22.03.2013 Views

Stably Free Modules over the Klein Bottle

Stably Free Modules over the Klein Bottle

Stably Free Modules over the Klein Bottle

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

<strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Andrew Misseldine<br />

Brigham Young University<br />

3 April 2011<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Polynomials<br />

Definition - Skew Laurent Polynomials<br />

Let R be a ring and let σ : R → R be a ring isomorphism.<br />

A skew Laurent polynomial is a polynomial which allows negative<br />

exponents for <strong>the</strong> indeterminate x and with <strong>the</strong> relation that<br />

xr = σ(r)x, ∀r ∈ R.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Polynomials<br />

Definition - Skew Laurent Polynomials<br />

Let R be a ring and let σ : R → R be a ring isomorphism.<br />

A skew Laurent polynomial is a polynomial which allows negative<br />

exponents for <strong>the</strong> indeterminate x and with <strong>the</strong> relation that<br />

xr = σ(r)x, ∀r ∈ R.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Polynomials<br />

Definition - Skew Laurent Polynomials<br />

Let R be a ring and let σ : R → R be a ring isomorphism.<br />

A skew Laurent polynomial is a polynomial which allows negative<br />

exponents for <strong>the</strong> indeterminate x and with <strong>the</strong> relation that<br />

xr = σ(r)x, ∀r ∈ R.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Polynomials<br />

Definition - Skew Laurent Polynomials<br />

Let R be a ring and let σ : R → R be a ring isomorphism.<br />

A skew Laurent polynomial is a polynomial which allows negative<br />

exponents for <strong>the</strong> indeterminate x and with <strong>the</strong> relation that<br />

xr = σ(r)x, ∀r ∈ R.<br />

Then <strong>the</strong> collection of all skew Laurent polynomials with<br />

coefficients from R is a ring.<br />

Denote this ring as<br />

R[x, x −1 ; σ].<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Projective <strong>Modules</strong><br />

Definition - <strong>Stably</strong> <strong>Free</strong> Module<br />

An R-module P is stably free iff <strong>the</strong>re exists natural numbers m, n<br />

such that P ⊕ R m ∼ = R n .<br />

{<strong>Free</strong> <strong>Modules</strong>} ⊆ {<strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong>} ⊆ {Projective <strong>Modules</strong>}<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Projective <strong>Modules</strong><br />

Definition - <strong>Stably</strong> <strong>Free</strong> Module<br />

An R-module P is stably free iff <strong>the</strong>re exists natural numbers m, n<br />

such that P ⊕ R m ∼ = R n .<br />

{<strong>Free</strong> <strong>Modules</strong>} ⊆ {<strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong>} ⊆ {Projective <strong>Modules</strong>}<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

X<br />

x<br />

❄<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

We see from <strong>the</strong> fundamental square, that<br />

Call this group G.<br />

X<br />

x<br />

❄<br />

π(X , v0) = 〈x, y | x −1 yx = y −1 〉<br />

= 〈x, y | yx = xy −1 〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

We see from <strong>the</strong> fundamental square, that<br />

Call this group G.<br />

X<br />

x<br />

❄<br />

π(X , v0) = 〈x, y | x −1 yx = y −1 〉<br />

= 〈x, y | yx = xy −1 〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

We see from <strong>the</strong> fundamental square, that<br />

Call this group G.<br />

X<br />

x<br />

❄<br />

π(X , v0) = 〈x, y | x −1 yx = y −1 〉<br />

= 〈x, y | yx = xy −1 〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

We see from <strong>the</strong> fundamental square, that<br />

Call this group G.<br />

X<br />

x<br />

❄<br />

π(X , v0) = 〈x, y | x −1 yx = y −1 〉<br />

= 〈x, y | yx = xy −1 〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

This is a <strong>Klein</strong> <strong>Bottle</strong><br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛<br />

y<br />

We see from <strong>the</strong> fundamental square, that<br />

Call this group G.<br />

X<br />

x<br />

❄<br />

π(X , v0) = 〈x, y | x −1 yx = y −1 〉<br />

= 〈x, y | yx = xy −1 〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Ring ZG<br />

