29.03.2013 Views

Polymerization shrinkage and contraction stress of dental resin ...

Polymerization shrinkage and contraction stress of dental resin ...

Polymerization shrinkage and contraction stress of dental resin ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Dental Materials (2005) 21, 1150–1157<br />

<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong><br />

<strong>of</strong> <strong>dental</strong> <strong>resin</strong> composites<br />

Cornelis J. Kleverlaan*, Albert J. Feilzer<br />

Department <strong>of</strong> Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit<br />

van Amsterdam <strong>and</strong> Vrije Universiteit, Louwesweg 1, 1066 EA Amsterdam, The Netherl<strong>and</strong>s<br />

Received 2 September 2004; accepted 8 February 2005<br />

KEYWORDS<br />

<strong>Polymerization</strong>;<br />

Strain rate;<br />

Composite;<br />

Dental restorative<br />

material<br />

* Corresponding author. Tel.: C31 20 5188257; fax: C31 20<br />

6692726.<br />

E-mail address: <strong>dental</strong>.materials@acta.nl (C.J. Kleverlaan).<br />

Summary Objective: The aim <strong>of</strong> this study was to evaluate the <strong>shrinkage</strong>,<br />

<strong>contraction</strong> <strong>stress</strong>, tensile modulus, <strong>and</strong> the flow factor <strong>of</strong> 17 commercially available<br />

<strong>dental</strong> <strong>resin</strong> composites.<br />

Method: The volumetric <strong>shrinkage</strong> measurements were performed by mercury<br />

dilatometry, <strong>and</strong> the <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile modulus were determined by<br />

means <strong>of</strong> <strong>stress</strong>–strain analysis. The statistical analysis was conducted by ANOVA <strong>and</strong><br />

Tukey’s post hoc test, <strong>and</strong> linear regression.<br />

Results: Strong linear correlation for most <strong>resin</strong> composites were found for<br />

(i) <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> <strong>shrinkage</strong> (ii) <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile modulus, <strong>and</strong><br />

(iii) <strong>shrinkage</strong> <strong>and</strong> tensile modules. For most <strong>of</strong> the materials the unpolymerized <strong>resin</strong><br />

content determines the amount <strong>of</strong> <strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile modules.<br />

The pre-polymerized clusters in Heliomolar results in improved <strong>shrinkage</strong>/<strong>contraction</strong><br />

<strong>stress</strong> properties. The <strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> for Filtek Z100, Aelite Flo,<br />

<strong>and</strong> Flow-it was too high for the amount <strong>of</strong> <strong>resin</strong> in the <strong>resin</strong> composite. This was<br />

rationalized by high polymerization rates, a flow factor, <strong>and</strong> the nature <strong>of</strong> the <strong>resin</strong>.<br />

Significance: High <strong>shrinkage</strong> <strong>and</strong>/or high <strong>contraction</strong> <strong>stress</strong> may lead to failure <strong>of</strong> the<br />

bond between the <strong>resin</strong> composites <strong>and</strong> the tooth structure. This study shows that<br />

the unpolymerized <strong>resin</strong> content determines the amount <strong>of</strong> <strong>shrinkage</strong>, <strong>contraction</strong><br />

<strong>stress</strong> <strong>and</strong> tensile modules. Therefore, using pre-polymerized clusters will improve<br />

<strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties, as was shown in Heliomolar, while high<br />

polymerization rates, <strong>and</strong> low flow factors have a deteriorative effect on the<br />

<strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties.<br />

Q 2005 Academy <strong>of</strong> Dental Materials. Published by Elsevier Ltd. All rights reserved.<br />

Introduction<br />

www.intl.elsevierhealth.com/journals/dema<br />

<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>of</strong> <strong>dental</strong> <strong>resin</strong> composites<br />

is due to the fact that monomer molecules are<br />

converted into a polymer network <strong>and</strong>, therefore,<br />

exchanging van der Waals spaces in covalent bond<br />

0109-5641/$ - see front matter Q 2005 Academy <strong>of</strong> Dental Materials. Published by Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.<strong>dental</strong>.2005.02.004


