09.02.2013 Views

Anal and Rectal Cancers - ASTRO

Anal and Rectal Cancers - ASTRO

Anal and Rectal Cancers - ASTRO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Anal</strong> <strong>and</strong> <strong>Rectal</strong> <strong>Cancers</strong>:<br />

Anatomy, Contouring <strong>and</strong><br />

Considerations for IMRT<br />

Planning<br />

Karyn y A. Goodman, , MD<br />

Associate Attending Radiation Oncologist<br />

Memorial Sloan Sloan-Kettering Kettering Cancer Center


� None<br />

Disclosures


Learning Objectives<br />

Objectives<br />

• Describe the challenges <strong>and</strong> outcomes in IMRT for<br />

the lower GI sites (anal <strong>and</strong> rectal cancers)<br />

• Discuss the role of IMRT planning <strong>and</strong> routine imageguidance<br />

g for lower GI cancers<br />

• List the challenges associated with management of<br />

g g<br />

motion <strong>and</strong> deformation in treating lower GI cancers


Outline<br />

• Pelvic Anatomy <strong>and</strong> Nodal Drainage Patterns<br />

• Contouring <strong>and</strong> planning recommendations<br />

for IMRT in the treatment of <strong>Anal</strong> Cancer<br />

• IMRT in <strong>Rectal</strong> Cancer<br />

• IGRT <strong>and</strong> motion issues in the treatment of<br />

pelvic tumors


Anatomy of the Rectum <strong>and</strong> Anus<br />

Mesorectal fat<br />

Peritoneal Reflection<br />

12-15 cm


Anatomy<br />

Mesorectal Fascia Mesorectal Fascia<br />

• T2 axial images<br />

• Mesorectal fascial involvement associated with higher risk of<br />

positive circumferential resection margin


Nodal Drainage Patterns


Nodal Anatomy<br />

Superior Hemorrhoidal Vessels Mesorectal Nodes<br />

Courtesy of Corinne Winston, MD


Nodal Anatomy<br />

External Iliac Nodes Inguinal Nodes Great Saphenous Vein<br />

Internal Iliac Nodes<br />

Courtesy of Corinne Winston, MD


Nodal Anatomy


Nodal Anatomy


Outline<br />

• Pelvic Anatomy <strong>and</strong> Nodal Drainage Patterns<br />

• Contouring <strong>and</strong> planning recommendations<br />

for IMRT in the treatment of <strong>Anal</strong> Cancer<br />

• IMRT in <strong>Rectal</strong> Cancer<br />

• IGRT <strong>and</strong> motion issues in the treatment of<br />

pelvic tumors


644 <strong>Anal</strong><br />

SCC Patients<br />

5-Year Rates<br />

Disease Disease-free free Survival<br />

Local Relapse<br />

Colostomy<br />

Distant Mets.<br />

Overall Survival<br />

RTOG 98 98-11 11<br />

RT + MMC/5-FU<br />

Cis/5-FU<br />

RT + Cis/5-FU<br />

C/F�RT C/F�RT+C/F C/F RT RT+MMC/F MMC/F<br />

(%)<br />

(%)<br />

p<br />

Ajani JA et al., JAMA 2008;299:1941-1921


RTOG 9811<br />

Relapse l bby<br />

TN Category<br />

TN<br />

No. Local Local-Regional Regional Distant Metastasis<br />

C Category t<br />

Pt Pts TF(#) 5yr(%) TF(#) 5yr(%)<br />

T2N0 302 50 19 31 12<br />

T3N0 115 25 22 12 14<br />

T4N0 31 13 50 5 21<br />

T2N1 T2N1-3 95 37 40 22 31<br />

T3N1 T3N1-3 47 27 58 12 32<br />

T4N1 T4N1-3 25 14 64 4 17<br />

Gunderson LL et al., <strong>ASTRO</strong> 2010


• AP/PA – RTOG<br />

RT Technique<br />

– 30 30.6 6 to t pelvis l i<br />

