagn-Hansen, P. L., Reske-Nielsen, E. &<br />

Lou, H. C. (1973) Menkes' Disease: a<br />

new leucodystrophy (?). A clinical <strong>and</strong><br />

neuropathological review together with a<br />

new case. Acta Neuropathol. 25, 103-119.<br />

803. Vallee, B. L. (1952) The time course <strong>of</strong><br />

serum <strong>copper</strong> concentrations <strong>of</strong> patients with<br />

myocardial infarctions. I. Metabolism 1, 420-<br />

434.<br />

804. Van Campen, D. R. (1971) Absorption<br />

<strong>of</strong> <strong>copper</strong> from the gastrointestinal tract.<br />

In: Intestinal Absorption <strong>of</strong> Metal Ions,<br />

Trace Elements <strong>and</strong> Radionucleotides<br />

(Skoryna, S. C. & Waldron-Edward, D.,<br />

eds.), pp. 211-227, Pergamon Press, Oxford.<br />

805. Van Ravesteyn, A. H. (1944) Metabolism<br />

<strong>of</strong> <strong>copper</strong> in man. Acta Med. Sc<strong>and</strong>. 118,<br />

163-196.<br />

806. Versieck, J., Barbier, F., Speecke, A. & Hoste,<br />

J. (1975) Influence <strong>of</strong> myocardial infarc<br />

tion on serum manganese, <strong>copper</strong>, <strong>and</strong> zinc<br />

concentrations. Clin. Chem. 21, 578-581.<br />

807. Vidal, G. P., Shieh, J. J. & Yasunobu, K. T.<br />

( 1975 ) Immunological studies <strong>of</strong> bovine<br />

aorta lysyl oxidase: evidence for two forms<br />

<strong>of</strong> the enzyme. Biochem. Biophys. Res.<br />

Commun. 64, 989-995.<br />

808. Vilter, R. W., Bozian, R. C., Hess, E. V.,<br />

Zellner, D. C. & Petering, H. G. (1974)<br />

Manifestations <strong>of</strong> <strong>copper</strong> deficiency with<br />

systemic sclerosis on intravenous hyperalimentation.<br />

New Engl. J. Med. 291, 188-<br />

191.<br />

809. Volpintesta, E. J. (1974) Menkes' kinky<br />

hair syndrome in a black infant. Am. J. Dis.<br />

Child. 128, 244-246.<br />

810. Vuia, O. & Heye, D. ( 1974) Neuropathologic<br />

aspects in Menkes' kinky hair disease<br />

(trichopoliodystrophy ). Neuropadiarie. 5,<br />

329-339.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2064 KARL E. MASON<br />

811. Wacker, W. E. C., Ulmer, D. D. & Vallee,<br />

B. L. ( 1956 ) Metalloenzymes <strong>and</strong> myocardial<br />

infarction. II. Malic <strong>and</strong> lactic dehydrogenase<br />

activities <strong>and</strong> zinc concentra<br />

tions in serum. N. Eng. J. Med. 255, 449-<br />

456.<br />

812. Waddell, J., Elvehjem, C. A., Steenbock,<br />

H. & Hart, E. B. (1928) Iron in nutrition.<br />

VI. Iron salts <strong>and</strong> iron-containing ash ex<br />

tracts in the correction <strong>of</strong> anemia. J. Biol.<br />

Chem. 77, 777-795.<br />

813. Wahl, P. K., Mittal, y. P. £ Bansal, O. P.<br />

( 1965 ) Renal complications in acute cop<br />

per sulphate poisoning. Indian Pract. IS,<br />

807-812.<br />

814. Waldman, T. A., Morell, A. G., Wochner,<br />

R. D., Strober, W. & Sternlieb, 1. (1967)<br />

Measurement <strong>of</strong> gastrointestinal protein loss<br />

using ceruloplasmin labeled with "<strong>copper</strong>.<br />

J. Clin. Invest. 46, 10-20.<br />

815. Walker, W. R. & Keats, D. M. (1976) An<br />

investigation <strong>of</strong> the therapeutic value <strong>of</strong> the<br />

"<strong>copper</strong> bracelet:" dermal assimilation <strong>of</strong><br />