<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> 1151<br />

spaces [1]. This polymerization <strong>shrinkage</strong> creates<br />

<strong>contraction</strong> <strong>stress</strong>es in the <strong>resin</strong> composite<br />

restoration <strong>and</strong> internal <strong>stress</strong> <strong>and</strong> deformation in<br />

the surrounding tooth structure [2–4]. Despite<br />

considerable effort none <strong>of</strong> the contemporary<br />

bonding systems are able to maintain a reliable<br />

bonding between the <strong>resin</strong> composite <strong>and</strong> the tooth<br />

structure, resulting in poor marginal adaptation,<br />

postoperative pain, <strong>and</strong> recurrent carries.<br />

Reduction <strong>of</strong> the polymerization <strong>shrinkage</strong> has<br />

been an important issue, since the use <strong>of</strong> <strong>dental</strong><br />

<strong>resin</strong> composites. Non-shrinking <strong>resin</strong>s <strong>and</strong> modified<br />

filler particles have been developed to tackle<br />

this problem, but are not commercially available<br />

yet [5]. Factors that can affect the <strong>shrinkage</strong> are<br />

inorganic filler content, the molecular weight <strong>of</strong><br />

monomer system, <strong>and</strong> the degree <strong>of</strong> conversion<br />

<strong>of</strong> the monomer system [1]. Previous studies<br />

proved that ca 90% <strong>of</strong> the <strong>shrinkage</strong> occurs within<br />

the first hours [6,7]. During setting <strong>of</strong> the <strong>resin</strong><br />

composites the polymerization <strong>shrinkage</strong> induces<br />

<strong>contraction</strong> <strong>stress</strong>. The magnitude <strong>contraction</strong><br />

<strong>stress</strong> has been found to be dependent on the<br />

cavity configuration (C-factor), which is the ratio<br />

<strong>of</strong> the bonded to unbonded surface area <strong>of</strong> the<br />

restoration [8], the nature <strong>of</strong> the matrix material<br />

[5], the filler load [9,10], <strong>and</strong> the viscous–elastic<br />

properties [4,9]. Layering techniques or applying<br />

a low elastic modulus liners between the tooth<br />

structure <strong>and</strong> the <strong>resin</strong> composite have been<br />

proposed to minimize the internal <strong>stress</strong> <strong>and</strong><br />

deformation <strong>of</strong> the tooth structure [11,12]. Also<br />

the polymerization rate influences the amount <strong>of</strong><br />

<strong>stress</strong>, i.e. higher <strong>contraction</strong> <strong>stress</strong> was observed<br />

with high polymerization rates [13,14]. The<br />

elastic modulus <strong>of</strong> the <strong>resin</strong> composite has been<br />

found to be an important factor for both the<br />

<strong>shrinkage</strong> <strong>and</strong> the <strong>contraction</strong> <strong>stress</strong>. In vitro test<br />

has shown that the setting <strong>shrinkage</strong> increases<br />

with the rigidity <strong>of</strong> the <strong>resin</strong> composite [9]. It has<br />

also shown that the elastic modulus <strong>of</strong> the <strong>resin</strong><br />

composite increases with the volume fraction <strong>of</strong><br />

the inorganic filler content [15]. During curing<br />

not all the <strong>shrinkage</strong> is converted to <strong>contraction</strong><br />

<strong>stress</strong> because the polymer can rearrange <strong>and</strong><br />

relieve <strong>stress</strong>. This flow is in principle composed<br />

<strong>of</strong> a macroscopic <strong>and</strong> microscopic component.<br />

The macroscopic flow occurs at the free surfaces<br />

during the polymerization reaction. The physical<br />

evidence is the development <strong>of</strong> a meniscus on<br />

the latter surfaces [16]. Microscopic flow is due<br />

to possible polymer rearrangement within the<br />

<strong>resin</strong> composite. Structure <strong>of</strong> the molecules,<br />

crosslink density <strong>of</strong> the network, the interaction<br />

<strong>of</strong> the matrix <strong>and</strong> filler particles <strong>and</strong> reaction<br />

kinetics may play a role in this type <strong>of</strong> flow.<br />

Furthermore, it is most likely that most <strong>of</strong> flow<br />

takes place before the gel point <strong>and</strong> that after<br />

the gel point most <strong>of</strong> the <strong>contraction</strong> <strong>stress</strong> is<br />

being developed.<br />

<strong>Polymerization</strong> <strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong>,<br />

elastic modulus, <strong>and</strong> flow are important factors<br />

determining the final properties <strong>of</strong> the <strong>resin</strong><br />

composite. However, so far, only polymerization<br />

<strong>shrinkage</strong> in relation to elastic modulus [9], <strong>and</strong><br />

polymerization <strong>contraction</strong> <strong>stress</strong> in relation to<br />

elastic modulus [17], <strong>and</strong> filler load [18] <strong>and</strong> type <strong>of</strong><br />

