29.03.2013 Views

Applying the Wheatstone Bridge Circuit

Applying the Wheatstone Bridge Circuit

Applying the Wheatstone Bridge Circuit

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

<strong>Applying</strong> <strong>the</strong><br />

<strong>Wheatstone</strong> <strong>Bridge</strong><br />

<strong>Circuit</strong><br />

Dirk Eberlein<br />

dirk.eberlein@hbm.com<br />

www.hbm.com<br />

19.03.2008, Folie 1 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

The relationship between <strong>the</strong> applied strain ε<br />

and <strong>the</strong> relative change of <strong>the</strong> resistance of a<br />

strain gauge<br />

A strain gauge converts a mechanical strain<br />

into a change of an electrical resistance.<br />

“gauge factor”:<br />

characteristic of <strong>the</strong> strain gauge and has to been checked<br />

experimentally:<br />

ΔR<br />

R<br />

=<br />

k<br />

⋅ε<br />

19.03.2008, Folie 2 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Test of <strong>the</strong> gauge factor<br />

Thomas Kleckers, HBM<br />

19.03.2008, Folie 3 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Value of <strong>the</strong> relative change of <strong>the</strong> resistance<br />

•<br />

ΔR/R 0 = k · ε k ~ 2 R (typ.) = 120Ω or 350Ω<br />

ε for example – (strain level for transducers)<br />

1000 µm/m = 1mm/m (0,1%)<br />

E.g.:120Ω-strain gauge at at 1mm/m = 0,24Ω change of of<br />

<strong>the</strong> <strong>the</strong> resistance<br />

Measurements with an ohmmeter are impossible<br />

19.03.2008, Folie 4 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

U<br />

U<br />

1<br />

0<br />

=<br />

R<br />

1<br />

R<br />

+<br />

1<br />

R<br />

2<br />

U 1 = 5V<br />

R 1 = 5 Ω R 2 = 5 Ω<br />

U 0 =10V<br />

U 2 = 5V<br />

19.03.2008, Folie 5 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

U<br />

1<br />

= U<br />

0<br />

R<br />

1<br />

R<br />

+<br />

1<br />

R<br />

2<br />

Spannungsabfall =<br />

voltage drop<br />

potential<br />

divider


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

U<br />

U<br />

1<br />

0<br />

=<br />

U 1 = 4V<br />

R 1 = 4 Ω R 2 = 6 Ω<br />

R<br />

1<br />

R<br />

+<br />

1<br />

R<br />

2<br />

U 0 =10V<br />

U<br />

U 2 = 6V<br />

19.03.2008, Folie 6 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

1<br />

=<br />

U<br />

0<br />

R<br />

1<br />

R<br />

+<br />

1<br />

R<br />

2<br />

potential<br />

divider


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

U 1 = 5V<br />

R 1 = 5 Ω R 2 = 5 Ω<br />

U a =0V<br />

U 0 =10V<br />

U 2 = 5V<br />

R 4 = 5 Ω R 3 = 5 Ω<br />

U 4 = 5V U 3 = 5V<br />

potential<br />

divider<br />

19.03.2008, Folie 7 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

increasing of R 1<br />

decreasing of R 1<br />

U 1 = 5,45V<br />

R1 = 6 Ω R2 = 5 Ω<br />

+<br />

U a =0,45V<br />

U 0 =10V<br />

U 2 = 4,54V<br />

-<br />

R4 = 5 Ω R3 = 5 Ω<br />

U 4 = 5V U 3 = 5V<br />

output voltage U a will be positive<br />

output voltage U a will be negative<br />

19.03.2008, Folie 8 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

increasing of R 2<br />

decreasing of R 2<br />

U1 = 4,54V U2 = 5,45V<br />

R1 = 5 Ω<br />

-<br />

R2 = 6 Ω<br />

Ua = - 0,45V<br />

R4 = 5 Ω<br />

+<br />

R3 = 5 Ω<br />

U 4 = 5V U 3 = 5V<br />

U 0 =10V<br />

output voltage U a will be negative<br />

output voltage U a will be positive<br />

19.03.2008, Folie 9 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

U a<br />

U a<br />

=<br />

=<br />

U<br />

U<br />

0<br />

0<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

R<br />

1<br />

1<br />

R<br />

+<br />

1<br />

R<br />

2<br />

−<br />

R<br />

U 1<br />

U 4<br />

