27.02.2013 Views

Curvature - Laytec

Curvature - Laytec

Curvature - Laytec

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Analysis and Interpretation of EpiCurveTT<br />

Measurements in III-N Multiwafer MOVPE<br />

F. Brunner, T. Wernicke<br />

Ferdinand-Braun-Institut für<br />

Höchstfrequenztechnik (FBH)<br />

Gustav-Kirchhoff-Str. 4<br />

D-12489 Berlin<br />

www.fbh-berlin.de<br />

...translating ideas into innovation


Outline<br />

� MOVPE growth equipment<br />

� EpiCurveTT<br />

- What can be measured?<br />

� In-situ results & analysis<br />

- Example:<br />

sapphire/GaN/AlGaN/InGaN<br />

- Pocket temperature vs.<br />

process temperature<br />

- Reflectance @ 950 nm<br />

- <strong>Curvature</strong><br />

& @ 405 nm


MOVPE growth equipment nitrides<br />

• AIX2400G3-HT planetary reactor with 11x2 / 8x3 inch configuration<br />

satellite<br />

• Water-cooled triple gas inlet (V-III-V), TaC-coated sandwich susceptor


In-situ analysis: temperature, reflectance, curvature<br />

LASER<br />

parallel<br />

laser beam<br />

� Pyrometric surface temperature measurement (+ emissivity correction)<br />

� Reflectance @ 405 nm + 950 nm (R 405 , R 950 )<br />

substratewafer<br />

satellite<br />

CCD<br />

camera<br />

� <strong>Curvature</strong> measurement (resol.: ± 1 km -1 + wafer asphericity => ± 5 km -1 )<br />

TT<br />

R<br />

Bow


Wafer asphericity (deviation from rotational symmetry)<br />

LiAlO 2<br />

bow: ~40 µm<br />

curvature || flat: 130 km -1<br />

curvature ⊥ flat: 2 km -1<br />

bow: ~30 µm<br />

curvature || flat: 50 km -1<br />

curvature ⊥ flat: 57km -1<br />

� Different curvature parallel and perpendicular to main flat<br />

GaN<br />

� Azimuthal position is unkown during in-situ curvature measurement<br />

due to satellite rotation


In-situ data<br />

� Example: 420 nm<br />

LD test structure<br />

GaN cap<br />

3x In 0.08GaN/<br />

In 0.02GaN MQW<br />

GaN:Si<br />

wave guide<br />

(Al,Ga)N SL<br />

GaN buffer<br />

Sapphire<br />

R 405/950 nm<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Desorption<br />

GaN<br />

Growth time (s)<br />

Process Temperature<br />

Pocket Temperature.<br />

Reflectance<br />

<strong>Curvature</strong><br />

AlGaN/GaN<br />

InGaN<br />

T (°C)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

κ<br />

(km -1 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0


Pocket temperature vs. process temperature<br />

desorption<br />

Pocket Temperature:<br />

# T gradient susceptor<br />

# T changes with process<br />

(e.g. reactor pressure)<br />

# Wafertemp ?<br />

GaN<br />

growth time<br />

AlGaN/GaN<br />

Process Temperature<br />

InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

� ΔT - susceptor<br />

backside and<br />

frontside<br />

� Gas foil rotation<br />

causes ΔT<br />

� Reactor pressure<br />

change causes ΔT


Pocket Temperature (°C)<br />

Wafer-to-wafer &<br />

run-to-run analysis<br />

1100<br />

1080<br />

1060<br />

1040<br />

1020<br />

1000<br />

980<br />

Wafer<br />

#01<br />

E2621<br />

E2623<br />

E2624<br />

E2654<br />

E2655<br />

Wafer<br />

#03<br />

Wafer<br />

#05<br />

GaN Layer Temp<br />

Substrate Temp<br />

Wafer<br />

#07<br />

Wafer<br />

#09<br />

Wafer<br />

#11<br />

� Analysis of substrate<br />

and layer temperature<br />

� Pocket temperature<br />

variation mainly caused<br />

by satellite rotation (no<br />

individual rotation flow)<br />

� ΔT pock (W2W): ± 2K<br />

ΔT pock (R2R): ± 5K


Reflectance<br />

� Example: 420 nm<br />

LD test structure<br />

R 405/950 nm<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Desorption<br />