– 45 Gy to true pelvis (drop superior<br />

border to SI joints)<br />

– 54 - 59 59.4 4 Gy to GTV + 22-3 3cm cm<br />

margin for T3+ disease


<strong>Anal</strong> Cancer:<br />

NCCN GGuidelines id li VVersion i 22.2012 2012<br />

RT Guidelines:<br />

45 Gy for T1/T2, T1/T2<br />

9-14 Gy boost for T3/T4<br />

Field reduction after<br />

30.6 Gy (bottom of sacroiliacal<br />

joints)<br />

36 Gy y( (N0-inguinal g nodes) )<br />

IMRT may be used in the treatment<br />

IMRT may be used in the treatment<br />

of patients with anal cancer


180 patients<br />

45 locoregional persistence or failure<br />

28 local-only 7 local <strong>and</strong> regional 10 regional only


Local Recurrences in Relation to<br />

Conventional Pelvic Fields<br />

n=2<br />

n=25 n=25<br />

Posterior Posterior-anterior anterior field Lateral field<br />

n=2


RTOG 0529: Dose Painted IMRT in<br />

<strong>Anal</strong> Cancer (Kachnic et al )<br />

<strong>Anal</strong> Cancer (Kachnic, et al.)<br />

Mitomycin-C 10 mg/m² IV bolus on<br />

days 1 & 29 IMRT<br />

5-FU 1000 mg/m²/day by CI on<br />

days y 1-4 & 29-32 IMRT<br />

T2 <strong>and</strong> above<br />

*HIV pts eligible DP-IMRT<br />

T2N0: 50.4 Gyy tumor; ; 42 Gyy elective<br />

nodes in 28 fxs over 5.5 weeks<br />

T3N0 or T4N0: 54 Gy tumor; 45 Gy<br />

elective e ect e nodes odes in 30 fxss over o e 6<br />

weeks<br />

N+: 50.4 Gy < 3 cm or 54 Gy > 3 cm<br />

<strong>ASTRO</strong> 2009, 2009 2010<br />

in 30 fxs over 6 weeks


Study Endpoints<br />

� Primary: Reduce combined grade 2+ GI/GU toxicities by<br />

15%, as compared to 98-11 5FU/MMC arm (n=59 pts)<br />

� Secondary: all AEs vs. 98-11<br />

� Secondary: feasibility (< 5 cases with major deviations)<br />

� Secondary: two year outcomes


CTV A includes:<br />

• MMesorectallnodes d<br />

– Perirectal<br />

– “Presacral”<br />

• Internal iliac nodes<br />

CTV B includes:<br />

• External iliac nodes<br />

CTV C includes:<br />

• Inguinal nodes<br />

RTOG guidelines guidelines<br />

Myerson RJ RJ, Kachnic LA LA, IJROBP IJROBP, 2009 2009.


RTOG 0529: IMRT vs. RTOG 9811<br />

0529<br />

(n=52)<br />

9811-MMC-arm<br />

(n=324)<br />

Acute Morbidity # y<br />

% %<br />

≥ Grade 3 GI/GU AE 22* 36*<br />

≥ Grade 3 skin AE 20* 47*<br />

Endpoint& 2y-% 2y-%<br />

Local-Regional Failure 20 23<br />

Colostomy Failure 8 10<br />

Overall Survival 88 91<br />

Disease-Free Survival 77 71<br />

Colostomy-Free Survival 86 84<br />

Distant Failure 15 10<br />

# Kachnic Kachnic L et al al., <strong>ASTRO</strong> 2009; & Kachnic L et al al., <strong>ASTRO</strong> 2010


Ng M, Int J Radiat Oncol Biol Phys, 2012


Ng M, Int J Radiat Oncol Biol Phys, 2012


Ng M, Int J Radiat Oncol Biol Phys, 2012


Contouring Guidelines<br />

Ng M, M Int J Radiat Oncol Biol Phys Phys, 2012


IMRT plan for <strong>Anal</strong> Cancer


Comparison of APPA v. IMRT Fields<br />

AP/PA (left) <strong>and</strong> IMRT (right). Inguinal nodes highlighted in pink, PTV in red. Isodose lines: 5400 cGy blue, 5250 cGy yellow,<br />

5000 cGy cyan, 4725 cGy green, 4500 cGy magenta, 4275 cGy orange, 2500 cGy pink.


