25.03.2013 Views

Some results on confluent hypergeometric functions _mF_m

Some results on confluent hypergeometric functions _mF_m

Some results on confluent hypergeometric functions _mF_m

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. C<strong>on</strong>temp. Math. Sciences, Vol. 7, 2012, no. 2, 95 - 101<br />

<str<strong>on</strong>g>Some</str<strong>on</strong>g> Results <strong>on</strong> C<strong>on</strong>fluent Hypergeometric<br />

Functi<strong>on</strong>s <strong>mF</strong> m<br />

S. Mubeen<br />

Nati<strong>on</strong>al College of Business Administrati<strong>on</strong> and Ec<strong>on</strong>omics<br />

Gulberg-III, Lahore, Pakistan<br />

smjhanda@gmail.com<br />

G. M. Habibullah<br />

Nati<strong>on</strong>al College of Business Administrati<strong>on</strong> and Ec<strong>on</strong>omics<br />

Gulberg-III, Lahore, Pakistan<br />

Abstract<br />

In this paper, we determine an integral representati<strong>on</strong> of generalized<br />

<strong>hypergeometric</strong> functi<strong>on</strong>s m+ 1Fm<br />

by using Legendre’s duplicati<strong>on</strong> formula.<br />

Moreover, we use this integral representati<strong>on</strong> to obtain some <str<strong>on</strong>g>results</str<strong>on</strong>g> <strong>on</strong><br />

generalized c<strong>on</strong>fluent <strong>hypergeometric</strong> functi<strong>on</strong>s <strong>mF</strong> m.<br />

Mathematic Subject Classificati<strong>on</strong>: 33B15, 33C15, 33C20, 33C60<br />

Keywords: Beta and Gamma Functi<strong>on</strong>s, C<strong>on</strong>fluent Hypergeometric Functi<strong>on</strong>s,<br />

Generalized Hypergeometric Functi<strong>on</strong>s, Integral Representati<strong>on</strong>s.<br />

1 Introducti<strong>on</strong><br />

Following Driver and Johnst<strong>on</strong> [1], the authors [2] have also recently determined<br />

the integral representati<strong>on</strong> of generalized c<strong>on</strong>fluent <strong>hypergeometric</strong> functi<strong>on</strong>s as<br />

⎛ b b+ 1 b+ m− 1 c c+ 1 c+ m−1<br />

⎞<br />

<strong>mF</strong>m⎜ , ,....., ; , ,....., ; z⎟<br />

⎝m m m m m m ⎠<br />

1 Γ(<br />

c)<br />

1 m<br />

b−1c−b− zt<br />

=<br />

t ( 1−<br />

t) e dt<br />

Γ( b) Γ( c−b) ∫ ,<br />

0<br />

where Re( c) Re( b) 0, m Z +<br />

> > ∈ .


96 S. Mubeen and G. M. Habibullah<br />

We shall use later the Legendre’s duplicati<strong>on</strong> formula [3] to obtain the integral<br />

representati<strong>on</strong> of generalized <strong>hypergeometric</strong> functi<strong>on</strong>s as<br />

m<br />

Π<br />

s=<br />

1<br />

1 ⎛ s −1<br />

⎞<br />

1<br />

2( m−1) −mα<br />

2<br />

Γ ⎜α+ ⎟=<br />

( 2π)<br />

m Γ(<br />

mα)<br />

. (1.1)<br />

⎝ m ⎠<br />

2 An Integral Representati<strong>on</strong> of Generalized Hypergeometric<br />

Functi<strong>on</strong>s<br />

We begin with the proof of integral representati<strong>on</strong> for 3F 2.<br />