GaN<br />

Growth time (s)<br />

Process Temperature<br />

Pocket Temperature.<br />

Reflectance<br />

<strong>Curvature</strong><br />

AlGaN/GaN<br />

InGaN<br />

T (°C)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

κ<br />

(km -1 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0


Reflectance measurement @ 950 nm or 633 nm<br />

GaN AlGaN<br />

� Whole structure<br />

transparent<br />

���� Fabry-Pérotoscillations<br />

� Growth rate<br />

fitting of FPO<br />

� Batch mode calc<br />

for multiwafer run


Wafer-to-wafer &<br />

run-to-run analysis<br />

rg (µm/h)<br />

2.15<br />

2.1<br />

2.05<br />

2<br />

1.95<br />

1.9<br />

1.85<br />

Growth rate (µm/h)<br />

center<br />

edge<br />

Wafer<br />

#01<br />

E2622<br />

E2623<br />

E2624<br />

Wafer<br />

#03<br />

Wafer<br />

#05<br />

Wafer<br />

#07<br />

600 mbar growth<br />

Wafer<br />

#09<br />

Wafer<br />

#11<br />

� Analysis of fit resultsfile<br />

using VBA-Scripts<br />

� r g ~2 µm/h<br />

Δr g (W2W): ± 20 nm/h<br />

Δr g (R2R): ± 10 nm/h<br />

� Variation mainly due to<br />

common sat rotation


Thickness uniformity tuning using R 950/ R 633<br />

� Definition of<br />

multiple centerto-edge<br />

wafer<br />

zones possible<br />

� Thickness<br />

homogeneity<br />

tuning in one<br />

growth run


Thickness uniformity tuning using R 950/ R 633<br />

� Batch-mode fitting during growth with marked regions<br />

� Adjust growth parameter according to fit result after step A, B, C, ...<br />

A<br />

Growth Rate (µm/h)<br />

2.2<br />

2.18<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

1.98<br />

1.96<br />

1.94<br />

1.92<br />

1.9<br />

1.88<br />

1.86<br />

1.84<br />

1.82<br />

1.8<br />

Variation MO1-Run Flow<br />

Δr G = 20 nm/h<br />

Pos #08-1 Pos #08-2 Pos #08-3 Pos #08-4 Pos #08-5<br />

Measurement Position Center -> Edge<br />

A


Thickness uniformity tuning using R 950/ R 633<br />

� Batch-mode fitting during growth with marked regions<br />

� Adjust growth parameter according to fit result after step A, B, C, ...<br />

A<br />

B<br />

Growth Rate (µm/h)<br />

2.2<br />

2.18<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

1.98<br />

1.96<br />

1.94<br />

1.92<br />

1.9<br />

1.88<br />

1.86<br />

1.84<br />

1.82<br />

1.8<br />

Variation MO1-Run Flow<br />

Δr G = 28 nm/h<br />

Δr G = 20 nm/h<br />

Pos #08-1 Pos #08-2 Pos #08-3 Pos #08-4 Pos #08-5<br />

Measurement Position Center -> Edge<br />

B<br />

A


Thickness uniformity tuning using R 950/ R 633<br />

� Batch-mode fitting during growth with marked regions<br />

� Adjust growth parameter according to fit result after step A, B, C, ...<br />

A<br />

B<br />

C<br />

Growth Rate (µm/h)<br />

2.2<br />

2.18<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

1.98<br />

1.96<br />

1.94<br />

1.92<br />

1.9<br />

1.88<br />

1.86<br />

1.84<br />

1.82<br />

1.8<br />

Variation MO1-Run Flow<br />

Pos #08-1 Pos #08-2 Pos #08-3 Pos #08-4 Pos #08-5<br />

Measurement Position Center -> Edge<br />

B<br />

A<br />

C


Thickness uniformity tuning using R 950/ R 633<br />

� Batch-mode fitting during growth with marked regions<br />

� Adjust growth parameter according to fit result after step A, B, C, ...<br />

A B C D E<br />

Growth Rate (µm/h)<br />

2.2<br />

2.18<br />

2.16<br />

2.14<br />

2.12<br />

2.1<br />

2.08<br />

2.06<br />

2.04<br />

2.02<br />

2<br />

1.98<br />

1.96<br />

1.94<br />

1.92<br />

1.9<br />

1.88<br />

1.86<br />

1.84<br />

1.82<br />

1.8<br />

Variation MO1-Run Flow<br />

Δr G = 20 nm/h<br />

Δr G = 9 nm/h<br />

Pos #08-1 Pos #08-2 Pos #08-3 Pos #08-4 Pos #08-5<br />

Measurement Position Center -> Edge<br />

B<br />

A<br />

E<br />

D<br />

C


Reflectance<br />

� Example: 420 nm<br />

LD test structure<br />

R 405/950 nm<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Desorption<br />

GaN<br />

Growth time (s)<br />

Process Temperature<br />

Pocket Temperature.<br />

Reflectance<br />

<strong>Curvature</strong><br />

AlGaN/GaN<br />

InGaN<br />

T (°C)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

κ<br />

(km -1 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0


Why 405 nm reflectance?<br />

2·n·r g ·t = m·λ<br />

λ ���� ?<br />

� Good for low rate<br />

growth or material with<br />

larger bandgap<br />

(e.g. AlN )<br />

� InGaN less<br />

transparent<br />

refractive index<br />

2.75<br />

2.50<br />

2.25<br />

4 3 2 1.5 E (eV)<br />

T=1060°C<br />

T=20°C<br />

GaN<br />

� Higher surface<br />

sensitivity<br />

2.00<br />

R405 R633 R950 (e.g. morphology) 300 400 500 600 700 800 900 1000<br />

wavelength (nm)<br />

AlN


Example R 405: AlN<br />

reflectance<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

405 nm<br />

633 nm<br />

950 nm<br />

~ 60 nm AlN<br />

2 4 6<br />

time (x1000 s)<br />

~ 2 µm GaN<br />

� Thickness information<br />

also for thin layers !