IMRT for <strong>Anal</strong> Cancer<br />

• 17 patients treated with definitive CMT<br />

• 9 field IMRT plans<br />

• Compared to AP/PA plans in 7 patients<br />

• IMRT reduced mean <strong>and</strong> threshold doses to<br />

small bowel bowel, bladder, bladder genitalia<br />

• 3/17 patients failed � APR<br />

• MMedian di f/ f/u 20 20.3 3 months th<br />

• 2 yr OS, DFS, CFS: 91%, 65%, 82%<br />

Milano, IJROBP, 2005


Milano, IJROBP, 2005


Multicenter Experience<br />

• 53 patients <strong>Anal</strong> SCC SCC, 3 academic centers<br />

• Definitive chemoradiation (5-FU-based<br />

chemo)<br />

• Median f/u = 14.5 mos<br />

• 18 month OS, CFS, freedom from LF: 93%,<br />

84%, 84%<br />

Salama, J Clin Oncol, 2007


Multicenter Experience<br />

• 42% had a treatment break<br />

– median of 4 days<br />

• 15% had acute grade 3 GI toxicity<br />

– 34% Grade 3-4 toxicity on RTOG 98-11<br />

Salama, J Clin Oncol, 2007


Potential Limitations of IMRT<br />

• Highly conformal fields with steep dose fall off<br />

may underdose nodal regions at risk<br />

• Potential for higher regional failure rates<br />

• Cautionary report from McGill<br />

– 66 pts treated for anal SCC (40-3DCRT, 26 IMRT)<br />

– Increased Grade 3+ BM toxicity in IMRT grp (42% v<br />

17.5%)<br />

– 1 yr LR rate: 28.6% (IMRT) v. 15.2% (3DCRT)<br />

VVuong, PProc ASCO, ASCO 2008


Propensity Score <strong>Anal</strong>ysis<br />

• 223 <strong>Anal</strong> SCC patients treated from 1991-2010<br />

• 45 – IMRT, 178 – conventional RT<br />

• Median follow-up: 5 yrs (6.1 yrs - CRT, 2.3 yrs - IMRT)<br />

• Patients treated with IMRT had significantly higher N<br />

stage <strong>and</strong> were less likely to receive induction chemo<br />

3-year<br />

Outcomes<br />

IMRT<br />

(%)<br />

Conventional RT<br />

(%)<br />

P value<br />

LRFS 87 79 .20 20<br />

DMFS 86 88 .62<br />

CFS 96 89 .10 10<br />

OS 89 86 .91<br />

DasGupta, Submitted, 2012


Simulation Set-up Set up<br />

CT Simulation<br />

– Prone (or supine)<br />

– Aquaplast / Vac-loc Bag (or equivalent)<br />

– Full Bladder<br />

– IV Contrast + SB contrast<br />

– <strong>Anal</strong> Marker Marker; Wire around aro nd Distal Extent E tent of Disease; Disease<br />