In light of <strong>the</strong> presentation of G,<br />

ZG = Z[y, y −1 ][x, x −1 ; σ]<br />

and σ is <strong>the</strong> isomorphism induced by<br />

σ : y ↦−→ y −1 .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Ring ZG<br />

In light of <strong>the</strong> presentation of G,<br />

ZG = Z[y, y −1 ][x, x −1 ; σ]<br />

and σ is <strong>the</strong> isomorphism induced by<br />

In particular,<br />

as polynomials in Z[y, y −1 ].<br />

σ : y ↦−→ y −1 .<br />

yn = ny, ∀n ∈ Z<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Ring ZG<br />

In light of <strong>the</strong> presentation of G,<br />

ZG = Z[y, y −1 ][x, x −1 ; σ]<br />

and σ is <strong>the</strong> isomorphism induced by<br />

In particular,<br />

as polynomials in ZG.<br />

σ : y ↦−→ y −1 .<br />

yn = ny, ∀n ∈ Z<br />

xn = nx, ∀n ∈ Z<br />

yx = xy −1<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Ring ZG<br />

In light of <strong>the</strong> presentation of G,<br />

ZG = Z[y, y −1 ][x, x −1 ; σ]<br />

and σ is <strong>the</strong> isomorphism induced by<br />

In particular,<br />

as polynomials in ZG.<br />

σ : y ↦−→ y −1 .<br />

yn = ny, ∀n ∈ Z<br />

xn = nx, ∀n ∈ Z<br />

yx = xy −1<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The ZG-module K<br />

Let<br />

r = 1 + y + y 3 ∈ ZG,<br />

s = 1 + y −1 + y −3 ∈ ZG.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The ZG-module K<br />

Let<br />

Let<br />

r = 1 + y + y 3 ∈ ZG,<br />

s = 1 + y −1 + y −3 ∈ ZG.<br />

K = (r) ∩ (x + s)<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The ZG-module K<br />

Let<br />

Let<br />

r = 1 + y + y 3 ∈ ZG,<br />

s = 1 + y −1 + y −3 ∈ ZG.<br />

K = (r) ∩ (x + s)<br />

= rx 2 − sr 2 , rs(x + s) <br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The ZG-module K<br />

Let<br />

Let<br />

r = 1 + y + y 3 ∈ ZG,<br />

s = 1 + y −1 + y −3 ∈ ZG.<br />

K = (r) ∩ (x + s)<br />

= rx 2 − sr 2 , rs(x + s) <br />

Let π : ZG ⊕ ZG → ZG as<br />

<br />

f1<br />

π = rf1 + (x + s)f2.<br />

f2<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is <strong>Stably</strong> <strong>Free</strong><br />

Theorem (Exactness)<br />

The sequence 0 −→ K −→ ZG ⊕ ZG π<br />

−−−→ ZG −→ 0 is exact,<br />

that is, <strong>the</strong> map π : ZG 2 → ZG is surjective and ker π ∼ = K.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is <strong>Stably</strong> <strong>Free</strong><br />

Theorem (Exactness)<br />

The sequence 0 −→ K −→ ZG ⊕ ZG π<br />

−−−→ ZG −→ 0 is exact,<br />

that is, <strong>the</strong> map π : ZG 2 → ZG is surjective and ker π ∼ = K.<br />

Thus, ZG 2 K ∼ = ZG. Since ZG is free, <strong>the</strong> sequence splits and we<br />

have that<br />

K ⊕ ZG ∼ = ZG 2 .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is <strong>Stably</strong> <strong>Free</strong><br />

Theorem (Exactness)<br />

The sequence 0 −→ K −→ ZG ⊕ ZG π<br />

−−−→ ZG −→ 0 is exact,<br />

that is, <strong>the</strong> map π : ZG 2 → ZG is surjective and ker π ∼ = K.<br />

