22.03.2013 Views

Assessment of the Automation Algorithm for TDR Bridge - Ohio ...

Assessment of the Automation Algorithm for TDR Bridge - Ohio ...

Assessment of the Automation Algorithm for TDR Bridge - Ohio ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ODOT Project Review Session Presentation<br />

— Development <strong>of</strong> <strong>TDR</strong> Real Time <strong>Bridge</strong><br />

Scour Monitoring System<br />

April 17, 2009<br />

Xiong (Bill) Yu 1 , Ph.D., P.E. and Xinbao Yu 2<br />

1 Assistant Pr<strong>of</strong>essor, Department <strong>of</strong> Civil Engineering, Case<br />

Western Reserve University, xxy21@case.edu, 216-368-6247<br />

2 Graduate Research Assistant, Currently, research engineer,<br />

Louisiana DOT/Louisiana Transportation Research Center


Outline<br />

• Introduction<br />

• Literature review: scour monitoring<br />

practice and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future<br />

work<br />

2


Introduction<br />

1.1 Motivation <strong>for</strong> <strong>Bridge</strong> Scour Monitoring<br />

• 1987, <strong>the</strong> Schoharie Creek <strong>Bridge</strong> on <strong>the</strong> New York State Thruway<br />

• 1989, <strong>the</strong> US 51 bridge over <strong>the</strong> Hatchie River in Tennessee<br />

• 1995, <strong>the</strong> I-5 bridges over Arroyo Pasajero in Cali<strong>for</strong>nia<br />

National <strong>Bridge</strong><br />

Inspection<br />

Standards (NBIS)<br />

Minimum 2 year<br />

inspection<br />

frequency<br />

3


1.2 Fundamentals <strong>of</strong> <strong>Bridge</strong> Scour<br />

• Definition<br />

• A dynamic process<br />

Pier scour depth in a sand-bed stream as a function <strong>of</strong> time (Richardson 1995)<br />

4


Classification<br />

• General Scour<br />

• Aggradation and Degradation<br />

• Contraction Scour<br />

• Local Scour<br />

Different Types <strong>of</strong> Scour in a Typical <strong>Bridge</strong> Cross Section (Wang 2004).<br />

5


Contraction scour<br />

Two manmade features that create a contracted<br />

section in a channel (Sheppard and Renna 2005)<br />

An example <strong>of</strong> manmade causeway islands that create a<br />

channel contraction (Sheppard and Renna 2005)<br />

6


Local Scour<br />

• Pier scour and abutment scour<br />

Scour design references<br />

Complex flows around a bridge pier (Hamill 1999)<br />

HEC-18, Evaluating Scour at <strong>Bridge</strong>s<br />

HEC-20, Stream Stability at Highway <strong>Bridge</strong>s<br />

HEC-23, <strong>Bridge</strong> Scour and Stream Instability<br />

Countermeasures-Experience, Selection, and Design Guidance<br />

7


1.3 <strong>Bridge</strong> Scour Study<br />

• Analytical Methods<br />

Vortex, scour depth, assumption <strong>of</strong> <strong>the</strong> scour shape, determination <strong>of</strong><br />

critical shear stress or critical velocity, and continuity equation<br />

• Physical Modeling<br />

• Numerical Simulation<br />

Photo <strong>of</strong> a pier scour flume test<br />

8


Physical Modeling<br />

Parameters related to fluid properties<br />

• g: acceleration due to gravity<br />

• ρ: density <strong>of</strong> <strong>the</strong> fluid<br />

• υ: kinematic viscosity <strong>of</strong> fluid<br />

Parameters related to flow properties<br />

• y1 : approach flow depth<br />

d<br />

• V1: approach mean flow velocity<br />

s<br />

Parameters related to sediment properties b<br />

• ρ: density <strong>of</strong> <strong>the</strong> sediment<br />

• d50 : median sediment size<br />

• σg: geometric standard deviation <strong>of</strong> sediment size<br />

distribution<br />

• cohesion <strong>of</strong> sediment<br />

Parameters related to <strong>the</strong> bridge pier<br />

• shape <strong>of</strong> <strong>the</strong> bridge pier<br />

• width <strong>of</strong> <strong>the</strong> bridge pier<br />

• alignment <strong>of</strong> <strong>the</strong> bridge pier<br />

Breusers et al. 1997<br />

⎛<br />

⎞<br />

⎜<br />

y1<br />

V1<br />

ρV1b<br />

V1<br />

b<br />

= f K<br />

⎟<br />

s,<br />

Kθ<br />

, , , , , , σ g<br />

⎜<br />

⎟<br />

⎝<br />

b gy µ Vc<br />

d<br />

1<br />

50 ⎠<br />

9


Numerical Simulation<br />

• 1D simulation such as HEC-RAS and WSPRO<br />

• 2D simulation such as Flo2dh and SED2D<br />

• 3D simulation such as Flow3D, FLUENT, and CCHE3D<br />

Screen shot <strong>of</strong> bridge<br />

scour analysis in HEC-<br />

RAS<br />

Example <strong>of</strong> flow field by<br />

Flo2dh (Yu and Yu 2008)<br />

10


Numerical Simulation<br />

• 1D simulation such as HEC-RAS and WSPRO<br />

• 2D simulation such as Flo2dh and SED2D<br />

• 3D simulation such as Flow3D, FLUENT, and CCHE3D<br />

Simulated local scour hole around<br />

a bridge pier (NCCHE n.d.)<br />

Simulated complex turbulent flow around<br />

bridge piers (Ge 2004)<br />

11


Numerical Simulation<br />

• 3D simulation such as Flow3D, FLUENT, and CCHE3D<br />

turbulent flow<br />

two-phase flow: air, water, sediment<br />

fluid sediment interaction<br />

According to <strong>the</strong> previous research, it<br />

is found that <strong>the</strong> bottleneck <strong>of</strong> <strong>the</strong><br />

state-<strong>of</strong>-<strong>the</strong>-art <strong>of</strong> <strong>the</strong> local scour<br />

simulation lies in <strong>the</strong> accurate<br />

modeling <strong>of</strong> <strong>the</strong> sediment behavior and<br />

<strong>the</strong> interaction between <strong>the</strong> flow and<br />

bed variation.<br />

12


Field observation<br />

• A co-operative National <strong>Bridge</strong> Scour Project in 1987 to collect<br />

scour data at bridges during floods by USGS and FHWA<br />

• The second USGS field-collection funded by FHWA (2005)<br />

Muller and Wagner (2005) … a deficiency that is primarily a reflection <strong>of</strong> <strong>the</strong> difficulty in<br />

collecting <strong>the</strong> necessary data. Accurate and complete field measurements <strong>of</strong> scour are<br />

difficult to obtain because <strong>of</strong> complex hydraulic conditions at bridges during floods, inability<br />

to get skilled personnel to bridge sites during floods, and problems associated with existing<br />

measuring equipment.<br />

13


Outline<br />

• Introduction<br />

• Literature review: scour monitoring<br />

practice and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future<br />

work<br />

14


Literature review: scour monitoring<br />

practice and technologies<br />

• Fixed instruments<br />

• Portable instruments<br />

• Visual inspection<br />

15


2.1 Motivation <strong>for</strong> Scour Instrumentation<br />

• Hunt (2005)<br />

safety <strong>for</strong> <strong>the</strong> traveling public<br />

a reduced number <strong>of</strong> underwater and/or regular<br />

inspections<br />

early identification <strong>of</strong> problems prior to a diving inspection<br />

