24.03.2013 Views

20.2 Outline a procedure for separating a mixture

20.2 Outline a procedure for separating a mixture

20.2 Outline a procedure for separating a mixture

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

20.1 <strong>Outline</strong> a <strong>procedure</strong> <strong>for</strong> <strong>separating</strong> hexylamine from cyclohexane using dilute HCl, aqueous<br />

NaOH, and diethyl ether.<br />

Answer:<br />

CH 3(CH 2) 5NH 2<br />

dil HCl<br />

ether<br />

organic phase:<br />

aqueous phase<br />

dry distill<br />

NaOH<br />

ether<br />

organic<br />

phase<br />

dry distill<br />

CH 3(CH 2) 5NH 2<br />

<strong>20.2</strong> <strong>Outline</strong> a <strong>procedure</strong> <strong>for</strong> <strong>separating</strong> a <strong>mixture</strong> of benzoic acid, p-cresol, aniline and benzene<br />

using acids, bases, and organic solvents.<br />

Answer:<br />

<strong>mixture</strong>s<br />

organic phase<br />

NH 2<br />

NaOH,H2O ether COOH<br />

aqueous phase<br />

OH<br />

dil HCl<br />

ether<br />

NaHCO 3<br />

ether<br />

organic phase:<br />

NaOH<br />

aqueous phase<br />

ether<br />

organic phase:<br />

aqueous phase<br />

dry distill<br />

dry<br />

HCl<br />

organic<br />

phase<br />

distill<br />

OH<br />

recrystallization<br />

dry distill<br />

COOH<br />

20.3 (a) Write resonance structure <strong>for</strong> the phthalimide anion that account <strong>for</strong> the acidity of<br />

phthalimide. (b) Would you expect phthalimide to be more or less acidic than benzamide? Why?<br />

(c) After step 2 of our reaction, several steps have been omitted. Propose reasonable mechanisms<br />

<strong>for</strong> these steps.<br />

Answer : (a)<br />

O<br />

N<br />

O<br />

O<br />

N<br />

(b) More acidic than benzamide . Because there are two C=O (carbonyl groups) attached to the N<br />

which is a electric withdrawing group, so that the ccarbonyl group can stabilize the N anion. In<br />

this case, phthalimide is much easier to release hydrogen, which means it is more acidic.<br />

O<br />

NH 2


(c)<br />

O<br />

O<br />

N R H 2N NH 2<br />

O<br />

NH<br />

NH<br />

O HN R<br />

O<br />

O<br />

H<br />

N NH 2<br />

N R<br />

20.4 <strong>Outline</strong> a preparation of benzylamine using the Gabriel synthesis.<br />

O<br />

N<br />

H<br />

O<br />

KOH X<br />

O<br />

O<br />

OH<br />

ethanol<br />

N<br />

H<br />

H<br />

N<br />

NH2 several steps<br />

O<br />

K<br />

N<br />

H<br />

H<br />

O<br />

O<br />

N<br />

N<br />

O<br />

O<br />

H<br />

H<br />

NH<br />

NH<br />

O<br />

O<br />

+<br />

N<br />

+ H 2N<br />

O<br />

O<br />

H 2N R<br />

H 2N NH 2<br />

20.5 Show how you might prepare each of the following amines through reductive amination:<br />

a) CH3(CH2)3CH2NH2<br />

H<br />

NH3,H2,Ni O<br />

b) C6H5CH2CH(NH2)CH3<br />

O<br />

c) CH3(CH2)4CH2NHC6H5<br />

d) C6H5CH2N(CH3)2<br />

O<br />

H<br />

NH 3,H 2,Ni<br />

H 2,Ni<br />

NH 2<br />

NH 2<br />

N<br />

H<br />

N<br />

H<br />

N<br />

H<br />

NH 2<br />

NH 2<br />

R


O<br />

H<br />

H<br />

H 2,Ni<br />

N<br />

20.6 Reductive amination of a ketone is almost always a better method <strong>for</strong> the preparation of<br />

amines of the type RCH(R’)NH2 than treatment of an alkyl halide with ammonia. Why would<br />

this be true?<br />

Answer:<br />

I think the reasons are: 1) The multiple alkylations occurs when alkyl halide reacts with<br />

ammonium, so the method is of very limited synthetic application. 2) I found that if it is treated by<br />

ketone, the possible way is only one, so this reaction can be controlled well.<br />

Above all, we can reach the conclusion easily that reductive amination of a ketone is almost<br />

always a better method <strong>for</strong> the preparation of amines.<br />

20.7 Show how you might utilize the reduction of an amide, oxime, or nitrile to carry out each of<br />

the following trans<strong>for</strong>mations:<br />

(a) Benzoic acid to benzylethylamine<br />

(b) 1-Bromopentane to hexylamine<br />

(c) Propanoic acid to tripropylamine<br />

(d) Butanone to sec-butylamine<br />

Answer:<br />

(a)<br />

(b)<br />

(c) CH 3CH 2COOH<br />

(d)<br />

COOH COCl COHN<br />

SOCl 2<br />

NH 2C 2H 5<br />

NaCN<br />

CH2Br(CH2)3CH3 CH2CN(CH2)3CH3<br />

SOCl 2<br />

O<br />

O<br />

Cl<br />

NH3<br />

LiBH3CN NH(CH 2CH 2CH 3) 2<br />

N<br />

NH 2<br />

O<br />

(1) LiALH 4,Et 2O<br />

(2) H 2O<br />

(1) LiALH 4,Et 2O<br />

(2) H 2O<br />

N(CH 2CH 2CH 3) 2<br />

(1) LiALH 4,Et 2O<br />

(2) H 2O<br />

H<br />

N<br />

NH 2(CH 2) 5CH 3<br />

(CH 3CH 2CH 2) 3N


20.8 Using a different method <strong>for</strong> each part, but taking care in each case to select a good method,<br />

show how each of the following trans<strong>for</strong>mations might be accomplished:<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