Thus, ZG 2 K ∼ = ZG. Since ZG is free, <strong>the</strong> sequence splits and we<br />

have that<br />

K ⊕ ZG ∼ = ZG 2 .<br />

Corollary<br />

K is a stably free ZG-module.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is <strong>Stably</strong> <strong>Free</strong><br />

Theorem (Exactness)<br />

The sequence 0 −→ K −→ ZG ⊕ ZG π<br />

−−−→ ZG −→ 0 is exact,<br />

that is, <strong>the</strong> map π : ZG 2 → ZG is surjective and ker π ∼ = K.<br />

Define : ZG → ZG ⊕ ZG as<br />

<br />

=<br />

sx −2<br />

x −1 − rx −2<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is <strong>Stably</strong> <strong>Free</strong><br />

Theorem (Exactness)<br />

The sequence 0 −→ K −→ ZG ⊕ ZG π<br />

−−−→ ZG −→ 0 is exact,<br />

that is, <strong>the</strong> map π : ZG 2 → ZG is surjective and ker π ∼ = K.<br />

Define : ZG → ZG ⊕ ZG as<br />

<br />

=<br />

We note that<br />

sx −2<br />

x −1 − rx −2<br />

π = 1ZG<br />

and is a splitting of <strong>the</strong> short exact sequence.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Presentation of K<br />

0 −→ ZG <br />

−−−→ ZG ⊕ ZG −→ K −→ 0<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Presentation of K<br />

0 −→ ZG <br />

−−−→ ZG ⊕ ZG −→ K −→ 0<br />

K ∼ = ZG 2 / im <br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Presentation of K<br />

0 −→ ZG <br />

−−−→ ZG ⊕ ZG −→ K −→ 0<br />

K ∼ = ZG 2 / im <br />

K = 〈e1, e2 | (1)〉<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Presentation of K<br />

0 −→ ZG <br />

−−−→ ZG ⊕ ZG −→ K −→ 0<br />

K ∼ = ZG 2 / im <br />

K = 〈e1, e2 | (1)〉<br />

K = 〈e1, e2 | e1s + e2(x − r)〉 .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

K is Not <strong>Free</strong><br />

Theorem (Stafford (1985))<br />

Let R be a commutative Noe<strong>the</strong>rian domain. Suppose<br />

S = R[x, x −1 ; σ] is a skew Laurent extension of R with elements<br />

r, s ∈ R such that<br />

1 r is not a unit in S,<br />

2 rS + (x + s)S = S,<br />

3 σ(r)s /∈ rR.<br />

Then <strong>the</strong> S-module K = rS ∩ (x + s)S is a non-free, stably free<br />

right ideal of S, satisfying K ⊕ S ∼ = S 2 .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Infinitely Many <strong>Stably</strong> <strong>Free</strong> ZG-modules<br />

Let<br />

with n = 0 and<br />

Define<br />

rn = 1 + ny + ny 3<br />

sn = 1 + ny −1 + ny −3 .<br />

Kn = (rn) ∩ (x + sn) .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Infinitely Many <strong>Stably</strong> <strong>Free</strong> ZG-modules<br />

Let<br />

with n = 0 and<br />

Define<br />

rn = 1 + ny + ny 3<br />

sn = 1 + ny −1 + ny −3 .<br />

Kn = (rn) ∩ (x + sn) .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Infinitely Many <strong>Stably</strong> <strong>Free</strong> ZG-modules<br />

Let<br />

with n = 0 and<br />

Define<br />

Corollary<br />

rn = 1 + ny + ny 3<br />

sn = 1 + ny −1 + ny −3 .<br />

Kn = (rn) ∩ (x + sn) .<br />

Kn is a non-free, stably free right ideal of ZG for all non-zero<br />

integers n.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Infinitely Many <strong>Stably</strong> <strong>Free</strong> ZG-modules<br />

How do we know if<br />

for n = m?<br />

Kn ∼ = Km<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Infinitely Many <strong>Stably</strong> <strong>Free</strong> ZG-modules<br />

