06.03.2013 Views

Brain and Spine: Dose Painting /Conformal A id /T h i lAd ... - ASTRO

Brain and Spine: Dose Painting /Conformal A id /T h i lAd ... - ASTRO

Brain and Spine: Dose Painting /Conformal A id /T h i lAd ... - ASTRO

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Brain</strong> <strong>and</strong> <strong>Spine</strong>: p<br />

<strong>Dose</strong> <strong>Painting</strong> /<strong>Conformal</strong><br />

AAvo<strong>id</strong>ance/Technical <strong>id</strong> /T h i <strong>lAd</strong> Advances<br />

John H. Suh, , M.D.<br />

Clevel<strong>and</strong> Clinic<br />

Department of Radiation Oncology<br />

Taussig Cancer Institute


Conflict of Interest<br />

• Abbott Oncology Consultant<br />

• Varian Travel grant


Objectives<br />

• Review the technical advances in radiation<br />

oncology that have allowed optimization of<br />

radiation delivery y for brain <strong>and</strong> spine p tumors.<br />

• Discuss methods to direct dose to the tumor<br />

while minimizing dose to the normal neural<br />

tissues.<br />

• Review ongoing RTOG studies that incorporate<br />

dose painting <strong>and</strong> conformal avo<strong>id</strong>ance


Radiation Therapy in 1990s


<strong>Dose</strong> distribution for spine tumors


<strong>Dose</strong> distribution for WBRT


Transmitted<br />

BBeamlets l t<br />

Intensity Modulated<br />

Radiotherapy (IMRT)<br />

Intensity<br />

Modulator<br />

Desired <strong>Dose</strong><br />

Actual <strong>Dose</strong><br />

Di Distribution t ib ti<br />

Distribution


Importance of optimizing image performance to<br />

achieve fundamental objectives of radiation therapy<br />

Dawson LA et al. The Oncologist 15:338-349, 2010


RADIATION ONCOLOGY<br />

Transition to Image g Gu<strong>id</strong>ance<br />

Elekta Synergy y gy


CRANIAL PATIENT POSITIONING<br />

ExacTrac CBCT


Therapeutic p Index<br />

Control<br />

<strong>Dose</strong> (Gy)<br />

Complications<br />

95002052 95002052-01 01


<strong>Dose</strong> painting Galvin JM, et al. J Clin Oncol 2007


Ling CC et al al. IJROBP 47:551-560 47:551 560, 2000


Stereotactic Radiosurgery<br />

“Replace the needle by narrow<br />

bbeams of fradiation di i energy <strong>and</strong> d<br />

thereby produce a local destruction<br />

of the tissue”<br />

Lars Leksell<br />

The stereotaxic method <strong>and</strong> radiosurgery<br />

of the brain<br />

Acta Chirurgica Sc<strong>and</strong>inavia Vol 102, Fasc<br />

4, 1952


Early days of Stereotactic Radiosurgery


Plugging helmets to shape dose


Different radiosurgery units


Different linac approaches for brain SRS<br />

Circular Arc<br />

IMRT<br />

<strong>Conformal</strong> Beam<br />

Hybr<strong>id</strong>Arc<br />

Dynamic <strong>Conformal</strong> Arc


Leksell Gamma Knife C<br />

Leksell Gamma Knife ®<br />

Treatable volume<br />

Leksell Gamma Knife PERFEXION


Collimator system 8-16-8-16- Collimator system 8-16-8-<br />

16 16-16-16-16 16 16 16<br />

16 16-8-16-8-16<br />

8 16 8 16


Treatment plan with composite shots


Loose frame: mismatch between MR <strong>and</strong> CT images


Preop MRI brain T1 w/ Gd


<strong>Dose</strong> Constraints for RTOG 0825<br />

• Lenses 7Gy 7 Gy<br />

• Retina 50 Gy<br />

• OOptic i nerves 55 GGy<br />

• Optic chiasm 56 Gy<br />

• <strong>Brain</strong>stem 60 Gy


RTOG 0825


53 53.0 0<br />

50.4<br />

45.0<br />

30.0<br />

10.0<br />

Sequential Planning<br />

Phase I


Sequential Planning<br />

9.3<br />

9.0<br />

7.0 Phase II<br />

3.0


Sequential Planning<br />

63.0<br />

59.4<br />

45.0<br />