Answer:<br />

(a)<br />

H 3CO<br />

H 3CO<br />

H 3CO H 3CO CHNH 2CH 3<br />

CH 3<br />

NH 2<br />

CH 2N(CH 3) 3Cl<br />

O2N CH3 O2N NH2 HNO3 H3CO H3CO H2SO4 (b) H 3CO<br />

(c) Cl 2/hv<br />

(d)<br />

O2N CH3<br />

CH 3 CH 2CH 2NH 2<br />

NO 2<br />

(1) Fe,HCl<br />

(2) OH<br />

H 3CO NH 2<br />

AlCl3 CH3COCl H3CO<br />

O<br />

CCH3<br />

NH3 NaBH3CN H3CO CHNH2CH3 CH 2Cl<br />

N(CH 3) 3<br />

T.M<br />

KMnO SOCl<br />

4,H 2<br />

O2N COOH O2N COCl<br />

(1)NaN 3 O2N NH 2<br />

(2)H2O


(e) CH 3<br />

NBS/hv<br />

CH 2Br NaCN<br />

(i) LiAlH 4<br />

CH 2CN (ii) H2O<br />

20.9 Review the chemistry of amines given in earlier sections and provide a specific example <strong>for</strong><br />

each of the previously illustrated reactions.<br />

Answer:<br />

P963 The Hofmann Rearrangement<br />

O<br />

NH 2<br />

P960 Reductive Amination<br />

O<br />

+ Br 2 + 4NaOH<br />

+ NH 2<br />

H 2O<br />

H +<br />

NH 2<br />

CH 2CH 2NH 2<br />

+ Na2CO3 + 2NaBr + 2H2O 20.10 Para-nitrosation of N,N-dimethylaniline (C-nitrosation) is believed to take place through an<br />

electrophilic attack by NO + ions.<br />

(a) Show how NO + ions might be <strong>for</strong>med in an aqueous solution of NaNO2 and HCl.<br />

Answer:<br />

O N O<br />

H + H +<br />

O N OH O N OH 2 O N<br />

(b) Write a mechanism <strong>for</strong> p-nitrosation of N,N-demethylaniline.<br />

Answer:<br />

H2O N H<br />

O N<br />

N<br />

(c) Tertiary aromatic amines and phenols undergo C-nitrosation reaction, whereas most other<br />

benzene derivatives do not. How can you account <strong>for</strong> this difference?<br />

Answer:<br />

That is because nitrosonium cation is a kind of weak electrophile.<br />

H<br />

NO<br />

N<br />

N<br />

H<br />

NO


20.11 In the preceding examples of diazonium reactions, we have illustrated syntheses<br />

beginning with the compounds (a)-(e) here. Show how you might prepare each<br />

of the following compounds from benzene.<br />

(a) m-Nitroaniline (c) m-Bromoaniline (e) p-Nitroaniline<br />

(b) m-Chloroaniline (d) o-Nitroaniline<br />

Solution:<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

HNO 3,H 2SO 4<br />

HNO 3,H 2SO 4<br />

HNO 3,H 2SO 4<br />

HNO 3,H 2SO 4<br />

NHCOCH3<br />

SO3H<br />

HNO 3,H 2SO 4<br />

NO2<br />

NO 2<br />

NO2<br />

NO2<br />

HNO 3,H 2SO 4<br />

NO2<br />

HNO 3,H 2SO 4<br />

Cl 2,Fe<br />

Br 2,Fe<br />

1) Fe,HCl<br />

2) OH<br />

1) Fe,HCl<br />

2) OH<br />

NO 2<br />

NO 2<br />

NO2<br />

NH2<br />

NHCOCH 3<br />

SO 3H<br />

NH2<br />

Br<br />

H2S NH3,C2H5OH NO 2<br />

Cl<br />

1) Fe,HCl<br />

2) OH<br />

1) Fe,HCl<br />

2) OH<br />

CH3COCl<br />

NO2<br />

1) dilute,H2SO4 NHCOCH3<br />

NO2<br />

2) OH -<br />

CH 3COCl<br />

1) dilute H 2SO 4<br />

2) OH -<br />

NH 2<br />

NH 2<br />

NH 2<br />

NHCOCH 3<br />

NH 2<br />

NHCOCH 3<br />

NH 2<br />

NO 2<br />

Br<br />

Cl<br />

NO 2<br />

concd H 2SO 4<br />

NO 2<br />

HNO 3,H 2SO 4


20.12 Suggest how you might modify the preceding synthesis in order to prepare<br />

3.5-dibromotolune.<br />

Solution:<br />

CH 3<br />

NH 2<br />

Br 2,Fe<br />

Br<br />

CH3<br />

NH 2<br />

H 2SO 4,HNO 2<br />

Br<br />

Br<br />

CH 3<br />

N 2<br />

H 3PO 2,H 2O<br />

20.13 (a) In Section 20.8D we showed a synthesis of m-fluorotoluene starting with m-toluidine.<br />

How would you prepare m-toluidine from toluene? (b) How would you prepare m-chlorotoluene?<br />

(c) m-Bromotoluene? (d) m-Iodotoluene? (e) m-Tolunitrile (m-CH3C6H4CN)? (f) m-Toluic acid?<br />