How do we know if<br />

for n = m?<br />

Theorem (Artamonov (1981))<br />

Kn ∼ = Km<br />

There exists countably many nonisomorphic non-free, stably free<br />

ZG-modules. In particular, ∃Q ⊆ N such that ∀p, q ∈ Q, Kp ∼ = Kq<br />

and Q is infinite.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

(G, 2)-Complexes<br />

Definition<br />

Let G be a group. A (G, 2)-complex is a 2-dimensional<br />

CW-complex with fundamental group G.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

(G, 2)-Complexes<br />

Definition<br />

Let G be a group. A (G, 2)-complex is a 2-dimensional<br />

CW-complex with fundamental group G.<br />

Let X be <strong>the</strong> CW-complex of <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong> and let G = π0(X ).<br />

Thus, X is a (G, 2)-complex.<br />

x ❄<br />

•<br />

v0<br />

✲ y<br />

✛ y<br />

A<br />

X<br />

x<br />

❄<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Euler Characteristic<br />

We would like to classify all homotopy types of (G, 2)-complexes<br />

with a fixed Euler Characteristic n.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Euler Characteristic<br />

We would like to classify all homotopy types of (G, 2)-complexes<br />

with a fixed Euler Characteristic n.<br />

Theorem (Asphericity)<br />

The <strong>Klein</strong> bottle, with χ(X ) = 0, has <strong>the</strong> minimal Euler<br />

characteristic of all (G, 2)-complexes. Fur<strong>the</strong>rmore, <strong>the</strong> <strong>Klein</strong><br />

<strong>Bottle</strong> is <strong>the</strong> only (G, 2)-complex with Euler characteristic equal to<br />

0, up to homotopy.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Euler Characteristic<br />

We would like to classify all homotopy types of (G, 2)-complexes<br />

with a fixed Euler Characteristic n.<br />

Theorem (Asphericity)<br />

The <strong>Klein</strong> bottle, with χ(X ) = 0, has <strong>the</strong> minimal Euler<br />

characteristic of all (G, 2)-complexes. Fur<strong>the</strong>rmore, <strong>the</strong> <strong>Klein</strong><br />

<strong>Bottle</strong> is <strong>the</strong> only (G, 2)-complex with Euler characteristic equal to<br />

0, up to homotopy.<br />

We use Algebra to next classify (G, 2)-complexes with Euler<br />

characteristic 1.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic (G, 2)-complexes<br />

Definition<br />

An algebraic (G, 2)-complex is an exact sequence<br />

C∗ : F2 → F1 → F0 → Z → 0<br />

where <strong>the</strong> Fi are finitely generated, free ZG-modules.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

The <strong>Klein</strong> <strong>Bottle</strong> X has <strong>the</strong> cellular chain complex<br />

C∗(X ) : Z〈A〉 −→ Z〈x, y〉 −→ Z〈v0〉 −→ 0.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

The <strong>Klein</strong> <strong>Bottle</strong> X has <strong>the</strong> cellular chain complex<br />

Then,<br />

C∗(X ) : Z〈A〉 −→ Z〈x, y〉 −→ Z〈v0〉 −→ 0.<br />

C∗( X ) : ZG ∂2<br />

∂1 ε<br />

−→ ZG ⊕ ZG −→ ZG −→ Z −→ 0<br />

is an algebraic (G, 2)-complex.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

The <strong>Klein</strong> <strong>Bottle</strong> X has <strong>the</strong> cellular chain complex<br />

Then,<br />

C∗(X ) : Z〈A〉 −→ Z〈x, y〉 −→ Z〈v0〉 −→ 0.<br />

C∗( X ) : ZG ∂2<br />

∂1 ε<br />

−→ ZG ⊕ ZG −→ ZG −→ Z −→ 0<br />

is an algebraic (G, 2)-complex.<br />

Notice that<br />

H2( X ) = ker(∂2) = 0.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

Next, let<br />

X1 = X ∨ S 2 .<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

Next, let<br />

X1 = X ∨ S 2 .<br />

So, X1 has <strong>the</strong> cellular chain complex<br />

C∗(X1) : Z〈A, S 2 〉 −→ Z〈x, y〉 −→ Z〈v〉 → 0<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

