04.11.2013 Views

Characterizations of the Isometries and Construction of the Orbits in ...

Characterizations of the Isometries and Construction of the Orbits in ...

Characterizations of the Isometries and Construction of the Orbits in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1132 D. Gámez, M. Pasadas <strong>and</strong> C. Ruiz<br />

v) s is a limit rotation or <strong>the</strong> identity on D 2 if <strong>and</strong> only if |Reα| =1.<br />

vi) s is a translation on D 2 if <strong>and</strong> only if |Reα| > 1.<br />

Theorem 2.4 Let g ′ ∈ Iso − (H 2 ) <strong>and</strong> t ∈ Iso − (D 2 ).<br />

i) g ′ is a reflection on H 2 if <strong>and</strong> only if |a ′ + d ′ | =0.<br />

ii) g ′ is a glide reflection on H 2 if <strong>and</strong> only if |a ′ + d ′ | ≠0.<br />

iii) t is a reflection on D 2 if <strong>and</strong> only if Reδ =0.<br />

iv) t is a glide reflection on D 2 if <strong>and</strong> only if Reδ ≠0.<br />

3 <strong>Construction</strong> <strong>of</strong> <strong>the</strong> circumference<br />

Def<strong>in</strong>ition 3.1 A circumference is <strong>the</strong> set <strong>of</strong> images <strong>of</strong> a po<strong>in</strong>t Q ∈ H 2<br />

(D 2 ) by means <strong>of</strong> <strong>the</strong> reflection accord<strong>in</strong>g to all <strong>the</strong> l<strong>in</strong>es through a given po<strong>in</strong>t<br />

A ∈ H 2 (D 2 ), which is called <strong>the</strong> center <strong>of</strong> <strong>the</strong> circumference.<br />

In <strong>the</strong> circumference case, we can deduce <strong>the</strong> follow<strong>in</strong>g properties:<br />

a) The circumferences centered at A(a, b) are <strong>the</strong> orbits <strong>of</strong> <strong>the</strong> group <strong>of</strong> all<br />

elliptic isometries with a fixed po<strong>in</strong>t A (rotations with center at A).<br />

b) The circumference is a euclidean circumference conta<strong>in</strong>ed <strong>in</strong> C + (respectively<br />

D).<br />

c) A circumference is a curve orthogonal to each l<strong>in</strong>e that conta<strong>in</strong>s A.<br />

The construction <strong>of</strong> <strong>the</strong> circumference with center A(a, b) <strong>and</strong> radius R>0<br />

can be realized <strong>in</strong> H 2 <strong>and</strong> D 2 , respectively, as follows.<br />

Draw <strong>the</strong> l<strong>in</strong>e x = a, calculate <strong>the</strong> po<strong>in</strong>t C on this l<strong>in</strong>e whose second<br />

coord<strong>in</strong>ate is greater than <strong>the</strong> second coord<strong>in</strong>ate <strong>of</strong> A <strong>and</strong> whose distance to<br />

A is R, obta<strong>in</strong><strong>in</strong>g C(a, be R ) [6]. Let us consider any l<strong>in</strong>e through A, <strong>and</strong> on it<br />

we determ<strong>in</strong>e a po<strong>in</strong>t B(c, d) whose distance to A is R. F<strong>in</strong>ally, we draw <strong>the</strong><br />

euclidian mediatrix <strong>of</strong> <strong>the</strong> euclidian segment l<strong>in</strong>e BC, whose equation is<br />

y − beR + d<br />

2<br />

= a − c (<br />

x − a + c<br />

d − be R 2<br />

The <strong>in</strong>tersection <strong>of</strong> that mediatrix with x = a gives us <strong>the</strong> center E <strong>of</strong> <strong>the</strong><br />

euclidian circumference whose coord<strong>in</strong>ates are<br />

)<br />

(a, d2 − b 2 e 2R +(a − c) 2<br />

. (1)<br />

2(d − be R )<br />

)<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!