insight into site-specific scour processes<br />

Hawaii DOT, validation <strong>of</strong> HEC-18 equations by sonar<br />

devices<br />

Good instrumentation is essential <strong>for</strong> making proper<br />

decision, Georgia 1994 flood, 1000 bridge closed<br />

16


2.1 Motivation <strong>for</strong> Scour Instrumentation<br />

(cont.)<br />

• Challenges <strong>for</strong> scour monitoring instrumentations<br />

• Criteria <strong>for</strong> <strong>the</strong> instrumentation<br />

Mandatory Criteria<br />

•Capability <strong>for</strong> installation on or near a bridge pier<br />

or abutment<br />

•Ability to measure maximum scour depth within<br />

an accuracy <strong>of</strong> 0.3 m (1 ft)<br />

•Ability to obtain scour depth readings from above<br />

<strong>the</strong> water or from a remote site<br />

•Operable during storm and flood conditions<br />

Site conditions that cause<br />

interference or damage to<br />

<strong>the</strong> fixed scour monitoring<br />

systems (Hunt 2005)<br />

Desirable Criteria<br />

•Capability to be installed on most existing<br />

bridges or during construction <strong>of</strong> new bridges<br />

•Capability to operate in a range <strong>of</strong> flow<br />

conditions<br />

•Capability to withstand ice and debris<br />

•Vandal resistant<br />

•Operable and maintainable by highway<br />

maintenance personnel<br />

17


2.2 National Practice <strong>of</strong> Developing<br />

Instrumentation <strong>for</strong> Scour Monitoring<br />

• Zabilansky, 1996<br />

White River Junction, Vermont<br />

Instrumented fish and sediment chains<br />

(Zabilansky 1996)<br />

18


• Lagasse and Price 1997<br />

NCHRP Project 21-3, Instrumentation <strong>for</strong><br />

Measuring Scour at <strong>Bridge</strong> Piers and Abutments<br />

1. Sounding rods: manual or mechanical device<br />

(rod) to probe streambed;<br />

2. Buried or driven rods: device with sensors on<br />

vertical support, place or driven to streambed;<br />

3. Fathometers: commercially available sonic finder;<br />

and<br />

4. O<strong>the</strong>r buried devices: active or inert buried sensor<br />

(e.g., buried transmitter).<br />

Products: Sonic fathometers and a magnetic sliding<br />

collar device<br />

19


• Mueller and Landers 1999<br />

development <strong>of</strong> portable instruments <strong>for</strong> bridge<br />

scour monitoring<br />

1. physical probing such as sounding poles<br />

and sounding weights;<br />

2. sonar such as single-beam sonar, side<br />

scan, multi-beam, and scanning sonar;<br />

3. geophysical such as seismic instruments;<br />

4. and o<strong>the</strong>r such as underwater camera<br />

and green laser sensor<br />

Products: a low-cost echo sounder and a<br />

te<strong>the</strong>red kneeboard to deploy <strong>the</strong> transducer<br />

20


• Mueller and Landers 1999<br />

PVC-pontoon float <strong>for</strong> deploying a<br />

transducer<br />

A remote-control boat being<br />

tested near a pier<br />

21


• Schall and Price 2004<br />

NCHRP Project 21-07, portable scour instruments<br />

Products<br />

a portable scour monitoring device<br />

a fully instrumented articulated arm truck<br />

Articulated arm truck making a scour<br />

measurement (Schall and Price 2004)<br />

22


National practice <strong>of</strong> scour monitoring<br />

• Hunt 2005, a syn<strong>the</strong>sis study<br />

Total number <strong>of</strong> bridge sites with<br />

fixed scour monitoring<br />

instrumentation<br />

States with fixed scour monitoring<br />

installations<br />

23


2.3 Technologies <strong>for</strong> Scour Monitoring<br />

• Sonar<br />

• Magnetic Sliding Collar (MSC)<br />

• Time Domain Reflectometry (<strong>TDR</strong>)<br />

Sonar<br />

SOund NAvigation and Ranging<br />

active and passive<br />

echo sounders, fathometers, and acoustic depth sounders<br />

•Theory<br />

V (in feet per second) = 4388+<br />

(11.25 temperature (in F)) + (0.0182<br />

depth (in feet)) + salinity (in parts-perthousand)<br />

24


Sonar (cont.)<br />

A sonar system <strong>for</strong> bridge scour<br />

monitoring (Nassif et al. 2002)<br />

Schematic <strong>of</strong> a sonar scour monitoring<br />

system over Fire Island Inlet (Hunt 2005)<br />

25


Sonar (cont.)<br />

• wave frequency<br />

200 kHz<br />

• beam width Illustration <strong>of</strong> transducer beamwidth<br />

(Muller and Landers 1999)<br />

Effect <strong>of</strong> beamwidth on measured depth<br />

(Muller and Landers 1999)<br />

26


Sonar (cont.)<br />

• Data Acquisition<br />

• Limitations<br />

Fathometer data recorded with 200 kHz<br />

transducer (fathometer n.d.)<br />

1. at least 3 m and velocities less than 4 m/s<br />

2. turbulence, air entrainment, and heavy suspendedsediment<br />

3. noise from multiple reflections, and echoes from <strong>the</strong><br />

shoreline, water bottom, and/or piers<br />

27


Magnetic Sliding Collar<br />

• NCHRP Project 21-3 by Lagasse and Price (1997)<br />

• Basic Concepts<br />

A sliding magnetic collar on stainless steel<br />

pipe with driving point (Cooper et al. 2000).<br />

Schematic plot <strong>of</strong> magnetic sliding collar<br />

(Fukui and Otuka n.d.)<br />

• Limitations: shallow stream, refill, accuracy<br />

28


Time Domain Reflectometry<br />

Dowding and Pierce (1994)<br />

Yankielun and Zabilansky<br />

(1999)<br />

29


Basics<br />

Concepts<br />

EM Wave<br />

v<br />

p<br />

=<br />

c<br />

µ ε<br />

A <strong>TDR</strong> system<br />

r<br />

r<br />

A schematic plot <strong>of</strong> a <strong>TDR</strong> system<br />

Relative Voltage (V)<br />

1.25<br />

0.75<br />

0.25<br />

-0.25<br />

-0.75<br />

K<br />

a<br />

⎛<br />

= ⎜<br />

L<br />

= ⎜<br />

L<br />

=<br />

⎜<br />

⎝ L<br />

a<br />

p<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

V s/2<br />

2<br />

Apparent Length, L a<br />

-1.25<br />

0 1 2 3 4 5 6 7 8<br />

Scaled Distance (m)<br />

A <strong>TDR</strong> wave<strong>for</strong>m<br />

EC<br />

b<br />

1 ⎛ ⎞<br />

⎜<br />

V ⎞<br />

= ⎜<br />

V ⎞ s<br />

= ⎜<br />

V s<br />

= − 1 ⎟<br />

C ⎜ ⎟<br />

⎝V<br />

⎟<br />

⎝V<br />

⎟<br />

⎝V<br />

f ⎠<br />

V f<br />

30


Reflection at Interface<br />

Reflection coefficient<br />

ρ =<br />

Air, Ka=1<br />

Z<br />

Z<br />

2<br />

2<br />

−<br />

+<br />

Z<br />

Z<br />

1<br />

1<br />

=<br />

K<br />

K<br />

a,<br />

1<br />

a,<br />

1<br />

−<br />

+<br />

K<br />

K<br />

a,<br />

2<br />

a,<br />

2<br />

Saturated soil, Ka=20~40 depending on density<br />

Water, Ka=81<br />

Change <strong>of</strong> impedance will cause<br />

reflection <strong>of</strong> EM wave<br />

Air<br />

Water<br />

Sediment<br />

<strong>TDR</strong> sensor <strong>for</strong> <strong>Bridge</strong> scour<br />

monitoring


Signal Analysis<br />

Topp et al. (1982)<br />

Baker and Allmaras (1990)<br />

32


Outline<br />

• Introduction<br />

• Literature review: scour monitoring<br />

practice and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future<br />

work<br />

33


Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> Scour Monitoring<br />

• <strong>TDR</strong> Measurements <strong>of</strong> Simulated Scour in laboratory<br />

