04.11.2013 Views

Characterizations of the Isometries and Construction of the Orbits in ...

Characterizations of the Isometries and Construction of the Orbits in ...

Characterizations of the Isometries and Construction of the Orbits in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

International Ma<strong>the</strong>matical Forum, 2, 2007, no. 23, 1129 - 1140<br />

<strong>Characterizations</strong> <strong>of</strong> <strong>the</strong> <strong>Isometries</strong> <strong>and</strong><br />

<strong>Construction</strong> <strong>of</strong> <strong>the</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> Hyperbolic Plane<br />

Dom<strong>in</strong>go Gámez<br />

Dpt. <strong>of</strong> Applied Math.<br />

University <strong>of</strong> Granada<br />

E-18071 Granada, Spa<strong>in</strong>.<br />

dom<strong>in</strong>go@ugr.es<br />

Miguel Pasadas<br />

Dpt. <strong>of</strong> Applied Math.<br />

University <strong>of</strong> Granada<br />

E-18071 Granada, Spa<strong>in</strong>.<br />

mpasadas@ugr.es<br />

Cefer<strong>in</strong>o Ruiz<br />

Dpt. <strong>of</strong> Geometry <strong>and</strong> Topology<br />

University <strong>of</strong> Granada<br />

E-18071 Granada, Spa<strong>in</strong>.<br />

ruiz@ugr.es<br />

Abstract<br />

In this work we def<strong>in</strong>e <strong>the</strong> isometries <strong>of</strong> <strong>the</strong> hyperbolic plane from<br />

its fixed po<strong>in</strong>ts, <strong>and</strong> we characterize <strong>the</strong> orbits determ<strong>in</strong>ed by some <strong>of</strong><br />

<strong>the</strong>m as rotations with a fixed center, limit rotations with a fixed po<strong>in</strong>t<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e <strong>and</strong> translations along a l<strong>in</strong>e. These orbits are called,<br />

respectively, circumferences, horocycles <strong>and</strong> hypercycles. We illustrate<br />

an exhaustive classification <strong>of</strong> <strong>the</strong> isometries by means <strong>of</strong> <strong>the</strong> study<br />

<strong>of</strong> <strong>the</strong>ir fixed po<strong>in</strong>ts. Some methods for build<strong>in</strong>g <strong>the</strong> aforementioned<br />

orbits are determ<strong>in</strong>ed <strong>and</strong> some algorithms for <strong>the</strong>ir implementation are<br />

described. We used <strong>the</strong>se algorithms to create a package <strong>of</strong> modules for<br />

Ma<strong>the</strong>matica s<strong>of</strong>tware, called Hyperbol, for <strong>the</strong> representation <strong>of</strong> such<br />

orbits, <strong>and</strong> we solve some constructive problems related with <strong>the</strong>m.<br />

Ma<strong>the</strong>matics Subject Classification: 20H15, 51M15, 68W01, 20H10,<br />

51M10, 68A10.


1130 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

Keywords: Hyperbolic geometry, isometry, orbit, algorithms.<br />

1 Notations <strong>and</strong> Prelim<strong>in</strong>aries<br />

Let C + be <strong>the</strong> open upper half-plane C + = {z ∈ C | Imz >0} endowed with<br />

<strong>the</strong> metric ds = |dz|<br />

Imz [7]. We denote by H2 this set with such metric. The l<strong>in</strong>es<br />

<strong>in</strong> H 2 are euclidean half-circumferences centered at a po<strong>in</strong>t <strong>in</strong> <strong>the</strong> boundary<br />

<strong>of</strong> H 2 which corresponds to <strong>the</strong> parametrization: x(t) =r cos t + k 1 , y(t) =<br />

r s<strong>in</strong> t, t ∈ (0,π); <strong>and</strong> euclidean half-l<strong>in</strong>es orthogonal to that boundary with<br />

<strong>the</strong> parametrization: x(t) =k 2 ,y(t) =t, (t >0). We have, mak<strong>in</strong>g use <strong>of</strong> <strong>the</strong><br />

Moebius transformation [9], that <strong>the</strong> group <strong>of</strong> isometries <strong>of</strong> H 2 preserv<strong>in</strong>g <strong>the</strong><br />

orientation is given by<br />

{<br />

Iso + (H 2 )= g : H 2 −→ H 2 | g(z) = az + b<br />

}<br />

cz + d ; a, b, c, d ∈ R; ad − bc =1 .<br />

The isometries <strong>of</strong> H 2 not preserv<strong>in</strong>g <strong>the</strong> orientation are <strong>the</strong> composition <strong>of</strong><br />