<strong>copper</strong> in arthritic/rheumatoid conditions.<br />

Agents Actions 6, 454-459.<br />

816. Walker-Smith, J. & Blomfield, J. (1973)<br />

Wilson's disease or chronic <strong>copper</strong> poison<br />

ing? Arch. Dis. Child. 48, 476-479.<br />

817. Walker-Smith, J. A., Turner, B., Blomfield,<br />

J. & Wise, G. (1973) Therapeutic impli<br />

cations <strong>of</strong> <strong>copper</strong> deficiency in Menkes's<br />

steely-hair syndrome. Arch. Dis. Child. 48,<br />

958-962.<br />

818. Walravens, P. A. (1977) Trace element<br />

nutrition <strong>and</strong> brain development. In: Proc.<br />

4th Internat. Congress, Internat. Assn. Sci.<br />

Study Mental Deficiency (Mittler, P., ed.),<br />

vol. Ill, pp. 355-364, University Park,<br />

Baltimore.<br />

819. Walsh, F. M., Crosson, F. J., Bayley, M.,<br />

McReynolds, J. & Pearson, B. J. (1977)<br />

Acute <strong>copper</strong> intoxication. Pathophysiology<br />

<strong>and</strong> therapy with a case report. Am. J. Dis.<br />

Child. 131, 149-151.<br />

820. Walshe, J. M. (1956) FPenicillamine, a<br />

new oral therapy for Wilson's disease. Am. J.<br />

Med. 21, 487-495.<br />

821. Walshe, J. M. (1967) The physiology <strong>of</strong><br />

<strong>copper</strong> in man <strong>and</strong> its relation to Wilson's<br />

disease. Brain 90, 149-176.<br />

822. Walshe, J. M. (1972) The biochemistry<br />

<strong>of</strong> <strong>copper</strong> in man <strong>and</strong> its role in the pathogenesis<br />

<strong>of</strong> Wilson's disease (hepatolenticular<br />

degeneration). In: Biochemical Aspects <strong>of</strong><br />

Nervous Diseases (Cumings, T. N., ed.),<br />

pp. 111-150, Plenum, New York.<br />

823. Walshe, J. M. (1973) Copper chelation<br />

in patients with Wilson's disease, a compari<br />

son <strong>of</strong> penicillamine <strong>and</strong> tetraethylene<br />

tetramine dihydrochloride. Quart. J. Med.<br />

42, 441-452.<br />

824. Walshe, J. M. & Briggs, J. ( 1962) Caeruloplasmin<br />

in liver disease. A diagnostic pitfall.<br />

Lancet 2, 263-265.<br />

826. Walshe, J. M. & Potter, G. (1977) The<br />

pattern <strong>of</strong> the whole body distribution <strong>of</strong><br />

radioactive <strong>copper</strong> ("Cu, wCu) in Wilson's<br />

disease<br />

J. Med.<br />

<strong>and</strong> various control groups.<br />

(New Series) 46, 445-462.<br />

Quart.<br />

827. Warburg, O. & Krebs, H. A. (1927) Ãœber<br />

locker gebundenes Kupfer und Eisen in<br />

Blutserum. Biochem. Ztschr. 190, 143-149.<br />

828. Warren, P. J., Earl, C. J. & Thompson, R.<br />

H. S. (1960) The distribution <strong>of</strong> <strong>copper</strong><br />

in human brain. Brain 83, 709-717.<br />

829. Warren, R. L., Jelliffe, A. M., Watson, J. V.<br />

& Hobbs, C. B. (1969) Prolonged obser<br />

vations<br />

Hodgkin's<br />

on variations<br />

disease. Clin.<br />

in the<br />

Radiol.<br />

serum <strong>copper</strong><br />

20, 247in<br />

256.<br />

830. Waslein, C. I. (1976) Human intake <strong>of</strong><br />

trace elements. In: Trace Elements in Hu<br />

man Health <strong>and</strong> Disease, (Prasad, A. S. &<br />

Oberleas, D., eds.), vol. 2, pp. 347-370,<br />

Academic Press, New York.<br />

831. Webb, J., Kirk, K. A., Jackson, D. H.,<br />

Niedermeier, W., Turner, M. E., Rackley,<br />

C. E. & Russell, R. O. (1976) Analysis<br />

by pattern recognition techniques <strong>of</strong> changes<br />

in serum levels <strong>of</strong> 14 trace metals after acute<br />

myocardial infarction. Exp. Molec. Pathol.<br />

25, 322-331.<br />

832. Weber, P. M., O'Reilly, S., Pollycove, M. &<br />

Shipley, L. (1969) Gastrointestinal ab<br />

sorption <strong>of</strong> <strong>copper</strong>: studies with "Cu, MZr,<br />

