28.04.2013 Views

External Beam RT for Prostate Cancer - ASTRO

External Beam RT for Prostate Cancer - ASTRO

External Beam RT for Prostate Cancer - ASTRO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>External</strong> <strong>Beam</strong> <strong>RT</strong> <strong>for</strong> <strong>Prostate</strong> <strong>Cancer</strong><br />

Andrew K. Lee, MD, MPH<br />

Associate Professor<br />

M.D. Anderson <strong>Cancer</strong> Center


Disclosure<br />

• I have no relevant conflicts of interest to<br />

disclose.<br />

• This presentation will NOT discuss<br />

iinvestigational i i l or off-label ff l b l use of fddrugs<br />

or<br />

therapies.


Learning Objectives<br />

• Understand the basics of simulating and<br />

planning a patient <strong>for</strong> prostate cancer<br />

radiation therapy<br />

• UUnderstand d d the h methods h d f<strong>for</strong> appropriate i<br />

delivery of dose-escalated and image-guided<br />

therapy h iin<br />

prostate cancer


Localized prostate cancer<br />

Low risk<br />

T1-2 T1 2<br />

Gleason 6<br />

PSA 20<br />

EB<strong>RT</strong> + HT<br />

EB<strong>RT</strong> + Brachy +HT<br />

Surgery (select)


2010 AJCC Staging/Prognostic GROUPS<br />

7th 7 Edition<br />

• Group I (Low risk)<br />

T1 T1a-2a, 2 Gleason Gl 66, PSA


MDACC prostate EB<strong>RT</strong> recommendations<br />

• Low risk 78 Gy (2 Gy)PTV Gy) PTV<br />

(>80 Gy CTV)<br />

• Intermediate risk <strong>Prostate</strong> & “proximal” SV<br />

6mo HT <strong>for</strong> select pts<br />

(2 mos TAB then leuprolide alone)<br />

• High risk & T3 <strong>Prostate</strong> & most of SV<br />

(Select pts LN)<br />

2 years HT


Dose-escalation Dose escalation w/ less toxicity<br />

• Delivery y techniques q<br />

– IM<strong>RT</strong>/ VMAT<br />

– Protons<br />

• Reduce PTV<br />

– Target localization (e.g. IG<strong>RT</strong>)<br />

– Target g immobilzation (e.g. ( g rectal balloon) )<br />

– Reduce CTV<br />

• Selective dose-escalation


At simulation…<br />

minimize systematic errors<br />

• If using fiducials: ≥3 fiducials ≥5 days prior to sim<br />

– If you cannot wait 5 days, then consider verification CT (CT or CBCT)<br />

the first week of treatment<br />

• Com<strong>for</strong>tably semi-full semi full bladder (do NOT overfill)<br />

• Not overly distended rectum (+/- enema)<br />

• Supine<br />

• Leg immobilization<br />

• Make sure patient is relaxed<br />

• Scan from L5 through lesser trochanters<br />

• 2-3 mm slices (make sure TPS can expand PTV correctly w/<br />

chosen slice thickness)


Systematic errors are clinically relevant


PSA control by mean rectal<br />

Cross Sectional Area at simulation


• Impact of rectal<br />

distention may be<br />

more significant than<br />

risk group


Take home message<br />

Do not miss posterior aspect of prostate!<br />

>2/3 cancers arise in peripheral zone<br />

Si Simulate l t with ith empty t rectum t ( (e.g. enema) )<br />

Thi d h f i i i l<br />

This decreases chances of missing posteriorly<br />

regardless of PTV


• Rectum<br />

• Bladder l dd<br />

• Femoral heads<br />

• CTV<br />

Defining Structures<br />

– Low risk = <strong>Prostate</strong> only<br />

– IInt risk ik= P<strong>Prostate</strong> + prox SV<br />

– High risk = <strong>Prostate</strong> (+EPE) + SV (+/- nodes)<br />

• Use zoom<br />

• Use window and level<br />

• Use other planes of view (especially sag <strong>for</strong> apex)


Don’t <strong>for</strong>get to window-level<br />

HHelps l w/ / ddefining fi i ti tissue planes l<br />

Pelvic W/L Head W/L


Urogenital diaghragm<br />

insertion into symphysis<br />

NOTE: Do NOT under-contour apex.<br />

Almost all PZ, no capsule, common site <strong>for</strong> <strong>RT</strong><br />

failures failures.<br />

In very advanced cases, disease can track along<br />

membranous urethra.