3<br />

R<br />

+<br />

4<br />

U a<br />

R<br />

19.03.2008, Folie 10 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

U 0<br />

4<br />

⎞<br />

⎟<br />

⎠<br />

R1<br />

+ ΔR1<br />

+ ΔR<br />

+ R + ΔR<br />

1<br />

2<br />

2<br />

U 2<br />

U 3<br />

−<br />

R<br />

3<br />

U<br />

1<br />

U<br />

4<br />

= U<br />

0<br />

= U<br />

0<br />

R<br />

1<br />

R<br />

R1<br />

+ R<br />

3<br />

2<br />

R4<br />

+ R<br />

R4<br />

+ ΔR4<br />

+ ΔR<br />

+ R + ΔR<br />

3<br />

4<br />

4<br />

4<br />

⎞<br />

⎟<br />


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

U a<br />

=<br />

U<br />

0<br />

⎛<br />

⎜<br />

⎝<br />

R<br />

ΔR<br />


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

Ua U<br />

0<br />

ΔR<br />

R<br />

=<br />

with:<br />

U a<br />

U<br />

0<br />

=<br />

ΔR<br />

R<br />

1<br />

1<br />

k ⋅ ε<br />

= k<br />

4<br />

−<br />

⋅<br />

ΔR<br />

R<br />

2<br />

2<br />

+<br />

ΔR<br />

R<br />

3<br />

3<br />

ΔR<br />

R<br />

19.03.2008, Folie 12 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

−<br />

that implies:<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

4<br />

4<br />

3<br />

4


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

• we use every time <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong><br />

<strong>Circuit</strong> with 4 resistors<br />

• <strong>the</strong>se 4 resistors could be 1, 2 or 4 strain<br />

gauges<br />

• modern amplifiers completing “missing“<br />

resistors in <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

• with 4 active strain gauges we get <strong>the</strong> largest<br />

output value<br />

19.03.2008, Folie 13 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

( ε − ε + ε − ε )<br />

19.03.2008, Folie 14 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

U<br />

U<br />

U B<br />

A<br />

B<br />

=<br />

k<br />

4<br />

1<br />

2<br />

3<br />

4


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Elementary circuits with strain gauges<br />

ε1( + )<br />

(R1)<br />

R2<br />

R4<br />

R3<br />

Half bridge 2 active strain gauges<br />

ε1 ( + )<br />

(R1)<br />

ε 2 ( −)<br />

(R2)<br />

Quarter bridge 1 active strain gauge<br />

R4<br />

R3<br />

ε 2 ( −)<br />

(R2)<br />

Full bridge 4 active strain gauges<br />

ε 1 ( + )<br />

(R1)<br />

ε 2 ( −)<br />

(R2)<br />

19.03.2008, Folie 15 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R1<br />

R4<br />

R3<br />

ε 4 ( −)<br />

(R4)<br />

ε 3 ( + )<br />

(R3)


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a bending beam (Quarter <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

( ε )<br />

1<br />

strain gauge 1<br />

19.03.2008, Folie 16 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

F<br />

tensile bar /<br />

bending load<br />

strain gauge 1: +<br />

Temperature compensation: No!<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Quarter <strong>Bridge</strong>)<br />

U<br />

U<br />

k = 2 gauge factor (written on <strong>the</strong> strain gauge package)<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

=<br />

k<br />

4<br />

k<br />

4<br />

k<br />

4<br />

( ε − ε + ε − ε )<br />

1<br />

( ε )<br />

1<br />

0,<br />

5mV<br />

( ε − ε + ε − ε )<br />

1<br />

=<br />

2<br />

2<br />

( 1000µm<br />

/ m)<br />

4<br />

/ V<br />

2<br />

3<br />

3<br />

4<br />

4<br />

=<br />

0,<br />

5<br />

⋅1000<br />

⋅10<br />

⋅10<br />

19.03.2008, Folie 17 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

−6<br />

=<br />

0,<br />

5<br />

−3


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a bending beam (Half <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