• <strong>Algorithm</strong>s <strong>for</strong> <strong>TDR</strong> Signal Interpretation<br />

Sediment<br />

Photo <strong>of</strong> fine sand<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

1.00<br />

Grain diameter (mm)<br />

0.10<br />

0.01<br />

Grain size distribution <strong>of</strong> fine sand<br />

% passing<br />

34


Experiment Setup and Procedure<br />

• Sand deposit gradually added while maintaining a<br />

constant water level<br />

• At each stage, a <strong>TDR</strong> signal is obtained


Data acquisition<br />

36


Voltage(V)<br />

Test results<br />

0.4<br />

0.0<br />

-0.4<br />

-0.8<br />

-1.2<br />

Increase <strong>of</strong> thickness <strong>of</strong> sediments<br />

thickness <strong>of</strong> sediments: 16cm<br />

thickness <strong>of</strong> sediments: 12cm<br />

thickness <strong>of</strong> sediments: 8cm<br />

thickness <strong>of</strong> sediments: 4cm<br />

thickness <strong>of</strong> sediments: 0cm<br />

0 2 4<br />

Length(m)<br />

6 8<br />

Increment Thickness (cm) K a,m EC b,m<br />

Sand<br />

added<br />

Sand Water mS/m g<br />

1 0 24 87.27 23.25 0<br />

2 4 20 74.43 20.982 3542<br />

3 8 16 62.92 17.953 3195<br />

4 12.5 11.5 50.01 14.82 3915<br />

5 16 8 44.85 13.593 3220<br />

6 20.5 3.5 31.62 10.394 3540<br />

7 21.7 2.3 32 9.578 990<br />

8 23.5 0.5 28.87 8.374 1731<br />

<strong>TDR</strong> wave<strong>for</strong>ms <strong>for</strong> different scour depth 37


Test results (cont.)<br />

K a,m<br />

K a,m<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

y = -2.4799x + 84.418<br />

R² = 0.9891<br />

0 5 10 15 20 25<br />

Thickness <strong>of</strong> Sediment Layer(cm)<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

0 5 10 15 20 25 30 35<br />

Thickness <strong>of</strong> sand layer (cm)<br />

EC b,m(mS/m)<br />

25<br />

20<br />

15<br />

10<br />

Saline water<br />

EC b,m<br />

Tap water<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

5<br />

0<br />

y = -0.6294x + 23.224<br />

R² = 0.997<br />

0 5 10 15 20 25<br />

Thickness <strong>of</strong> Sediment Layer(cm)<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

0 5 10 15 20 25 30 35<br />

Thickness <strong>of</strong> sand layer (cm)<br />

38


3.2 <strong>Algorithm</strong>s <strong>for</strong> <strong>TDR</strong> Signal Interpretation<br />

• Dielectric mixing <strong>for</strong>mula <strong>for</strong> scour estimation<br />

n<br />

α ( K ) = υ ( K )<br />

a,<br />

m<br />

∑<br />

i=<br />

1<br />

i<br />

a,<br />

i<br />

L 1 Ka,<br />

w + L2<br />

Ka,<br />

bs = L Ka,<br />

m<br />

K<br />

K<br />

a,<br />

m<br />

a,<br />

w<br />

=<br />

x<br />

L<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

K<br />

K<br />

a,<br />

bs<br />

a,<br />

w<br />

α<br />

⎞<br />

−1⎟<br />

+ 1<br />

⎟<br />

⎠<br />

(Birchak et al. 1974)<br />

Water L1<br />

Sediment L2<br />

Setting <strong>the</strong> thickness <strong>of</strong> sediment L2 equal to x<br />

Dielectric scour estimation equation<br />

Approximate linear relationship between √K a,m and<br />

sediment thickness<br />

Sediment thickness can be estimated from measured K a,m<br />

39


Mixing Formula <strong>for</strong> Dielectric Constant and<br />

its Application<br />

Measured and<br />

predicted √K a,m /√K a,w<br />

versus sediment<br />

thickness<br />

Estimated thickness <strong>of</strong> sand layer (cm)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Fine sand in tap water<br />

Fine sand in 250ppm solution<br />

Linear Fit <strong>of</strong> Estimated thickness <strong>of</strong> sand layer<br />

Equation<br />

Weight<br />

Residual Sum<br />

<strong>of</strong> Squares<br />

Adj. R-Square<br />

Estimated<br />

thickness <strong>of</strong><br />

sand layer<br />

y = a + b*x<br />

No Weighting<br />

2.3419<br />

0.99859<br />

0 5 10 15 20 25 30 35<br />

Measured thickness <strong>of</strong> sand layer (cm)<br />

Value Standard Error<br />

Intercept 0 --<br />

Slope 0.98828 0.01315<br />

Thickness <strong>of</strong> sand layer estimated by <strong>the</strong><br />

dielectric constant mixing <strong>for</strong>mula<br />

40


Mixing Formula <strong>for</strong> Electrical Conductivity and<br />

its Application<br />

EC<br />

b,<br />

bs<br />

L1<br />

+ EC<br />

L<br />

, m<br />

w<br />

w<br />

L2<br />

L<br />

EC<br />

Akie's<br />

Law : Formation<br />

ECb<br />

⇒<br />

EC<br />

= 1−<br />

=<br />

f L1<br />

( 1−<br />

n )<br />

L<br />

b,<br />

m<br />

Factor<br />

1<br />

F<br />

ECb<br />

=<br />

EC<br />

= n<br />

– Approximate linear relationship between ECb,m and<br />

sediment thickness at a given electrical conductivity <strong>of</strong><br />

water<br />

– Predict sediment thickness from measured electrical<br />

conductivity ECb,m , bs<br />

w<br />

f<br />

b φ=2a<br />

L1<br />

L2<br />

L<br />

R1<br />

R2<br />

R


Mixing Formula <strong>for</strong> Electrical Conductivity and<br />

its Application<br />

ECb,<br />

m<br />

ECb,<br />

w =<br />

f x L − x<br />

n +<br />

L L<br />

Conductivity <strong>of</strong> Water(ms/m)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Estimated thickness <strong>of</strong> sand layer (cm)<br />

35 Fine sand in tap water<br />

Fine sand in 250ppm solution<br />

30<br />

Linear Fit <strong>of</strong> Estimated thickness <strong>of</strong> sand layer<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

Equation y = a + b*x<br />

Weight No Weightin<br />

Residual Sum<br />

<strong>of</strong> Squares<br />

2.13288<br />

Adj. R-Square 0.99874<br />

Value Standard Err<br />

Estimated Intercept 0 --<br />

thickness <strong>of</strong><br />

sand layer<br />

Slope 1.0001<br />

6<br />

0.01255<br />

0 5 10 15 20 25 30 35<br />

Measured thickness <strong>of</strong> sand layer (cm)<br />

Estimated conductivity <strong>of</strong> water<br />

Measured conductivity <strong>of</strong> tap water<br />

0 5 10 15 20 25<br />

Thickness <strong>of</strong> Sand Layer (cm)


sqrt(Ka)/sqrt(kw)<br />

Empirical Equation Procedures <strong>for</strong> Application<br />

in <strong>Bridge</strong> Scour Monitoring<br />

• Dielectric constant<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Tap water<br />

250ppm<br />

500ppm<br />

750ppm<br />

Linear Fit <strong>of</strong> All Data<br />

Y = 1.00354 -0.43321 * X<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Sand thickness/Total thickness <strong>of</strong> water and sand<br />