a wholebody counter <strong>and</strong> the scintillation<br />

camera. J. Nuclear. Med. 10, 591-596.<br />

833. Wehinger, H., Witt, I., Lose], I., Denz-<br />

Seibert, G. & S<strong>and</strong>er, C. (1975) Intra<br />

venous <strong>copper</strong> in Menkes' kinky-hair syn<br />

drome. Lancet 1, 1143-1144.<br />

834. Wertime, T. A. (1964) Man's first en<br />

counter with metallurgy. Science 146, 1257-<br />

1267.<br />

835. Wesenberg, R. L., Gwinn, J. L. & Barnes,<br />

G. R., Jr. (1969) Radiological findings in<br />

the kinky-hair syndrome. Radiology 92, 500-<br />

506.<br />

836. Wester, P. O. (1971) Trace elements in<br />

the coronary arteries in the presence <strong>and</strong><br />

absence <strong>of</strong> atherosclerosis. Atherosclerosis<br />

13 (3), 395-412.<br />

837. Wharton, D. C. & Gibson, Q. H. (1966)<br />

Spectrophotometric characterization <strong>and</strong><br />

function <strong>of</strong> <strong>copper</strong> in cytochrome c oxidase.<br />

In: The Biochemistry <strong>of</strong> Copper (Peisach,<br />

J., Aisen, P. & Blumberg, W. E., eds.),<br />

pp. 235-244, Academic Press, New York.<br />

838. Wheeler, E. M. & Roberts, P. F. (1976)<br />

Menkes' steely hair syndrome. Arch. Dis.<br />

Child. 51, 269-274.<br />

839. White, H. S. (1969) Inorganic elements<br />

in weighed diets <strong>of</strong> girls <strong>and</strong> young women.<br />

J. Am. Diet. Assn. 55, 38-43.<br />

840. White, H. S. & Gynne, T. N. (1971) Utili<br />

zation <strong>of</strong> inorganic elements by young<br />

women eating iron-fortified foods. J. Am.<br />

Diet. Assn. 59, 27-33.<br />

841. Whitehouse, M. W. (1976) Ambivalent<br />

role <strong>of</strong> <strong>copper</strong> in inflammatory disorders.<br />

Agents Actions 6, 201-206.<br />

842. Widdowson, E. M., Chan, H., Harrison, G.<br />

E. & Milner, R. D. G. (1972) Accumula<br />

tion <strong>of</strong> Cu, Zn, Mn, Cr <strong>and</strong> Co in the<br />

human liver before birth. Biol. Neonate. 20,<br />

360-367.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


COPPER METABOLISM AND REQUIREMENTS OF MAN 2065<br />

843. Widdowson, E. M., Dauncey, J. & Shaw,<br />

J. C. L. (1974) Trace elements in foetal<br />

<strong>and</strong> early postnatal development. Proc. Nutr.<br />

Soc. 33, 275-284.<br />

844. Widdowson, E. M. & Dickerson, J. W. T.<br />

( 1964 ) Chemical composition <strong>of</strong> the body.<br />

In: Mineral Metabolism, an Advanced<br />

Treatise, (Comar, C. L. & Bronner, F.,<br />

eds. ), chap. 17, pp. 1-247, Academic Press,<br />

New York.<br />

845. Widdowson, E. M., McCance, R. A. & Spray,<br />

C. M. (1951) The chemical composition<br />

<strong>of</strong> the human body. Clin. Sci. IO, 113-125.<br />

846. Widdowson, E. M. & Spray, C. M. (1951)<br />

Chemical development in utero. Arch. Dis.<br />

Child. 26, 205-214.<br />

847. Wilken, H. (1960) Serumkupfer bei<br />

Spätschwangerschaftstoxikosen. Aren. Gynäkol.<br />

194, 158-164.<br />

848. Wilkinson, R. (1971) Polyethylene glycol<br />

4000 as a continuously administered nonabsorbable<br />

faecal marker for metabolic bal<br />

ance studies in human subjects. Gut 12,<br />

654-660.<br />

849. Williams, D. M., Atkin, C. L., Frens, D. B.<br />

& Bray, P. F. (1977) Menkes' kinky hair<br />

syndrome: studies <strong>of</strong> <strong>copper</strong> <strong>metabolism</strong> <strong>and</strong><br />

