25.03.2013 Views

QUASARs and Rotating Black Holes - Landessternwarte Heidelberg ...

QUASARs and Rotating Black Holes - Landessternwarte Heidelberg ...

QUASARs and Rotating Black Holes - Landessternwarte Heidelberg ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>QUASARs</strong><br />

<strong>and</strong><br />

<strong>Rotating</strong> <strong>Black</strong> <strong>Holes</strong><br />

Max Camenzind<br />

L<strong>and</strong>essternwarte Königstuhl<br />

<strong>Heidelberg</strong> 2002


Contents<br />

• Quasars as cosmological objects<br />

Æ pre-Quasar era: 1908 – 1960<br />

Æ Quasar era: 1963 – 2000<br />

Æ post-Quasar era: 2000 - ….. (> 100 000)<br />

• Quasars are broad b<strong>and</strong> emitters<br />

Æ accretion, dust <strong>and</strong> hot ion tori !<br />

• Models for Quasars: > 8 parameters !<br />

Æ r < 100 pc in Spirals, r < 1 kpc in Es/S0s<br />

• Quasar search: 2dF, SDSS, ….<br />

• Jetty Quasars: interesting minority …


5 Lectures on Quasars<br />

• Active Quasars: definition, taxonomy, history,<br />

spectra <strong>and</strong> global models Æ Friedmanology;<br />

• Quasar Remnants: Remnants in centers of<br />

galaxies, correlations, galaxy types, examples<br />

Æ Spheroidal structure of galaxies;<br />

• Jetty Quasars: Jets <strong>and</strong> radio galaxies, jet<br />

speeds, plasma, synchrotron <strong>and</strong> IC emission<br />

Æ Kerr <strong>Black</strong> Hole at the very center;<br />

• Hidden Quasars: Type I <strong>and</strong> II, dust, X-rays;<br />

• Early Quasars: from the first stars to z=5<br />

Æ <strong>Black</strong> <strong>Holes</strong> <strong>and</strong> Gamma-Ray Bursters


Astronomical Object Type<br />

• Quasar st<strong>and</strong>s nowadays as a synonyme for Active<br />

Galactic Nuclei Æ Galaxies are „dead Quasars“;<br />

• Æ central activity in a galaxy not related to stars:<br />

• (i) Luminous UV-emission from a compact core in<br />

the nucleus of the galaxy – in quasars only the core<br />

is visible (stellar like appearance) Æ UV Excess<br />

• (ii) strongly broadened emission lines Æ Surveys<br />

• (iii) time variability (> hours);<br />

• (iv) compact radio core (Sag A*);<br />

• (v) X-ray, gamma-ray <strong>and</strong> TeV emission.<br />

• In bright quasars, the radiation from a region<br />

comparable to the solar system is several hundred<br />

times brighter than the galaxy emission.


Pre-Quasar Era<br />

• 1908: emission lines from NGC 1068 (E. Fath,<br />

Lick Obs.; V.M. Slipher, Lowell);<br />

• 1913: detection of the „jet“ in M 87 (Curtis);<br />

• 1916: Schwarzschild metric – but no astronomical<br />

relevance seen at that time !<br />

• 1926: Andromeda is extragalactic, <strong>and</strong><br />

1930: Universe of galaxies exp<strong>and</strong>s (Hubble) –<br />

but not aware of Friedman solution !<br />

• 1943: new examples of emission line galaxies<br />

(Carl Seyfert) Æ Seyfert galaxies: NGC 4151,<br />

NGC 4051, NGC 1275, NGC 3516, NGC 7469;<br />

• 1959: Seyfert activity takes about 100 Mio years<br />

(Woltjer), since 1% of all spirals are active.


Messier 87<br />

1913 – 2002<br />

Anatomy of a<br />

Dead Quasar


Radio Surveys Æ Quasar Era<br />

• 3CR catalog (178 MHz, Bennett 1961) down to<br />

a limiting flux of 9 Jy (1 Jy = 10 -26 W m -2 Hz -1 );<br />

• PKS survey on the southern hemisphere (408<br />

MHz, Ekers 1969) down to 4 Jy; later at 1410<br />

MHz (1 Jy) <strong>and</strong> 2650 MHz (0.3 Jy);<br />

• More sensitive 4C survey down to 1 Jy (1965);<br />

• Ohio survey: very luminous sources (OH 471);<br />

• 3C 48, 3C 273 first identified sources (1963).<br />

• Later it turned out that only a minority is RL !