√K a,m /√K a,w versus <strong>the</strong><br />

normalized thickness <strong>of</strong><br />

sediment layer<br />

ECb/ECb,w<br />

• Electrical conductivity<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Tap water<br />

250ppm<br />

500ppm<br />

750ppm<br />

Linear Fit <strong>of</strong> All Data<br />

Y = 1.02032 -0.66686 * X<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Sand thickness/Total thickness <strong>of</strong> water and sand<br />

EC b,m/EC b,w versus <strong>the</strong><br />

normalized thickness <strong>of</strong><br />

sediment layer


Scour Prediction Based on Design Equations<br />

sqrt(Ka)/sqrt(kw)<br />

Step 1. Estimate scour depth;<br />

Step 2. Estimate electrical conductivity <strong>of</strong> water<br />

Step 3. Estimate density <strong>of</strong> sediment<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

Measured Ka<br />

Step a)<br />

Y = 1 -0.43 * X<br />

Sand thickness ratio<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

sand thickness/Length <strong>of</strong> probe below water surface<br />

x r<br />

ECb/ECb,w<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

Conductivity <strong>of</strong> water<br />

Step b)<br />

Y = 1 -0.67 * X<br />

Sand thickness ratio<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Sand thickness/Final sand thickness<br />

x r


River condition assessment<br />

• Electrical conductivity <strong>of</strong> water<br />

• Sediment in<strong>for</strong>mation: dry density, porosity<br />

K<br />

ECb,<br />

m<br />

ECb,<br />

w =<br />

f x L − x<br />

n +<br />

L L<br />

a,<br />

bs<br />

⎛ L L − x ⎞<br />

= ⎜ Ka<br />

, m − Ka,<br />

w ⎟<br />

⎝ x x ⎠<br />

2<br />

(1- θ)G s<br />

θ ρ d<br />

−6<br />

3<br />

−4<br />

2<br />

−2<br />

−2<br />

θ = 4.<br />

3×<br />

10 K a − 5.<br />

5×<br />

10 K a + 2.<br />

92×<br />

10 K a − 5.<br />

3×<br />

10 Topp Eq.


Results by Using Design Equation<br />

• Estimated sediment thickness<br />

Measured sand thickness/Total<br />

thickness <strong>of</strong> water and sand<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

1:1<br />

+5%<br />

-5%<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

Measured sand thickness/Total thickness <strong>of</strong> water and<br />

sand


Results by Using Design Equation<br />

• Estimated electrical conductivity <strong>of</strong> water<br />

Estimated water conductivity(ms/m)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1:1<br />

+5%<br />

-%5<br />

0 20 40 60 80 100 120 140<br />

<strong>TDR</strong> measured water conductivity(ms/m)


Results by Using Design Equation<br />

• Estimated density <strong>of</strong> sediments<br />

<strong>TDR</strong> Estimated Sediments Dry density(g/cm 3 )<br />

1.8<br />

1.7<br />

1.6<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

Predicted_Tap water<br />

Predicted_750ppm<br />

Predicted_500ppm<br />

Predicted_250ppm<br />

1:1<br />

+5%<br />

-5%<br />

1.4 1.5 1.6 1.7<br />

Actual Dry density(g/cm 3 )


Scour Estimation Based on Detecting <strong>the</strong><br />

Reflection at Water/Sediment Interface<br />

Reflection detection methods<br />

Relative Votage<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1<br />

Identified location <strong>of</strong> reflections<br />

by <strong>the</strong> automatic signal<br />

analyses<br />

(1)Probe beginning<br />

(2)Water/sediment interface<br />

(3)End <strong>of</strong> probe<br />

-1.2<br />

0 2 4<br />

Length(m)<br />

6 8<br />

1<br />

2<br />

3<br />

49


<strong>Algorithm</strong> <strong>of</strong> signal analysis<br />

Input <strong>the</strong> original <strong>TDR</strong> signal to <strong>the</strong> MATLAB work<br />

space; name <strong>the</strong> signal with “y”.<br />

Use 7 points averaging method to smooth <strong>the</strong> original wave<strong>for</strong>m<br />

Get <strong>the</strong> data points behind <strong>the</strong> peak point in <strong>the</strong> smoo<strong>the</strong>d curve, and calculate <strong>the</strong><br />

slop <strong>of</strong> this selected curve section<br />

Use Max and Min function to find <strong>the</strong> maximum and minimum slop.<br />

Maximum slope point is <strong>the</strong> second reflection point<br />

Polyfit <strong>the</strong> minimum slop line using 7 points centered <strong>the</strong> minimum<br />

<strong>the</strong> slope point, find <strong>the</strong> intersection with line y=ymax , this is <strong>the</strong><br />

first reflection point<br />

Find <strong>the</strong> maximum slope point between <strong>the</strong> maximum and minimum slope point.<br />

Find <strong>the</strong> first point be<strong>for</strong>e <strong>the</strong> maximum slope point that has negative slope, use<br />

Max function find <strong>the</strong> maximum slope point between this point and minimum slope<br />

point. This is <strong>the</strong> second reflection point<br />

Determination <strong>of</strong> apparent length: = (index <strong>of</strong> <strong>the</strong> second reflection point – index <strong>of</strong> <strong>the</strong><br />

second reflection point)*8/2047; Thus we can get <strong>the</strong> physical length <strong>of</strong> water layer<br />

thickness.<br />

50


Sample results<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

First derivative (only <strong>the</strong> section after <strong>the</strong> first peak point)<br />

-0.03<br />

0 500 1000 1500 2000 2500<br />

Index <strong>of</strong> data points<br />

Voltage(V)<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

Reflection points on <strong>the</strong> smoo<strong>the</strong>d wave<strong>for</strong>m<br />

-1.5<br />

0 500 1000 1500 2000 2500<br />

Index <strong>of</strong> data points<br />

30<br />

Measured scour based on<br />

reflection detection<br />

<strong>TDR</strong> measured scour depth (cm)<br />

35 fine sand in tap water<br />

fine sand in 250ppm saline water<br />

1:1 line<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Reflection detection<br />

0 5 10 15 20 25 30 35<br />

Measured scour depth (cm)<br />

51


Outline<br />

• Introduction<br />

• Literature review: scour monitoring<br />

practice and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future<br />

work<br />

52


Monitoring <strong>of</strong> Simulated Scour in Various<br />

Soil and Water Conditions<br />

• Testing materials<br />

53


Test Results<br />

Fine Sand<br />

Normalized dielectric constant<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation y = a + b*x<br />

Adj. R-Squ 0.99597<br />

Value Standard Error<br />

Concatenat Intercept 1.00376 0.00319<br />

Concatenat Slope -0.434 0.00531<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

Desing equation <strong>for</strong> fine sand<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized electrical conductivity<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation y = a + b*<br />

Adj. R-Sq 0.99007<br />

Value Standard<br />

Concaten Intercept 1.02032 0.0078<br />

Concaten Slope -0.66686 0.01262<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

Design equation <strong>for</strong> fine sand<br />

Normalized <strong>TDR</strong> measurements <strong>for</strong> fine sand<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

54


Normalized dielectric constant<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Coarse sand<br />

Equation<br />

Adj. R-Square<br />

Concatenate<br />

y = a + b*x<br />

0.99687<br />

Value Standard Error<br />

Intercept 0.99824 0.00414<br />

Slope -0.42083 0.0068<br />

Coarse sand in 500ppm NaCl solution<br />

Washed coarse sand in 500ppm NaCl solution<br />

Linear fit<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized electrical conductivity<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation<br />

Adj. R-Square<br />

Concatenate<br />

y = a + b*x<br />

0.95481<br />

Normalized <strong>TDR</strong> measurements <strong>for</strong> coarse sand<br />