Example R 405 : InGaN MQW (const. T)<br />

Reflectance (405 nm)<br />

0.25<br />

0.24<br />

0.23<br />

0.22<br />

0.21<br />

0.20<br />

0.19<br />

0.18<br />

0.17<br />

R 405<br />

pocket temperature<br />

QW<br />

Barrier<br />

GaN InGaN-MQW<br />

growth time (s)<br />

cool down<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

� All quantum wells<br />

and barriers<br />

distinguishable<br />

� Temperature<br />

changes between<br />

barrier and well not<br />

visible in R 405


Simulation: InGaN composition vs. roughness<br />

reflectance @ 405 nm<br />

0.220<br />

0.215<br />

0.210<br />

0.205<br />

0.200<br />

0.195<br />

0.190<br />

In +<br />

In -<br />

In content<br />

6%<br />

12%<br />

18%<br />

24%<br />

30%<br />

In -<br />

In +<br />

3.5 4.0 4.5 5.0<br />

time (x1000 s)<br />

� InGaN content ↑ � R 405 amplitude ↑<br />

� Roughness ↑ � Intensity ↓<br />

reflectance @ 405 nm<br />

0.220<br />

0.215<br />

0.210<br />

0.205<br />

0.200<br />

0.195<br />

0.190<br />

roughness<br />

0 nm<br />

2 nm<br />

4 nm<br />

6 nm<br />

3.5 4.0 4.5 5.0<br />

time (x1000 s)


<strong>Curvature</strong><br />

� Example: 420 nm<br />

LD test structure<br />

R 405/950 nm<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

Desorption<br />

GaN<br />

Growth time (s)<br />

Process Temperature<br />

Pocket Temperature.<br />

Reflectance<br />

<strong>Curvature</strong><br />

AlGaN/GaN<br />

InGaN<br />

T (°C)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

κ<br />

(km -1 )<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0


Wafer curvature<br />

<strong>Curvature</strong> (1/km)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

desorption<br />

GaN<br />

<strong>Curvature</strong><br />

growth time (s)<br />

pocket temperature<br />

n-GaN (Al,Ga)N InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

cooling<br />

� Initial substrate<br />

curvature


Variation of initial substrate bow<br />

� Sapphire Spec: Bow < 10 µm (± 10 µm)<br />

� <strong>Curvature</strong>: ± 30 km -1 for 2 inch wafer<br />

<strong>Curvature</strong>: ± 15 km -1 for 3 inch wafer<br />

± 20 km -1<br />

± 5 km -1<br />

� as delivered � sorted by bow


Wafer <strong>Curvature</strong><br />

<strong>Curvature</strong> (1/km)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

desorption<br />

GaN<br />

<strong>Curvature</strong><br />

growth time (s)<br />

pocket temperature<br />

n-GaN (Al,Ga)N InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

cooling<br />

� Initial substrate<br />

curvature<br />

� Thermal induced<br />

substrate bow<br />

(concave)


Pure substrate bow<br />

<strong>Curvature</strong> (1/km)<br />

50<br />

40<br />

30<br />

20<br />

T front<br />

T back<br />

T back -T front (K)<br />

0.5 1.0 1.5 2.0<br />

meas. (AIX2600G3-HT)<br />

calc. using 1/R c =α(T back -T front )/h<br />

R c<br />

"cool" gas<br />

hot susceptor<br />

600 700 800 900 1000<br />

d<br />

h<br />

T pock (°C)<br />

Al 2 O 3 (0001)<br />

h sapp =430 μm<br />

α sapp =8.0*10 -6 K -1<br />

f(H 2 )~ 20 slm<br />

p=150 mbar<br />

� Heating from<br />

below vs. cooling<br />

from above<br />

substrate<br />

� Depends on<br />

reactor and<br />

process<br />

� Adds to all other<br />

curve components


Wafer curvature<br />

<strong>Curvature</strong> (1/km)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