45.0 Composite p<br />

30.0


Sequential Planning<br />

Six static IMRT<br />

beams were used<br />

with 3 non-planar<br />

beams.<br />

The beam was on for<br />

11 minutes.<br />

i


Simultaneous Integrated Boost<br />

63 63.0 0<br />

59.4<br />

45.0<br />

45.0<br />

30.0


Simultaneous Integrated Boost<br />

Delivery l<br />

Four partial arcs are used<br />

for the plan.<br />

Estimated beam<br />

time was about 4 minutes


Conventional Co e t o a <strong>Dose</strong> ose <strong>Painting</strong> a t g<br />

63.0<br />

59.4<br />

50.4<br />

45.0<br />

30.0


RTOG 0933<br />

Phase II Trial of Hippocampal pp p Avo<strong>id</strong>ance During g Whole<br />

<strong>Brain</strong> Radiotherapy for brain metastases<br />

• Fused planning MRI CT<br />

Fused planning MRI CT<br />

image set<br />

• Hippocampal avo<strong>id</strong>ance<br />

regions will 3D expansion of<br />

hippocampal contours by 5<br />

mm.


Beam arrangement for meningioma


Coronal isodose distribution


T1 MRI C 11 Methionine PET<br />

LLee et t al, l IInt t J Radiat R di t OOncol l Bi Biol l Phys Ph 73(2):479-85, 73(2) 479 85 2009


Patient Immobilization


50%<br />

Spinal Cord Radiation Exposure<br />

10%<br />

20%<br />

90%<br />

(a)<br />

B<br />

C<br />

A<br />

(b)<br />

20%<br />

50%<br />

90%


Modern: 16-18 Gy x1 SBRS to squamous cell met T6<br />

using 6 MV <strong>and</strong> 7 coplanar IMRT beams<br />

Conventional: Renal cell spine met treated to 30 Gy/10 fx T10-L2<br />

with AP/PA fields using g 18 MV pphotons


Spinal SBRT


Hybr<strong>id</strong> Arc Approach


RTOG 0631<br />

Phase II/III Study of Image-Gu<strong>id</strong>ed<br />

Image Gu<strong>id</strong>ed<br />

Radiosurgery/SBRT<br />

ffor Localized l d <strong>Spine</strong> Metastasis


Sol<strong>id</strong> black<br />

represents<br />

the tumor<br />

RTOG 0631<br />

Treatment Planning/Target Volumes<br />

Target volume<br />

iincludes l d vertebral t b l<br />

body <strong>and</strong> both<br />

pedicles<br />

Metastatic lesions Target volume<br />

Diagram of <strong>Spine</strong> Metastasis can be more extensive includes spinous<br />

<strong>and</strong> Target Volume including pedicles process <strong>and</strong> laminae


RTOG 0631<br />

Treatment Planning/Target Volumes<br />

Target<br />

spine<br />

Defining Partial Spinal Cord Volume<br />

Partial spinal<br />

cord<br />

5-6 mm<br />

5-6 mm


RTOG 0631<br />

Treatment Planning/Target Volumes<br />

– Threecorddoseconstraintsareusedinthisstudy<br />

Three cord dose constraints are used in this study<br />

• Constraints for partial spinal cord is 10 Gy<br />

• Constraints for conventional spinal cord is 10 Gy<br />

• Maximum cord dose is 14 Gy for less than 0.3 cc


RTOG 0631<br />

Treatment Planning/Target Volumes


Radiobiology of Radiosurgery<br />

Balagamwala E, E Chao S, S Suh J. J Tech Ca Res Treat 11:3 11:3-13, 13 2012


Conclusions<br />

• Technical advances in radiation oncology gy have allowed<br />

optimization of radiation delivery for brain <strong>and</strong> spine<br />

tumors.<br />

• <strong>Dose</strong> painting, dose sculpting, <strong>and</strong> conformal<br />

avo<strong>id</strong>ance can be achieved given the advances in<br />

ttechnology, h l iimaging i <strong>and</strong> d ttreatment t tplanning. l i<br />

• RTOG 0933 <strong>and</strong> RTOG 0631 are evaluating dose<br />

painting painting, dose sculpting sculpting, <strong>and</strong> conformal avo<strong>id</strong>ance avo<strong>id</strong>ance.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!