Re 2c− 2b ⎛ 1 1 ⎞<br />

F ⎜a, b, b+ ; c, c+ ; x⎟<br />

⎝ 2 2 ⎠<br />

> 0 , then<br />

=<br />

Γ<br />

Γ(<br />

2c)<br />

2b Γ 2c−2b 1<br />

2b−1 2c−2b−1 2<br />

−a<br />

∫t<br />

( 1−t) ( 1 −xt<br />

) dt.<br />

(2.1)<br />

Theorem 2.1: If ( )<br />

3 2<br />

( ) ( )<br />

Proof: Suppose that 1<br />

3 2<br />

0<br />

x < . Then<br />

∞ ( a) ( b) ( b+ 1<br />

2 ) k<br />

k k k x<br />

∑<br />

1<br />

k = 0 ( c) ( c+<br />

2 ) k!<br />

k k<br />

1 ( ) ∞<br />

1<br />

( 2) ( ) k ( ) ( 2)<br />

1 ( ) ( )<br />

∑<br />

b b 1<br />

k = 0 ( c k) ( c k )<br />

⎛ 1 1 ⎞<br />

F ⎜a, b, b+ ; c, c+ ; x⎟<br />

=<br />

⎝ 2 2 ⎠<br />

Γ c Γ c+ =<br />

Γ Γ + 2<br />

a Γ b+ k Γ b+ k +<br />

Γ + Γ + + 2<br />

k<br />

x<br />

.<br />

k!<br />

=<br />

Γ<br />

Γ(<br />

2c)<br />

2b Γ 2c−2b ∞ ( a) Γ ( 2b+ 2k) Γ( 2c−2b) k<br />

k<br />

x<br />

∑<br />

, by (1.1)<br />

Γ 2c+ 2 k k!<br />

( ) ( )<br />

Γ(<br />

2 )<br />

( ) ( )<br />

k = 0<br />

( )<br />

∞ ⎛1 2b 2k 1 2c−2b−1 ⎞<br />

+ −<br />

∑ ( a) ⎜ t ( 1 t<br />

k<br />

) dt⎟<br />

⎜∫ ⎟<br />

k = 0 0<br />

=<br />

Γ 2b Γ<br />

c<br />

2c−2 b<br />

⎝<br />

−<br />

x<br />

⎠<br />

k!<br />

1<br />

⎛ 2<br />

k ⎞<br />

∞<br />

Γ( 2c)<br />

( xt<br />

2b−1 2c−2b−1⎜ ) ⎟<br />

= t ( 1−t)<br />

( a) dt<br />

Γ( 2b) Γ( 2c−2 b k<br />

) ∫<br />

⎜∑ 0<br />

k = 0 k!<br />

⎟<br />

⎜ ⎟<br />

⎝ ⎠<br />

k


C<strong>on</strong>fluent <strong>hypergeometric</strong> functi<strong>on</strong>s 97<br />