Value Standard Error<br />

Intercept 1.02652 0.02283<br />

Slope -0.59837 0.03751<br />

Coarse sand in 500ppm NaCl solution<br />

Washed coarse sand in 500ppm NaCl solution<br />

Linear fit<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

55


Normalized dielectric constant<br />

Gravel<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation y = a + b*x<br />

Adj. R-Square 0.99215<br />

Value Standard Error<br />

Concatenate Intercept 0.99574 0.00425<br />

Concatenate Slope -0.31801 0.00686<br />

Gravel in tap water<br />

Gravel in 500ppm NaCl solution<br />

Washed gravel in 500ppm NaCl solution<br />

Linear Fit<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized electrical conductivity<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation<br />

Adj. R-Square<br />

Concatenate<br />

y = a + b*x<br />

Normalized <strong>TDR</strong> measurements <strong>for</strong> gravel<br />

0.96387<br />

Value Standard Error<br />

Intercept 1.00171 0.01593<br />

Slope -0.54842 0.02572<br />

Gravel in tap water<br />

Gravel in 500ppm NaCl solution<br />

Washed gravel in 500ppm NaCl solution<br />

Linear Fit <strong>of</strong> Concatenate<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

56


Normalized dielectric constant<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Coarse Sand and Gravel Mixture<br />

Equation<br />

Adj. R-Square<br />

Normalized dielectric<br />

constant<br />

y = a + b*x<br />

0.99605<br />

Value Standard Error<br />

Intercept 1.00613 0.00911<br />

Slope -0.48865 0.01375<br />

Coarse sand and gravel mixture in 500ppm NaCl solution<br />

Linear fit<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized electrical conductivity<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

Equation y = a + b*x<br />

Adj. R-Square 0.99181<br />

Value Standard Error<br />

Normalized Intercept 1.02449 0.02064<br />

electrical<br />

conductivity<br />

Slope -0.76812 0.03118<br />

Coarse sand and gravel mixture in 500ppm NaCl solution<br />

Linear fit<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized <strong>TDR</strong> measurements <strong>for</strong> coarse sand and gravel mix<br />

57


Scour Estimation Equation <strong>for</strong> Different Soils<br />

Applying mixing <strong>for</strong>mula to saturated sediment<br />

Solve <strong>for</strong> porosity n<br />

Average<br />

porosity<br />

a<br />

w<br />

( − n)<br />

Ka<br />

, s Ka<br />

bs<br />

n K , + 1 = ,<br />

n<br />

=<br />

Slope <strong>of</strong><br />

equation (3)<br />

K<br />

K<br />

a,<br />

bs<br />

a,<br />

w<br />

−<br />

−<br />

Theoretically Predicted and Empirical Fitted Slope <strong>of</strong> Design Equations<br />

K<br />

K<br />

fitted slope <strong>of</strong><br />

equation (3)<br />

a,<br />

s<br />

a,<br />

s<br />

Slope <strong>of</strong><br />

equation (4)<br />

fitted slope <strong>of</strong><br />

equation (4)<br />

Fine sand 0.417 -0.424 -0.434 -0.670 -0.667<br />

Coarse sand 0.422 -0.421 -0.421 -0.666 -0.598<br />

Gravel 0.569 -0.314 -0.318 -0.511 -0.548<br />

mixture 0.356 -0.468 -0.489 -0.730 -0.768<br />

K<br />

K<br />

a,<br />

m<br />

a,<br />

w<br />

b,<br />

w<br />

=<br />

x ⎛<br />

⎜<br />

L ⎜<br />

⎝<br />

ECb, m f<br />

EC<br />

=<br />

K<br />

K<br />

a,<br />

bs<br />

a,<br />

w<br />

⎞<br />

−1⎟<br />

+ 1<br />

⎟<br />

⎠<br />

x ( n −1)<br />

+ 1<br />

L<br />

58


<strong>TDR</strong> measurements <strong>of</strong> scour <strong>for</strong> different<br />

sediments (based on dielectric constant)<br />

Normalized <strong>TDR</strong> measured thickness <strong>of</strong> sediment layer<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

Coarse sand in 500ppm NaCl solution<br />

Gravel in tap water<br />

Gravel in 500ppm NaCl solution<br />

+5% error<br />

Washed coarse sand in 500ppm NaCl solution<br />

Washed gravel in 500ppm NaCl solution<br />

Coarse sand and gravel mixture in 500ppm NaCl solution<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

-5% error<br />

Normalized physically measured thickness <strong>of</strong> sediment layer<br />

<strong>TDR</strong> measurements (dielectric constant) versus physical measurements (cm<br />

ruler) <strong>of</strong> thickness <strong>of</strong> sediment layer <strong>for</strong> all sediments.<br />

59


<strong>TDR</strong> measurements <strong>of</strong> scour <strong>for</strong> different<br />

sediments (based on electric conductivity)<br />

Normalized <strong>TDR</strong> measured thickness <strong>of</strong> sediment layer<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

Fine sand in tap water<br />

Fine sand in 250ppm NaCl solution<br />

Fine sand in 500ppm NaCl solution<br />

Fine sand in 750ppm NaCl solution<br />

Coarse sand in 500ppm NaCl solution<br />

Gravel in tap water<br />

Gravel in 500ppm NaCl solution<br />

Washed coarse sand in 500ppm NaCl solution +5% error<br />

Washed gravel in 500ppm NaCl solution<br />

Coarse sand and gravel mixture in 500ppm NaCl solution<br />

-5% error<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized physically measured thickness <strong>of</strong> sediment layer<br />

<strong>TDR</strong> measurements (electric conductivity) versus physical<br />

measurements (cm ruler) <strong>of</strong> thickness <strong>of</strong> sediment layer <strong>for</strong> all<br />

sediments.<br />

60


Scour Monitoring in Water <strong>of</strong> High<br />

Electrical Conductivity<br />

Wave<strong>for</strong>m be<strong>for</strong>e and after using insulated probe<br />

(Drnevich et al. 2003)<br />

61


Insulated <strong>TDR</strong> probe<br />

2000ppm NaCl solution<br />

Wave<strong>for</strong>ms by insulated probe<br />

Voltage (V)<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

Thickness <strong>of</strong> sediment layer 0cm<br />

Thickness <strong>of</strong> sediment layer 4.8cm<br />

Thickness <strong>of</strong> sediment layer 10.6cm<br />

Thickness <strong>of</strong> sediment layer 15.1cm<br />

Thickness <strong>of</strong> sediment layer 20.8cm<br />

Thickness <strong>of</strong> sediment layer 25.6cm<br />

Thickness <strong>of</strong> sediment layer 30.5cm<br />

-1.2<br />

0 1 2 3 4 5 6 7 8 9<br />

Scaled distance (m)<br />

62


Dielectric constant by insulated probe<br />

Normalized dielectric constant<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

0.80<br />

0.75<br />

0.70<br />

Equation y = a + b*x<br />

Adj. R-Square 0.97485<br />

Normalized dielectric<br />

constant<br />

Normalized dielectric<br />

constant<br />

Value Standard Error<br />

Intercept 0.9862 0.01008<br />

Slope -0.25473 0.01667<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

Normalized thickness <strong>of</strong> sediment layer<br />

Normalized dielectric constant versus<br />

normalized thickness <strong>of</strong> sediment layer.<br />

K = wK + 1−<br />

n<br />

c<br />

n<br />

coating<br />

( ) n<br />

w K<br />

a<br />

Predicted Ka<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

Predicted value using Equation 4.3<br />

1:1<br />

15 20 25 30 35 40<br />

Ka measured by coated <strong>TDR</strong> probe<br />

Predicted dielectric constant versus<br />

that measured by coated probe.<br />

Dielectric constant (coated -> uncoated)<br />

(Ferré et al. 1996)<br />

63


Scour Monitoring in Turbulent Flow<br />

Entrapped Air<br />

Scour measurement in water with entrapped air<br />

Voltage (V)<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

Signal with low air<br />

bubble concentration<br />

Signal with high air<br />

bubble concentration<br />

-1 0 1 2 3 4 5 6 7 8 9<br />

Scaled distance(m)<br />

Signal with no air bubble<br />

Effect <strong>of</strong> air bubble on <strong>TDR</strong> wave<strong>for</strong>m<br />