<strong>the</strong> isometries preserv<strong>in</strong>g <strong>the</strong> orientation plus a fixed isometry that does not<br />

preserve <strong>the</strong> orientation.<br />

Usually, <strong>the</strong> reflection on <strong>the</strong> imag<strong>in</strong>ary axis h(z) = −z is used as an<br />

isometry not preserv<strong>in</strong>g <strong>the</strong> orientation, <strong>in</strong> order to obta<strong>in</strong> <strong>the</strong> isometries not<br />

preserv<strong>in</strong>g <strong>the</strong> orientation from <strong>the</strong> isometries preserv<strong>in</strong>g <strong>the</strong> orientation.<br />

We denote by Iso − (H 2 ) <strong>the</strong> set <strong>of</strong> <strong>the</strong> isometries <strong>of</strong> H 2 not preserv<strong>in</strong>g <strong>the</strong><br />

orientation given by<br />

}<br />

{g ′ : H 2 −→ H 2 | g ′ (z) = a′ z + b ′<br />

c ′ z + d ; ′ a′ ,b ′ ,c ′ ,d ′ ∈ R; a ′ d ′ − b ′ c ′ = −1 .<br />

Let D = {z ∈ C; |z| < 1}, i.e., <strong>the</strong> image <strong>of</strong> C + by <strong>the</strong> Cayley transformation<br />

f c : C + −→ D, def<strong>in</strong>ed by f c (z) = z − i<br />

z + i . By means <strong>of</strong> f c, <strong>the</strong> metric on<br />

H 2 is transformed <strong>in</strong>to ds =2<br />

|dz|<br />

2<br />

for D, <strong>and</strong> with that metric, it will be<br />

1 −|z|<br />

denoted by D 2 . We can check that [3]<br />

Iso + (D 2 )=<br />

{<br />

s : D 2 −→ D 2 | s(z) = αz + β<br />

βz + α ; α, β ∈ C, αα − ββ =1 }<br />

.<br />

The set Iso − (D 2 ) is given by<br />

{<br />

Iso − (D 2 )= t : D 2 −→ D 2 | t(z) = γz + δ<br />

}<br />

δz + γ ; γ,δ ∈ C, γγ − δδ =1 .


<strong>Isometries</strong> <strong>and</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic plane 1131<br />

2 Rotations, limit rotations, translations, reflections<br />

<strong>and</strong> glide reflections<br />

We def<strong>in</strong>e as follows <strong>the</strong> dist<strong>in</strong>ct types <strong>of</strong> isometries <strong>in</strong> H 2 <strong>and</strong> D 2 preserv<strong>in</strong>g<br />

<strong>and</strong> <strong>in</strong>vert<strong>in</strong>g <strong>the</strong> orientation.<br />

Def<strong>in</strong>ition 2.1 Consider a transformation g : H 2 → H 2 (s : D 2 → D 2 ).<br />

a) This transformation is a rotation centered at z 0 ∈ H 2 (z 0 ∈ D 2 )ifitis<br />

an isometry preserv<strong>in</strong>g <strong>the</strong> orientation <strong>and</strong> it only fixes <strong>the</strong> po<strong>in</strong>t z 0 .In<br />

this case, z 0 is called <strong>the</strong> rotation center.<br />

b) This transformation is a limit rotation centered at z 0 belong<strong>in</strong>g to <strong>the</strong><br />

<strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, if it is an isometry preserv<strong>in</strong>g <strong>the</strong> orientation <strong>and</strong> it only<br />

fixes <strong>the</strong> po<strong>in</strong>t z 0 . In this case, z 0 is called limit rotation center.<br />

c) This transformation is a translation ei<strong>the</strong>r on or with respect to a l<strong>in</strong>e<br />

l if it is an isometry that preserves <strong>the</strong> orientation <strong>and</strong> fixes two po<strong>in</strong>ts<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, which are those obta<strong>in</strong>ed as <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong><br />

<strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e with l, called <strong>the</strong> translation l<strong>in</strong>e.<br />