Defining Organs at Risk (OAR)<br />

Avoidance structures and denominator <strong>for</strong> DVH<br />

• RECTUM:<br />

From inferior ischium to anterior flexion of sigmoid<br />

Alt Alternatively ti l can use li linear llength th of f 10 10-11cm 11<br />

• BLADDER:<br />

Entire bladder (interpolate contour)<br />

• FEMORAL HEADS:<br />

Entire femoral head to lesser trochanter


Rectum and Bladder<br />

• Want to contour the rectum- rectum not the peri- peri<br />

rectal muscles.<br />

• If you using ultrasound-based guidance, pay<br />

special i l attention i to bl bladder-prostate<br />

dd<br />

interface.<br />

– Also will need to contour non-CTV portion of SV’s<br />

as reference structure


Ultrasound Alignment (sagittal)


IG<strong>RT</strong> PTV: VOLUMETRICALLY expand CTV 5-7 mm except<br />

posteriorly 4-5mm.<br />

Review PTV prior to planning. Validate PTV margin <strong>for</strong> your clinic.<br />

Current MDACC technique is 78Gy (2Gy) prescribed to PTV


MDACC DVH Plan Evaluation: Clinical Constraints<br />

(Clinical constraints ≠ Planning parameters)<br />

PTV: >96%V @ 78Gy<br />

<strong>Prostate</strong>: 100%V @ @ 78Gy<br />

SV: >98%V @ 78Gy<br />

Rectum:


8 angles <strong>for</strong> virtually any anatomy w/ 6 MV<br />

U Use


MDACC IM<strong>RT</strong> planning method<br />

• Use series of avoidance structures or “rings” in addition<br />

to iindividual di id l organs<br />

• Con<strong>for</strong>mal plans with “compact” dose distributions<br />

• Fewer trials are needed<br />

• 8 beam angles or VMAT<br />

• Minimize total monitor units<br />

• Fewer beam segments


OAR and Objectives<br />

<strong>External</strong><br />

Ring 2<br />

Ring 1<br />

<strong>Prostate</strong> + SV<br />

Max Dose 3800 cGy<br />

Max Dose 5500 cGy<br />

Max DVH 7500 2%<br />

Max Dose 8100 cGy<br />

Uni<strong>for</strong>m Dose7800 cGy


ROI Objectives (IM<strong>RT</strong>)<br />

ROI Type Target cGy % Volume Weight<br />

<strong>Prostate</strong> + SV Uni<strong>for</strong>m Dose 7760 100<br />

<strong>Prostate</strong> + SV Max Dose 8000 20<br />

Rectum Max DVH 6000 10% 1<br />

Rectum Max DVH 4000 30% 1<br />

Rectum Max DVH 2000 45% 1<br />

Bladder Max DVH 6000 8% 1<br />

Bladder Max DVH 4000 12% 1<br />

Bladder Max DVH 1500 30% 1<br />

Ring 1 Max DVH 7500 2% 10<br />

Ring 2 Max Dose 5500 5<br />

Ring 2 Max DVH 3000 25% 1<br />

<strong>External</strong> Max Dose 3800 50


DVH Plan Evaluation: Clinical Constraints<br />

(Clinical constraints ≠ Planning parameters)<br />

( gp )<br />

<strong>Prostate</strong>:<br />

>100%V@78Gy<br />

>100%V@78Gy<br />

100%V@78Gy<br />

SV:<br />

>98%V@78Gy<br />

Rectum:<br />


Axial dose distribution<br />

(qualitative evaluation)


Sagittal g<br />

dose distribution


Minimum dose vs. Mean dose<br />

• >96% PTV receives ≥ 78 Gy<br />

• 100% CTV receives ≥78 Gy<br />

• Mean dose to prostate ≈ 80-81 Gy<br />

• Need to have threshold <strong>for</strong> heterogeneity<br />

Typically prescribe to >96% of mean dose


VMAT <strong>for</strong> prostate<br />

• Similar to IM<strong>RT</strong> <strong>for</strong> inverse planning<br />

• 2 arcs (clockwise then counter)<br />

• Gantry angles 210-150 °, 150-210 °<br />

– May y extend to 182-178 °, , 178-182 ° <strong>for</strong> LN cases<br />

• 6MV<br />

• Avoid 0° 0 collimators to reduce “tongue tongue & groove effect effect” of<br />

MLC<br />

– Usually 10-45° but rotated in opposite directions <strong>for</strong> 2 nd arc (e.g. 15 vs. 335 °)<br />