<strong>resin</strong> composite [19,20] have been evaluated. The<br />

present study is focused on the relation <strong>shrinkage</strong>,<br />

<strong>contraction</strong> <strong>stress</strong>, elastic modulus, <strong>and</strong> the flow <strong>of</strong><br />

a range <strong>of</strong> <strong>resin</strong> composites; micr<strong>of</strong>illed, (micro)hybride,<br />

condensable, <strong>and</strong> flowable <strong>resin</strong> composites.<br />

It was expected that highly filled <strong>resin</strong><br />

composites have low <strong>shrinkage</strong> values, high <strong>contraction</strong><br />

<strong>stress</strong> values <strong>and</strong> are relatively ridged, <strong>and</strong><br />

the low-viscosity or flowable <strong>resin</strong> composites have<br />

high <strong>shrinkage</strong> values, low <strong>contraction</strong> <strong>stress</strong> values<br />

<strong>and</strong> are relatively flexible.<br />

Materials <strong>and</strong> methods<br />

Table 1 describes the materials tested.<br />

Volumetric <strong>shrinkage</strong><br />

Volumetric <strong>shrinkage</strong> measurements were performed<br />

by mercury dilatometry at 23.0G0.1 8C<br />

similar as reported previously [21]. The st<strong>and</strong>ard<br />

procedure <strong>and</strong> operation <strong>of</strong> the dilatometer was as<br />

follows: (i) A layer <strong>of</strong> high vacuum grease (Dow<br />

Corning Corporation, Midl<strong>and</strong>, MI, USA) was applied<br />

on the flat surface <strong>of</strong> the glass stopper for<br />

separation. (ii) An amount <strong>of</strong> approximately<br />

300 mg <strong>of</strong> a <strong>resin</strong> composite paste was applied on<br />

the greased surface <strong>of</strong> the stopper <strong>and</strong> flattened to<br />

a thickness <strong>of</strong> approximately 1.5 mm. The flowable<br />

<strong>resin</strong> composites were vacuum sealed in a PE<br />

plastic sheet. (iii) After the stopper was inserted<br />

into the dilatometer the sample was light activated<br />

with an Elipar Highlight or Elipar Trilight (3M-ESPE,<br />

Seefeld, G) for 40 s in st<strong>and</strong>ard mode (ca 750 mW/<br />

cm 2 ), ensuring complete curing. Recording was<br />

started at the moment that the light source was<br />

switched on. (iv) After the samples were removed<br />

from the dilatometer, the grease was washed <strong>of</strong>f<br />

with ether <strong>and</strong> the density measured by means <strong>of</strong><br />

pycnometry with a Mettler AT261 DeltaRange<br />

(Mettler-Toledo, Tiel, NL). From each material six<br />

samples (nZ6) were measured over a period <strong>of</strong><br />

30 min.