( ε − ε )<br />

1<br />

2<br />

strain gauge 1<br />

strain gauge 2<br />

19.03.2008, Folie 18 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

bending load<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

Temperature compensation: Yes!<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a bending beam (Half <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

( ε − ε )<br />

1<br />

2<br />

strain gauge 1<br />

strain gauge 2<br />

19.03.2008, Folie 19 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

Superimposed normal<br />

strains are compensated<br />

strain gauge 1: +<br />

strain gauge 2: +<br />

Temperature compensation: Yes!<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Half <strong>Bridge</strong>)<br />

k = 2 gauge factor (written on <strong>the</strong> strain gauge package)<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

=<br />

k<br />

4<br />

k<br />

4<br />

0,<br />

5<br />

( ε − ε + ε − ε )<br />

1<br />

( ε − ε ) = ( 1000µm<br />

/ m − [ − 1000µm<br />

/ m]<br />

)<br />

1<br />

1mV<br />

⋅ 2000 ⋅10<br />

/ V<br />

2<br />

2<br />

3<br />

2<br />

4<br />

−6<br />

4<br />

= 1⋅10<br />

−3<br />

2 times <strong>the</strong> output<br />

value of a 1/4-bridge<br />

19.03.2008, Folie 20 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Optimisation of of a wish mop<br />

mop<br />

19.03.2008, Folie 21 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a bending beam (Full <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

strain gauge 3<br />

strain gauge 1<br />

strain gauge 4<br />

strain gauge 2<br />

4<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

strain gauge 3: +<br />

strain gauge 4: -<br />

19.03.2008, Folie 22 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

R 1<br />

R 2<br />

bending load<br />

Temperature compensation: Yes!<br />

U A<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a bending beam (Full <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

strain gauge 3<br />

strain gauge 1<br />

strain gauge 4<br />

strain gauge 2<br />

4<br />

F U A<br />

strain gauge 1: +<br />

strain gauge 2: + -<br />

strain gauge 3: +<br />

strain gauge 4: + -<br />

19.03.2008, Folie 23 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R 1<br />

R 2<br />

R 4<br />

R 3<br />

Superimposed normal<br />

strains are compensated<br />

Temperature compensation: Yes!<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Full <strong>Bridge</strong>)<br />

k = 2 gauge factor (written on <strong>the</strong> strain gauge package)<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

k<br />

4<br />

2<br />

4<br />

0,<br />

5<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

( 1000µm<br />

/ m − [ − 1000µm<br />

/ m]<br />

+ 1000µm<br />

/ m − [ −1000µm<br />

/ m]<br />

)<br />

⋅ 4000 ⋅10<br />

= 2 mV / V<br />

−6<br />

4<br />

= 2 ⋅10<br />

−3<br />

4 times <strong>the</strong> output<br />

value of a 1/4-bridge<br />

19.03.2008, Folie 24 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

... and <strong>the</strong> right strain gauge for this application<br />

DY11...<br />

19.03.2008, Folie 25 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a tension/compression bar<br />

(Half <strong>Bridge</strong>)<br />

εq<br />

− ν =<br />

ε<br />

U<br />

U<br />

A<br />

B<br />

strain gauge 1<br />

F<br />

l<br />

νKPoisson'<br />

s ratio ( steel ≈<br />

=<br />

k<br />

4<br />

( ε − ε ) = [ ε − ( − νε ) ]<br />

1<br />

⇒<br />

2<br />

ε<br />

q<br />

=<br />

k<br />

4<br />

−νε<br />

1<br />

l<br />

⇒<br />

0,<br />

3)<br />

1<br />

ε<br />

2<br />

= −νε<br />

1<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

19.03.2008, Folie 26 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

strain gauge 2 U A<br />

tensile bar<br />

Temperature compensation: Yes!<br />

R 1<br />

R 2<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a tension/compression bar<br />