Next, let<br />

X1 = X ∨ S 2 .<br />

So, X1 has <strong>the</strong> cellular chain complex<br />

and<br />

C∗(X1) : Z〈A, S 2 〉 −→ Z〈x, y〉 −→ Z〈v〉 → 0<br />

C∗( X1) : ZG ⊕ ZG ∂2⊕0<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Algebraic Complexes of G<br />

Next, let<br />

X1 = X ∨ S 2 .<br />

So, X1 has <strong>the</strong> cellular chain complex<br />

and<br />

C∗(X1) : Z〈A, S 2 〉 −→ Z〈x, y〉 −→ Z〈v〉 → 0<br />

C∗( X1) : ZG ⊕ ZG ∂2⊕0<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

Notice that<br />

H2( X1) = ker(∂2 ⊕ 0) = ZG.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Algebraic Complex K∗<br />

We now will construct an algebraic (G, 2)-complex with no obvious<br />

geometric interpretation. Let K∗ be <strong>the</strong> exact sequence<br />

K∗ : ZG ⊕ ZG ∂2◦π<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Algebraic Complex K∗<br />

We now will construct an algebraic (G, 2)-complex with no obvious<br />

geometric interpretation. Let K∗ be <strong>the</strong> exact sequence<br />

K∗ : ZG ⊕ ZG ∂2◦π<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

But, H2(K∗) = K ∼ = ZG = H2(C∗(X1)).<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Algebraic Complex K∗<br />

We now will construct an algebraic (G, 2)-complex with no obvious<br />

geometric interpretation. Let K∗ be <strong>the</strong> exact sequence<br />

K∗ : ZG ⊕ ZG ∂2◦π<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

But, H2(K∗) = K ∼ = ZG = H2(C∗(X1)).<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

The Algebraic Complex K∗<br />

We now will construct an algebraic (G, 2)-complex with no obvious<br />

geometric interpretation. Let K∗ be <strong>the</strong> exact sequence<br />

K∗ : ZG ⊕ ZG ∂2◦π<br />

−−−−−→ ZG ⊕ ZG ∂1<br />

−→ ZG ε<br />

−→ Z −→ 0.<br />

But, H2(K∗) = K ∼ = ZG = H2(C∗(X1)).<br />

Therefore,<br />

K∗ C∗(X1).<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Geometric Realization<br />

Theorem<br />

There exist chain-homotopically distinct, algebraic<br />

(G, 2)-complexes with Euler characteristic 1, where G is <strong>the</strong><br />

fundamental group of <strong>the</strong> <strong>Klein</strong> bottle.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Geometric Realization<br />

Theorem<br />

There exist countably many chain-homotopically distinct,<br />

algebraic (G, 2)-complexes with Euler characteristic 1, where G is<br />

<strong>the</strong> fundamental group of <strong>the</strong> <strong>Klein</strong> bottle.<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

Geometric Realization<br />

Theorem<br />

There exist countably many chain-homotopically distinct,<br />

algebraic (G, 2)-complexes with Euler characteristic 1, where G is<br />

<strong>the</strong> fundamental group of <strong>the</strong> <strong>Klein</strong> bottle.<br />

Question<br />

Does K∗ arise as an algebraic complex of some geometric<br />

(G, 2)-complex?<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>


Introduction<br />

Constructing a <strong>Stably</strong> <strong>Free</strong> Module<br />

Applications to <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong><br />

References<br />

Harlander, Jens and Andrew Misseldine, ”K-Theoretic and<br />

Homotopic Aspects of <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong> Group” (2011).<br />

Preprint.<br />

Misseldine, Andrew, “<strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> Over <strong>the</strong> <strong>Klein</strong><br />

<strong>Bottle</strong>” (2010). Boise State University Theses and<br />

Dissertations. Paper 106.<br />

http://scholarworks.boisestate.edu/td/106<br />

Andrew Misseldine <strong>Stably</strong> <strong>Free</strong> <strong>Modules</strong> <strong>over</strong> <strong>the</strong> <strong>Klein</strong> <strong>Bottle</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!