1152<br />

Table 1 Material properties according to manufacturers data.<br />

Material Matrix a<br />

Filler size Filler Manufacturer<br />

(mm) (vol.%)<br />

b<br />

Batch no.<br />

HelioMolar Bis-GMA, UDMA, dec<strong>and</strong>iol<br />

dimethacrylate<br />

0.04–0.2 46 Ivoclar Vivadent E50807<br />

Filtek A110 Bis-GMA, TEGDMA 0.01–0.09 40 3M ESPE 20020404<br />

Filtek Z250 Bis-GMA, UDMA, Bis-EMA 0.01–3.5 60 3M ESPE 20021227<br />

Filtek P60 Bis-GMA, UDMA, Bis-EMA 0.01–3.5 61 3M ESPE 20030122<br />

Filtek Surpreme Bis-GMA, UDMA,<br />

TEGDMA, Bis-EMA<br />

0.6–1.4 58 3M ESPE 20030326<br />

Filtek Z100 Bis-GMA, TEGDMA 0.01–3.5 66 3M ESPE 20030625<br />

Prodigy condensable Methacrylate ester<br />

monomers<br />

Kerr 208365<br />

Tetric Ceram Bis-GMA, UDMA,<br />

TEGDMA<br />

0.04–3.0 60 Ivoclar Vivadent E36547<br />

Herculite XRV Methacrylate ester<br />

monomers<br />

0.6 59 Kerr 204828<br />

Spectrum TPH Bis-GMA, UDMA, Bis-EMA 0.04–5.0 57 Densply deTrey 0204001130<br />

Point4 Methacrylate ester<br />

monomers<br />

0.4 57 Kerr 301614<br />

Heliomolar flow Bis-GMA, UDMA, dec<strong>and</strong>iol<br />

dimethacrylate<br />

0.04–0.2 30 Ivoclar Vivadent E24218<br />

Tetric flow Bis-GMA, TEGDMA,<br />

UDMA<br />

0.04–3.0 40 Ivoclar Vivadent E16624<br />

Aelite Flo Bis-GMA, TEGDMA 36 Bisco 0200006428<br />

Revolution Formula 2 Methacrylate ester<br />

monomers<br />

35 Kerr 2-1147<br />

Flow-it Bis-GMA, TEGDMA,<br />

EBPADMA<br />

40 Jeneric/Pentron 62249<br />

UltraSeal XT Plus Bis-GMA 36 Ultradent YL5C<br />

a<br />

Bis-GMA, bisphenyl glycidylmethacrylate; UDMA, urethane dimethacrylate; TEGDMA, triethylene glycol dimethacrylate; Bis-<br />

EMA, ethoxylated bisphenol A dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate.<br />

b<br />

Ivoclar Vivadent, Schaan, Liechtenstein; 3M ESPE, St. Paul, MN, USA; Kerr, Orange, CA, USA; Densply deTrey, Konstanz,<br />

Germany; Jeneric/Pentron, Wallingford, CT, USA; Ultradent, South South Jordan, UT, USA.<br />

Contraction <strong>stress</strong><br />

The test setup shown in Figure 1 was placed in an<br />

Instron 6022 Tensilometer (Instron Ltd., Wycombe,<br />

UK). The <strong>resin</strong> composite paste was inserted<br />

between the glass plate <strong>and</strong> the flat surface <strong>of</strong> the<br />

steel bolt head <strong>and</strong> adhered to both these surfaces.<br />

During light curing <strong>and</strong> a period <strong>of</strong> 30 min following,<br />

the <strong>contraction</strong> <strong>stress</strong> development was measured,<br />

while the distance between the glass <strong>and</strong> the steel<br />

bolt head was kept constant. This simulated a<br />

restoration in a fully rigid situation, where the<br />

cavity walls do not yield to the <strong>contraction</strong> forces.<br />

The glass plate (4 mm thick) was s<strong>and</strong>blasted<br />

with Al2O3 (50 mm) <strong>and</strong> remaining Al2O3 was<br />

removed by compressed air. The surface was<br />

treated with Ceramic Primer (3M, St. Paul, MN,<br />

USA) <strong>and</strong> Scotch Bond MP (3M, St. Paul, MN, USA)<br />

according to the manufacturer’s procedures. The<br />

bolt head (3.2 mm diameter) was wet-ground on<br />

600 grit SiC s<strong>and</strong>paper <strong>and</strong> then s<strong>and</strong>blasted with<br />

C.J. Kleverlaan, A.J. Feilzer<br />

Al2O3 (50 mm), rinsed with acetone <strong>and</strong> treated in a<br />

Silicoater (Heraeus Kulzer, Wehrheim, G) to deposit<br />

a thin silica layer. A drop <strong>of</strong> fresh Silicoup (Heraeus<br />

Kulzer, Wehrheim, G) was applied to silanize the<br />

surface. After drying, a thin layer <strong>of</strong> Scotch Bond MP<br />

Figure 1 Schematic representation <strong>of</strong> the tensilometer.<br />

The <strong>resin</strong> composite was bonded to the surface<br />

<strong>of</strong> the bold head <strong>and</strong> the surface <strong>of</strong> the silanated glass<br />

plate.