• Avoid couch kicks unless absolutely needed<br />

• Typically start w/ 10x10 cm field<br />

• WWatch t h ttotal t l MU’ MU’s (96% mean


Use complementary angles <strong>for</strong><br />

collimation <strong>for</strong> arc 1 vs. arc 2


VMAT


For both IM<strong>RT</strong> and VMAT<br />

• Monitor patients w/ large pannus<br />

• Have patient i centered d on table bl f<strong>for</strong> sim i and d<br />

treatment<br />

• Consider couch <strong>for</strong> planning p g and if not using g<br />

IG<strong>RT</strong> (carbon fiber) couch, bring rails in to<br />

avoid treating g through g<br />

them


Rails “in” in and patient centered


Rails “IN” s “OUT” co ld change deli ered<br />

Rails “IN” vs. “OUT” could change delivered<br />

dose by 2.6% dose <strong>for</strong> IM<strong>RT</strong> and 2.1% VMAT


K. Pulliam et al. Phy Med Biol 56 (2011)


Sharp dose-fall off with IM<strong>RT</strong> and especially VMAT requires<br />

careful f l and d accurate t DAILY ttarget t llocalization li ti


Reducing PTV through IG<strong>RT</strong><br />

(Image Guided Radiation Therapy)<br />

• RRequires i ddaily il iimaging i of fth the ttarget t<br />

• De Decrease rease “ssystematic stemati” set setup p error<br />

– From simulation to treatment<br />

• Correct <strong>for</strong> INTER-fractional movement<br />

– Pelvis<br />

– Rectal and bladder filling<br />

• May not account <strong>for</strong> INTRA-fractional movement


• Portal imaging<br />

• Ultrasound<br />

IG<strong>RT</strong><br />

• Fiducial markers (intraprostatic)<br />

• Volumetric on-board imaging<br />

– In-room CT<br />

– Cone-beam CT


Ultrasound is reasonably accurate.<br />

• PTV margins must still be<br />

employed!<br />

– 5 mm may be b enoughh<br />

• Careful contouring of<br />

bladder/prostate interface<br />

• Thinner patients easier<br />

• Therapists training and<br />

feedback important<br />

• Patient training and<br />

cooperation ti are important i t t (e.g. (<br />

bladder filling)


• Pros<br />

Ultrasound-based Ultrasound based alignment<br />

– Non-invasive<br />

– Reasonably good<br />

alignment<br />

– Visualize SV/ bladder<br />

– Visualize prostate<br />

surface contour<br />

• Cons<br />

– User-subjectivity<br />

– Patient anatomy may<br />

affect image quality<br />

– Impact of probe pressure<br />

on prostate position<br />

– Different imaging g g<br />

modality


Fiducial markers


Fiducial markers should <strong>for</strong>m a triangle in each dimension<br />

around the isocenter if possible<br />

Coronal Sagittal-2 options<br />

Left Right<br />

Fiducial markers should be >2mm away y from pprostate capsule, p<br />

urethra, SV.


Fiducials: MV vs vs. KV imaging<br />

• Most systems using<br />

• KV imaging g gless<br />

dose<br />

• 2D-2D matching<br />

MV calculate center of<br />

mass shift<br />

– Increased dose to<br />

patient<br />

– NNeed d to t incorporate<br />

i t<br />

daily MV dose<br />

– Easy<br />

– Allows use of 2 fiducial<br />

markers<br />

– Error 1-2mm<br />

• Can use smaller fiducials or<br />

non non-metallic metallic<br />

– Decrease CT artifacts at<br />

simulation


EPID based fiducial alignment<br />

AP and d RRt LLateral l


AP kV radiograph (>300 lb pt)<br />

Thanks to R. Kudchadker<br />

DRR kV<br />

Fiducials


Problem w/ gold


Alternative markers<br />

Ca ++ vs. Carbon-coated ZrO 2


Pros:<br />

Fiducial-based alignment<br />

– Less subjectivity<br />

– Good alignment<br />

– Allows target tracking<br />

– Better <strong>for</strong> large patients<br />

– Image fusion (e.g. MRI-<br />

CT)<br />

– Visualize rectal gas<br />

Cons:<br />

– Invasive<br />

– Daily<br />

– Fiducials may migrate<br />

– No oimage age of o SV, S , rectum/bladder<br />

ec u /b adde<br />

– No image of prostate surface<br />

contour<br />

– Shifts may not be representative of<br />

volume<br />

– Fiducial markers may not stay in<br />

prostate<br />

MDACC study comparing fiducials vs CT on rails:<br />

MDACC study comparing fiducials vs CT-on-rails:<br />

1=U/S guidance, 2 (base-apex)=90%, 3=best<br />

(IJROBP 2009, 74)