long term therapy. Pediat. Res. 11, 823-826.<br />

850. Williams, D. M., Lee, G. R. & Cartwright,<br />

G. E. (1974) Ferroxidase activity <strong>of</strong> rat<br />

ceruloplasmin. Am. J. Physiol. 227, 1094-<br />

1097.<br />

851. Willvonseder, R., Goldstein, N. P., McCall,<br />

J. T., Yoss, R. E. & Tauxe, W. N. (1973)<br />

A hereditary disorder with dementia, spastic<br />

dysarthria, vertical eye movement paresis,<br />

gait disturbance, splenomegaly <strong>and</strong> abnormal<br />

<strong>copper</strong> <strong>metabolism</strong>. Neurology 23, 1039-<br />

1049.<br />

852. Wilmore, D. W. & Dudrick, S. J. (1968)<br />

Growth <strong>and</strong> development <strong>of</strong> an infant re<br />

ceiving all nutrients exclusively by vein.<br />

J.A.M.A. 203, 860-864.<br />

853. Wilmore, D. W., Gr<strong>of</strong>f, D. B., Bishop, H. C.<br />

& Dudrick, S. J. (1969) Total parenteral<br />

nutrition in infants with catastrophic gastro<br />

intestinal anomalies. J. Pediat. Surg. 4, 181—<br />

189.<br />

854. Wilson, J. F. & Lahey, M. E. (1960)<br />

Failure to induce dietary deficiency <strong>of</strong> cop<br />

per in premature infants. Pediatrics 25, 40-<br />

49.<br />

855. Wilson, S. A. K. (1912) Progressive len<br />

ticular degeneration: a familial nervous dis<br />

ease associated with cirrhosis <strong>of</strong> the liver.<br />

Brain 34, 295-309.<br />

856. Winge, D. R., Premakumar, R., Wiley, R.<br />

D. & Rajagopalan, K. V. (1975) Copperchelatin:<br />

purification <strong>and</strong> properties <strong>of</strong> a<br />

<strong>copper</strong>-binding protein from rat liver. Arch.<br />

Biochem. Biophys. 170, 253-266.<br />

857. Wintrobe, M. M., Cartwright, G. E. &<br />

Gubler, C. J. (1953) Studies on the func<br />

tion <strong>and</strong> <strong>metabolism</strong> <strong>of</strong> <strong>copper</strong>. J. Nutr. 50,<br />

395-419.<br />

858. Wojcicka, J. & Zapalowski, Z. (1963) The<br />

serum-<strong>copper</strong> level in the blood <strong>of</strong> pregnant<br />

women in cases <strong>of</strong> normal <strong>and</strong> complicated<br />

pregnancies. Ginek. Polska 34, 693-697<br />

(Polish).<br />

859. Wolf, P. I. (1975) An investigation <strong>of</strong><br />

serum <strong>copper</strong> in dermatologie conditions.<br />

Lab. Invest. 32, 461.<br />

860. Wolf, W. R., Holden, J. & Greene, F. E.<br />

( 1977 ) Daily intake <strong>of</strong> zinc <strong>and</strong> <strong>copper</strong><br />

from self selected diets. Federation Proc.<br />

36, 1175.<br />

861. World Health Organization. Technical Re<br />

port Series No. 532 ( 1973 ) Trace ele<br />

ments in human nutrition. Report <strong>of</strong> a WHO<br />

Expert Committee, 65 pp., World Health<br />

Organization, Geneva.<br />

862. Worwood, M., Taylor, D. M. & Hunt, A. H.<br />

( 1968 ) Copper <strong>and</strong> manganese concentra<br />

tions in biliary cirrhosis <strong>of</strong> liver. Br. Med.<br />

J. 3, 344-346.<br />

863. Wray, S. H., Kuwabara, T. & S<strong>and</strong>erson, P.<br />

(1976) Menkes' kinky hair disease: a light<br />

<strong>and</strong> electron microscopic study <strong>of</strong> the eye.<br />