<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> 1153<br />

was applied <strong>and</strong> light cured for 20 s. The composite<br />

was applied between the glass plate <strong>and</strong> bolt head,<br />

<strong>and</strong> the cross-head was moved to set the distance<br />

between the glass plate <strong>and</strong> bolt head to 0.8 mm.<br />

This configuration resulted in C-value <strong>of</strong> 2<br />

(CZd/2hZ3.2/1.6) [8]. The samples were light<br />

cured through the glass with an Elipar Highlight or<br />

Elipar Trilight (ESPE, Seefeld, Germany) for 40 s in<br />

st<strong>and</strong>ard mode, ensuring complete curing. From the<br />

start <strong>of</strong> light curing the <strong>contraction</strong> <strong>stress</strong> development<br />

was measured during 30 min. The axial<br />

<strong>contraction</strong> <strong>of</strong> the samples was continuously<br />

counteracted by a feedback displacement <strong>of</strong> the<br />

cross-head to keep the height <strong>of</strong> the specimen<br />

constant. The tensile modulus was measured after<br />

30 min after the initial curing with a cross-head<br />

speed <strong>of</strong> 0.025 mm min K1 .<br />

The tensile modulus, was calculated using the<br />

following formula: EZs/3, where s is the <strong>stress</strong><br />

(F/A) <strong>and</strong> 3, the strain (Dl/l0). The <strong>contraction</strong><br />

<strong>stress</strong> <strong>and</strong> the tensile modulus <strong>of</strong> each <strong>of</strong> the <strong>resin</strong><br />

composites in Table 1 was determined from six<br />

measurements (nZ6).<br />

Stress relief in axial direction, further denoted as<br />

flow <strong>of</strong> the <strong>resin</strong> composite for a predefined<br />

configuration at a selected time is calculated as<br />

follows [22]. sth is the theoretical <strong>stress</strong>, which<br />

would have been developed if the flow was zero,<br />

can be calculated accordingly: sthZE3CZ0. In this<br />

formula 3 CZ0 represents the linear <strong>shrinkage</strong> (Dl/l 0)<br />

during free <strong>shrinkage</strong> or approximately 1/3 <strong>of</strong> the<br />

volumetric <strong>shrinkage</strong>. The flow factor can be<br />

expressed by: fCZ2Z(sthKsCZ2)/sth, where sCZ2<br />

is the <strong>contraction</strong> <strong>stress</strong> observed for a configuration<br />

factor <strong>of</strong> 2.<br />

Statistical analysis<br />

One-way analysis <strong>of</strong> variance (ANOVA) <strong>and</strong> Tukey’s<br />

post hoc test were used to analyze the volumetric<br />

<strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile modulus<br />

results obtained at 30 min. The volumetric <strong>shrinkage</strong><br />

<strong>and</strong> <strong>contraction</strong> <strong>stress</strong> data measured at 5, 15<br />

<strong>and</strong> 30 min, respectively, were analyzed with a<br />

paired t-test. A P-value <strong>of</strong> !0.05 was considered<br />

significant. The s<strong>of</strong>tware used was SPSS 10.0 (SPSS<br />

inc., Chicago, USA). Origin 5.0 (Microcal S<strong>of</strong>tware<br />

Inc, Northampton, USA) was used for the regression<br />

analysis.<br />

Results<br />

The volumetric <strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong> <strong>and</strong><br />

the tensile modulus are graphically depicted in<br />

Figure 2 Shrinkage (vol.%), <strong>contraction</strong> <strong>stress</strong> (MPa),<br />

<strong>and</strong> tensile modulus (GPa) <strong>of</strong> 17 different <strong>resin</strong><br />

composites.<br />

Figure 2. The <strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong>, <strong>and</strong> the<br />

tensile modulus were measured during 30 min <strong>and</strong><br />

the values at 5, 15, <strong>and</strong> 30 min are reported in<br />

Table 2. Paired t-test showed that there was a<br />

significant increase for the <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong><br />