• Better dose delivery => Better bullet<br />

• Better targeting => Better aim<br />

• Leads to smaller treatment margins<br />

– Lower toxicity <strong>for</strong> a given dose<br />

– Minimize toxicity at higher doses


Still need adequate PTV with<br />

fid fiducials…especially i l i ll f<strong>for</strong> arc <strong>RT</strong><br />

• Study d of f238 men treated d 5/2000-11/2004<br />

/ /<br />

• 70-78 Gy<br />

• 25 treated w/ fiducials &arc<strong>RT</strong> & arc <strong>RT</strong><br />

• 5-y 5 y FFBF: 58% w/ / fiducials duc a s vs. s 9 91% % w/bone /bo eaalign g (p=0.02)! (p 0 0 )<br />

– Multivariable analysis: Worse <strong>for</strong> fiducials p=0.047<br />

– 4 & 3mm PTV expansion may have been too tight<br />

Engels. IJROBP 2009


Intra-fraction Intra fraction variation due to gas<br />

IJROBP 2007


Gas may migrate<br />

superiorly!<br />

Note change in<br />

rectum, bladder, and<br />

prostate (translation, (translation<br />

rotation)<br />

IJROBP 2007


Fiducials vs. MRI<br />

Maximum prostate p de<strong>for</strong>mations after translational matching gof<br />

fiducials: 6 mm x-direction, 13 mm in y, 7 mm in z<br />

[Nichol et al. IJROBP 67, 2007]


<strong>Prostate</strong> alignment does not guarantee SV alignment<br />

[Frank et al. IJROBP 71, 2008]


Larger margin needed to cover SV’s<br />

5mm margin will<br />

miss SV almost 30%<br />

of the time


Reduce PTV<br />

• Decrease inter and intra-fractional variation (not<br />

just j motion) )<br />

• Pro-actively minimizes anatomic distortion<br />

– Control the prostate-rectal interface!!<br />

• Typical IG<strong>RT</strong> does not guarantee SV coverage or<br />

account <strong>for</strong> changes in contour de<strong>for</strong>mation<br />

• PTV’s ≤3mm not optimal w/ standard IG<strong>RT</strong> alone


What we don’t like to see


ERB gives margin<br />

Do not need to rely on bladder filling


May need to re-define “adequate” PTV coverage<br />

(Don’t (Don t pump in more monitor units than you need)<br />

Remember Remember…building b ilding up p dose in air is diffic difficult!<br />

lt!


Water-filled Water filled ERB


Is there a way to increase therapeutic<br />

ratio w/ out increasing <strong>RT</strong> dose?


RCT: 70Gy vs 70Gy+HT<br />

D’A D’Amico i et al. l JAMA 292 292; 2004


Combined <strong>RT</strong> + HT<br />

• Intermediate risk<br />

– High dose <strong>RT</strong> alone (> 75Gy)<br />

– <strong>RT</strong> + “short-term” HT (4-6 months)<br />

• High risk<br />

– <strong>RT</strong> + “long-term” HT (>28 months)<br />

– <strong>RT</strong>+ “short-term” HT in select patients<br />

• Locally-advanced (T3+)<br />

– <strong>RT</strong> + “long-term” HT


Practical considerations of HT + <strong>RT</strong><br />

• Begin HT at least 2 mos prior to <strong>RT</strong><br />

– Leuprolide (LHRH agonist) or goserelin (GnRH agonist)<br />

– Bicalutamide (androgen receptor blocker)<br />

– If high AUA-SI, then start bicalutamide >2 weeks prior & consider<br />

adding alpha blocker (e.g. Flomax, Uroxatral, Rapaflo)<br />

• Total androgen blockade prior to <strong>RT</strong><br />

– <strong>Prostate</strong> volume may reduce >30% in first 2-3 months<br />

– Total androgen blockade results in faster volume reduction than<br />

LHRH agonist i t monotherapy th<br />

– Want stable target volume through radiation course, decrease<br />

dose to rectum<br />

• Consider pre-HT planning target volume <strong>for</strong> patients with locallyadvanced<br />