Def<strong>in</strong>ition 2.2 Consider a transformation g ′ : H 2 → H 2 (t : D 2 → D 2 )<br />

a) This transformation is a reflection <strong>of</strong> axis <strong>the</strong> l<strong>in</strong>e l if it is an isometry<br />

that <strong>in</strong>verts <strong>the</strong> orientation, fixes <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> l <strong>and</strong> <strong>in</strong>terchanges <strong>the</strong> two<br />

connected components <strong>of</strong> its complement.<br />

b) This transformation is a glide reflection <strong>of</strong> reflection l<strong>in</strong>e l if it is an<br />

isometry that <strong>in</strong>verts <strong>the</strong> orientation, that does not fix <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> H 2<br />

(D 2 ) <strong>and</strong> that fixes two po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, which are those obta<strong>in</strong>ed<br />

as <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> this l<strong>in</strong>e with l.<br />

By us<strong>in</strong>g <strong>the</strong> fixed po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> isometries we can carry out an exhaustive<br />

<strong>and</strong> systematical classification <strong>of</strong> <strong>the</strong>m <strong>in</strong> H 2 <strong>and</strong> D 2 from <strong>the</strong> follow<strong>in</strong>g results<br />

[2].<br />

Theorem 2.3 Let g ∈ Iso + (H 2 ) <strong>and</strong> s ∈ Iso + (D 2 ).<br />

i) g is a rotation on H 2 if <strong>and</strong> only if |a + d| < 2.<br />

ii) g is a limit rotation or <strong>the</strong> identity on H 2 if <strong>and</strong> only if |a + d| =2.<br />

iii) g is a translation on H 2 if <strong>and</strong> only if |a + d| > 2.<br />

iv) s is a rotation on D 2 if <strong>and</strong> only if |Reα| < 1.


1132 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

v) s is a limit rotation or <strong>the</strong> identity on D 2 if <strong>and</strong> only if |Reα| =1.<br />

vi) s is a translation on D 2 if <strong>and</strong> only if |Reα| > 1.<br />

Theorem 2.4 Let g ′ ∈ Iso − (H 2 ) <strong>and</strong> t ∈ Iso − (D 2 ).<br />

i) g ′ is a reflection on H 2 if <strong>and</strong> only if |a ′ + d ′ | =0.<br />

ii) g ′ is a glide reflection on H 2 if <strong>and</strong> only if |a ′ + d ′ | ≠0.<br />

iii) t is a reflection on D 2 if <strong>and</strong> only if Reδ =0.<br />

iv) t is a glide reflection on D 2 if <strong>and</strong> only if Reδ ≠0.<br />

3 <strong>Construction</strong> <strong>of</strong> <strong>the</strong> circumference<br />

Def<strong>in</strong>ition 3.1 A circumference is <strong>the</strong> set <strong>of</strong> images <strong>of</strong> a po<strong>in</strong>t Q ∈ H 2<br />

(D 2 ) by means <strong>of</strong> <strong>the</strong> reflection accord<strong>in</strong>g to all <strong>the</strong> l<strong>in</strong>es through a given po<strong>in</strong>t<br />

A ∈ H 2 (D 2 ), which is called <strong>the</strong> center <strong>of</strong> <strong>the</strong> circumference.<br />

In <strong>the</strong> circumference case, we can deduce <strong>the</strong> follow<strong>in</strong>g properties:<br />

a) The circumferences centered at A(a, b) are <strong>the</strong> orbits <strong>of</strong> <strong>the</strong> group <strong>of</strong> all<br />

elliptic isometries with a fixed po<strong>in</strong>t A (rotations with center at A).<br />

b) The circumference is a euclidean circumference conta<strong>in</strong>ed <strong>in</strong> C + (respectively<br />

D).<br />

c) A circumference is a curve orthogonal to each l<strong>in</strong>e that conta<strong>in</strong>s A.<br />

The construction <strong>of</strong> <strong>the</strong> circumference with center A(a, b) <strong>and</strong> radius R>0<br />

can be realized <strong>in</strong> H 2 <strong>and</strong> D 2 , respectively, as follows.<br />

Draw <strong>the</strong> l<strong>in</strong>e x = a, calculate <strong>the</strong> po<strong>in</strong>t C on this l<strong>in</strong>e whose second<br />

coord<strong>in</strong>ate is greater than <strong>the</strong> second coord<strong>in</strong>ate <strong>of</strong> A <strong>and</strong> whose distance to<br />