<strong>stress</strong> for all <strong>resin</strong> composites at both time<br />

intervals (5 vs 15 min, <strong>and</strong> 15 vs 30 min). One-way<br />

ANOVA <strong>and</strong> Tukey’s post hoc tests were used for<br />

evaluation <strong>of</strong> the <strong>resin</strong> composites <strong>and</strong> the results<br />

are summarized in Table 2.<br />

The <strong>shrinkage</strong> <strong>of</strong> the studied <strong>resin</strong> composites<br />

ranged from 2.00 to 5.63 vol.% at 30 min. The<br />

<strong>shrinkage</strong> <strong>of</strong> the non-flowable <strong>resin</strong> composites was<br />

from 2.00 to 3.42 vol.%, where Heliomolar showed<br />

the lowest <strong>shrinkage</strong> <strong>and</strong> Point 4 the highest. For<br />

the flowable <strong>resin</strong> composites the <strong>shrinkage</strong> ranged<br />

from 4.17 vol.% (Heliomolar Flow) to 5.63 vol.%<br />

(UltraSeal XT Plus). The <strong>contraction</strong> <strong>stress</strong> <strong>of</strong> the<br />

studied <strong>resin</strong> composites was from 3.3 to 23.5 MPa<br />

at 30 min. The <strong>contraction</strong> <strong>stress</strong> <strong>of</strong> the nonflowable<br />

<strong>resin</strong> composites was from 8.4 MPa<br />

(Heliomolar) to 23.5 MPa (Filtek Z100). In the<br />

flowable <strong>resin</strong> composites the <strong>contraction</strong> <strong>stress</strong>


1154<br />

Table 2<br />

materials.<br />

Shrinkage (vol.%), <strong>contraction</strong> <strong>stress</strong> (MPa) <strong>and</strong> tensile modulus (GPa) <strong>of</strong> 17 commercial available<br />

Material Shrinkage (vol.%)<br />

5 min 15 min 30 min<br />

Contraction <strong>stress</strong> (MPa)<br />

5 min 15 min 30 min<br />

Tensile<br />

modulus<br />

(GPa)<br />

Heliomolar 1.76 (0.11) 1.90 (0.12) 2.00 (0.11) a<br />

7.2 (0.7) 8.0 (0.8) 8.4 (0.8) a<br />

2.7 (0.3) defg<br />

Filtek A110 1.95 (0.06) 2.08 (0.09) 2.17 (0.09) b<br />

15.7 (0.7) 16.8 (0.7) 17.4 (0.8) b<br />

3.3 (0.4) fghi<br />

Filtek Z250 2.07 (0.05) 2.22 (0.03) 2.33 (0.04) bc<br />

12.2 (0.9) 13.3 (1.0) 13.9 (1.0) cde<br />

3.8 (0.4) i<br />

Filtek P60 2.07 (0.07) 2.22 (0.07) 2.34 (0.07) c<br />

12.7 (1.1) 13.9 (1.1) 14.6 (1.1) def<br />

3.3 (0.3) ghi<br />

Filtek Supreme 2.19 (0.05) 2.38 (0.03) 2.51 (0.04) d<br />

12.8 (1.1) 14.3 (1.3) 15.1 (1.3) ef<br />

3.7 (0.4) i<br />

Filtek Z100 2.32 (0.02) 2.48 (0.02) 2.56 (0.06) d<br />

21.4 (0.3) 22.8 (0.3) 23.5 (0.4) 3.5 (0.2) hi<br />

Prodigy Condensable<br />

2.79 (0.02) 2.96 (0.02) 3.07 (0.02) e<br />

14.5 (1.0) 15.5 (1.0) 16.1 (1.1) bf<br />

3.2 (0.1) fghi<br />

Tetric Ceram 2.84 (0.12) 3.02 (0.12) 3.15 (0.11) e<br />

10.8 (0.7) 12.1 (0.7) 12.8 (0.7) cd<br />

2.9 (0.4) defgh<br />

XR Herculite 2.86 (0.09) 3.05 (0.10) 3.16 (0.09) e<br />

13.0 (0.9) 14.2 (1.0) 14.9 (1.0) ef<br />

3.4 (0.3) hi<br />

Spectrum TPH 2.87 (0.10) 3.04 (0.09) 3.16 (0.10) e<br />

13.7 (0.6) 15.0 (0.6) 15.6 (0.7) bef<br />

3.0 (0.5) efgh<br />

Point 4 3.12 (0.04) 3.30 (0.02) 3.42 (0.03) 10.3 (1.9) 11.3 (2.0) 11.9 (2.1) c<br />