Answer:<br />

(a)<br />

NHCOCH 3<br />

NO 2<br />

H 2SO 4<br />

HNO 3<br />

H 3O +<br />

NO 2<br />

Fe<br />

HCl<br />

NO 2<br />

NH 2<br />

Fe<br />

HCl<br />

NO 2<br />

NaNO 2<br />

HCl<br />

(CH 3CO) 2O<br />

Br<br />

Br<br />

NH 2 NHCOCH3<br />

NH 2<br />

N +<br />

NCl -<br />

NO 2<br />

H3PO2 C2H5OH CH 3<br />

H 2SO 4<br />

HNO 3<br />

Br


(b)<br />

(c)<br />

NHCOCH 3<br />

NHCOCH 3<br />

Cl<br />

Br<br />

H 2SO 4<br />

HNO 3<br />

H 3O +<br />

Cl<br />

H 2SO 4<br />

HNO 3<br />

H 3O +<br />

Br<br />

NO2<br />

NO2<br />

NH 2<br />

NH 2<br />

Fe<br />

HCl<br />

NaNO 2<br />

HCl<br />

Cl<br />

Fe<br />

HCl<br />

NaNO 2<br />

HCl<br />

Br<br />

(CH 3CO) 2O<br />

NH2 NHCOCH 3<br />

N +<br />

NCl -<br />

Cl<br />

(CH 3CO) 2O<br />

H3PO2 C2H5OH (1) Cl 2<br />

NH 2 NHCOCH3<br />

N +<br />

NCl -<br />

Br<br />

(2) OH - , H 2O<br />

heat<br />

H3PO2 C2H5OH (1) Br 2<br />

(2) OH - , H 2O<br />

heat


(d)<br />

(e)<br />

NHCOCH 3<br />

NHCOCH 3<br />

NHCOCH 3<br />

I<br />

CN<br />

NO2<br />

H 2SO 4<br />

HNO 3<br />

I<br />

H 3O +<br />

H 2SO 4<br />

HNO 3<br />

Fe<br />

HCl<br />

H 2O<br />

H +<br />

NO2<br />

NO 2<br />

NH 2<br />

Fe<br />

HCl<br />

I<br />

Fe<br />

HCl<br />

NHCOCH3<br />

(i) NaNO 2, HCl<br />

(ii)<br />

H3PO2 C2H5OH NaNO 2<br />

HCl<br />

NH 2<br />

HNO 2<br />

HCl<br />

(CH 3CO) 2O<br />

NH 2 NHCOCH3<br />

N +<br />

NCl -<br />

CH3COCl<br />

I<br />

(1) I 2<br />

H3PO2 C2H5OH NH 2 NHCOCH3<br />

CN<br />

NHCOCH 3<br />

N 2 +<br />

CuCN<br />

(2) OH - , H 2O<br />

heat<br />

H 2SO 4<br />

HNO 3


(f)<br />

NHCOCH 3<br />

NHCOCH 3<br />

CN<br />

NO2<br />

H 2SO 4<br />

HNO 3<br />

Fe<br />

HCl<br />

H 2O<br />

H +<br />

NO 2<br />

Fe<br />

HCl<br />

NHCOCH3<br />

(i) NaNO 2, HCl<br />

(ii) H3PO2 C2H5OH NH 2<br />

HNO 2<br />

HCl<br />

CH3COCl<br />

NH 2 NHCOCH3<br />

CN<br />

NHCOCH 3<br />

H 3O +<br />

N 2 +<br />

CuCN<br />

H 2SO 4<br />

HNO 3<br />

COOH<br />

20.14 Starting with p-nitroaniline [Problem 20.11(e)] show how you might synthesize<br />

1,2,3-tribromobenzene.<br />

Answer:


Br<br />

NH 2<br />

NO2<br />

CuBr<br />

Br<br />

N 2 +<br />

(1) Br 2<br />

Br<br />

Br<br />

Br<br />

Br<br />

NO 2<br />

H3PO2 C2H5OH Br<br />

NH 2<br />

NO 2<br />

Br<br />

Fe<br />

HCl<br />

Br<br />

Br<br />

NaNO 2<br />

HCl<br />

Br<br />

NH2<br />

Br<br />

Br<br />

N 2 +<br />

NO 2<br />

NaNO 2<br />

20.15 <strong>Outline</strong> a synthesis of orange Ⅱ from 2-naphthol and p-aminobenzenesulfonic acid.<br />

OH<br />

Answer:<br />

N N<br />

OrangeⅡ<br />

SO 3 - Na +<br />

Br<br />

Br<br />

HCl<br />

Br


Step1<br />

H SO HNO<br />

2N 3H 2 +N2 SO3H Step2<br />

OH<br />

+<br />

+N2 SO3H NaOH<br />

H2O OH<br />

N N<br />

SO3 - Na +<br />

20.16 Butter yellow is a dye once used to color margarine. It has since been shown to be<br />

carcinogenic, and its use in food is no longer permitted. <strong>Outline</strong> a synthesis of butter yellow from<br />

benzene and N, N-dimethylaniline.<br />

N(CH3) 2<br />

Answer:<br />

N(CH 3) 2<br />

CH 3COO - Na +<br />

N N<br />

Butter yellow<br />

HNO3<br />

H 2SO 4<br />

NO 2<br />

N N<br />

Fe<br />

H 3O +<br />

N(CH3)2<br />

NH2 HNO2<br />

20.17 Azo compounds can be reduced to amines by a variety of reagents including stannous<br />

chloride (SnCl2).<br />

SnCl2 Ar N N Ar' ArNH2 + Ar'NH2 This reduction can be useful in synthesis as the following example shows:<br />

4-Ethoxyaniline<br />

SnCl 2<br />

(1) HONO,H 3O +<br />

(2)phenol,OH -<br />

NN +<br />

A(C 14H 14N 2O 2) NaOH,CH 3CH 2Br B(C16H 18N 2O 2)<br />

two molar equivalents of C (C8H11NO) acetic anhydride phenacetin(C10H13NO2) Give a structure <strong>for</strong> phenacetin and <strong>for</strong> the intermediates A,B,C. (Phenacetin, <strong>for</strong>merly used as an


analgesic)<br />

Answer: A:<br />

H3CH2CO N N OH<br />

B:<br />

C:<br />

H3CH2CO N N OCH2CH3<br />

H 3CH 2CO NH 2<br />

Phenacetin:<br />

H 3CH 2CO NHCOCH 3<br />

20.18 An amine A has the molecular <strong>for</strong>mula C7H9N. Compound A reacts with benzene-sulfonyl<br />

chloride in aqueous potassium hydroxide to give a clear solution; acidification of the soution gives<br />

a precipitate. When A is treated with NaNO2 and HCl at 0-5℃, and then with 2-naphthol, an<br />

intensely colored compound is <strong>for</strong>med. Compound A gives a single strong IR absorption peak a<br />

815cm -1 . What is the structure of A?<br />

Answer:<br />

H3C NH2<br />

20.19 Sulfonamides of primary amines are often used to synthesize pure secondary amines.<br />

Suggest how this synthesis is carried out.<br />

Answer:<br />

O<br />

O<br />

R N S<br />

H<br />

O<br />

R N R ,<br />

H<br />

Ar<br />

O - H<br />

R , Cl<br />

O<br />

+ - O S<br />

O<br />

R N<br />

Ar<br />

R ,<br />

S<br />

O<br />

Ar<br />

+ (1)H3 O,heat<br />

(2)O-H


<strong>20.2</strong>0 (a) Starting with aniline and assuming that you have 2-aminothiazole available, show how<br />

you would synthesize sulfathiazole. (b) How would you convert sulfathiazole to<br />

succinylsulfathiazole?<br />

Answer:<br />

(a)<br />

(b)<br />

H 2N<br />

NH2<br />

NH2<br />

S<br />

SO2NH<br />

N<br />

(CH 3CO) 2O<br />

S<br />

N<br />

H 2N<br />

O<br />

NHCCH 3<br />

SO 2NH<br />

S<br />

N<br />

2-Aminothiazole<br />

O<br />

O<br />

O<br />

-HCl<br />

O<br />

NHCCH 3<br />

S<br />

N<br />

HOSO2Cl 80℃<br />

(1)dilute HCl,heat<br />

(2)HCO 3 -<br />

O<br />

O<br />

NHCCH 3<br />

SO 2Cl<br />

NH2<br />

SO2NH<br />

S<br />

Sulfathiazole<br />

NHCCH2COOH<br />

SO2NH<br />

S<br />

N<br />

Succinylsulfathiazole<br />

N


<strong>20.2</strong>1 Write structural <strong>for</strong>mulas of the following compounds:<br />