A is R, obta<strong>in</strong><strong>in</strong>g C(a, be R ) [6]. Let us consider any l<strong>in</strong>e through A, <strong>and</strong> on it<br />

we determ<strong>in</strong>e a po<strong>in</strong>t B(c, d) whose distance to A is R. F<strong>in</strong>ally, we draw <strong>the</strong><br />

euclidian mediatrix <strong>of</strong> <strong>the</strong> euclidian segment l<strong>in</strong>e BC, whose equation is<br />

y − beR + d<br />

2<br />

= a − c (<br />

x − a + c<br />

d − be R 2<br />

The <strong>in</strong>tersection <strong>of</strong> that mediatrix with x = a gives us <strong>the</strong> center E <strong>of</strong> <strong>the</strong><br />

euclidian circumference whose coord<strong>in</strong>ates are<br />

)<br />

(a, d2 − b 2 e 2R +(a − c) 2<br />

. (1)<br />

2(d − be R )<br />

)<br />

.


<strong>Isometries</strong> <strong>and</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic plane 1133<br />

Figure 1: <strong>Construction</strong> <strong>of</strong> <strong>the</strong> circumference <strong>in</strong> H 2<br />

Then, <strong>the</strong> circumference <strong>of</strong> center A <strong>and</strong> radius R is <strong>the</strong> euclidian circumference<br />

<strong>of</strong> center E <strong>and</strong> radius EC. The <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> l<strong>in</strong>e x = a <strong>and</strong><br />

<strong>the</strong> circumference is <strong>the</strong> po<strong>in</strong>ts C <strong>and</strong> C ′ =(a, be −R ) [4]. The euclidean radius<br />

<strong>of</strong> this circumference is bs<strong>in</strong>h(R). Hence, <strong>the</strong> euclidean center E can be also<br />

expressed (a, bcosh(R)), <strong>and</strong> from (1) we deduce<br />

( )<br />

b 2 + a 2 +(a − c) 2<br />

R = arccosh<br />

=d(A, B),<br />

2bd<br />

Thus, we have obta<strong>in</strong>ed <strong>the</strong> known expression <strong>of</strong> <strong>the</strong> distance between two<br />

po<strong>in</strong>ts from <strong>the</strong> circumference construction.<br />

We can construct <strong>the</strong> orbits <strong>of</strong> <strong>the</strong> dist<strong>in</strong>ct isometries <strong>in</strong> D 2 <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

way:<br />

a) Transform <strong>the</strong> po<strong>in</strong>ts <strong>of</strong> D 2 to po<strong>in</strong>ts <strong>of</strong> H 2 by f −1<br />

c .<br />

b) Construct <strong>the</strong> correspond<strong>in</strong>g orbit <strong>in</strong> H 2 .<br />

c) Transform <strong>the</strong> orbit <strong>of</strong> H 2 to <strong>the</strong> correspond<strong>in</strong>g orbit <strong>in</strong> D 2 .<br />

Given <strong>the</strong> radius R <strong>and</strong> <strong>the</strong> center A <strong>in</strong> D 2 , let à = f c<br />

−1 (A). We determ<strong>in</strong>e<br />

three equidistant po<strong>in</strong>ts R from Ã, from <strong>the</strong>ir images by f c,<strong>in</strong>D 2 , calculate<br />

<strong>the</strong> center E <strong>and</strong> <strong>the</strong> radius <strong>of</strong> <strong>the</strong> euclidean circumference conta<strong>in</strong>ed <strong>in</strong> D.<br />

Namely, given R>0 <strong>and</strong> <strong>the</strong> po<strong>in</strong>t A ∈ D 2 , let à = f c<br />

−1 (A). We determ<strong>in</strong>e<br />

three po<strong>in</strong>ts ˜B, ˜C <strong>and</strong> ˜F <strong>of</strong> <strong>the</strong> circumference <strong>of</strong> H 2 with center à <strong>and</strong> radius R.<br />

Then, we consider <strong>the</strong> po<strong>in</strong>ts f c ( ˜B) =B, f c ˜C) =C <strong>and</strong> fc ( ˜F )=F <strong>of</strong> D 2 . The<br />

circumference <strong>of</strong> center A <strong>and</strong> radius R <strong>in</strong> D 2 is <strong>the</strong> euclidian circumference<br />

through <strong>the</strong> po<strong>in</strong>ts B, C <strong>and</strong> F .


