27.02.2013 Views

Combined use of in-situ curvature and full- wafer ... - Laytec

Combined use of in-situ curvature and full- wafer ... - Laytec

Combined use of in-situ curvature and full- wafer ... - Laytec

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Comb<strong>in</strong>ed</strong> <strong>use</strong> <strong>of</strong> <strong>in</strong>-<strong>situ</strong> <strong>curvature</strong> <strong>and</strong> <strong>full</strong><strong>wafer</strong><br />

temperature pr<strong>of</strong>ile measurements for<br />

GaN growth on 6-<strong>in</strong>ch Si substrates<br />

D. Zhu, C. McAleese, M.J. Kappers <strong>and</strong> C.J. Humphreys<br />

Department <strong>of</strong> Materials Science <strong>and</strong> Metallurgy<br />

University <strong>of</strong> Cambridge, UK<br />

dz218@cam.ac.uk<br />

1


Motivation<br />

A potential low-cost manufactur<strong>in</strong>g route for GaN based solid-state light<strong>in</strong>g<br />

Advantages:<br />

Issues:<br />

� Availability <strong>of</strong> large size substrates at lower cost<br />

� Much lower fabrication costs <strong>of</strong> the devices<br />

� Compatibility with st<strong>and</strong>ard Si process<strong>in</strong>g equipment<br />

� Higher thermal conductivity than sapphire<br />

� Possibility <strong>of</strong> vertical contact LEDs on conduct<strong>in</strong>g silicon<br />

� Possibility <strong>of</strong> <strong>in</strong>tegrat<strong>in</strong>g electronics <strong>and</strong> optical devices<br />

� Large thermal expansion mismatch (Si: 54% that <strong>of</strong> GaN)<br />

� Large lattice mismatch (lattice constant Si: 17% less than GaN)<br />

Result<strong>in</strong>g <strong>in</strong>:<br />

� Tensile stra<strong>in</strong> <strong>and</strong> high dislocation density <strong>in</strong> epitaxial GaN<br />

� Wafer bow<strong>in</strong>g <strong>and</strong>/or crack<strong>in</strong>g, mak<strong>in</strong>g process<strong>in</strong>g difficult<br />

2


LED structure on Si substrate<br />

Schematic LED structures<br />

on Si substrates<br />

Mg-doped GaN<br />

InGaN/GaN MQW<br />

(Si-doped) GaN<br />

AlGaN buffer layer<br />

AlN nucleation layer<br />

Si (111) substrate<br />

MOVPE growth:<br />

� Stress control: AlGaN buffer<br />

In-<strong>situ</strong> monitor<strong>in</strong>g:<br />

� LayTec Epicurve ® TT: <strong>wafer</strong> <strong>curvature</strong>, true<br />

temperature <strong>and</strong> reflectance<br />

� Aixtron Argus: temperature pr<strong>of</strong>iler<br />

Ex-<strong>situ</strong> characterisation:<br />

� XRD: stra<strong>in</strong> state <strong>and</strong> quality, quantum well structure<br />

� TEM: TD analysis<br />

� AFM: Surface morphology <strong>and</strong> TD analysis<br />

� PL & EL: MQW <strong>and</strong> LED performance<br />

� Graphic-EYE: whole <strong>wafer</strong> optical imag<strong>in</strong>g<br />

� KSA Multi-Beam optical sensor (MOS) ultra-scan TM :<br />

ex-<strong>situ</strong> <strong>wafer</strong> <strong>curvature</strong><br />

3


In-<strong>situ</strong> <strong>curvature</strong> measurement - EpiCurve<br />

EpiCurve measurement pr<strong>in</strong>ciple<br />

(after LayTec Epicurve manual)<br />

Etalon<br />

Beam<br />

splitter<br />

Laser<br />

Susceptor<br />

Detector<br />

Wafer<br />

4


Curvature evolution dur<strong>in</strong>g growth <strong>of</strong> an LED structure on Si<br />

Process temperature (Tc)<br />

Curvature/km -1<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

0<br />

0.00<br />

0 5000 10000 15000 20000<br />

0 5000 10000 15000 20000<br />

Time (s)<br />

Concave<br />

Convex<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Reflectance (a.u.)<br />