2.7 (0.3) def<br />

Heliomolar<br />

Flow<br />

3.81 (0.08) 3.98 (0.03) 4.17 (0.10) 7.4 (0.9) 8.0 (1.0) 8.4 (1.0) a<br />

1.9 (0.5) bc<br />

Tetric Flow 3.98 (0.02) 4.21 (0.03) 4.39 (0.04) 6.7 (1.2) 7.3 (1.3) 7.6 (1.3) a<br />

1.9 (0.3) bc<br />

Aelite Flo 4.38 (0.09) 4.66 (0.07) 4.84 (0.07) f<br />

14.0 (1.3) 15.3 (1.2) 16.0 (1.2) bef<br />

2.3 (0.3) cd<br />

Revolution<br />

Formula 2<br />

4.56 (0.06) 4.82 (0.07) 4.99 (0.06) f<br />

5.9 (0.6) 6.5 (0.6) 6.8 (0.7) a<br />

1.2 (0.1) a<br />

Flow-it 4.89 (0.04) 5.13 (0.04) 5.30 (0.05) 13.8 (0.8) 14.8 (0.8) 15.4 (0.8) bef<br />

2.4 (0.2) cde<br />

UltraSeal XT<br />

Plus<br />

5.07 (0.06) 5.48 (0.11) 5.63 (0.11) 2.7 (0.2) 3.1 (0.3) 3.3 (0.3) 1.3 (0.2) ab<br />

No significant differences were observed if mean is quoted with the same letter.<br />

was the lowest for UltraSeal XT Plus 3.3 MPa, but<br />

Aelite Flo (16.0 MPa) <strong>and</strong> Flow-it (15.4 MPa) showed<br />

remarkable high <strong>contraction</strong> <strong>stress</strong> values. The<br />

tensile modulus, measured after 30 min, varied<br />

from 1.2 GPa (Revolution Formula 2) to 3.8 GPa<br />

(Filtek Z250).<br />

Regression curves between the tensile modulus<br />

<strong>and</strong> <strong>shrinkage</strong> (Figure 3 top), the tensile modulus<br />

<strong>and</strong> <strong>contraction</strong> <strong>stress</strong> (Figure 3, bottom) <strong>and</strong> the<br />

<strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> (Figure 4) showed<br />

a very good fit with linear functions (Table 3). For<br />

the regression curve between the tensile modulus<br />

<strong>and</strong> <strong>shrinkage</strong> Heliomolar, Flow-it, <strong>and</strong> Aelite Flo<br />

were omitted for the analysis. Heliomolar, Filtek<br />

Z100, Flow-it, <strong>and</strong> Aelite Flo were omitted for the<br />

regression analysis between the tensile modulus<br />

<strong>and</strong> <strong>contraction</strong> <strong>stress</strong>, <strong>and</strong> the <strong>shrinkage</strong> <strong>and</strong><br />

<strong>contraction</strong> <strong>stress</strong>. The regression curves between<br />

the <strong>shrinkage</strong> <strong>and</strong> inorganic filler load (Figure 5,<br />

Table 3) showed a very good fit with a linear<br />

function except for Heliomolar, Heliomolar flow,<br />

<strong>and</strong> Filtek A110.<br />

The theoretical <strong>stress</strong> (sth) is the <strong>stress</strong> that<br />

would have been developed if the flow was<br />

zero. The theoretical <strong>stress</strong> for Filtek Z250 was<br />

29.5 MPa, while the observed <strong>stress</strong> was only<br />

13.9 MPa. The flow <strong>of</strong> <strong>resin</strong> composite was,<br />

under the circumstances measured, 53%. The<br />

flow <strong>of</strong> all <strong>resin</strong> composites are graphically<br />

depicted in Figure 6.<br />

Discussion<br />

C.J. Kleverlaan, A.J. Feilzer<br />

The magnitude <strong>of</strong> the <strong>shrinkage</strong> <strong>and</strong> the accompanying<br />