(a) Benzylmethylamine<br />

NH<br />

N<br />

N<br />

(b) Triisopropylamine<br />

(c) N-Ethyl-N-methylaniline<br />

N<br />

(d) m-Toluidine<br />

(e) 2-Methylpyrrole<br />

(f) N-Ethylpiperidine<br />

(g) N-Ethylpyridinium<br />

N<br />

H<br />

NH2


HO<br />

O<br />

O<br />

N +<br />

(i) Indole<br />

(h) 3-Pyridine carboxylic acid<br />

N<br />

(j) Acetanilide<br />

N<br />

H<br />

(k) Dimethylaminium chloride<br />

(l) 2-Mehtylimidazole<br />

(m) 3-Amino-1-propanol<br />

HO NH2 (n) Tetrapropylammonium chloride<br />

N<br />

H<br />

NH 2 + Cl -<br />

N<br />

N<br />

H


O<br />

HO<br />

N<br />

O<br />

Cl -<br />

N +<br />

(o) Pyrrolidine<br />

(p) N,N-Dimethyl-p-toluidine<br />

(q) 4-Methoxyaniline<br />

NH2<br />

(r) Tetramethylammonium hydroxide<br />

(s) p-Aminobenzoic acid<br />

(t) N-Methylaniline<br />

NH2<br />

NH<br />

OH -<br />

<strong>20.2</strong>2 Give common or systematic names <strong>for</strong> each of the following compounds:<br />

HN<br />

N +


(g)<br />

(a) CH3CH2CH2NH2 Propylamine<br />

(b) C6H5NHCH3 Methylphenylamine<br />

(c) (CH 3) 2CHN(CH 3) 3I - Isopropyl trimethyl ammonium iodide<br />

(d) o-CH3C6H4NH2 o-toluidine<br />

(e) o-CH3OC6H4NH2 o-methoxy aniline<br />

(f)<br />

N<br />

H<br />

N<br />

N NH 2<br />

N<br />

1H-Pyrazole<br />

2-amino pyrimidine<br />

(h) C 6H 5CH 2NH 3 + Cl - Benzyl-ammonium chloride<br />

(i) C6H5N(CH2CH2CH3) 2 N,N-dimethylaniline<br />

(j) C6H5SO2NH2 Benzenesulfonamide<br />

(k) CH 3NH 3 + CH3CO 2 - Methyl ammonium acetate<br />

(l) HOCH 2CH 2CH 2NH 2 3-Amino-1-propanol<br />

(m)<br />

(n)<br />

N<br />

N<br />

N<br />

H N Purine<br />

N<br />

CH 3 1-Methyl pyrrole<br />

<strong>20.2</strong>3 Show how you might prepare benzylamine from each of the following compounds:<br />

(a) Benzonitrile<br />

(b) Benzamide<br />

(c) Benzyl bromide<br />

(d) Benzyl tosylate<br />

(e) Benzaldehyde<br />

(f) Phenylnitromethane


(g) Phenlacetamide<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

O<br />

O<br />

C<br />

N<br />

NH 2<br />

H 2<br />

C Br<br />

O<br />

O S<br />

NH 3<br />

O<br />

NaBH 3CN<br />

N +<br />

O<br />

O -<br />

O<br />

LiAlH 4 Et 2O<br />

H 2O<br />

NH 3<br />

LiAlH 4 Et 2O<br />

H 2O<br />

Fe HCl<br />

NH 2<br />

+ Br 2 + NaOH<br />

NH 3<br />

H2<br />

C NH 2<br />

H 2<br />

C NH 2<br />

NH 2<br />

NH 2<br />

NH 2<br />

H 2<br />

C NH 2<br />

NH2<br />

+ CO 3 2-<br />

<strong>20.2</strong>4 Show how you might prepare aniline from each of the following compounds:<br />

(a) Benzene<br />

(b) Bromobenzene<br />

(c) Benzamide<br />

Answer:


(a)<br />

(b)<br />

(c)<br />

O<br />

HNO 3<br />

Br NaNH2<br />

C NH 2<br />

NH 3<br />

+ Br 2 + NaOH<br />

NO 2<br />

NH 2<br />

Fe HCl<br />

NH2<br />

NH 2<br />

+ CO 3 2-<br />

<strong>20.2</strong>5 Show how you might synthesize each of the following compounds from butyl alcohol:<br />

(a) Butylamine (free of 2 。 and 3 。<br />

(b) Pentylamine<br />

(c) Propylamine<br />

OH<br />

OH<br />

HBr<br />

amines)<br />

HBr<br />

OH Br<br />

K 2Cr 2O 7<br />

(d) Butylmethylamine<br />

NH2<br />

CH 3I<br />

O<br />

OH<br />

NH 3<br />

Br<br />

1.<br />

O<br />

O<br />

NK<br />

2. NH 2NH 2<br />

1. NaCN<br />

2. LiAlH 4<br />

O<br />

NH 2<br />

Br 2 / OH -<br />

<strong>20.2</strong>6 Show how you might convert aniline into each of the following compounds. (You need not<br />

repeat steps carried out in earlier parts of this problem.)<br />

(a) Acetanilide<br />

NH 2 NH C<br />

(CH 3CO) 2O<br />

(b) N-Phenylphthalimide<br />

O<br />

NH<br />

NH 2<br />

NH2<br />

NH 2


O<br />

O<br />

O<br />

(c) P-Nitroaniline<br />

NH C<br />

O<br />

(d) Sulfanilamide<br />

O<br />

HN<br />

C<br />

NH C<br />

C 6H 5NH 2<br />

(e) N, N-Dimethylaniline<br />

NH 2<br />

(f) Fluorobenzene<br />

HO<br />

NH2 (g) Chlorobenzene<br />

HO<br />

NH2 (h) Bromobenzene<br />

HO<br />

NH2 (i) Iodobenzene<br />

HO<br />

NH2 (j) Benzonitrile<br />

H 2SO 4/HNO 3<br />

O<br />

O<br />

S<br />

O<br />

NH 2<br />

2 CH 3I N<br />

N O<br />

0 - 5℃<br />

N O<br />

0 - 5℃<br />

N O<br />

0 - 5℃<br />

N O<br />

0 - 5℃<br />

- O<br />

O<br />

N +<br />

conc H 2SO 4<br />

HO 3S<br />

dilute HCl<br />

N 2<br />

N 2<br />

N 2<br />

N 2<br />

N<br />

O<br />

O<br />

H 2N<br />

NH<br />

HBF 4<br />

heat<br />

CuCl<br />

CuBr<br />

CuI<br />

C<br />

O<br />

NH C<br />

O<br />

NH 3<br />

H 2O<br />

O<br />

S<br />

O<br />

Cl<br />

Br<br />

I<br />

- O<br />

O<br />

NH 2<br />

F<br />

N +<br />

NH 2


HO<br />

NH2 (k) Benzoic acid<br />

(l) Phenol<br />

(m) Benzene<br />

CN<br />

HO<br />

NH2 HO<br />

NH2 N O<br />

0 - 5℃<br />

H 2O<br />

N O<br />

0 - 5℃<br />

N O<br />

0 - 5℃<br />

(n) P- (Phenylazo) phenol<br />

NH 2 NaNO 2<br />

HCl<br />

HO<br />

(o) N, N-Dimethyl-p-(phenylazo)aniline<br />

NH 2 NaNO 2<br />

HCl<br />

O<br />

N 2<br />

CuCN<br />

N 2Cu2O, Cu 2+ ,H 2O<br />

N 2<br />

N N<br />

N N<br />

H 3PO 2, H 2O<br />

OH<br />

N(CH 3) 2<br />

CN<br />

OH<br />

N<br />

N<br />

N<br />

N<br />

OH<br />

N(CH 3) 2<br />

<strong>20.2</strong>7 What products would you expect to be <strong>for</strong>med when each of the following amines reacts<br />

with aqueous sodium nitrite and hydrochloric acid?<br />

(a) Propylamine (c)N-Propylaniline (e)p-Propylaniline<br />

(b)Dipropylamine (d)N,N-Dipropylaniline<br />

Answer:<br />

(a)