1134 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

Figure 2: <strong>Construction</strong> <strong>of</strong> <strong>the</strong> circumference <strong>in</strong> D 2 .<br />

4 <strong>Construction</strong> <strong>of</strong> <strong>the</strong> horocycle<br />

Def<strong>in</strong>ition 4.1 The horocycle with center at po<strong>in</strong>t P <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e is<br />

<strong>the</strong> set <strong>of</strong> all images <strong>of</strong> a fixed po<strong>in</strong>t Q by <strong>the</strong> reflections with respect to <strong>the</strong><br />

asymptotic l<strong>in</strong>es <strong>of</strong> <strong>the</strong> po<strong>in</strong>t P .<br />

We can obta<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g properties for <strong>the</strong> horocycles:<br />

a) The horocycles can be characterized as <strong>the</strong> orbits for <strong>the</strong> group <strong>of</strong> parabolic<br />

isometries (limit rotations) with po<strong>in</strong>t P belong<strong>in</strong>g to <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e.<br />

b) The horocycle is obta<strong>in</strong>ed from <strong>the</strong> circumference as a limit case. Namely,<br />

<strong>in</strong> H 2 , if we move <strong>the</strong> center <strong>of</strong> <strong>the</strong> circumference through a given l<strong>in</strong>e to<br />

a po<strong>in</strong>t P (p, 0) <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, <strong>the</strong> horocycle is a euclidean circumference<br />

conta<strong>in</strong>ed <strong>in</strong> C + <strong>and</strong> tangent to <strong>the</strong> abscises axis at that po<strong>in</strong>t,<br />

<strong>and</strong> if we move <strong>the</strong> center to <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, <strong>the</strong><br />

horocycle is a euclidean l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> C + whose equation is y = k.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, <strong>in</strong> D 2 , if we move <strong>the</strong> center <strong>of</strong> <strong>the</strong> circumference<br />

through a given l<strong>in</strong>e to a po<strong>in</strong>t <strong>in</strong> fr(D 2 ), <strong>the</strong> horocycle is a euclidean<br />

circumference conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> unit disk D tangent to <strong>the</strong> boundary <strong>of</strong><br />

D, at that po<strong>in</strong>t.<br />

c) It is easy to check that <strong>the</strong> horocycle orthogonally <strong>in</strong>tersects all <strong>the</strong> l<strong>in</strong>es<br />

<strong>of</strong> <strong>the</strong> asymptotic pencil at P , be<strong>in</strong>g equal <strong>the</strong> distance between <strong>the</strong> two<br />

<strong>of</strong> <strong>the</strong>se with center at P .<br />

The construction <strong>of</strong> <strong>the</strong> horocycle through <strong>the</strong> po<strong>in</strong>ts A(a, b) <strong>in</strong> <strong>the</strong> hyperbolic<br />

plane <strong>and</strong> P <strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e can be achieved <strong>in</strong> H 2 <strong>and</strong> D 2 , respectively,<br />

as follows.<br />

In H 2 we dist<strong>in</strong>guished <strong>the</strong> follow<strong>in</strong>g cases:


<strong>Isometries</strong> <strong>and</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic plane 1135<br />

1.- If P (p, 0) is a po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e, <strong>the</strong>n it is obvious that <strong>the</strong> center<br />

<strong>of</strong> <strong>the</strong> euclidean circumference is C(p, q); where q = (a − p)2 + b 2<br />

, which<br />

2b<br />

co<strong>in</strong>cides with its radius.<br />

Figure 3: Horocycle <strong>in</strong> H 2 with center <strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e <strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity,<br />

respectively, from left to right.<br />

2.- If P is <strong>in</strong>f<strong>in</strong>ity, <strong>the</strong> horocycle through A with center P is <strong>the</strong> euclidean<br />

l<strong>in</strong>e conta<strong>in</strong>ed <strong>in</strong> C + with equation y = b.<br />

In D 2 , let P (p, q) ∈ fr(D 2 ) <strong>and</strong> A ∈ D 2 . The horocycle with center<br />