(T3) disease<br />

– <strong>Prostate</strong> volume reduction may be concentric but tumor<br />

regression may not be<br />

– Neoadjuvant HT studies prior to RP


Axial Sagittal Coronal<br />

Pre-HT<br />

volume<br />

Post-HT<br />

volume


MDACC EB<strong>RT</strong> recommendations<br />

• Low risk <strong>Prostate</strong> only<br />

78 Gy PTV (>80 Gy CTV)<br />

• Intermediate risk <strong>Prostate</strong> & “Proximal” Proximal SV<br />

6 mo HT <strong>for</strong> select pts<br />

(≥ 2 mos TAB then leuprolide)<br />

• High risk & T3 <strong>Prostate</strong> & most of SV<br />

(Select pts LN)<br />

2 years HT


Decreasing “systematic” setup error from<br />

simulation to treatment is over half the battle<br />

• At simulation: Goal is reproducible anatomy<br />

– Com<strong>for</strong>table position (a relaxed patient is a stable patient)<br />

– Empty rectum (allows use of tighter posterior margin)<br />

– Do not overfill bladder<br />

– Consider possible CT “table sag”<br />

• During treatment: Be proactive<br />

– Educate patients about bladder and rectal filling (give<br />

feedback)<br />

– IG<strong>RT</strong> primarily <strong>for</strong> translational rather than rotational shifts<br />

– Examine large variations


Proton therapy <strong>for</strong> <strong>Prostate</strong> Ca<br />

• Supine<br />

• ER Balloon<br />

MDACC ttechnique h i<br />

• Bony and d fid fiducial i l alignment li<br />

• 2-fields every day (opposed lats)<br />

• CTV = <strong>Prostate</strong> + proximal SV<br />

• 2CGEx39= 2 CGE x 39 78 CGE to “PTV” PTV<br />

• Mean dose to CTV ~81 CGE


Range depends on radiologic path length


Dancing prostate & hips using vacuum bag<br />

25 treatment CTs<br />

Acquired during a course<br />

of 42 fxs treatment<br />

Dong (MDA), 2002


• Immobilization and reproducible setup is<br />

important <strong>for</strong> protons just like IM<strong>RT</strong><br />

• Reproduce radiologic path length<br />

• “Pro-active” target localization


Rectal balloon<br />

Sagittal and Coronal<br />

Fiducial marker<br />

<strong>Prostate</strong><br />

Fiducial marker


Fiducial marker Fiducial marker


Newhauser et al: Dose Perturbations from Au Cylinders<br />

z / mm m<br />

10<br />

20<br />

30<br />

40<br />

-20 -10 0<br />

x / mm<br />

10 20


All 3 large fiducials to 3000 HU No fiducials (over-ridden to tissue density)


Ca ++ Ca vs vs. Carbon Carbon-coated coated ZrO 2


Carbon-coated Carbon coated Zr0 on kV<br />

2


Fusion at simulation between<br />

scan 1 and d 2<br />

Scan 2 Scan 1<br />

No need <strong>for</strong> verification plan


Planning parameters<br />

• Right & left lateral beams (daily)<br />

– IImproved dcon<strong>for</strong>mality f lit<br />

– Potentially more <strong>for</strong>giving and robust<br />

• Geometrically and biologically (RBE)<br />

– Trade off is patient throughout<br />

• 78 CGE (2 CGE/fxn) to 100% CTV+margin<br />

– Usually prescribe to 98-96% isodose line<br />

• CTV = <strong>Prostate</strong> + Proximal SV


• Setup uncertainty ≤5mm<br />

• Distal margin = (0.035 x distal CTV<br />

radiological depth) + (3mm)* (3mm)<br />

• Proximal margin ~ 1cm<br />

• Smear ~0.9 0.9 cm<br />

(*<strong>Beam</strong> ( <strong>Beam</strong> range uncertainty)


• LM = setup uncertainty +<br />

penumbra p<br />

Lateral Margin<br />

• Setup uncertainty = 0.5cm<br />

• 225-250 225 250 MeV beam penumbra<br />

(95-50%) = 1.0-1.2cm<br />

• LM = 1.2-1.7 cm


Two opposed lateral beams


Rectal DVH V70=10%


Patient alignment<br />

at PTC-H<br />

• Daily yorthogonal g kV images g to<br />

align bony anatomy with<br />

reference DRR’s using 2-D<br />

matching<br />

X-ray tubes<br />

Image receptors<br />

Positioning Image Analysis System, ‘PIAS’<br />

Hitachi


Take home points<br />

• Higher radiation doses yield higher PSA control rates<br />

• Do not use too tight of a margin<br />

• Proactively position the patient and target<br />

– Mi Minimize i i iinter- t and diintra-fraction t f ti variation i ti<br />

• Opposed lateral beams are relatively <strong>for</strong>giving<br />

• Do not treat more of seminal vesicles than needed

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!