CH 3CH 2CH 2 NH 2<br />

CH 3CH 2CH 2OH<br />

(b)<br />

NaNO 2<br />

HCl<br />

CH 3CH 2CH 2<br />

CH 3CH 2CH 2 N N<br />

CH3CH=CH2 CH3CH2CH2Cl CH 3CH 2CH 2 NH NaNO 2<br />

HCl<br />

H3CH2CH2C H3CH2CH2C<br />

(c)<br />

(d)<br />

HN<br />

H 3CH 2CH 2C<br />

(e)<br />

NH 2<br />

CH 2CH 2CH 3<br />

N<br />

CH2CH2CH3<br />

NaNO2<br />

HCl<br />

CH 2CH 2CH 3<br />

NaNO2<br />

HCl<br />

O<br />

NaNO2<br />

HCl<br />

N<br />

CH 3CH 2CH 2<br />

N<br />

H3CH2CH2C<br />

N<br />

N<br />

CH 3CHCH 3<br />

CH 3CHClCH 3<br />

CH 2CH 2CH 3<br />

N<br />

N O<br />

CH 2CH 2CH 3<br />

N N<br />

CH2CH2CH3<br />

CH 3CH 2OHCH 3<br />

<strong>20.2</strong>8 (a) What products would you expect to be <strong>for</strong>med when each of the following<br />

O


Answer:<br />

NH2<br />

amines in the preceding problem reacts with benzenesulfonyl chloride and excess<br />

aqueous potassium hydroxide? (b) What would you observe in each reaction? (c)<br />

What would you observe when the resulting solution or <strong>mixture</strong> is acidified?<br />

CH2CH2CH3<br />

H3CH2CH2C<br />

HN<br />

N<br />

TsCl<br />

KOH<br />

CH 2CH 2CH 3<br />

CH2CH2CH3<br />

TsCl<br />

KOH<br />

Ts<br />

TsCl<br />

KOH<br />

N<br />

CH 2CH 2CH 3<br />

CH3CH2CH2 NH<br />

KOH<br />

H3CH2CH2C H3CH2CH2C<br />

CH 3CH 2CH 2 NH 2<br />

TsCl<br />

KOH<br />

TsCl<br />

Ts<br />

N<br />

HA<br />

No reaction<br />

CH 2CH 2CH 3<br />

CH 3CH 2CH 2<br />

CH 3CH 2CH 2 N<br />

Ts<br />

N<br />

HA<br />

Ts<br />

Ts<br />

NH<br />

CH 2CH 2CH 3<br />

CH 3CH 2CH 2 NH<br />

<strong>20.2</strong>9 (a) What product would you expect to obtain from the reaction of piperidine with aqueous<br />

sodium nitrite and hydrochloric acid? (b) From the reaction of piperidine and benzenesulfonyl<br />

chloride in excess aqueous potassium hydroxide?<br />

Answer:<br />

Ts


(a)<br />

N<br />

N<br />

O (b)<br />

20.30 Give structure <strong>for</strong> the products of each of the following reactions:<br />

(a) Ethylamine + benzoyl chloride O<br />

(b) Methylamine + acetic anhydride<br />

(c) Methylamine + succinic anhydride O<br />

(d) Product of (c)<br />

O<br />

(e) Pyrrolidine + phthalic anhydride O O<br />

(f) Pyrrole +acetic anhydride<br />

N<br />

O<br />

S<br />

O<br />

HN<br />

N<br />

N<br />

H<br />

O<br />

N<br />

O<br />

N<br />

O<br />

O<br />

HN<br />

OH<br />

OH


(g) Aniline + propanoyl chloride<br />

(h) Tetraethylammonium hydroxide<br />

(i)<br />

m-Dinitrobenzene + H 2S<br />

p-Toluidine + Br 2(excess) H2O<br />

NH 3<br />

C 2H 5OH<br />

(j)<br />

Br<br />

20.31 Starting with benzene or toulene, outline a synthesis of each of the following compounds<br />

using diazonium salts as intermediates. (You need not repeat syntheses carried out in earlier of this<br />