P through A is <strong>the</strong> euclidean circumference through A <strong>and</strong> P such that is<br />

tangent to <strong>the</strong> boundary <strong>of</strong> D 2 at P .<br />

Figure 4: Horocycle with center <strong>in</strong> a po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e <strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity,<br />

respectively from left to right.<br />

In <strong>the</strong> same context, we consider <strong>the</strong> follow<strong>in</strong>g problem: Calculate <strong>the</strong><br />

horocycles through two given po<strong>in</strong>ts A(a, b) <strong>and</strong> B(c, d).<br />

We now dist<strong>in</strong>guish <strong>the</strong> cases H 2 <strong>and</strong> D 2 , respectively, as follows:


1136 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

1.- If b ≠ d, tak<strong>in</strong>g <strong>in</strong>to account that <strong>the</strong> equation <strong>of</strong> <strong>the</strong> euclidean l<strong>in</strong>e which<br />

is orthogonal to <strong>the</strong> euclidean segment AB <strong>and</strong> which conta<strong>in</strong>s its middle<br />

po<strong>in</strong>t is<br />

(c − a)x +(d − b)y − d2 − b 2<br />

− c2 − a 2<br />

=0,<br />

2 2<br />

<strong>and</strong> that <strong>the</strong> po<strong>in</strong>t A belongs to <strong>the</strong> euclidean circumferences, <strong>the</strong>n <strong>the</strong><br />

solution <strong>of</strong> <strong>the</strong> system <strong>of</strong> <strong>in</strong>determ<strong>in</strong>ates p <strong>and</strong> q<br />

⎧<br />

⎨<br />

(c − a)p +(d − b)q − d2 − b 2<br />

⎩<br />

2<br />

p 2 − 2ap + a 2 − 2bq + b 2 =0<br />

− c2 − a 2<br />

2<br />

=0<br />

determ<strong>in</strong>es <strong>the</strong> centers C <strong>and</strong> C ′ <strong>of</strong> such euclidean circumferences.<br />

(2)<br />

Figure 5: Horocycles through two po<strong>in</strong>ts A(a, b) <strong>and</strong> B(c.d) with b ≠ d <strong>and</strong><br />

b = d, respectively, from left to right.<br />

2.- If b = d, we obta<strong>in</strong> <strong>the</strong> horocycle, which is a euclidean circumference<br />

whose center <strong>and</strong> radius are determ<strong>in</strong>ed by <strong>the</strong> system (2) tak<strong>in</strong>g b = d,<br />

<strong>and</strong> <strong>the</strong> horocycle given by <strong>the</strong> euclidean l<strong>in</strong>e y = b.<br />

In D 2 , <strong>the</strong> horocycles through <strong>the</strong> po<strong>in</strong>ts A <strong>and</strong> B are <strong>the</strong> tangent circumferences<br />

to <strong>the</strong> boundary <strong>of</strong> D 2 through <strong>the</strong>se po<strong>in</strong>ts.<br />

5 <strong>Construction</strong> <strong>of</strong> <strong>the</strong> hypercycle<br />

Def<strong>in</strong>ition 5.1 We def<strong>in</strong>e <strong>the</strong> hypercycle determ<strong>in</strong>ed by a po<strong>in</strong>t Q <strong>and</strong> a<br />

l<strong>in</strong>e l <strong>in</strong> <strong>the</strong> hyperbolic plane as <strong>the</strong> set <strong>of</strong> images <strong>of</strong> Q by means <strong>of</strong> reflections<br />

with respect to all <strong>the</strong> orthogonal l<strong>in</strong>es to l. The l<strong>in</strong>e l is called translation l<strong>in</strong>e.<br />

The follow<strong>in</strong>g properties <strong>of</strong> <strong>the</strong> hypercycles are important:<br />

a) The hypercycles are <strong>the</strong> orbits <strong>of</strong> <strong>the</strong> group <strong>of</strong> all hyperbolic isometries<br />

fix<strong>in</strong>g <strong>the</strong> two po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> l<strong>in</strong>e l <strong>and</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e.