64


Effect <strong>of</strong> air bubbles on dielectric<br />

constant<br />

Dielectric constant<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

No air<br />

Low air bubble concentraion<br />

High air bubble concentraion<br />

0 5 10 15 20 25 30<br />

Thickness <strong>of</strong> sand layer (cm)<br />

65


Effect <strong>of</strong> suspended sediments<br />

Scour measurement in water<br />

with suspended sediments<br />

Dielectric constant<br />

versus time<br />

66


Scour monitoring in water with varying<br />

Water Level<br />

Part <strong>of</strong> sensor in air<br />

Air water interface End <strong>of</strong> probe<br />

Sensor head<br />

Screen shot <strong>of</strong> wave<strong>for</strong>m analysis program<br />

67


“Dry Scour”<br />

Dry scour depth by <strong>TDR</strong> (cm)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Dry scour depth by <strong>TDR</strong><br />

Linear Fit <strong>of</strong> Dry scour depth by <strong>TDR</strong><br />

Equation<br />

Weight<br />

Residual Sum<br />

<strong>of</strong> Squares<br />

Adj. R-Square<br />

y = a + b*x<br />

No Weighting<br />

24.13911<br />

Relative voltage(V)<br />

0 5 10 15 20 25 30 35<br />

Dry scour depth by ruler (cm)<br />

0.98586<br />

1.2<br />

0.6<br />

0.0<br />

-0.6<br />

-1.2<br />

Value Standard Error<br />

Dry scour depth Intercept 0 --<br />

Dry scour depth Slope 1.08463 0.05801<br />

Pure air<br />

Increase thickness <strong>of</strong> wet sand layer<br />

Air/wet sand interface<br />

0 3 6<br />

Scaled distance(m)<br />

Zoom in View<br />

Pure wet sand<br />

Dry scour wave<strong>for</strong>ms<br />

Dry scour depth by <strong>TDR</strong><br />

68


A Comparison <strong>of</strong> <strong>TDR</strong> and Ultrasound<br />

Method<br />

• Background <strong>of</strong> Ultrasonic Method<br />

Ultrasonic<br />

transducer<br />

ater<br />

ediment<br />

Ultrasound<br />

pulse generator<br />

Oscilloscope<br />

Schematic <strong>of</strong> a typical ultrasonic<br />

testing system<br />

Votage(mv)<br />

400<br />

Pulse signal<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

-800<br />

1st reflection at <strong>the</strong> water and sediment interface<br />

Round trip time from water surface to<br />

water and sediment interface<br />

-0.5 0 0.5 1 1.5 2 2.5<br />

x 10 6<br />

-1000<br />

Time(ns)<br />

A typical ultrasonic signal<br />

69


Test setup<br />

70


Voltage(V)<br />

Results<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

Thickness <strong>of</strong> water layer: 30.5cm<br />

Thickness <strong>of</strong> water layer: 23cm<br />

Thickness <strong>of</strong> water layer:15.9cm<br />

Thickness <strong>of</strong> water layer: 9cm<br />

Thickness <strong>of</strong> water layer: 2.5cm<br />

Thickness <strong>of</strong> water layer: 0cm<br />

0 2 4 6 8<br />

Length(m)<br />

Decreas in thickness<br />

<strong>of</strong> water layer<br />

a) Variations <strong>of</strong> <strong>TDR</strong> signals with scour<br />

depth; b) Variations <strong>of</strong> ultrasonic signals<br />

with scour depth.<br />

Voltage(mv)<br />

Voltage(mv)<br />

Voltage(mv)<br />

Voltage(mv)<br />

1000<br />

0<br />

thickness <strong>of</strong> water layer: 30.5cm<br />

-1 0 1 2 3 4 5 6<br />

x 10 5<br />

-1000<br />

Time(ns)<br />

thickness <strong>of</strong> water layer: 23cm<br />

1000<br />

0<br />

-1 0 1 2 3 4 5 6<br />

x 10 5<br />

-1000<br />

Time(ns)<br />

thickness <strong>of</strong> water layer: 15.9cm<br />

1000<br />

0<br />

-1 0 1 2 3 4 5 6<br />

x 10 5<br />

-1000<br />

Time(ns)<br />

thickness <strong>of</strong> water layer: 9cm<br />

1000<br />

0<br />

-1 0 1 2 3 4 5 6<br />

x 10 5<br />

-1000<br />

Time(ns)<br />

71


Measurements <strong>of</strong> scour<br />

Sensor measured water thickness (Normalized)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

<strong>TDR</strong> method 1<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

1:1<br />

Ultrasonic method<br />

<strong>TDR</strong> method 2<br />

Ruler measured water thickness(Normalized)<br />

Prediction <strong>of</strong> scour depth using <strong>TDR</strong> and<br />

Ultrasonic method (<strong>TDR</strong> method 1; and<br />

<strong>TDR</strong> method 2)<br />

<strong>TDR</strong> method 1<br />

K<br />

K<br />

a,<br />

m<br />

a,<br />

w<br />

=<br />

x ⎛<br />

⎜<br />

L ⎜<br />

⎝<br />

K<br />

K<br />

a,<br />

bs<br />

a,<br />

w<br />

⎞<br />

−1⎟<br />

+ 1<br />

⎟<br />

⎠<br />

<strong>TDR</strong> method 2:<br />

Design equation<br />

72


ECb,w(ms/m)<br />

Electric conductivity <strong>of</strong> water and dry<br />

density <strong>of</strong> sediment by <strong>TDR</strong><br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Measured by <strong>TDR</strong><br />

Measured by Ec Meter<br />

0<br />

0 5 10 15 20 25 30 35<br />

Sediment thickness(cm)<br />

Prediction <strong>of</strong> electrical conductivity<br />

<strong>of</strong> water versus depth<br />

Dry density(g/cm^3)<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Predicted<br />

Measured<br />

0 5 10 15 20 25 30 35<br />

Sediment thickness(cm)<br />

Sediment densities predicted by <strong>TDR</strong><br />

versus depth<br />

73


Comparison <strong>of</strong> <strong>TDR</strong> and Ultrasonic Method<br />

• Both <strong>TDR</strong> and ultrasonic methods can accurately measure scour depth.<br />

• <strong>TDR</strong> system:<br />

– Inexpensive, automatic<br />

– More in<strong>for</strong>mation<br />

• sediment status (density) and water conditions (electrical conductivity)<br />

– Accuracy can be affected by electromagnetic interference and signal<br />

attenuation in <strong>the</strong> cable length.<br />

– Local measurement. Multiplexing is needed to map <strong>the</strong> scour hole shape.<br />

• Field <strong>TDR</strong> probes need to be rugged and inexpensive<br />

• Deployment <strong>of</strong> <strong>the</strong> <strong>TDR</strong> probes also needs to be well planned.<br />

• Ultrasound method:<br />

– Post-event scour measurement.<br />

– Coupling with water requires transducer maintained below <strong>the</strong> water level.<br />

– Also a local measurement.<br />

• ultrasonic transducer can be moved to determine <strong>the</strong> shape <strong>of</strong> river bed after<br />

scour event.<br />

– Interpretation <strong>of</strong> ultrasonic signal can be challenging especially <strong>for</strong> complex<br />

river bed territories.<br />

• Background noise<br />

• Expertise needed <strong>for</strong> a sound interpretation <strong>of</strong> measurement results.