proplem.)<br />

(a) p-Fluorotoluene<br />

(b) o-Iodotoluene<br />

(c) p-Cresol<br />

(d) m-Diachlorobenzene<br />

(e) m-(C6H4(CN)2<br />

(f) m-Iodophenol<br />

(g) m-Bromobenzenontrile<br />

(h) 1,3-Dibromo-5-nitrobenzene<br />

(i) 3,5-Dibromoaniline<br />

(j) 3,4,5-TriBromophenol<br />

(k) 3,4,5-Tribromobenzonitrile<br />

(l) 2,6-Dibromobenzoic acid<br />

(m) 1,3-Dibromo-2-iodobenzene<br />

(n) 4-Bromo-2-nitrotoluene<br />

(o) 4-Methyl-3-nitrophenol<br />

O<br />

O<br />

N<br />

Br<br />

O<br />

HN<br />

N<br />

NH 2<br />

NH 2


H 3C<br />

(q)<br />

H3C<br />

(r)<br />

H3C<br />

NC<br />

Answer:<br />

(a)<br />

(b)<br />

(c)<br />

H 2N<br />

(d)<br />

CH3<br />

heat<br />

HNO 3<br />

H 2SO 4/warm<br />

F<br />

HNO<br />

CH3<br />

3<br />

H2SO4/warm CH 3<br />

Br<br />

N N<br />

N N<br />

O 2N<br />

NO 2<br />

CH 3<br />

CH 3<br />

HONO/H 2SO 4<br />

OH<br />

CH 3<br />

CH 3<br />

Fe/HCl<br />

OH<br />

H 2N<br />

Fe/HCl<br />

CH3<br />

NH2 HONO<br />

HCl<br />

O 4SHN 2<br />

CH 3<br />

CH 3<br />

Cu,Cu 2O,H 2O<br />

(1)HONO,H<br />

(2)HBF4 HO<br />

N2Cl<br />

CH 3<br />

F 4BN 2<br />

CH 3<br />

KI CH 3<br />

CH 3<br />

I


(e)<br />

(f)<br />

O2N<br />

(g)<br />

O 2N<br />

(h)<br />

O 2N<br />

(i)<br />

Br<br />

O 2N<br />

(j)<br />

(k)<br />

HNO 3<br />

H 2SO 4<br />

HONO,HCl<br />

HNO3 NO2 NO2<br />

H2SO4 NH 2<br />

NH 2<br />

NH 2<br />

H3O heat<br />

NO 2<br />

Br<br />

O 2N<br />

HONO/HI<br />

O2N<br />

NO 2<br />

Cl<br />

Cl 2/FeCl 3<br />

Fe/HCl<br />

N 2I<br />

KI<br />

H 2N<br />

O2N<br />

Cl<br />

N 2Cl<br />

NH 2<br />

CuCl<br />

I<br />

NO 2<br />

Cl<br />

HCl,HONO 2<br />

ClN 2<br />

Fe/HCl<br />

Cl<br />

Cl<br />

N 2Cl<br />

CuCN<br />

NH 2<br />

NC<br />

Fe/HCl (1)HCl,HONO2 I<br />

(2)Cu,Cu2O,H2O HONO/HBr CuBr<br />

Zn/HCl (1)HCl,HONO2 N2Br Br<br />

Br<br />

(2)CuCN<br />

Br 2/FeBr 3<br />

CH 3COCl<br />

O 2N<br />

Fe/HCl<br />

Br<br />

O 2N<br />

Br<br />

Br<br />

NH 2<br />

O 2N<br />

H2S,NH3,C2H5OH NO2<br />

Br<br />

O2N NH2 (1)HBr,HONO<br />

(2)CuBr<br />

Br<br />

Br<br />

O 2N<br />

H 2N<br />

H 2N<br />

O<br />

HNO3 NHCCH3 H2SO4/warm O2N<br />

O<br />

NHCCH3<br />

NH2<br />

(1)HBr,HONO<br />

(2)CuBr<br />

Br<br />

O 2N<br />

HO<br />

NC<br />

CN<br />

I<br />

Br<br />

Br<br />

Br 2/FeBr 3 O2N NHCCH 3<br />

Br<br />

Br<br />

(1)Zn/HCl<br />

(2)HI,HONO<br />

O2N Br<br />

HO Br<br />

(3) Cu2O, Cu2+, H2O Br<br />

Br<br />

Br<br />

Br<br />

O


Br<br />

O 2N Br<br />

(l)<br />

(m)<br />

Br<br />

(1)Zn/HCl<br />

(2)HCl,HONO<br />

(3)CuCN<br />

Br<br />

NC Br<br />

HNO3 Br2/FeBr3 CH3 O2N CH3 O2N<br />

CH3 H2SO4/warm (1)HCl,HONO<br />

(2)H3PO2/heat O 2N NH 2<br />

(n)<br />

Br<br />

Br<br />

(1)HCl,HONO<br />

(2)H3PO2,H2O H 2N<br />

(o)<br />

O2N<br />

(p)<br />

Br<br />

(q)<br />

CH 3<br />

Br<br />

Br<br />

(1)HI,HONO<br />

(2)KBr<br />

Br<br />

Br<br />

I<br />

CH 3<br />

(1)HBr,HONO<br />

(2)CuBr<br />

KMnO 4<br />

Br<br />

Br<br />

Br<br />

Br<br />

O 2N I<br />

NO 2 NO 2<br />

HNO3/H2SO4 CH3<br />

O2N NO2<br />

CH3<br />

NO 2<br />

CH 3<br />

Br<br />

H 2S, NH 3<br />

H2N<br />

Br<br />

Br<br />

Br<br />

COOH<br />

Zn/HCl<br />

NO 2<br />

CH 3<br />

Zn/HCl<br />

H2N<br />

Br<br />

Br<br />

Br<br />

CH 3<br />

H 2N I<br />

(1)HCl,HONO<br />

CH3<br />

HO<br />

(2)Cu,Cu2O,H2O Zn/HCl (1)HCl,HONO<br />

Br<br />

CH3 Br<br />

(2)CuCN<br />

NH 2<br />

Br<br />

CN<br />

NO2<br />

CH3<br />

CH 3


(r)<br />

(1)H2SO4/HONO NH2<br />

(2)Cu,CU2O,H2O OH<br />

ClN 2<br />

ClN2 CH3 + H3C<br />

OH<br />

20.32 Write equations <strong>for</strong> simple chemical tests that would distinguish between<br />

(a) Benzylamine and benzamide<br />

(b) Allyamine and popylamine<br />

(c) P-Toluidine and N-methylaniline<br />

(d) Cyclohexylamine and piperidine<br />

(e) Pyridine and benzene<br />

(f) Cyclohexylamine and aniline<br />

(g) Triethylamine and diethylamine<br />

(h) Tripropylammonium chloride and tetrapropylammonium chloride<br />

(i) Tetrapropylammonium chloride and tetrapropylammonium hydroxide<br />

Answer:<br />

(a)<br />

(b)<br />

NH 2<br />

CONH 2<br />

Br 2<br />

Br 2<br />

Br<br />

NH 2<br />

Br<br />

no reaction<br />

Br<br />

CH 3<br />

H3C<br />

H 3C<br />

N N<br />

N N<br />

OH<br />

CH 3<br />

OH


(c)<br />

(d)<br />

(e)<br />

(f)<br />

NH 2<br />

CH 3<br />

NHCH 3<br />

NH2<br />

H<br />

N<br />

N<br />

NH 2<br />

NH 2<br />

PhSO 2Cl<br />

PhSO 2Cl<br />

HCl/H 2O<br />

Br 2<br />

Br 2<br />

Br<br />

NHSO 2Ph<br />

CH 3<br />

H 3CN SO 2Ph<br />

NHSO 2Ph<br />

SO 2Ph<br />

N<br />

N<br />

H<br />

Br<br />

no reaction<br />

Cl<br />

no reaction<br />

NaOH<br />

NaOH<br />

NH 2<br />

NSO2Ph<br />

CH3<br />

no reaction<br />

NSO 2Ph<br />

no reaction


(g)<br />

(h)<br />

NH2<br />

NH 2<br />

N<br />

NH<br />

Br 2<br />

NHCl<br />

NCl<br />

PhSO 2Cl<br />

no reaction<br />

NH 2<br />

Br Br<br />

NaOH<br />

Br<br />

no reaction<br />

NSO 2Ph<br />

no reaction<br />

(i)<br />

Tetrapropylammonium chloride dissolves in water to give a neutral solution, however,<br />

tetrapropylammonium hydroxide gives a strong basic solution.<br />

20.33 Describe with equations how you might separate a <strong>mixture</strong> of aniline, p-cresol, benzoic acid,<br />

and toluene using ordinary laboratory reagents.<br />

Solution:<br />

N


<strong>mixture</strong> H+<br />

separation<br />

NH3<br />

OH -<br />

<strong>mixture</strong> OH- separation<br />

NH2<br />

H +<br />

CH 3<br />

NaHCO 3<br />

separation<br />

OH<br />

CH 3<br />

COONa<br />

20.34 Show how you might synthesize β-aminopropionic acid (H 3NCH 2CH 2CO 2 - ) from<br />

succinic anhydride. (β-Aminopropionic acid is used in the synthesis of pantothenic acid; see<br />