<strong>Isometries</strong> <strong>and</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic plane 1137<br />

Figure 6: Horocycles through two po<strong>in</strong>ts <strong>in</strong> D 2 .<br />

b) In H 2 : If <strong>the</strong> translation l<strong>in</strong>e meets <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e at two po<strong>in</strong>ts A(a, 0)<br />

<strong>and</strong> B(b, 0), <strong>the</strong> hypercycle is an arc <strong>of</strong> a euclidean circumference through<br />

<strong>the</strong>se po<strong>in</strong>ts. If <strong>the</strong> translation l<strong>in</strong>e meets <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e at a po<strong>in</strong>t<br />

A(a, 0) as well as <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity po<strong>in</strong>t, <strong>the</strong> hypercycle is a euclidean halfl<strong>in</strong>e<br />

whose orig<strong>in</strong> po<strong>in</strong>t is A.<br />

c) In D 2 : A hypercycle is an arc <strong>of</strong> a euclidean circumference through two<br />

po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e determ<strong>in</strong>ed by <strong>the</strong> translation l<strong>in</strong>e.<br />

d) If <strong>the</strong> po<strong>in</strong>t Q belongs to <strong>the</strong> translation l<strong>in</strong>e, <strong>the</strong> hypercycle co<strong>in</strong>cides<br />

with that l<strong>in</strong>e.<br />

e) The distance between any po<strong>in</strong>t <strong>of</strong> <strong>the</strong> translation l<strong>in</strong>e <strong>and</strong> <strong>the</strong> hypercycle,<br />

measured on <strong>the</strong> orthogonal l<strong>in</strong>e, is <strong>the</strong> same, that is, is constant.<br />

f) Any two hypercycles <strong>of</strong> <strong>the</strong> same pencil are ”parallels” <strong>in</strong> <strong>the</strong> sense that<br />

<strong>the</strong> distance <strong>of</strong> one <strong>of</strong> <strong>the</strong>m to <strong>the</strong> o<strong>the</strong>r is constant.<br />

The construction <strong>of</strong> <strong>the</strong> unique hyperciycle through two po<strong>in</strong>ts A <strong>and</strong> B <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e <strong>and</strong> a third po<strong>in</strong>t C <strong>of</strong> <strong>the</strong> hyperbolic plane can be achieved<br />

<strong>in</strong> H 2 <strong>and</strong> D 2 , respectively, as follows.<br />

In H 2 we dist<strong>in</strong>guished <strong>the</strong> follow<strong>in</strong>g cases:<br />

1.- If A <strong>and</strong> B are po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity l<strong>in</strong>e with coord<strong>in</strong>ates (a, 0) <strong>and</strong><br />

(b, 0), respectively, with a


1138 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

Figure 7: Hypercycle <strong>in</strong> H 2 through po<strong>in</strong>ts A, B <strong>and</strong> C, <strong>and</strong> through po<strong>in</strong>ts<br />

A, C <strong>and</strong> <strong>in</strong>f<strong>in</strong>ity.<br />

( )<br />

a + b (a − c)(b − c)+d2<br />

The center E has coord<strong>in</strong>ates: , ,<br />

√<br />

2 2d<br />

((a − c)2 + d<br />

<strong>and</strong> its radius is:<br />

2 )((b − c) 2 + d 2 )<br />

·<br />

2d<br />

2.- If A(a, 0), B is <strong>the</strong> <strong>in</strong>f<strong>in</strong>ity, <strong>and</strong> C(c, d) ∈ H 2 , <strong>the</strong> hypercycle is <strong>the</strong><br />

euclidean half-l<strong>in</strong>e <strong>of</strong> equation: y =<br />

d (x − a), if c ≠ a, orx = a, if<br />

c − a<br />

c = a.<br />

Now, let A, B ∈ fr(D 2 ) <strong>and</strong> C ∈ D 2 . Then <strong>the</strong> hyperciycle through A, B<br />

<strong>and</strong> C is <strong>the</strong> arc <strong>of</strong> <strong>the</strong> euclidean circumference through <strong>the</strong> three cited po<strong>in</strong>ts.<br />

Figure 8: Hypercycles <strong>in</strong> D 2 through po<strong>in</strong>ts A, B <strong>and</strong> C.