(Half <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

strain<br />

gauge 1<br />

( ε − ε ) = [ ε − ( − νε ) ]<br />

1<br />

2<br />

k<br />

4<br />

1<br />

strain gauge 2<br />

1<br />

Superimposed bending<br />

strains occur in <strong>the</strong> result<br />

19.03.2008, Folie 27 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

Temperature compensation: Yes!<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Half <strong>Bridge</strong>)<br />

k = 2; ν = 0,3<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

=<br />

k<br />

4<br />

k<br />

4<br />

0,<br />

5<br />

( ε − ε + ε − ε )<br />

1<br />

( ε − ε ) = [ ε − ( − νε ) ] = ( 1000µm<br />

/ m − [ − 0,<br />

3 ⋅1000µm<br />

/ m]<br />

)<br />

⋅<br />

1<br />

0,<br />

65<br />

2<br />

2<br />

( 1000µm<br />

/ m − [ − 300µm<br />

/ m]<br />

)<br />

mV / V<br />

3<br />

k<br />

4<br />

1<br />

4<br />

1<br />

2<br />

4<br />

⋅1300<br />

⋅10<br />

0,<br />

65<br />

⋅10<br />

19.03.2008, Folie 28 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

=<br />

0,<br />

5<br />

−6<br />

=<br />

−3<br />

1.3 times <strong>the</strong> output<br />

value of a 1/4-bridge


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a tension/compression bar<br />

(Full <strong>Bridge</strong>)<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

F strain gauge 2 F<br />

UA =<br />

=<br />

k<br />

4<br />

k<br />

4<br />

strain gauge 1<br />

strain gauge 3<br />

( ε − ε + ε − ε )<br />

1<br />

[ ε − ( − νε ) + ε − ( − νε ) ]<br />

1<br />

2<br />

1<br />

3<br />

3<br />

4<br />

3<br />

strain gauge 4<br />

tensile bar<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

strain gauge 3: +<br />

strain gauge 4: -<br />

Temperature compensation: Yes!<br />

19.03.2008, Folie 29 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R 1<br />

R 2<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a tension/compression bar<br />

(Full <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

=<br />

k<br />

4<br />

strain gauge 1<br />

strain gauge 3<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

4<br />

strain gauge 2<br />

strain gauge 4<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

strain gauge 3: -<br />

strain gauge 4: +<br />

19.03.2008, Folie 30 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

Superimposed bending<br />

strains are compensated<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Full <strong>Bridge</strong>)<br />

k = 2; ν = 0,3<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

=<br />

k<br />

4<br />

k<br />

4<br />

2<br />

4<br />

0,<br />

5<br />

( ε − ε + ε − ε )<br />

1<br />

[ ε − ( − νε ) + ε − ( − νε ) ]<br />

1<br />

2<br />

1<br />

3<br />

( 1000µm<br />

/ m − [ − 0,<br />

3 ⋅1000µm<br />

/ m]<br />

+ 1000µm<br />

/ m − [ − 0,<br />

3 ⋅1000µm<br />

/ m]<br />

)<br />

⋅ 2600 ⋅10<br />

−6<br />

3<br />

=<br />

4<br />

1,<br />

3<br />

⋅10<br />

3<br />

−3<br />

=<br />

1,<br />

3<br />

mV / V<br />

2.6 times <strong>the</strong> output<br />

value of a 1/4-bridge<br />

19.03.2008, Folie 31 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

... and <strong>the</strong> right strain gauge for this application<br />

XY11... XY31...<br />

19.03.2008, Folie 32 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a shaft under torsion (Full <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

strain gauge 1<br />

strain gauge 4<br />

strain gauge 3<br />

UA strain gauge 2<br />

Torsion shaft<br />

=<br />

k<br />

4<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

4<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

strain gauge 3: +<br />

strain gauge 4: -<br />

Temperature compensation: Yes!<br />

19.03.2008, Folie 33 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R 1<br />

R 2<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Measurements on a shaft under torsion (Full <strong>Bridge</strong>)<br />

U<br />

U<br />

A<br />

B<br />

F<br />

=<br />

strain gauge 1<br />

strain gauge 2<br />

k<br />

4<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

strain gauge 4<br />

strain gauge 3<br />

4<br />

strain gauge 1: +<br />

strain gauge 2: -<br />

strain gauge 3: -<br />

strain gauge 4: +<br />

19.03.2008, Folie 34 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

Superimposed normal<br />

and bending strains are<br />

compensated<br />

Temperature compensation: Yes!<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment (Full <strong>Bridge</strong>)<br />

k = 2<br />

estimated strain level ε = 1000 µm/m (estimation!)<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