Problem 18.34.)<br />

Solution:<br />

O<br />

O<br />

O<br />

O<br />

+ NH 3<br />

H 2C<br />

C<br />

H 2C C<br />

O<br />

NH 2 Br/OH -<br />

OH<br />

H 2C NH 2<br />

H 2C<br />

C<br />

O<br />

O<br />

H +<br />

H +<br />

COOH<br />

H 3NCH 2CH 2CO 2<br />

20.35 Show how you might synthesize each of the following <strong>for</strong>m the compounds indicated and<br />

any other needed reagents.<br />

(a) (CH3)3 + N(CH2)10 + N(CH3)32Br - from 1,10-decanediol<br />

(b) Succinylcholine bromide (see the chapter opening vignette) from succinic acid,<br />

2-bromoethanol, and trimethylamine<br />

Answers:<br />

(a)<br />

(b)<br />

HO(CH 2) 10OH 2HBr Br(CH 2) 10Br 2N(CH 3) 3 H3C N<br />

HOOC<br />

2N(CH 3) 3<br />

COOH<br />

2BrCH 2CH 2OH<br />

O O<br />

CH 3<br />

CH 3<br />

(CH3) 3N(CH2) 2OC(CH2) 2CO(CH2) 2N(CH3) 3 2Br<br />

(CH 2) 10N<br />

CH 3<br />

CH 3<br />

O O<br />

2Br<br />

CH 3<br />

Br(CH 2) 2OC(CH 2) 2CO(CH 2) 2Br


20.36 A commercial synthesis of folic acid consists of heating the following three compounds with<br />

aqueous sodium bicarbonate. Propose reasonable mechanisms <strong>for</strong> the reactions that lead to folic<br />

acid.<br />

Answers:<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

N<br />

OH<br />

H2N<br />

N<br />

OH<br />

N<br />

NH 2<br />

NH 2<br />

N<br />

N<br />

+<br />

N<br />

OH<br />

Br<br />

O<br />

NH2<br />

NH2<br />

Br<br />

Br<br />

+<br />

O<br />

CHBr 2CCH 2Br<br />

H 2N<br />

COOH<br />

+ H 2N CONHCHCH 2CH 2COOH<br />

HCO 3,H 2O<br />

Folic acid (~10%)<br />

N<br />

N<br />

OH<br />

NH 2<br />

H<br />

N CONHCHCH 2CH 2COOH<br />

COOH<br />

20.37 When compound W(C15H17N) is treated with benzenesulfonyl chloride and aqueous<br />

potassium hydroxide, no apparent change occurs. Acidification of this <strong>mixture</strong> gives a clear<br />

solution. The 1 H NMR spectrum of W is shown in Fig.20.7. Propose a structure <strong>for</strong> W.<br />

Answer:<br />

N<br />

N-benzyl-N-ethylaniline<br />

20.38 Propose structures <strong>for</strong> compounds X, Y, and Z.<br />

X(C 7H 7Br) NaCN<br />

Y(C 8H 7N) LiAlH 4<br />

Z(C 8H 11N)<br />

The 1 H NMR spectrum of X gives two signals, a multiplet at δ7.3(5H) and a singlet at δ<br />

4.25(2H); the 680-840-cm -1 region of the IR spectrum of Y is similar to that of X: multiplet at δ<br />

7.3(5H), singlet at δ3.7(2H). The 1 H NMR spectrum of Z is shown in Fig.20.8.<br />

Answer:<br />

X<br />

Br<br />

; Y<br />

CN<br />

; Z<br />

N<br />

Br<br />

Br<br />

Br<br />

NH 2<br />

H 2N<br />

.<br />

H 2N<br />

N<br />

N<br />

N<br />

OH<br />

N<br />

OH<br />

H<br />

N<br />

N<br />

N<br />

N<br />

HCO 3 -<br />

Br<br />

Br<br />

Br


20.39 Using reactions that we have studied in this chapter, propose a mechanism that accounts <strong>for</strong><br />

the following reaction:<br />

O<br />

Answer:<br />

O<br />

CH2CH2CN<br />

CH2CH2CN<br />

H 2,Pd<br />

H 2,Pd<br />

20.40 Give structures <strong>for</strong> compounds R-W:<br />

O<br />

H<br />

N<br />

-H 2 O<br />

N - Methylpiperidine + CH 3I R(C 7H 16NI) Ag 2O<br />

H 2O<br />

T(C 7H 15N)<br />

Answer:<br />

R:<br />

U:<br />

N I<br />

N I<br />

CH 3I<br />

U(C 8H 19NO)<br />

S:<br />

V:<br />

H<br />

Ag 2O<br />

H 2O<br />

N OH<br />

N OH<br />

V(C 8H 19NO)<br />

T:<br />

N<br />

H<br />

N<br />

H 2,Pd<br />

S(C 7H 17NO)<br />

heat W(C 5H 8+H 2O+(CH 3) 3N)<br />

20.41 Compound A (C10H15N) is soluble in dilute HCl. The IR absorption spectrum shows two<br />

bands in the 3300-3500cm -1 region. The broadband proton-decoupled 13 C spectrum of A is given<br />

in Fig. 20.9. Propose a structure <strong>for</strong> A.<br />

Answer:<br />

W:<br />

N<br />

H<br />

N


H 3CH 2C<br />

NH 2<br />

CH 2CH 3<br />

20.42 Compound B, an isomer of (Problem 20.41), is also soluble in dilute HCl. The IR<br />

spectrum of B shows no bands in the 3300-3500 cm -1 region. The broadband proton-decoupled<br />

13<br />

C spectrum of B is given in Fig. 20.9. Propose a structure <strong>for</strong> B.<br />

Answer:<br />

H 3CH 2C<br />

N<br />

CH 2CH 3<br />

20.43 Compound C (C9H11NO) gives a positive Tollens’ test and is soluble in dilute HCl. The IR<br />

spectrum of C shows a strong band near 1695 cm -1 but shows no bands in the 3300-3500 cm -1<br />

region. The broadband proton-decoupled 13 C NMR spectrum of C is shown in Fig. 20.9. Propose a<br />

structure <strong>for</strong> C.<br />

Answer:<br />

CHO<br />

N<br />

H3C CH3 20.44 <strong>Outline</strong> a synthesis of acetylcholine iodide using as organic starting materials:<br />

dimethylamine, oxirane, and acetyl chloride.