Γ(<br />

2c)<br />

( 2b) ( 2c 2b)<br />

1<br />

0<br />

2c−2b−1 ( 1 ) ( 1 )<br />

2b−1 2<br />

= t −t −xt<br />

dt<br />

Γ Γ − ∫ .<br />

Theorem 2.2: If ( c b a)<br />

3 2<br />

Re 2 −2− > 0 , then<br />

⎛ 1 1 ⎞<br />

F ⎜a, b, b+ ; c, c+<br />

;1⎟<br />

⎝ 2 2 ⎠<br />

Γ( 2c) Γ( 2c−2b−a) = 2F1( a,2 b;2 c−a; −1)<br />

. (2.2)<br />

Γ 2c−a Γ 2c−2b ( ) ( )<br />

Proof: Equati<strong>on</strong> (2.1) yields that<br />

⎛ 1 1 ⎞<br />

3F2⎜a, b, b+ ; c, c+<br />

;1⎟<br />

⎝ 2 2 ⎠<br />

1<br />

Γ(<br />

2c)<br />

2b−1 2c−2b−1 2<br />

−a<br />

= t ( 1−t) ( 1−t<br />

) dt<br />

Γ 2b Γ 2c−2b ∫<br />

( ) ( )<br />

Γ(<br />

2c)<br />

( 2b) ( 2c 2b)<br />

0<br />

1<br />

2 2 1<br />

( 1 ) ( 1 )<br />

2b−1 c− b−a− −a<br />

= t − t + t dt<br />

Γ Γ − ∫<br />

0<br />

1<br />

Γ( 2c)<br />

2b−1( 1<br />

Γ( 2b) Γ( 2c−2b) ∫<br />

0<br />

∞<br />

2c−2b−a−1 ⎛−a⎞ j1<br />

) ∑ j j ⎝ 1 ⎠<br />

1<br />

Γ( 2c)<br />

∞ 1<br />

⎛−a⎞ 2b+ j −1<br />

2c−2b−a−1 = t −t ⎜ ⎟t<br />

dt<br />

∑ ∫<br />

( 1 )<br />

= ⎜<br />

( 2 ) ( 2 2 ) j<br />

⎟ −<br />

Γ b Γ c− b j 1<br />

1=<br />

0⎝ ⎠0<br />

∞<br />

Γ( 2c) ⎛−a⎞Γ 2b+ j1Γ 2c−2b−a =<br />

( 2b) ( 2c 2b) ∑ ⎜<br />

j<br />

⎟<br />

Γ Γ − ⎝ 1 ⎠ Γ( 2c−<br />

a+ j1)<br />

j = 0<br />

( c) ( c b a)<br />

( ) ( )<br />

( 2 ) ( 2 2 )<br />

( 2c a) ( 2c 2b)<br />

1<br />

1 t t dt<br />

( ) ( )<br />

( a) ( 2b)<br />

( )<br />

j = 0<br />

j<br />

1 1<br />

( ) 1 j<br />

Γ 2 Γ 2 −2 − j 1<br />

1 j − 1<br />

= ∑<br />

Γ 2c−a Γ 2c−2b 2 c−a j !<br />

Γ c Γ c− b−a = 2F1 a b c−a −<br />

Γ − Γ −<br />

Corollary 2.3: If ( )<br />

∞<br />

1<br />

( ,2 ;2 ; 1)<br />

Re 2c 2b n 0, n Z ,<br />

+<br />

− + > ∈ then<br />

⎛ 1 1 ⎞ ( 2c−2b) n<br />

F⎜− nbb , , + ; cc , + ;1 ⎟=<br />

⎝ 2 2 ⎠ 2c<br />

F − n,2 b;2 c+ n;<br />

−1<br />

( )<br />

3 2 2 1<br />

n<br />

.<br />

( )<br />

. (2.3)


98 S. Mubeen and G. M. Habibullah<br />

Theorem 2.4: If ( c b a)<br />

4 3<br />

Re 3 −3− > 0 , then<br />

⎛ 1 2 1 2 ⎞<br />

F ⎜a, b, b+ , b+ ; c, c+ , c+<br />

;1⎟<br />

⎝ 3 3 3 3 ⎠<br />

( 3c) ( 3c ∞<br />

( 3c 3b<br />

a)<br />

−a<br />

( 3b)<br />

j1<br />

) ( 3 3 ) ∑<br />

a c b j j 1 ( )<br />

1= 0⎝<br />

⎠ 3c<br />

a<br />

j1<br />

× F ( − j b+ j c− a+ j − )<br />

Γ Γ − − ⎛ ⎞<br />

= ⎜ ⎟<br />

Γ − Γ − −<br />

Corollary 2.5: If ( c b n)<br />

4 3<br />

,3 ;3 ; 1 .<br />

2 1 1 1 1<br />

Re 3 − 3 + > 0 , then<br />

. (2.4)<br />

⎛ 1 2 1 2 ⎞<br />

F ⎜− n, b, b+ , b+ ; c, c+ , c+<br />

;1⎟<br />

⎝ 3 3 3 3 ⎠<br />

( 3c−3b n ) ( 3 )<br />

n ⎛ n ⎞ b<br />

j1<br />

=<br />

( ) ∑ ⎜<br />

3 j<br />

⎟<br />

c ⎝ 1 ⎠(<br />

3c+<br />

n)<br />

2F1 − j1,3 b+ j1;3 c+ n+ j1;<br />

−1<br />

n j = 0<br />

j<br />

1 1<br />

( )<br />

Similar technique leads to the following generalizati<strong>on</strong> of 2.1<br />