Outline<br />

• Introduction<br />

• Literature review: scour monitoring<br />

practice and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry<br />

<strong>for</strong> scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future<br />

work<br />

75


5.1 Introduction<br />

• <strong>TDR</strong> Measurements in Highly Conductive Materials<br />

remote diode shortening<br />

coated <strong>TDR</strong> probes<br />

• Sampling Area <strong>of</strong> Coated <strong>TDR</strong> Probe and <strong>the</strong> Effective<br />

Measured Dielectric Constant<br />

The sample volume is <strong>the</strong> region <strong>of</strong> <strong>the</strong> porous medium that contributes to <strong>the</strong><br />

total probe response: changes in <strong>the</strong> properties <strong>of</strong> <strong>the</strong> porous medium outside<br />

this volume do not have significant influence on <strong>the</strong> response <strong>of</strong> <strong>the</strong> instrument.<br />

Ka e ∫∫ Ka<br />

Ω<br />

( x,<br />

y)<br />

w(<br />

x,<br />

y)<br />

, = dA<br />

( ) ( ) ( ) ⎟ ⎛<br />

⎞<br />

2<br />

2<br />

w x,<br />

y = | E x,<br />

y | / ⎜<br />

∫∫|<br />

Eo<br />

x,<br />

y | dA<br />

⎝ Ω<br />

⎠<br />

f<br />

∫∫<br />

Ω<br />

∑<br />

100×<br />

wi<br />

Ai<br />

wh =<br />

w dA<br />

i<br />

Ferré et al. (1998)<br />

76


5.2 Use <strong>of</strong> FEMLAB <strong>for</strong> <strong>TDR</strong> Probe Design<br />

a,<br />

e<br />

K a, 1 (5)<br />

K a, 2 (10)<br />

I<br />

K = +<br />

0. 5K<br />

a,<br />

1 0.<br />

5K<br />

a,<br />

2<br />

K a, 1 (5)<br />

II<br />

K<br />

−1<br />

a,<br />

e<br />

K a, 2 (10)<br />

−1<br />

−1<br />

= 0.<br />

5K<br />

a,<br />

1 + 0.<br />

5K<br />

a,<br />

2<br />

77


FEMLAB model <strong>of</strong> Case I<br />

B.C.s<br />

78


Electric field, Case I<br />

79


Electric energy density, Case I<br />

Electric energy density (contour and color)<br />

and electric field (arrow)<br />

80


• Effective measured dielectric constant<br />

• Case II<br />

K<br />

W<br />

, =<br />

e,<br />

n<br />

a e<br />

We,<br />

o<br />

W e, n <strong>for</strong> case I is 2.39E-10 (Joule/m)<br />

W e, o is 3.18E-11 (Joule/m)<br />

K a, e=7.51<br />

Analytical solution 7.5<br />

Case II: solved electric potential (color and<br />

contour line) and electric field (arrow).<br />

81


Electric energy density, Case II<br />

Electric energy density (contour and color) and electric field (arrow)<br />

The effective measured dielectric constant:6.95<br />

Analytical solution: 6.67<br />

82


Sampling area<br />

∫∫<br />

Ω<br />

∑<br />

100 × We<br />

A i i<br />

f = wh<br />

W dA<br />

ei<br />

Sampling area <strong>of</strong> Case I<br />

at 90% energy level<br />

Sampling area <strong>of</strong> Case II at<br />

90% energy level<br />

83


5.3 Coated <strong>TDR</strong> CS605 Moisture Probe<br />

FEMLAB model<br />

Electric-energy density <strong>for</strong> saline water<br />

and sampling area (90% total energy)<br />

Electric-energy density <strong>for</strong> saline water and<br />

sampling area (90% total energy, uncoated probe)<br />

84


5.3 Coated <strong>TDR</strong> CS605 Moisture Probe<br />

Saturated sediment<br />

Electric-energy density <strong>for</strong> saturated sand and<br />

sampling area (90% total energy, coated probe)<br />

Calculated effective measured<br />

dielectric constant by <strong>the</strong><br />

coated <strong>TDR</strong> probe<br />

Effective measured dielectric constant<br />

40<br />

35<br />

30<br />

25<br />

20<br />

Electric-energy density <strong>for</strong> saturated sand and<br />

sampling area (90% total energy, uncoated probe)<br />

Effective measured dielectric constant<br />

Linear Fit <strong>of</strong> Effective measured dielectric constant<br />

Equation y = a + b*x<br />

Weight<br />

No Weighting<br />

Residual Sum <strong>of</strong><br />

Squares<br />

8.10454<br />

Adj. R-Square<br />

0.99831<br />

Value Standard Error<br />

Effective measure Intercept 0 --<br />

Effective<br />

measured<br />

dielectric constant<br />

Slope 0.99026 0.01538<br />

20 25 30 35 40<br />

<strong>TDR</strong> measured dielectric constant<br />

85


5.4 A New Field <strong>TDR</strong> Scour Sensor<br />

Photo <strong>of</strong> a <strong>TDR</strong> strip sensor<br />

Photo <strong>of</strong> <strong>the</strong> prototype strip bridge<br />

scour sensor<br />

86


Lab Evaluation <strong>of</strong> Strip Scour Sensor<br />

Scour sensor <strong>for</strong> field application<br />

Voltage (V)<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

-0.2<br />

-0.3<br />

-0.4<br />

Water<br />

thickness <strong>of</strong> sand: 36cm<br />

thickness <strong>of</strong> sand: 44cm<br />

thickness <strong>of</strong> sand: 55cm<br />

thickness <strong>of</strong> sand: 74cm<br />

thickness <strong>of</strong> sand: 86cm<br />

thickness <strong>of</strong> sand: 99cm<br />

0 500 1000 1500 2000<br />

Distance (points)<br />

Wave<strong>for</strong>ms <strong>for</strong> simulated scour<br />

87


Results<br />

Reflection<br />

at<br />

air/water<br />

interface<br />

( point<br />

index)<br />

Reflection<br />

at<br />

water/sand<br />

interface<br />

( point<br />

index)<br />

Reflection<br />

at <strong>the</strong> end <strong>of</strong><br />

probe<br />

( point<br />

index)<br />

water<br />

depth<br />

(cm)<br />

sand<br />

depth<br />

(cm)<br />

Ka, w Ka, s Ka, mix<br />

972 1305 1450 63.1 35.9 26.59 15.6 22.3<br />

972 1270 1435 54.8 44.2 28.23 13.3 20.9<br />

976 1201 1408 43.2 55.8 25.90 13.1 18.2<br />

972 1105 1381 25 74 27.02 13.3 16.3<br />

976 1046 1368 12.9 86.1 28.11 13.4 15.0<br />

971 N.A. 1343 N.A. 99.0 N.A. 13.5 13.5<br />

Normalized measured<br />

dielectric constant<br />

Normalized K a, mix<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

y = -0.5023x + 0.9887<br />

R² = 0.9787<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Normalized sand thickness<br />

88


FEMLAB Analysis <strong>of</strong> <strong>the</strong> Per<strong>for</strong>mance <strong>of</strong><br />