H 3C N<br />

Answer:<br />

H 3C<br />

H<br />

N<br />

CH3<br />

CH3<br />

H 2<br />

C<br />

I<br />

H 2<br />

C O<br />

Acetylcholine iodide<br />

CH 3<br />

H 2C<br />

O<br />

O<br />

C<br />

CH2 H 3C N<br />

CH 3I<br />

CH3<br />

CH3<br />

H 3C N<br />

CH3<br />

CH3<br />

CH3COCl CH2CH2OH H3C N<br />

CH2CH2O<br />

I<br />

O<br />

C<br />

CH3<br />

CH3<br />

CH2CH2O<br />

20.45 Ethanolamine, HOCH2CH2NH2, and diethanolamine, (OHCH2CH2)2NH, are used<br />

commercially to <strong>for</strong>m emulsifying agents and to absorb acidic gases. Propose syntheses of these<br />

two compounds.<br />

Answer:<br />

O<br />

+ NH HOCH 3 2CH2NH2 O<br />

+ HOCH2CH2NH2 (HOCH2CH2) 2NH<br />

20.46 Diethylpropion (see the following structure) is a compound used in the treatment of<br />

anorexia. Propose a synthesis of diethylpropion starting with benzene and using any other needed<br />

reagents.<br />

Answer:<br />

O<br />

C<br />

CH3


NH(C 2H 5) 2<br />

CH 3CH 2COCl<br />

AlCl 3<br />

O<br />

O<br />

N(C2H5)2<br />

CH 2CH 3<br />

Br 2<br />

O<br />

CHCH 3<br />

20.47 Suggest an experiment to test the proposition that the Hofmann reaction is an intramolecular<br />

rearrangenment, i.e.,one in which the migrating R group never fully separates from the amide<br />

molecule.<br />

A:<br />

C 6H 5H 2C<br />

O<br />

CNH2<br />

Br 2, NaOH, H 2O<br />

C6H5H2C<br />

H3C H<br />

H3C<br />

H<br />

From the example above, the R group migrates to nitrogen with its electrons, but without<br />

inversion.<br />

20.48 Using as starting materials propanoic acid, aniline, and 2-naphthol, propose a synthesis of<br />

naproanilide, a herbicide used in rice paddies in the Orient.<br />

OH<br />

O<br />

OH<br />

Cl 2<br />

P<br />

Cl<br />

Cl<br />

O<br />

O<br />

Cl<br />

NH 2<br />

20.49 When phenyl is isothiocyanate, C6H5N=C=S, is reduced with lithium aluminum hydride,<br />

the product <strong>for</strong>med has these spectral data:<br />

MS (m/z): 107, 106<br />

IR (cm -1 ): 3330(sharp), 3050, 2815, 760, 700<br />

1<br />

H NMR (δ ): 2.7(s), 3.5(board), 6.6(m), 7.2(t)<br />

13<br />

C NMR (δ ): 30(CH2), 112(CH), 117(CH), 129(CH2), 150(C)<br />

(a) What is the structure of the product?<br />

(b) What is the structure that account <strong>for</strong> the 106m/z peak and how is it <strong>for</strong>med? (It is an iminium<br />

O<br />

O<br />

Cl<br />

N<br />

H<br />

H<br />

N<br />

NH 2<br />

Br


ion.)<br />

Answer:<br />

(a)<br />

(b)<br />

H<br />

N<br />

H<br />

N<br />

CH 3<br />

CH 3<br />

-e -<br />

H<br />

Ph N CH2<br />

H<br />

m / z 107<br />

- H 2O<br />

Ph N CH2<br />

H<br />

m / z 106<br />

*20.50 When N,N’-diphenylurea (A) is reacted with tosyl chloride in pyridine, it yields product B.<br />

H<br />

N<br />

O<br />

A<br />

H<br />

N<br />

The spectral data <strong>for</strong> B include:<br />

MS (m/z): 194 (M + )<br />

IR (cm -1 ): 3060, 2130, 1590, 1490, 760, 700<br />

1<br />

H NMR (δ): only 6.9-7.4 (m)<br />

13<br />

C NMR (δ): 122 (CH), 127 (CH), 130 (CH), 149 (C), and 163 (C)<br />

(a) What is the structure of B?<br />

(b) Write a mechanism <strong>for</strong> <strong>for</strong>mation of B.<br />

Answer:<br />

N C N


H<br />

N<br />

O<br />

A<br />

H<br />

N<br />

H<br />

N N<br />

OH<br />

N C N<br />

20.51 Propose a mechanism that can explain occurrence of this reaction:<br />

N<br />

O<br />

Answer:<br />

N<br />

O<br />

COOH<br />

COOH<br />

N<br />

O<br />

+<br />

H<br />

O O O<br />

N<br />

O<br />

COOH<br />

O<br />

O<br />

N<br />

O<br />

O<br />

H<br />

C<br />

COOH O O O<br />

O<br />

O<br />

+<br />

CH3<br />

N<br />

O<br />

O<br />

C<br />

O<br />

N<br />

O<br />

O O<br />

O<br />

O<br />

H<br />

TsCl<br />

N<br />

O<br />

O<br />

O<br />

CH 3<br />

H<br />

N N<br />

N<br />

OTs<br />

C<br />

COOH<br />

O<br />

O O<br />

20.52 When acetone is treated with anhydrous ammonia in the presence of anhydrous calcium<br />

chloride (a common drying agent), crystalline product C is obtained on concentration of the<br />

organic liquid phase of the reaction <strong>mixture</strong>.<br />

These are spectral data <strong>for</strong> product C:<br />

MS (m/z): 155 (M + ·), 140<br />

IR (cm -1 ): 3350 (sharp), 2850-2960, 1705<br />

1<br />

H NMR (δ): 2.3 (s, 4H), 1.7 (1H; disappears in D2O), and 1.2 (s, 12H)<br />

(a) What is the structure of C?<br />

N<br />

O<br />

O<br />

C<br />

O<br />

H<br />

N<br />

O<br />

H<br />

O


(b) Propose a mechanism <strong>for</strong> <strong>for</strong>mation of C.<br />

Answer:<br />

HN O<br />

OH<br />

NH<br />

O<br />

NH2<br />

O<br />

CH3<br />

N<br />

CH 3<br />

O<br />

N<br />

CH 2<br />

OH<br />

HN O

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!