Theorem 2.6: If Re( mc − mb)<br />

> 0 , then<br />

⎛ 1 m−1 1 m−1<br />

⎞<br />

m+ 1Fm⎜a,<br />

b, b+ ,..., b+ ; c, c+ ,..., c+ ; x⎟<br />

⎝ m m m m ⎠<br />

1<br />

Γ(<br />

mc)<br />

mb−1 mc−mb−1 m<br />

−a<br />

= t ( 1−t) ( 1 −xt<br />

) dt.<br />

Γ mb Γ mc −mb ∫<br />

( ) ( )<br />

Theorem 2.7: If ( mc mb a)<br />

m+ 1 m<br />

Re − − > 0 , then<br />

⎛ 1 m−1 1 m−1<br />

⎞<br />

F ⎜abb , , + ,..., b+ ; cc , + ,..., c+<br />

;1<br />

m m m m<br />

⎟<br />

⎝ ⎠<br />

Γ( mc) Γ( mc −mb −a)<br />

=<br />

Γ mc −aΓ mc −mb<br />

( ) ( )<br />

0<br />

r−3<br />

⎧ ⎛ ⎞<br />

∞<br />

j<br />

mb j<br />

3<br />

s<br />

a ( mb<br />

m r−<br />

⎜ +<br />

)<br />

j<br />

∑<br />

⎫<br />

⎟<br />

⎛−⎞ j ⎪ ⎛ 1 r−3<br />

⎞ ⎝ s=<br />

1 ⎠j<br />

⎪ r−2<br />

× ∑⎜ ( mc a)<br />

r 3<br />

j<br />

⎟ − ∏ ⎨ ∑ ⎜ −<br />

j<br />

j 1 1<br />

j<br />

⎟⎛<br />

⎞ ⎬<br />

2<br />

1= 0⎝ ⎠ r=<br />

4 ⎪jr2 0 r− mc− a+ j<br />

− = ⎝ ⎠⎜<br />

∑ s ⎟ ⎪<br />

⎩ ⎝ s= 1 ⎠jr−2⎭<br />

⎛ m−2 m−2<br />

⎞<br />

× 2F1⎜− jm−2, mb+ jk; mc− a+ jk;<br />

−1<br />

.<br />

⎜ ⎟<br />

⎝ k= 1 k=<br />

1 ⎠<br />

Re mc mb n 0, n Z ,<br />

+<br />

− + > ∈ , then<br />

. (2.5)<br />

(2.6)<br />

∑ ∑ (2.7)<br />

Corollary 2.8: If ( )


C<strong>on</strong>fluent <strong>hypergeometric</strong> functi<strong>on</strong>s 99<br />