Invest. Ophthalmol. 15, 128-138.<br />

864. Wretlind, A. (1972) Complete intravenous<br />

nutrition. Theoretical <strong>and</strong> experimental back<br />

ground. Nutr. Metabol. 14, (Suppl.), 1-57.<br />

865. Wylie, J. (1957) Copper poisoning at a<br />

cocktail party. Am. J. Pub. Health 47, 617.<br />

866. Yamada, H., Kumagai, H., Kawasaki, H.,<br />

Matsui, H. & Ogata, K. (1967) Crystalli<br />

zation <strong>and</strong> properties <strong>of</strong> diamine oxidase<br />

from pig kidney. Biochem. Biophys. Res.<br />

Commun. 29, 723-727.<br />

867. Yamada, H. & Yasunobu, K. T. (1962)<br />

Monoamine oxidase. II. Copper, one <strong>of</strong> the<br />

prosthetic groups <strong>of</strong> plasma monoamine ox<br />

idase. J. Biol. Chem. 237, 3077-3082.<br />

868. Ylostalo, P. & Reinila, M. (1973) Serum<br />

<strong>copper</strong> in normal <strong>and</strong> complicated pregnan<br />

cies compared with urinary estrogens. Ann.<br />

Chirurg. Gynaecol. Fenniae 62, 117-120.<br />

869. Yoshida, T., Konno, T. & Arakawa, T.<br />

( 1969 ) Hypocupremic infant associated<br />

with mental retardation <strong>and</strong> hepatic cir<br />

rhosis: probably a <strong>copper</strong> malabsorption<br />

syndrome. Tohoku J. Exp. Med. 98, 229-<br />

239<br />

870. Young, S. N. & Curzon, G. (1974) Neo<br />

natal human caeruloplasmin. Biochim. Bio<br />

phys. Acta 336, 306-308.<br />

871. Yunice, A. A., Lindeman, R. D., Czerwinski,<br />

A. W. & Clark, M. (1974) Influence <strong>of</strong><br />

age <strong>and</strong> sex on serum <strong>copper</strong> <strong>and</strong> cerulo<br />

plasmin levels. J. Gerontol. 29, 277-281.<br />

872. Zackheim, H. S. & Wolf, P. (1972) Serum<br />

<strong>copper</strong> in psoriasis <strong>and</strong> other dermatoses. J.<br />

Invest. Dermatol. 58, 28-32.<br />

873. Zimdahl, W. T., Hyman, I. & Cook, E. D.<br />

( 1953 ) Metabolism <strong>of</strong> <strong>copper</strong> in hepatolenticular<br />

degeneration. Neurology 3, 569-578.<br />

874. Zipursky, A., Dempsey, H., Markowitz, H.,<br />

Cartwright, G. & Wintrobe, M. M. (1958)<br />

Studies on <strong>copper</strong> <strong>metabolism</strong>. XXIV. Hypocupremia<br />

in infancy. A.M.A.J. Dis. Child.<br />

96, 148-158.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013


2066 KARL E. MASON<br />

875. Zlatkov, N. B., Bozhkov, B. & Genov. D. Kupfer in Frauenmilch und Kuhmilch. Klin.<br />

(1973) Serum <strong>copper</strong> <strong>and</strong> ceruloplasmin in Wochenschr. 10, 1528-1531.<br />

patients with psoriasis after helio- <strong>and</strong> 878. Zudikova, S. I. (1967) Copper in blood <strong>of</strong><br />

thalassotherapy. Arch. Derm. Forsch. 247, pregnant women with late toxicosis. Vop.<br />

289-294. Omrany Mater. Det. 12 (12), 69-70 (Rus-<br />

876. Zlatkov, N. B., Petkov, I., Genov, D. & sian).<br />

Bozhkov, B. (1971) Kupferst<strong>of</strong>fwechael 879. Zurukzoglu-Sklavounou, S. (1953) Hypobei<br />

Kranken mit Vitíligonach Héliothérapie. chrome Anämie im Kindesalter: Studie auf<br />

Dermatologica (Basel) 143, 115-120. Grund von 373 Fallen. Helvet. Paediat.<br />

877. Zondek, S. G. & B<strong>and</strong>mann, M. (1931) Acta 8, 251-275.<br />

Downloaded from<br />

jn.nutrition.org<br />

by guest on February 27, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!