LayTec Epicurve ® TT<br />

After cool<strong>in</strong>g:<br />

Mg-doped GaN<br />

Si-doped GaN<br />

AlGaN<br />

AlN<br />

Si substrate<br />

5


More about stress control<br />

Curvature/km -1<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

<strong>in</strong>-<strong>situ</strong> anneal<strong>in</strong>g<br />

AlN nucleation<br />

layer (300 nm)<br />

AlN nucleation<br />

layer (200 nm)<br />

AlGaN buffer (680 nm)<br />

Si-doped GaN (750 nm)<br />

AlGaN buffer (1.3 µm)<br />

InGaN-GaN<br />

MQW<br />

0 5000 10000 15000 20000<br />

Si-doped GaN (1.5 µm)<br />

Time (s)<br />

Cool<strong>in</strong>g<br />

InGaN-GaN<br />

MQW<br />

LED1<br />

LED2<br />

Concave<br />

Convex<br />

The optimised buffer layer thickness will depend on the thickness <strong>of</strong> GaN layer required<br />

QW active region was grown on a convex bowed <strong>wafer</strong>.<br />

Cool<strong>in</strong>g<br />

6


Graphic-EYE whole <strong>wafer</strong> optical imag<strong>in</strong>g<br />

Badly-cracked sample with extended<br />

cracks across the <strong>wafer</strong><br />

150 mm<br />

Cracks show up as bright l<strong>in</strong>es <strong>in</strong> the image with very strong contrast<br />

Crack-free GaN <strong>wafer</strong>s have been achieved<br />

Generally crack-free sample with cracks<br />

only at extreme edges <strong>of</strong> <strong>wafer</strong><br />

150 mm<br />

6 mm<br />

Courtesy <strong>of</strong> Q<strong>in</strong>etiQ<br />

7


Additional growth issues: slip <strong>in</strong> Si (111) <strong>wafer</strong>s<br />

Two sets <strong>of</strong> thermal stresses considered, aris<strong>in</strong>g from:<br />

Silicon <strong>wafer</strong><br />

Through-thickness temperature variations<br />

Radial temperature variations<br />

Stresses are resolved onto the various slip systems: {111} <br />

Radial temperature variations<br />

Through-thickness<br />

temperature<br />

variations<br />

At 1000 ºC, with a temperature difference <strong>of</strong> 10 ºC across the <strong>wafer</strong> thickness, the<br />

maximum stress <strong>and</strong> result<strong>in</strong>g <strong>curvature</strong> are calculated to be:<br />

0.4 MPa, 16 m for 2-<strong>in</strong>ch <strong>wafer</strong>, 275 µm thick<br />

0.6 MPa, 38 m for 6-<strong>in</strong>ch <strong>wafer</strong>, 650 µm thick<br />

not sufficient by itself to ca<strong>use</strong> slip – although it may enhance radial T variations.<br />

8


Wafer <strong>curvature</strong> change<br />

Temperature ( o C)<br />

ca<strong>use</strong>d by through-thickness temperature variations<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

0 1000 2000 3000<br />

Time (s)<br />

Radius <strong>of</strong> <strong>wafer</strong> <strong>curvature</strong> changes from flat to ~30 m (concave) dur<strong>in</strong>g temperature<br />

ramp from room temperature to 1100 ºC<br />

40<br />

20<br />

0<br />

Curvature/km -1<br />

RT 1100 ºC<br />

9


Shear stress on the (1-11)[10-1] <strong>and</strong> (1-11)[0-1-1] slip system<br />

10 ºC Radial temperature variations<br />

Temperature ( o C)<br />

Temperature ( o C)<br />

1005<br />

1000<br />

995<br />

990<br />

1005<br />

1000<br />

995<br />

990<br />

Temperature pr<strong>of</strong>ile 1<br />

-10 0 10 20 30 40 50 60 70 80<br />

Radial distance (mm)<br />

Temperature pr<strong>of</strong>ile 2<br />

0 10 20 30 40 50 60 70 80<br />

Radial distance (mm)<br />

Wafer centre Wafer edge<br />

Max stress ~2 MPa<br />

Max stress ~1 MPa<br />

Stress calculations: courtesy <strong>of</strong><br />

Kirsten McLaughl<strong>in</strong>, Cambridge<br />

10


Monitor<strong>in</strong>g the temperature pr<strong>of</strong>ile across the whole <strong>wafer</strong><br />

Temperature ( o C)<br />

Aixtron Argus temperature pr<strong>of</strong>iler<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