F<br />

m+ 1 m<br />

⎛ 1 m−1 1 m−1<br />

⎞<br />

⎜− nbb , , + ,..., b+ ; cc , + ,..., c+<br />

;1<br />

m m m m<br />

⎟<br />

⎝ ⎠<br />

( mc − mb)<br />

n<br />

=<br />

mc<br />

( )<br />

n<br />

r−3<br />

⎧ ⎛ ⎞<br />

n<br />

j<br />

mb j<br />

3<br />

s<br />

n ( mb<br />

m r−<br />

⎜ +<br />

)<br />

j<br />

∑<br />

⎫<br />

⎟<br />

⎛ ⎞ j ⎪ ⎛ 1<br />

1 r−3<br />

⎞ ⎝ s=<br />

⎠j<br />

⎪ r−2<br />

× ∑⎜ ( )<br />

r 3<br />

j<br />

⎟ mc−a ∏⎨<br />

∑ ⎜<br />

j<br />

j 1 1<br />

j<br />

⎟⎛<br />

− ⎞ ⎬<br />

2<br />

1= 0⎝ ⎠ r=<br />

4 ⎪jr2 0 r mc n j<br />

− = ⎝ − ⎠⎜<br />

+ + ∑ s ⎟ ⎪<br />

⎩ ⎝ s= 1 ⎠jr−2⎭<br />

⎛ m−2 m−2<br />

⎞<br />

× 2F1⎜− jm−2, mb+ jk; mc+ n+ jk;<br />

−1<br />

. (2.8)<br />

⎜ ∑ ∑ ⎟<br />

⎝ k= 1 k=<br />

1 ⎠<br />

3 C<strong>on</strong>sequential Results <strong>on</strong> C<strong>on</strong>fluent Hypergeometric<br />

Functi<strong>on</strong>s<br />

Result 3.1:<br />

1 1<br />

⎛ ⎞<br />

−x e 2F2 ⎜b, b+ ; c, c+ ,; x<br />

⎜<br />

⎟<br />

2 2 ⎟<br />

⎝ ⎠<br />

1<br />

⎛ ∞ ∞ ( ) ( ) ( ) k<br />

−x<br />

⎞⎛<br />

b b+<br />

k 2 k x<br />

⎞<br />

= ⎜ ⎜ ⎟<br />

⎜∑ ⎟<br />

1<br />

n= 0 n! ⎟ ∑<br />

⎝ ⎠⎜k= 0( c) ( c+<br />

2 ) k!<br />

⎟<br />

⎝ k k ⎠<br />

=<br />

∞<br />

∑∑<br />

−<br />

( − )<br />

( )<br />

( b) ( b+<br />

1<br />

2 )<br />

1 ( c) ( c )<br />

n n k<br />

k<br />

x k k x<br />

n− k ! + k!<br />

n= 0k= 0 k 2 k<br />

∞<br />

3 2<br />

n=<br />

0<br />

( −x)<br />

⎛ 1 1 ⎞<br />

= ∑ F⎜− nbb , , + ; cc , + ;1⎟<br />

⎝ 2 2 ⎠ n!<br />

( 2 2 )<br />

( )<br />

n= 0 n<br />

It thus follows that<br />

( )<br />

( ,2 ;2 ; 1)<br />

∞ c−b n<br />

−x<br />

= ∑<br />

2F1 − n b c+ n −<br />

2 c n!<br />

1 1<br />

( 2 2 )<br />

( )<br />

∞<br />

x n<br />

2 2 ⎜<br />

⎟<br />

2 1<br />

n= 0 n<br />

n<br />

n<br />

.<br />

( )<br />

( )<br />

⎛ ⎞ c−b −x<br />

F b, b+ ; c, c+ ,; x = e F − n,2 b;2 c+ n;<br />

−1<br />

.<br />

⎝ 2 2 ⎠ 2 c n!<br />

∑<br />

n


100 S. Mubeen and G. M. Habibullah<br />

Result 3.2:<br />

−x ⎛ 1 2 1 2 ⎞<br />

e 3F3⎜b, b+ , b+ ; c, c+ , c+ ; x⎟<br />

⎝ 3 3 3 3 ⎠<br />

⎛ ∞ n ∞<br />

1 2<br />

( ) ( ) ( ) ( ) k<br />

−x<br />

⎞ ⎛ b b+ b+<br />

k 3 k 3 k x<br />

⎞<br />

= ⎜ ⎟⎜<br />

⎟<br />

⎜∑ 1 2<br />

n 0 n! ⎟⎜∑ = k= 0( c) ( c 3) ( c 3)<br />

k!<br />

⎟<br />

⎝ ⎠⎝<br />

+ +<br />

k k k ⎠<br />

∞ n ⎛( − n) ( b) ( b+ 1) ( b+ 2<br />

3 3)<br />

1<br />

⎞ n<br />

k k k k ( −x)<br />

= ∑∑ ⎜ ⎟<br />

1 2<br />

n= 0k= 0⎜ ( c) ( c+ 3) ( c+<br />

3)<br />

k! ⎟ n!<br />

⎝ k k k ⎠<br />

∞<br />

⎛ 1 2 1 2 ⎞ −x<br />

= ∑ 4F3⎜− n, b, b+ , b+ ; c, c+ , c+<br />

;1⎟<br />

n=<br />

0 ⎝ 3 3 3 3 ⎠ n!<br />

∞ ( 3c−3b n ) ( 3 )<br />

n ⎛ n ⎞ b<br />

j1<br />

= ∑ ( 3c) ∑⎜<br />

j<br />

⎟<br />

⎝ 1 ⎠(<br />

3c+<br />

n)<br />

Hence, it follows that<br />

3 3<br />

n= 0 n j = 0<br />

j<br />

1 1<br />

( −x)<br />

( )<br />

( )<br />