Vaginal Marker<br />

– PET-CT simulation if available or fuse diagnostic g<br />

PET


Outline<br />

• Pelvic Anatomy <strong>and</strong> Nodal Drainage Patterns<br />

• Contouring <strong>and</strong> planning recommendations<br />

for IMRT in the treatment of <strong>Anal</strong> Cancer<br />

• IMRT in <strong>Rectal</strong> Cancer<br />

• IGRT <strong>and</strong> motion issues in the treatment of<br />

pelvic tumors


Preoperative 5FU<br />

+5040cGy pelvic RT<br />

German <strong>Rectal</strong> Cancer Study<br />

Locally Advanced<br />

<strong>Rectal</strong> Cancer<br />

Surgery<br />

Surgery Postoperative 5FU<br />

+5580 cGy pelvic RT<br />

Sauer Sauer, NEJM 2004


St<strong>and</strong>ard Pelvic Fields for <strong>Rectal</strong> Cancer


Dosimetric Benefit of IMRT for <strong>Rectal</strong><br />

Cancer<br />

• MMultiple lti l ddosimetric i t i studies t di hhave compared d<br />

conventional fields (bony anatomy), 3DCRT,<br />

33-field fi ld sIMRT, IMRT multi-field lti fi ld IMRT planning l i<br />

• Target coverage <strong>and</strong> bowel volume<br />

irradiated better for all plans compared to<br />

conventional Urbano M, IJROBP, 2006<br />

Callister M, Proc <strong>ASTRO</strong>, 2006<br />

Guerrero Urbano MT, IJROBP 2006<br />

Arbea L, Radiat Oncol, 2010<br />

Tho LM LM, IJROBP. IJROBP 2006


RTOG 0822 Phase II <strong>Rectal</strong> IMRT Trial<br />

cT3-4NxM0 or cTxN1-2M0<br />

Preop for planned<br />

resection<br />

Radiation<br />

capecitabine<br />

it bi<br />

+ oxaliplatin<br />

Pelvic IMRT: 45 Gy in 25 fx<br />

3D-CRT boost: 5.4 Gy in 3 fx to total dose of<br />

50.4 Gy in 28 fx<br />

+<br />

Adjuvant<br />

Chemo<br />

FOLFOX<br />

Surgery<br />

LAR or or APR<br />

APR


<strong>Rectal</strong> Cancer – Target Definition<br />

• GTV: Primary y tumor + involved nodes<br />

– As defined on physical exam, ERUS, MRI, CT, <strong>and</strong>/or<br />

PET<br />

– Include tumor +entire rectal circumference at that<br />

level<br />

• CTV: Elective nodal regions<br />

– St<strong>and</strong>ard: Peri-rectal, internal iliac, <strong>and</strong> superior<br />

hemorrhoidal (CTVA)<br />

– For T4 tumors extending anteriorly: include external<br />

iliac (CTVA + B)<br />

– For tumors invading anal canal: include inguinal <strong>and</strong><br />

external iliac (CTVA+B+C)<br />

Myerson RJ, Kachnic LA, IJROBP, 2009.


RTOG 0822<br />

• Primary endpoint: Comparison of Grade 2+ GI<br />

toxicity i i to RTOG 0247 ( (non-IMRT) IMRT)<br />

• 68 analyzable patients<br />

• 90% T3, 55% N+<br />

• 51% Grade 2+ GI toxicity compared to 58% on<br />

RTOG 0247 (NS)<br />

• Only 5 (7%) had unacceptable CTV<br />

Garafalo MM, <strong>ASTRO</strong> 2011


IMRT v. CRT<br />

• 92 rectal cancer pts<br />

treated from 2004-2009<br />

• 61 – CRT CRT, 31 – IMRT<br />

• 45/50.4 Gy for CRT<br />

• 45/50 Gy for IMRT using<br />

an integrated boost<br />

Samuelian JM JM, IJROBP IJROBP, 2012


Grade 2+<br />

GI toxicity t i it<br />

Grade 2+<br />

Diarrhea<br />

Grade 2+<br />

enteritis<br />

IMRT CRT P<br />

(%) (%) value<br />

48 62 .006<br />

23 30 .62<br />

10 38 .10<br />

pCR 19 28 NS<br />

IMRT v. CRT<br />

Samuelian JM, IJROBP, 2012


Indications for IMRT for <strong>Rectal</strong> Cancer<br />

• Low <strong>Rectal</strong> Tumors or T4 tumors<br />

– Invading anal sphincter, cover inguinal nodes<br />

– AAnterior t i T4 extension, t i cover external t l ili iliac nodes d<br />

• Post-operative chemoradiation<br />

– Minimize bowel dose since bowel falls into<br />

pelvis<br />

• Recurrent colon cancer in the pelvis


Indications for IMRT for <strong>Rectal</strong> Cancer


<strong>Rectal</strong> Cancer - Radiation Techniques<br />

CT Simulation<br />

– Supine (thin) or Prone<br />

– Belly Board / Bowel Compression if Prone<br />

– AAquaplast l t/ / VVac-loc l B Bag ( (or equivalent) i l t)<br />

– Full Bladder<br />

– Oral (SB Follow Through) +/- IV Contrast<br />

– <strong>Anal</strong> marker; consider vaginal marker<br />

– ≤ 3mm Slice Thickness<br />

– Use Multiple Fields<br />

– Consider IMRT for Select Cases (nodal burden, small bowel<br />

issues)


Outline<br />

• Pelvic Anatomy <strong>and</strong> Nodal Drainage Patterns<br />

• Contouring <strong>and</strong> planning recommendations<br />

for IMRT in the treatment of <strong>Anal</strong> Cancer<br />

• IMRT in <strong>Rectal</strong> Cancer<br />

• IGRT <strong>and</strong> motion issues in the treatment of<br />

pelvic tumors


IGRT <strong>and</strong> Motion Issues<br />

• Improvements in pelvic imaging<br />

– EUS, CT, MRI, PET<br />

• <strong>Rectal</strong> Motion<br />

– Day-to-day variation in rectal filling


<strong>Rectal</strong> Protocol CT


<strong>Rectal</strong> MRI<br />

Mercury Study group, British Medical Journal, 2006


<strong>Rectal</strong> MRI<br />

• Studies have validated use of MRI to:<br />

– measure depth of extramural spread accurately<br />

– Predict circumferential resection margin (CRM)<br />

positivity iti it when h ttumor iis ≤ 1 mm from f mesorectal t l<br />

fascia on MRI<br />

– Assess tumor <strong>and</strong> nodal response to pre- pre<br />

operative chemoradiation<br />

• Good correlation with pathology p gy<br />

measurements in resection specimens<br />

Brown G, Radiology, 1999; Beets-Tan R; Lancet, 2001; Mercury Study group, Radiology, 2007;<br />

Mercury Study group, British Medical Journal, 2006.