Wafer centre<br />

Wafer edge<br />

200<br />

0 2000 4000 6000 8000<br />

Time (s)<br />

(d)<br />

Susceptor<br />

Si slips due to the temperature nonuniformity<br />

across the <strong>wafer</strong>, result<strong>in</strong>g <strong>in</strong><br />

very bowed <strong>wafer</strong>.<br />

Susceptor C B A B C<br />

Wafer<br />

1062<br />

1052<br />

1042<br />

1032<br />

1022<br />

1012<br />

1002<br />

992<br />

982<br />

972<br />

962<br />

Temperature ( o C)<br />

After Si slip<br />

1060<br />

1040<br />

1020<br />

1000<br />

980<br />

960<br />

940<br />

Centre<br />

Edge<br />

11


Ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g flat temperature pr<strong>of</strong>ile<br />

LayTec Epicurve ® TT<br />

Temperature ( o C)<br />

Temperature ( o C)<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

Aixtron Argus<br />

400<br />

0 5000 10000 15000<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Wafer centre<br />

Wafer edge<br />

Time (s)<br />

0 1 2 3 4<br />

Time (s)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

-120<br />

Curvature/km -1<br />

Susceptor<br />

concave<br />

convex<br />

C B A B C<br />

6-<strong>in</strong>ch Si <strong>wafer</strong><br />

775<br />

770<br />

765<br />

760<br />

755<br />

750<br />

745<br />

740<br />

735<br />

730<br />

725<br />

Temperature ( o C)<br />

770<br />

760<br />

750<br />

740<br />

730<br />

Centre<br />

Edge<br />

12


GaN-based LED looks good on 6-<strong>in</strong>ch Si<br />

Picture <strong>of</strong> an InGaN-GaN blue-emitt<strong>in</strong>g LED structure grown<br />

on 6-<strong>in</strong>ch Si, this <strong>wafer</strong> is flat <strong>and</strong> completely crack-free.<br />

AFM image <strong>of</strong> p-GaN surface<br />

PL peak emission wavelength:<br />

Average: 448 nm;<br />

Std. Dev. 7 nm<br />

1 µm<br />

PL <strong>in</strong>tensity: Std. Dev. 12%<br />

EL: YES, over whole <strong>wafer</strong><br />

Wafer bow:


Electrolum<strong>in</strong>escence from 6-<strong>in</strong>ch LED <strong>wafer</strong><br />

D. Zhu et al., “GaN-based LEDs grown on 6-<strong>in</strong>ch diameter Si (111)<br />

substrates by MOVPE”, Proc. SPIE 7231, 723118 (2009)<br />

Processed at Q<strong>in</strong>etiQ<br />

Current (mA)<br />

Photo diode current (a.u.)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

EL <strong>in</strong>tensity (a.u.)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

350 400 450 500 550 600 650<br />

Wavelength (nm)<br />

0 1 2 3 4<br />

Voltage (V)<br />

Photo diode current (a.u.)<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

0 10 20 30 40 50 60 70<br />

Drive current (mA)<br />

0 100 200 300 400 500<br />

Drive current (mA)<br />

14


Summary<br />

� Flat <strong>and</strong> crack-free GaN-based LED structures have been grown on 6-<strong>in</strong>ch Si (111)<br />

substrates by MOVPE.<br />

� LayTec Epicurve ® TT was <strong>use</strong>d to measure the <strong>wafer</strong> <strong>curvature</strong> evolution dur<strong>in</strong>g the<br />

growth, <strong>and</strong> allows rapid optimisation <strong>of</strong> the AlGaN buffer layer for stress management.<br />

� Temperature pr<strong>of</strong>iles over <strong>full</strong> 6-<strong>in</strong>ch Si <strong>wafer</strong> were measured <strong>in</strong> real-time us<strong>in</strong>g Aixtron<br />

Argus <strong>in</strong>strument, show<strong>in</strong>g the changes across the <strong>wafer</strong> due to <strong>curvature</strong>. A flat<br />

temperature pr<strong>of</strong>ile can be ma<strong>in</strong>ta<strong>in</strong>ed over the <strong>full</strong> LED run by adjust<strong>in</strong>g the heater<br />

zone sett<strong>in</strong>gs accord<strong>in</strong>gly.<br />

� <strong>Comb<strong>in</strong>ed</strong> <strong>use</strong> <strong>of</strong> <strong>in</strong>-<strong>situ</strong> <strong>curvature</strong> <strong>and</strong> <strong>full</strong>-<strong>wafer</strong> temperature pr<strong>of</strong>ile measurements is<br />

very <strong>use</strong>ful for successful development <strong>of</strong> GaN growth on 6-<strong>in</strong>ch Si substrates.<br />

15


Acknowledgements<br />

� Project partners<br />

� Fund<strong>in</strong>g:<br />

PARSEM<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!