U<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

A<br />

B<br />

=<br />

=<br />

=<br />

k<br />

4<br />

2<br />

4<br />

0,<br />

5<br />

( ε − ε + ε − ε )<br />

1<br />

2<br />

3<br />

( 1000µm<br />

/ m − [ − 1000µm<br />

/ m]<br />

+ 1000µm<br />

/ m − [ −1000µm<br />

/ m]<br />

)<br />

⋅ 4000 ⋅10<br />

= 2 mV / V<br />

−6<br />

4<br />

= 2 ⋅10<br />

−3<br />

4 times <strong>the</strong> output<br />

value of a 1/4-bridge<br />

19.03.2008, Folie 35 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

... and <strong>the</strong> right strain gauge for this application<br />

XY11... XY31...<br />

19.03.2008, Folie 36 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

strain gauge rosettes for stress analysis<br />

two basic shapes (geometries):<br />

0°/45°/90°-rosettes<br />

0°/60°/120°-rosettes<br />

c<br />

a<br />

b<br />

strain measurement in<br />

3 directions (a, b, c)<br />

19.03.2008, Folie 37 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

strain gauge rosettes for stress analysis<br />

Connection at <strong>the</strong> amplifier always as three<br />

different quarter bridges!<br />

measuring grid a, b, c<br />

e.g. Spider8-30<br />

19.03.2008, Folie 38 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Calibrating measurement equipment<br />

(3 different quarter bridges)<br />

c<br />

1000µm/m correspond to 2mV/V (at a gauge factor of 2),<br />

valid for amplifier channel (measuring grid) a, b, c<br />

a<br />

b<br />

19.03.2008, Folie 39 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

M b -bending moment; M d -torque; T-temperature; F-normal force<br />

active strain<br />

gauge<br />

strain gauge for<br />

temperature<br />

compensation<br />

19.03.2008, Folie 40 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

ε<br />

passive strain<br />

gauge or resistor<br />

ε ϑ


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

19.03.2008, Folie 41 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

19.03.2008, Folie 42 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

19.03.2008, Folie 43 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Reduction and elimination of measurement<br />

errors, especially temperature effects<br />

• temperature error can be corrected ma<strong>the</strong>matically<br />

• temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

-quarter bridge with compensating strain gauge<br />

-half and full bridges<br />

19.03.2008, Folie 44 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

Every strain gauge gives out a value when <strong>the</strong><br />

temperature varies – without any mechanical load.<br />

Cause:<br />

• Work piece expansion with temperature<br />

• Change in specific resistance of strain gauge<br />

• Strain gauge grid expansion with temperature<br />

HBM, Thomas Kleckers (Januar 1999)<br />

19.03.2008, Folie 45 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Basics<br />

Thermal output of a quarter bridge<br />

ΔR<br />

R<br />

0<br />

=<br />

k<br />

⋅<br />

( ε + ε )<br />

19.03.2008, Folie 46 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

M<br />

ϑ<br />

Strain gauge 1<br />

F


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Temperature compensated strain gauges (series Y)<br />

1 for ferritic steel α = 10,8 ·10-6 / K<br />

3 for aluminium α = 23 · 10-6 / K<br />

5 for austenitic steel α = 16 · 10-6 / K<br />

6* for quartz α = 0,5 ·10-6 / K<br />

7* for titanium /grey cast iron α = 9 ·10-6 / K<br />

8* for plastic material α = 65 ·10-6 / K<br />

9* for molybdenum α = 5,4 ·10-6 1 for ferritic steel α = 10,8 ·10<br />

/ K<br />

-6 / K<br />

3 for aluminium α = 23 · 10-6 / K<br />

5 for austenitic steel α = 16 · 10-6 / K<br />

6* for quartz α = 0,5 ·10-6 / K<br />

7* for titanium /grey cast iron α = 9 ·10-6 / K<br />

8* for plastic material α = 65 ·10-6 / K<br />

9* for molybdenum α = 5,4 ·10-6 / K<br />

* not for all measuring grid length available<br />

19.03.2008, Folie 47 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

Temperature Compensation<br />

(Material, <strong>the</strong>rmal expansion coefficient<br />

remaining temperature variation<br />

polynomial (of (of <strong>the</strong> remaining<br />

temperature variation)<br />

so so that that <strong>the</strong> <strong>the</strong> arising arising measurement fault fault<br />

