24.03.2013 Views

Solutions to Assignment 6 1. If L is a linear transformation from V to ...

Solutions to Assignment 6 1. If L is a linear transformation from V to ...

Solutions to Assignment 6 1. If L is a linear transformation from V to ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solutions</strong> <strong>to</strong> <strong>Assignment</strong> 6<br />

<strong>1.</strong> <strong>If</strong> L <strong>is</strong> a <strong>linear</strong> <strong>transformation</strong> <strong>from</strong> V <strong>to</strong> W , use mathematical induction <strong>to</strong> prove<br />

that<br />

Proof:<br />

L(c1v1 + c2v2 + · · · + cnvn) = c1L(v1) + c2L(v2) + · · · + cnL(vn)<br />

When n = 1, L(c1v1) = c1L(v1) by the definition of <strong>linear</strong> <strong>transformation</strong>s.<br />

Assume the formula <strong>is</strong> true for n = k, i. e.,<br />

L(c1v1 + c2v2 + · · · + ckvk) = c1L(v1) + c2L(v2) + · · · + ckL(vk).<br />

Consider the case n = k + 1:<br />

L(c1v1 + c2v2 + · · · + ckvk+1)<br />

= L((c1v1 + c2v2 + · · · + ckvk) + ck+1vk+1) [(c1v1 + · · · + ckvk) <strong>is</strong> a vec<strong>to</strong>r]<br />

= L(c1v1 + c2v2 + · · · + ckvk) + ck+1L(vk+1) [Because L <strong>is</strong> <strong>linear</strong>]<br />

= c1L(v1) + c2L(v2) + · · · + ckL(vk) + ck+1L(vk+1)<br />

[Formula <strong>is</strong> assumed <strong>to</strong> be true for n = k]<br />

So the formula also holds true for n = k + <strong>1.</strong> Then by mathematical induction on<br />

n, L(c1v1 + c2v2 + · · · + cnvn) = c1L(v1) + c2L(v2) + · · · + cnL(vn) <strong>is</strong> true for every<br />

positive integer n provided that L <strong>is</strong> <strong>linear</strong>.<br />

<br />

2. Let E =<br />

<br />

1 2<br />

<br />

, and F =<br />

1 3<br />

<br />

2 1<br />

<br />

, be ordered bases for R<br />

1 0<br />

2 , and suppose<br />

L : R2 → R2 <strong>is</strong> defined by L(x) = (8x1 − 6x2, 9x1 − 7x2) T .<br />

(a) Find the standard matrix representation of L.<br />

(b) Find the the matrix representing L with respect <strong>to</strong> the bases E (in the domain)<br />

and F (in the target space).<br />

(c) Find the matrix representing L with respect <strong>to</strong> the bas<strong>is</strong> E in both the domain<br />

and the target space.<br />

(d) Use part (c) <strong>to</strong> find the matrix representing L k with respect <strong>to</strong> the bas<strong>is</strong> E<br />

in both the domain and the target space.<br />

Answer:


(a) The standard matrix representation <strong>is</strong><br />

<br />

A = L<br />

<br />

1<br />

<br />

, L<br />

0<br />

<br />

0<br />

<br />

=<br />

1<br />

(b) The matrix for L relative <strong>to</strong> bases E, F <strong>is</strong><br />

B = F −1<br />

<br />

L<br />

<br />

1<br />

<br />

, L<br />

1<br />

<br />

2<br />

<br />

3<br />

= 1<br />

−1<br />

(c) The matrix for L relative <strong>to</strong> bas<strong>is</strong> E <strong>is</strong><br />

C = E −1<br />

<br />

L<br />

<br />

1<br />

<br />

, L<br />

1<br />

<br />

2<br />

<br />

3<br />

Alternatively,<br />

C = E −1 AE =<br />

= 1<br />

1<br />

0 −1<br />

−1 2<br />

3 −2<br />

−1 1<br />

<br />

8 −6<br />

9 −7<br />

<br />

3<br />

<br />

−2 8<br />

<br />

−6 1<br />

<br />

2<br />

−1 1 9 −7 1 3<br />

(d) The matrix for L k relative <strong>to</strong> bas<strong>is</strong> E <strong>is</strong> C k =<br />

2 −2<br />

2 −3<br />

2 −2<br />

2 −3<br />

=<br />

<br />

=<br />

<br />

=<br />

<br />

2 0<br />

0 −1<br />

<br />

2<br />

<br />

−3<br />

−2 4<br />

<br />

2 0<br />

0 −1<br />

k <br />

k 2 0 2 0<br />

=<br />

0 −1 0 (−1) k<br />

<br />

.<br />

3. Let A and B be similar matrices and let λ be any scalar. Show that:<br />

(a) det(A) = det(B).<br />

(b) A − λI and B − λI are similar.<br />

Answer:<br />

(a) A = S −1 BS for some nonsingular matrix S. Then<br />

det(A) = det(S −1 BS) = det(S −1 ) det(B) det(S) =<br />

(b) Note that λI = S −1 (λI)S for any scalar λ. Then<br />

A − λI = S −1 BS − S −1 (λI)S = S −1 (B − λI)S.<br />

1<br />

det(B) det(S) = det(B).<br />

det(S)<br />

So by definition of similar matrices, A − λI and B − λI are similar for any<br />

scalar λ.<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!