<strong>Isometries</strong> <strong>and</strong> <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic plane 1139<br />

6 Conclusions<br />

The ma<strong>in</strong> contributions <strong>of</strong> this work to <strong>the</strong> study <strong>of</strong> <strong>the</strong> orbits <strong>of</strong> some isometries<br />

<strong>in</strong> <strong>the</strong> hyperbolic plane are <strong>the</strong> follow<strong>in</strong>g:<br />

1.- The systematic characterization <strong>of</strong> <strong>the</strong> isometries as rotations, limit<br />

rotations, translations, reflections or glide reflections through <strong>the</strong> study <strong>of</strong> <strong>the</strong>ir<br />

fixed po<strong>in</strong>ts. Also, <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> algorithms for <strong>the</strong> application <strong>of</strong><br />

<strong>the</strong>se isometries.<br />

2.- The determ<strong>in</strong>ation <strong>of</strong> precise algorithms for <strong>the</strong> construction <strong>of</strong> <strong>the</strong><br />

orbits, circumferences, horocycles <strong>and</strong> hypercycles from different <strong>in</strong>itial data.<br />

3.- The implementation <strong>of</strong> <strong>the</strong>se algorithms <strong>in</strong> a set <strong>of</strong> programm<strong>in</strong>g modules<br />

with <strong>the</strong> s<strong>of</strong>tware Ma<strong>the</strong>matica, <strong>in</strong>cluded <strong>in</strong> a package named Hyperbol<br />

(s<strong>of</strong>tware available at http://www.ugr.es/local/ruiz/s<strong>of</strong>tware.htm) that<br />

we have designed for <strong>the</strong> numeric <strong>and</strong> graphic resolution <strong>of</strong> a wide array <strong>of</strong><br />

constructive problems <strong>in</strong> <strong>the</strong> hyperbolic plane, <strong>in</strong> H 2 <strong>and</strong> D 2 .<br />

ACKNOWLEDGEMENTS. Research partially supported by Grants <strong>of</strong><br />

PAI: FQM-191 <strong>and</strong> FQM-324<br />

References<br />

[1] Benedetti, R. <strong>and</strong> Petronio, C., 1992. Lectures on hyperbolic geometry.<br />

Spr<strong>in</strong>ger- Verlag. Berl<strong>in</strong>.<br />

[2] Gámez, D., 2001. Construcciones en Geometría Hiperbólica y teselaciones<br />

mediante grupos NEC poligonales. Algoritmos de automatización. PhD<br />

Thesis, University <strong>of</strong> Granada.<br />

[3] Gámez, D., Pasadas, M., Pérez, R., Ruiz, C., 2001. Hyperbolic plane<br />

tessellations. Procced<strong>in</strong>gs <strong>of</strong> <strong>the</strong> VI Journèes Zaragoza-Pau de Ma<strong>the</strong>matiques<br />

Appliquèes et Statistique. Publ. de l’Univ. de Pau, Pau, 257-264.<br />

[4] Gámez, D., Pasadas, M., Pérez, R., Ruiz, C., 2001. Regla y compás<br />

hiperbólicos electrónicos para teselar. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> I Meet<strong>in</strong>g <strong>of</strong> Andalusian<br />

Ma<strong>the</strong>maticians: I E.M.A.. Vo. 2, Univ. Sevilla, Secr. Publ.,<br />

Sevilla, 467-474.<br />

[5] Gámez, D., Pasadas, M., Pérez, R., Ruiz, C., 2003. <strong>Orbits</strong> <strong>in</strong> <strong>the</strong> hyperbolic<br />

plane. Monografías del Sem<strong>in</strong>ario Matemático García de Galdeano.<br />

VII Jornadas Zaragoza-Pau de Ma<strong>the</strong>mática Aplicada y Estadistica. Publ.<br />

Univ. de Zaragoza, Zaragoza, 297–305.


1140 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

[6] Gámez, D., Pasadas, M., Pérez, R., Ruiz, C., 2002. The Lambert quadrilateral<br />

<strong>and</strong> tesselation <strong>in</strong> <strong>the</strong> hyperbolic plane. Int. Math. J. 2 (8), 777–<br />

795.<br />

[7] Iversen, B., 1992. Hyperbolic geometry. Cambridge University Press, Cambridge.<br />

[8] Lenz, H., 1967. Nichteuklidische Geometrie, BI. Mannhe<strong>in</strong>.<br />

[9] Magnus, W., 1974. Non euclidean tesselations <strong>and</strong> <strong>the</strong>ir groups. Academic<br />

Press, New York.<br />

[10] Ratclife, J. G., 1994. Foundations <strong>of</strong> hyperbolic manifolds., Vol. 149,<br />

Spr<strong>in</strong>ger Verlag. New York.<br />

[11] Stillwell, J., 1996. Sources <strong>of</strong> hyperbolic geometry. Board. Providence.<br />

Received: July 12, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!