can can be be corrected ma<strong>the</strong>matically<br />

19.03.2008, Folie 48 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

( + ε )<br />

ε M<br />

ϑ<br />

( + ε )<br />

ϑ<br />

strain gauge 2<br />

strain gauge 1<br />

F=0!<br />

19.03.2008, Folie 49 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

F<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

quarter bridge with<br />

compensating strain gauge<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

strain<br />

gauge 1<br />

strain<br />

gauge 2<br />

U a<br />

R 4<br />

R 3<br />

U e<br />

quarter bridge with<br />

compensating strain gauge<br />

strain<br />

strain<br />

gauge<br />

gauge<br />

( εM<br />

+ εϑ<br />

)<br />

( + ε )<br />

19.03.2008, Folie 50 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

U<br />

U<br />

a<br />

e<br />

=<br />

k<br />

4<br />

1<br />

2<br />

⇒<br />

⇒<br />

( ε − ε )<br />

1<br />

2<br />

ϑ


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

quarter bridge with compensating strain gauge<br />

The compensating strain gauge:<br />

- must be applied in a spot where it will be subjected to<br />

<strong>the</strong> same interference effect as <strong>the</strong> active strain gauge<br />

- must have <strong>the</strong> same physical properties as <strong>the</strong> active<br />

strain gauge (same package or batch)<br />

- must only be subjected to <strong>the</strong> interference effect and<br />

never to <strong>the</strong> quantity to be measured ε M or its side effects<br />

- must be applied at <strong>the</strong> same material (e.g. steel) as <strong>the</strong><br />

active strain gauge<br />

19.03.2008, Folie 51 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

Advantages:<br />

- it is not necessary to measure <strong>the</strong> temperature during <strong>the</strong><br />

strain measurement<br />

- it is not absolutely necessary that <strong>the</strong> strain gauges are<br />

adjusted to <strong>the</strong> material<br />

19.03.2008, Folie 52 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

strain gauge 1<br />

strain gauge 2<br />

Changes of <strong>the</strong> strain gauge resistance of <strong>the</strong><br />

same sign appearing in neigh boring arms<br />

will be subtracted with respect to <strong>the</strong> bridge<br />

output signal<br />

ε ϑ(+)<br />

strain gauge 1: +<br />

strain gauge 2: +<br />

half bridge<br />

19.03.2008, Folie 53 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

temperature compensation using <strong>Wheatstone</strong><br />

bridge circuit<br />

strain gauge 1<br />

strain gauge 3<br />

Changes of <strong>the</strong> strain gauge resistance of <strong>the</strong><br />

same sign appearing in neigh boring arms<br />

will be subtracted with respect to <strong>the</strong> bridge<br />

output signal<br />

strain gauge 2<br />

strain gauge 4<br />

ε ϑ(+)<br />

ε ϑ(+)<br />

s. g. 1: +<br />

s. g. 2: +<br />

s. g. 3: +<br />

s. g. 4: +<br />

19.03.2008, Folie 54 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein<br />

R 1<br />

R 2<br />

U A<br />

R 4<br />

R 3<br />

full bridge<br />

U B


<strong>Applying</strong> <strong>the</strong> <strong>Wheatstone</strong> <strong>Bridge</strong> <strong>Circuit</strong><br />

thank you...<br />

... for your attention<br />

Hottinger Baldwin Messtechnik GmbH<br />

Im Tiefen See 45<br />

D-64293 Darmstadt<br />

www.hbm.com<br />

Dirk Eberlein<br />

Tel. 06151/803-763<br />

dirk.eberlein@hbm.com<br />

19.03.2008, Folie 55 Hottinger Baldwin Messtechnik GmbH Dirk Eberlein

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!