<strong>the</strong> Strip Scour Sensor<br />

89


A zoom in view <strong>of</strong> <strong>the</strong> strip scour sensor<br />

Dielectric constant:<br />

Tape: 3.0<br />

Teflon: 2.1<br />

Air: 1 fiber glass U-channel: 6<br />

90


Electric potential<br />

Sensor in water<br />

91


Sampling area, tap water<br />

Field <strong>of</strong> energy-density and sampling area<br />

(filled with tap water)<br />

92


Sampling area, saturate sand<br />

Field <strong>of</strong> energy-density and sampling area<br />

(filled with saturated sand).<br />

93


• Effective measured dielectric constant<br />

– Tap water: 26.2 (numerical simulation), 26.6<br />

<strong>TDR</strong> measurement<br />

– Saturated sand: 13.3 (numerical simulation),<br />

13.3 <strong>TDR</strong> measurement<br />

• Calibration equation<br />

K =<br />

−<br />

−<br />

a,<br />

r<br />

2<br />

59. 50 + 7.<br />

93K<br />

a,<br />

m 0.<br />

12K<br />

a,<br />

m<br />

Real dielectric constant<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

Real dielectric constant<br />

Polynomial Fit <strong>of</strong> Real dielectric constant<br />

12 14 16 18 20 22<br />

Measured dielectric constant<br />

Model<br />

Polynomial<br />

Equation<br />

y = Intercept + B1*x^1 + B2*x^2<br />

Weight<br />

No Weighting<br />

Residual Sum <strong>of</strong><br />

Squares<br />

4.13799<br />

Adj. R-Square<br />

0.99099<br />

Value Standard Error<br />

Intercept -59.50104 20.48274<br />

Real dielectric<br />

constant<br />

B1<br />

B2<br />

7.92859<br />

-0.12049<br />

2.33675<br />

0.06493<br />

94


Scour measurement<br />

<strong>TDR</strong> measured scour depth (cm)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

<strong>TDR</strong> measured scour depth<br />

Linear Fit <strong>of</strong> Estimated scour depth<br />

Equation<br />

Weight<br />

Residual Sum<br />

<strong>of</strong> Squares<br />

Adj. R-Square<br />

y = a + b*x<br />

No Weighting<br />

1.69151E-27<br />

-10<br />

-10 0 10 20 30 40 50 60 70<br />

Physically measured scour depth (cm)<br />

1<br />

Value Standard Error<br />

<strong>TDR</strong> measured Intercept -0.85292 1.49463E-14<br />

scour depth Slope 1.00054 3.72837E-16<br />

<strong>TDR</strong> measured scour versus<br />

physically measured scour<br />

95


Outline<br />

• Introduction<br />

• Literature review: scour monitoring practice<br />

and technologies<br />

• Validation <strong>of</strong> Time Domain Reflectometry <strong>for</strong><br />

scour monitoring<br />

• <strong>TDR</strong> scour measurements in various<br />

environments<br />

• Development <strong>of</strong> a field <strong>TDR</strong> scour sensor<br />

• Summary and conclusions, and future work<br />

96


Laboratory Observations and <strong>Algorithm</strong><br />

<strong>of</strong> Signal Interpretation<br />

• Normalized measured dielectric constant is linearly<br />

related to normalized sediment thickness<br />

• Normalized measured electric conductivity is linearly<br />

related to normalized sediment thickness<br />

• Salinity has minor effect on normalized measured<br />

dielectric constant.<br />

• Scour measurements based on dielectric constant is<br />

more stable.<br />

• Dielectric and electric mixing <strong>for</strong>mulas can be used to<br />

explain <strong>the</strong> observed linear relationship and to estimate<br />

scour depth from measured Ka and EC<br />

• Scour depth can also be estimated by indentifying <strong>the</strong><br />

reflection at water/sediment interface<br />

97


Laboratory Observations and <strong>Algorithm</strong><br />

<strong>of</strong> Signal Interpretation (cont.)<br />

• Empirical equation can be used to estimate scour depth<br />

• Dry density and electric conductivity <strong>of</strong> water can be<br />

determined from <strong>TDR</strong> signals.<br />

• Analyses algorithms can be implemented <strong>for</strong> automation.<br />

98


Evaluation <strong>of</strong> <strong>TDR</strong> under Various<br />

Conditions and Signal Interpretation<br />

• <strong>Algorithm</strong> works <strong>for</strong> different sediments.<br />

Dielectric scour estimation is more stable.<br />

• Insulated probe <strong>for</strong> highly conductive water<br />

• <strong>TDR</strong> works in air entrapped water, turbid water<br />

• Works in water with changing surface level<br />

Better submerged in water<br />

• Works in “dry scour”, but special interpretation<br />

algorithm is needed.<br />

• Scour measurements are real-time and<br />

accurate.<br />

99


Numerical Analysis <strong>of</strong> <strong>the</strong> Per<strong>for</strong>mance <strong>of</strong> <strong>the</strong><br />

Coated <strong>TDR</strong> Probe<br />

• Electric field <strong>of</strong> <strong>TDR</strong> probes can be analyzed by FEMLAB.<br />

• Effective measured dielectric constant by coated probes and<br />

its sampling area can be determined from FEMLAB results.<br />

• Coated probe can reduce sampling area and energy loss.<br />

Development <strong>of</strong> a New Field <strong>TDR</strong> Scour Sensor<br />

• The field scour sensor can accurately measure scour depth.<br />

• The presented calibration can be used to determine <strong>the</strong> real<br />

dielectric constant measured by <strong>the</strong> sensor.<br />

• The sampling area <strong>of</strong> <strong>the</strong> sensor is smaller <strong>the</strong> drilled hole.<br />

• Field calibration can completed at first installation by using<br />

sensor <strong>of</strong> different length.<br />

100


Future work<br />

•Continue to develop<br />

<strong>the</strong> field scour sensor<br />

• Calibrate existing<br />

scour prediction<br />

equations<br />

•Develop numerical<br />

simulation <strong>of</strong> bridge<br />

scour<br />

<strong>Bridge</strong> site<br />

Installation under Planning <strong>for</strong> <strong>Ohio</strong> State Route 122<br />

<strong>Bridge</strong> over Great Miami River<br />

101


Installation Planning<br />

• Site visit conducted<br />

• Permission obtained<br />

• Frequent communications with project partner GRL/PDI<br />

• Office visit and planning meeting between<br />

subcontractors three times<br />

• There was delay due to wea<strong>the</strong>r conditions and change<br />

<strong>of</strong> personnel<br />

• Field installation to be accomplished by Summer or Fall,<br />

2009<br />

• Extension <strong>of</strong> project deadline


Acknowledgement<br />

• <strong>Ohio</strong> Department <strong>of</strong> Transportation, Office <strong>of</strong> Research<br />

and Development<br />

Bill Krouse and Brandon Collett<br />

• GRL/PDI<br />

Frank Rausche, Garland Likins<br />

• Case School <strong>of</strong> Engineering<br />

• Nancy A. Longo<br />

• Jim Berilla<br />

103


Thanks!<br />

104


Connection to ano<strong>the</strong>r<br />

scour monitoring location<br />

(might or might not be <strong>for</strong><br />

<strong>the</strong> same pier)<br />

Schema <strong>of</strong> <strong>TDR</strong> Scour monitoring<br />

system (not to scale)<br />

Rugged housing <strong>for</strong> <strong>TDR</strong><br />

monitoring electronics<br />

(multiple scour probes can be<br />

monitored simultaneously)<br />

Connection to ano<strong>the</strong>r<br />

scour monitoring<br />

location<br />

Coaxial cable<br />

(hold to pier with<br />

fixtures to prevent<br />

motion)<br />

Scour probe made <strong>of</strong><br />

steel pipes (by<br />

driving or predrilled<br />

holes


Connection pipe with<br />

internal two way thread to<br />

connect steel pipe and<br />

conversion head<br />

Steel pipes (insulation<br />

coating might apply;<br />

length varies)<br />

Fig.7 a) (Left) Components <strong>of</strong> <strong>TDR</strong> scour probe; b) (Right) Schematic <strong>of</strong> <strong>TDR</strong> Scour Probe (Not to scale)<br />

Coaxial cable connect<br />

to <strong>TDR</strong> electronics<br />

Water level<br />

Sediment level

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!