× 2F1 − j1,3 b+ j1;3 c+ n+ j1;<br />

−1<br />

, by 2.6.<br />

n!<br />

⎛ 1 2 1 2 ⎞<br />

F ⎜b, b+ , b+ ; c, c+ , c+ ; x⎟<br />

⎝ 3 3 3 3 ⎠<br />

∞ ( 3 3 n<br />

x c−b) n ⎛ n ⎞<br />

= e ∑ ( 3c) ∑⎜<br />

j<br />

⎟<br />

⎝ ⎠ 3c<br />

n<br />

We Generalize 3.1 and 3.2 as<br />

( 3b)<br />

j1<br />

( + )<br />

n= 0 n j = 0 1<br />

j<br />

1 1<br />

( −x)<br />

( )<br />

× 2F1 − j1,3 b+ j1;3 c+ n+ j1;<br />

−1<br />

.<br />

n!<br />

Result 3.3: For m > 3 , we have<br />

−x ⎛ 1 m−1 1 m−1<br />

⎞<br />

e <strong>mF</strong>m⎜b, b+ ,..., b+ ; c, c+ ,..., c+ ; x⎟<br />

⎝ m m m m ⎠<br />

( ) ( b) ( b 1 ) ... ( b m−1 ⎛ ∞ ∞<br />

) k<br />

−x<br />

⎞⎛<br />

+ +<br />

k m k m k x<br />

⎞<br />

= ⎜ ⎜ ⎟<br />

⎜∑ ⎟<br />

1<br />

1<br />

0 ! 0(<br />

) ( ) ... m<br />

n n ⎟ ∑<br />

k c c ( c −<br />

⎝ = ⎠⎜ = + + ) k!<br />

⎟<br />

⎝ k m k m k ⎠<br />

n<br />

n<br />

n


C<strong>on</strong>fluent <strong>hypergeometric</strong> functi<strong>on</strong>s 101<br />

=<br />

∞<br />

∑∑<br />

−<br />

( − )<br />

( )<br />

( b) ( b+ 1 ) ... ( b+<br />

m−1<br />

m m )<br />

1<br />

1<br />

( c) ( c ) ... m ( c − )<br />

n n k<br />

k<br />

x k k k x<br />

n− k ! + + k!<br />

n= 0k= 0<br />

k m k m k<br />

∞<br />

m+ 1 m<br />

n=<br />

0<br />

( −x)<br />

⎛ 1 m−1 1 m−1<br />

⎞<br />

= ∑ F ⎜− n, b, b+ ,..., b+ ; c, c+ ,..., c+<br />

;1⎟<br />

⎝ m m m m ⎠ n!<br />

So that<br />

⎛ 1 m−1 1 m−1<br />

⎞<br />

F ⎜b, b+ ,..., b+ ; c, c+ ,..., c+ ; x⎟<br />

⎝ m m m m ⎠<br />

∞<br />

n<br />

x ( mc − mb) ( mb)<br />

n ⎛ n ⎞ j1<br />

= e ∑ ( ) ∑⎜<br />

mc j<br />

⎟(<br />

mc−a ) j ⎝ 1 ⎠<br />

1<br />

m m<br />

References<br />

m<br />

∏<br />

n= 0 n j = 0<br />

1<br />

r−3<br />

⎧ ⎛ ⎞<br />

j<br />

mb j<br />

r−3<br />

⎜ + s<br />

j<br />

∑<br />

⎫<br />

⎟<br />

⎪ ⎛ r−3<br />

⎞ ⎝ s= 1 ⎠j⎪<br />

r−2<br />

∑ ⎜ r−3<br />

j<br />

⎟⎛<br />

⎞<br />

⎪j2 r 2 0 r− mc+ n+ j<br />

− = ⎝ ⎠ ∑ s ⎪<br />

⎝ s= 1 ⎠jr−2<br />

× ⎨ ⎬<br />

r=<br />

4<br />

⎜ ⎟<br />

⎩ ⎭<br />

( x)<br />

⎛ m−2 m−2<br />

⎞ −<br />

2F1 ⎜<br />

jm−2 mb ∑ jk mc n ∑ jk<br />

⎟<br />

k= 1 k=<br />

1<br />

× − , + ; + + ; −1<br />

.<br />

⎝ ⎠ n!<br />

[1] K. A. Driver and S. J. Johnst<strong>on</strong>, An integral representati<strong>on</strong> of some<br />

<strong>hypergeometric</strong> functi<strong>on</strong>s, Electr<strong>on</strong>ic Transacti<strong>on</strong>s <strong>on</strong> Numerical Analysis,<br />

25(2006), 115-120.<br />

[2] G. M. Habibullah and S. Mubeen, p<br />

L − bounded operators involving<br />

generalized <strong>hypergeometric</strong> functi<strong>on</strong>s, Integral Transforms and Special<br />

Functi<strong>on</strong>s, Vol. 22(2), 143-149.<br />

[3] E. D. Rainville, Special Functi<strong>on</strong>s, The Macmillan Company, New York,<br />

1960.<br />

Received: June, 2011<br />

n<br />

n<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!