MRI to Risk Stratify <strong>Rectal</strong> Cancer


Impact on Management<br />

Tumor abuts mesorectal fascia T4 Bladder invasion


MRI as a Biomarker<br />

• Regression of tumor microvasculature is an<br />

early surrogate marker for treatment response<br />

• New MRI techniques can assess these changes<br />

non-invasively<br />

– DDynamic i CContrast-Enhanced t t E h d IImaging i (DCE)<br />

– Diffusion-Weighted Imaging (DWI)


Functional MR Imaging for <strong>Rectal</strong><br />

Cancer<br />

Axial T2 anatomic image DCE-MRI Ktrans Map<br />

DWI-MRI ADC Map<br />

Dzik-Jurasz ASK, Br J Radiol, 2005


PET for Treatment Planning


Impact of PET on RT Planning<br />

• Evaluate interobserver variability in<br />

contouring rectal cancer cases<br />

• <strong>Rectal</strong> cancer volumes contoured by 4<br />

radiation oncologists at Stanford<br />

– CT alone l<br />

– CT + PET


Impact of PET on RT Planning<br />

Patel, TCRT, 2007


Impact of PET on RT Planning<br />

• 20 rectal cancer, cancer 3 anal cancer patients<br />

• PET altered treatment volume in 17%<br />

• PET altered l d overall ll treatment plan l iin 2 25% %<br />

– Detection of distant metastases in rectal cancer<br />

patients<br />

Anderson, IJROBP, 2007


<strong>Rectal</strong> Tumor Motion<br />

• IMRT for rectal cancer limited by uncertainty in<br />

targeting i rectal ltumors<br />

• Consequence of rectal motion due to filling <strong>and</strong><br />

ddeformation f ti<br />

• Data from studies of prostate gl<strong>and</strong> motion using<br />

cine cine-MRI MRI demonstrate<br />

– <strong>Rectal</strong> motion <strong>and</strong> filling was a main determinant of<br />

prostate p intra-fraction motion<br />

• Inter-fraction motion for rectal tumors may be<br />

even greater Ghilezan M, IJROBP, 2005


<strong>Rectal</strong> CBCT Study<br />

• On-board CBCT can be used to quantify<br />

degree of rectal motion <strong>and</strong> volume change<br />

during RT<br />

• CBCT to measure accuracy <strong>and</strong> d precision of f a<br />

simulated IMRT treatment delivery model<br />

• 9 patients (8 rectal, 1 anal cancer) underwent<br />

> 1 CBCT during a course of RT<br />

• Co-registered to respective simulation CT<br />

scan by y matching g bony y anatomyy


Serial CT Scans<br />

Max RL Mean RL Max AP Mean AP<br />

Centroid<br />

motion (cm) 2.6 0.71 3.77 0.97


Degree of <strong>Rectal</strong> Deformation<br />

• IMRT plans generated for 8 rectal cases <strong>and</strong><br />

forward calculations were applied to the<br />

subsequent CBCT scans<br />

• 7 of 8 patients had adequate rectal coverage<br />

with ith IMRT plan l using i 15 mm margin i ddespite it<br />

rectal motion <strong>and</strong> deformation


Recommendations for IGRT for Pelvic<br />

Radiotherapy d h<br />

• Immobilization is essential essential, even with 3DCRT<br />

due to sacral rotation<br />

– Aquaplast mold mold, vacbag<br />

• Daily image guidance is necessary for highly<br />

conformal pelvic fields due to rectal motion<br />

– Daily KV<br />

– Daily l CBCT?<br />

– Fiducials


Conclusions<br />

• IMRT reduces toxicity associated with pelvic<br />

radiotherapy di th ffor anal l cancer <strong>and</strong> d with ith<br />

appropriate contouring, results in excellent<br />

local control<br />

• IMRT for rectal cancer has not been shown to<br />

reduce toxicity but may be beneficial in select<br />

cases<br />

• Incorporating better imaging into planning<br />

pelvic radiotherapy may allow for more<br />

targeted treatments


Thank you

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!