desorption<br />

GaN<br />

<strong>Curvature</strong><br />

growth time (s)<br />

pocket temperature<br />

n-GaN (Al,Ga)N InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

cooling<br />

� Initial substrate<br />

curvature<br />

� Thermal induced<br />

substrate bow<br />

(concave)<br />

� Growth-related<br />

wafer bowing


GaN coalescence and bow<br />

<strong>Curvature</strong> (1/km)<br />

225<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

GaN:nid @ 400 mbar @ 800 mbar<br />

r g =2.1 μm/h<br />

fast coalescence:<br />

|Δa GaN /a ES |~ -4*10 -4<br />

calc.<br />

Run time (s)<br />

r g =1.6 μm/h<br />

slow coalescence:<br />

|Δa GaN /a ES | < -5*10 -5<br />

concave<br />

convex<br />

7500 10000<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

-0.25<br />

Reflectance (@ 950 nm)<br />

� Coalescence after<br />

nucleation<br />

influences residual<br />

strain of GaN<br />

buffer


Wafer curvature<br />

<strong>Curvature</strong> (1/km)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

desorption<br />

GaN<br />

<strong>Curvature</strong><br />

growth time (s)<br />

pocket temperature<br />

n-GaN (Al,Ga)N InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

cooling<br />

� Initial substrate<br />

curvature<br />

� Thermal induced<br />

substrate bow<br />

(concave)<br />

� Temperaturerelated<br />

curvature<br />

change


III-N: TEC mismatch<br />

Thermal expansion coeff. x10 -6 (K -1 )<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

4H-SiC<br />

AlN<br />

(-30%)<br />

GaN<br />

(23%)<br />

InN<br />

Sapphire<br />

thermal expansion<br />

mismatch (ΔTEC)<br />

2.5 3.0 3.5 4.0 4.5 5.0 5.5<br />

Lattice constant a 0 (A)<br />

300 K<br />

Si<br />

� Thermal expansion<br />

coefficient mismatch in<br />

(Al,In,Ga)N material<br />

system


Wafer curvature<br />

<strong>Curvature</strong> (1/km)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

desorption<br />

GaN<br />

<strong>Curvature</strong><br />

growth time (s)<br />

pocket temperature<br />

n-GaN (Al,Ga)N InGaN<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

T(°C)<br />

0<br />

-200<br />

-400<br />

cooling<br />

� Initial substrate<br />

curvature<br />

� Thermal induced<br />

substrate bow<br />

(concave)<br />

� Growth-related<br />

wafer bowing<br />

� Temperaturerelated<br />

curvature<br />

change<br />

� Lattice mismatch


Strain-induced curvature<br />

<strong>Curvature</strong> (1/km)<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

r g (μm/h):<br />

meas.<br />

2.42<br />

Δa f /a ES :<br />

GaN GaN:Si<br />

0.49<br />

calc.<br />

-1.9*10 -3<br />

0.12<br />

0.25 0.50 0.75 0.04<br />

Thickness (μm)<br />

(Al,Ga)N<br />

5.5*10 -3<br />

InGaN<br />

-MQW<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.00<br />

-0.05<br />

-0.10<br />

Reflectance (950 nm)<br />

� Lattice mismatch<br />

induced strain can<br />

be calculated 1<br />

� Material<br />

composition of<br />

pseudomorphically<br />

strained layers<br />

1 F. Brunner et al. JCG 310 (2008) 2432


<strong>Curvature</strong> changes wafer-temperature !<br />

<strong>Curvature</strong> (1/km)<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

GaN<br />

InGaN-<br />

MQW<br />

growth time<br />

Cool<br />

down<br />

� InGaN growth sensitive<br />

to wafer temperature<br />

uniformity


<strong>Curvature</strong> changes wafer-temperature !<br />

<strong>Curvature</strong> (1/km)<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

GaN<br />

InGaN-<br />

MQW<br />

growth time<br />

Cool<br />

down<br />

� InGaN growth sensitive<br />

to wafer temperature<br />

uniformity<br />

PL wavelength (RT)<br />

414<br />

413<br />

412<br />

411<br />

~ 1.5 nm<br />

~ 3.5 nm<br />

410<br />

0 5 10 15 20 25<br />

edge<br />

center<br />

PL meas. position (mm)<br />

bow<br />

���� In<br />

incorp<br />

center cooler than edge<br />

wafer<br />

satellite


Summary<br />

Temperature:<br />

� Shows response of pocket temperature to process changes<br />

Reflectance:<br />

� Immediate access to important growth parameters (e.g. growth rate)<br />

� Uniformity tuning using line scans across wafer diameter possible<br />

� Morphology check with highly surface-sensitive 405 nm reflectance<br />

<strong>Curvature</strong> measurement:<br />

� Indispensable for understanding different strain components<br />

� Quantitative analysis of material composition possible<br />

� Shows response of wafer temperature to process changes<br />

All:<br />

� Enabling fast wafer-to-wafer and run-to-run analysis


Thank you!<br />

Questions?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!