29.03.2013 Views

1 TAME synthesis problem Tert-Amyl Methyl Ether (TAME) is an ...

1 TAME synthesis problem Tert-Amyl Methyl Ether (TAME) is an ...

1 TAME synthesis problem Tert-Amyl Methyl Ether (TAME) is an ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

k<br />

K<br />

K<br />

a<br />

a<br />

1<br />

a<br />

⎞<br />

−1⎟<br />

( ) 2<br />

T<br />

1 M 1B<br />

M 1B<br />

⎜ Keq1<br />

aM<br />

a ⎟<br />

1B<br />

1 =<br />

⎝<br />

⎠<br />

(I.16)<br />

1 + K1B<br />

a1B<br />

+ K 2B<br />

a2<br />

B + K M aM<br />

+ KT<br />

aT<br />

r<br />

k<br />

K<br />

K<br />

a<br />

a<br />

⎛<br />

⎜<br />

1<br />

a<br />

⎞<br />

−1⎟<br />

( ) 2<br />

T<br />

2 M 2B<br />

M 1B<br />

⎜ Keq2<br />

aM<br />

a ⎟<br />

2B<br />

2 =<br />

⎝<br />

⎠<br />

(I.17)<br />

1 + K1B<br />

a1B<br />

+ K 2B<br />

a2<br />

B + K M aM<br />

+ KT<br />

aT<br />

r<br />

r<br />

3<br />

=<br />

1 + K<br />

1B<br />

k<br />

a<br />

3<br />

1B<br />

K<br />

1B<br />

a<br />

+ K<br />

1B<br />

2B<br />

2B<br />

⎛<br />

⎜<br />

⎛ 1 a<br />

⎜<br />

⎝ Keq3<br />

a<br />

a + K<br />

• Heat capacity of each component<br />

2B<br />

1B<br />

M<br />

⎞<br />

−1<br />

⎟<br />

⎠<br />

a +<br />

M<br />

K<br />

T<br />

a<br />

T<br />

(I.18)<br />

Cpi 2<br />

3<br />

= ai<br />

+ bi<br />

T + ci<br />

T + di<br />

T<br />

(I.19)<br />

with: Cp in kJ.mol -1 .K -1<br />

T in Kelvin<br />

component i 10 ai 10 4 bi 10 7 ci 10 10 di<br />

MeOH a<br />

2M1B b<br />

2M2B b<br />

<strong>TAME</strong> c<br />

0.077 1.62 2.06 2.87<br />

1.27 -0.609 5.08 1.69<br />

1.33 -1.48 7.51 -0.882<br />

1.73 2.29 -6.00 20.0<br />

a Zh<strong>an</strong>g <strong>an</strong>d Datta, 1995; b Kitchaiya <strong>an</strong>d Datta, 1995; c Estimated by the M<strong>is</strong>senard<br />

method (Reid et al., 1987)<br />

To simplify the <strong>problem</strong> we are going to consider the heat capacity of each component const<strong>an</strong>t<br />

<strong>an</strong>d equal to its value at the entry conditions: T = T0.<br />

The solution heat capacity will also be considered const<strong>an</strong>t <strong>an</strong>d equal to its value at the entry<br />

conditions:<br />

4<br />

∑<br />

i=<br />

1<br />

IN<br />

Cp = Cpi<br />

xi<br />

(I.20)<br />

where<br />

IN<br />

x i <strong>is</strong> the feed mole fraction of component i.<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!