The quasar 3C 273


SDSS<br />

z = 0.2<br />

SDSS<br />

z = 0.5


SDSS<br />

z = 2.05<br />

SDSS<br />

z = 4.96


High<br />

Redshift<br />

Quasars<br />

(SDSS,<br />

NGST)


Historical Interlude<br />

• 1963: Maarten Schmidt 3C 48, 3C 273;<br />

• 1963: Roy Kerr finds <strong>Black</strong> Hole solution (PRL) !<br />

• 1960s – 1970s: hundreds of QSOs detected;<br />

• 1978: Einstein Observatory launched by NASA –<br />

first imaging X-ray satellite<br />

Æ Seyfert galaxies <strong>and</strong> QSOs are X emitters;<br />

• Æ 2002 Nobel Prize: R. Giacconi;<br />

• 1980s: Radio galaxies <strong>and</strong> Quasars are mapped<br />

with VLA <strong>and</strong> MERLIN Æ DRAGN Homepage !<br />

• 1990s: Compton Gamma Ray Observatory<br />

Æ some Quasars are high energy emitters.<br />

• > 1990: <strong>Black</strong> Hole Remnants are detected in<br />

nearby galaxies: M 87, M 31, Sag A*, … Æ ~ 40<br />

• 2001: Highest redshift for a Quasar: z = 6.25


Global Continua of Quasars<br />

• Energetisation by accretion from the parsecscale<br />

onto the central <strong>Black</strong> Hole, emitted<br />

mainly in the optical-UV-sX spectral region;<br />

• Thermal emission from dust distributed on<br />

the scale from a few parsecs to hundreds of<br />

parsecs in the bulge of the host galaxies,<br />

emitted at wavelengths from 500 µm to a few<br />

µm (ISO data for bright PG Quasars, see<br />

Haas et al. 2000, A&A 354, 453; 2002);<br />

• Hard X-emission from the inner torus around<br />

the <strong>Black</strong> Hole (ASCA, Ch<strong>and</strong>ra, XMM).


X-Rays


------- ~ 10 pc -------- >


<strong>Black</strong> Hole<br />

Paradigm<br />

Popular Model, but wrong !<br />

Å pc Æ


My favourite<br />

Quasar<br />

Model<br />

Å kpc Æ<br />

giant Elliptical<br />

Dust heated<br />

by central Quasar<br />

M_H = 10^9 M_S<br />

Scattered UV light


Parameters of Quasars<br />

• Mass <strong>and</strong> Radius of central stellar Bulge<br />

(radii < 1 kpc);<br />

• Mass <strong>and</strong> velocity profiles of gas <strong>and</strong> dust in<br />

Bulge (turbulent + rotation);<br />

• Mass of <strong>Black</strong> Hole M H;<br />

• Angular momentum of <strong>Black</strong> Hole J H;<br />

• Accretion rate towards <strong>Black</strong> Hole<br />

Æ Relative accretion modulo mass important;<br />

• Inclination angle with respect to line of sight;<br />

• Magnetic fields in Bulge region.<br />

• Æ Relative accretion rate determines the<br />

physical state of the bulge !


Quasar Samples<br />

• Luminous Quasars (PG) at low redshifts,<br />

120 m_B < 16 (Schmidt & Green 1983)<br />

with known radio, X-ray (ASCA), IR (IRAS,<br />

ISO) properties.<br />

• Hewitt & Burbidge (1993): m_B < 18<br />

Æ 7236 Quasars with known redshifts;<br />

• 2dF Quasar Survey (AAT): m_B < 21;<br />

2 strips 75° x 5° Æ 25‘000 Quasars<br />

expected (2002: 23‘000);<br />

• SDSS (ongoing): m_B < 22 Æ 100‘000<br />

Quasars; Æ highest redshifts z = 6.2 !


erg / s]<br />

46<br />

L_f [10<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 12<br />

10 13<br />

ISO-PHOT - Optical<br />

10 14<br />

10 15<br />

1634+706<br />

1206+459<br />

1302-102<br />

1613+658<br />

10 16<br />

f [Hz]


Mass Estimates<br />

• (i) Eddington mass (lower limit): L acc < L Edd<br />

Æ M Q > M Edd = L Edd / 0.1*c² .<br />

• Æ M Q > 10 9 M S for bright quasars;<br />

• Æ M Q > few Mio solar masses for Seyferts;<br />

• (ii) Spectral mass: UVX-bump;<br />

• (iii) Virial mass: M Q = f*R_BLR*sigma²/G;<br />

R BLR = c*tau; sigma Å V FWHM of BLR;<br />

• Growth time under Eddington accretion:<br />

• t Ed = 40 Mio yrs (independent of mass).<br />

Æ exp(20) = 480 Mio<br />

Æ BH can grow in 500 Mio yrs to 10 9 M S !


Peterson 2000


No local<br />

Quasars !


SDSS<br />

Quasars<br />

• Preliminary<br />

analysis:<br />

• 2625 QSOs<br />

• 529 deg²<br />

• Slice 2.5 deg


2dF 2001


Result<br />

• Quasars evolve in<br />

• (i) space density;<br />

• (ii) intrinsic luminosity Æ quasars at higher<br />

redshifts are more luminous.<br />

• Æ High redshift quasars are hosted by<br />

massive galaxies (ellipticals) !<br />

• Æ Large samples of quasars which must<br />

be investigated in UVX-bump, HX-ray,<br />

radio <strong>and</strong> IR properties !<br />

• Æ Cosmological consequences: clustering<br />

as a function of redshift.


Jetty Quasars<br />

• One Jansky Catalog Æ Radio Galaxies<br />

<strong>and</strong> Quasars.<br />

• Structure of 3C sources<br />

• Æ FR II sources<br />

• Æ FR I sources<br />

• Continua of RL Quasars: jet emission<br />

• Æ High redshift radio galaxies


3C 273


Jetty<br />

Quasar

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!