<strong>stress</strong> generated by the polymerization<br />

reaction <strong>of</strong> the <strong>resin</strong> composite material are the<br />

main factors for in vivo problems like poor marginal<br />

adaptation, postoperative pain, <strong>and</strong> recurrent<br />

carries. Furthermore, the elastic properties (i.e.<br />

E-modulus or tensile modulus) <strong>and</strong> the ability <strong>of</strong> the<br />

polymer to rearrange <strong>and</strong> relieve <strong>stress</strong>, i.e. flow,<br />

has been shown to influence the final <strong>contraction</strong><br />

<strong>stress</strong>. These four parameters, <strong>shrinkage</strong>, <strong>contraction</strong><br />

<strong>stress</strong>, tensile modulus, <strong>and</strong> flow, show an<br />

interesting interplay which depends on many<br />

factors such as filler load, type <strong>of</strong> filler particles,<br />

monomer system, pre-polymerized particles, etc.<br />

In this study the <strong>shrinkage</strong>, <strong>contraction</strong> <strong>stress</strong>, <strong>and</strong><br />

tensile modulus <strong>of</strong> 17 commercially available <strong>resin</strong><br />

composites were investigated, representing <strong>resin</strong><br />

composites from different groups like micr<strong>of</strong>illed,<br />

(micro)hybride, condensable, <strong>and</strong> flowable <strong>resin</strong><br />

composites. This study was not focused on


<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> 1155<br />

Shrinkag e (vol%)<br />

Contraction Stress (MPa)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

20<br />

15<br />

10<br />

5<br />

Aelite Flo<br />

Flow-it<br />

Heliomolar<br />

Filtek Z100<br />

Flow-it<br />

Aelite Flo<br />

Heliomolar<br />

0<br />

0 1 2 3 4 5<br />

Tensile Modulus (GPa)<br />

Figure 3 Linear regression analysis <strong>of</strong> <strong>shrinkage</strong> vs<br />

tensile modulus (top) <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> vs tensile<br />

modulus (bottom) <strong>of</strong> 17 different <strong>resin</strong> composites.<br />

comparing the properties <strong>of</strong> the different <strong>resin</strong><br />

composite groups, but on general properties within<br />

the whole group. In general, linear regression<br />

analysis between (i) <strong>shrinkage</strong> <strong>and</strong> tensile<br />

modulus (ii) <strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile<br />

modulus (iii) <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong>, <strong>and</strong><br />

Contraction Stress (MPa)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Heliomolar<br />

Filtek Z100<br />

Aelite Flo<br />

Flow-it<br />

0<br />

1 2 3 4 5 6<br />

Shrinkage (vol%)<br />

Figure 4 Linear regression analysis <strong>of</strong> <strong>contraction</strong><br />

<strong>stress</strong> vs <strong>shrinkage</strong> <strong>of</strong> 17 different <strong>resin</strong> composites.<br />

(iv) <strong>shrinkage</strong> <strong>and</strong> filler load (as reported by the<br />

manufacturer) yielded strong correlations<br />

(Table 3), where some <strong>of</strong> the <strong>resin</strong> composites<br />

deviated from. This strong correlation is rather<br />

surprising, since there are many differences in filler<br />

size <strong>and</strong> load, <strong>resin</strong> type, <strong>and</strong> photoinitiator<br />

systems present among these materials.<br />

The <strong>contraction</strong> <strong>stress</strong> is determined by characteristic<br />

<strong>of</strong> the <strong>resin</strong> composite. The filler content<br />

<strong>and</strong> <strong>resin</strong> matrix composition dictate the amount <strong>of</strong><br />

volumetric <strong>shrinkage</strong> <strong>and</strong> the elastic modulus <strong>of</strong> the<br />

<strong>resin</strong> composite. According to Figure 3 (top) an<br />

inverse relation between the tensile modulus <strong>and</strong><br />

<strong>shrinkage</strong> exists, which confirms the findings <strong>of</strong><br />

Labella et al. [9]. Flowable <strong>resin</strong> composites<br />

produce high volumetric <strong>shrinkage</strong> <strong>and</strong> low tensile<br />

modulus compared with non-flowable <strong>resin</strong> composites,<br />

which show low volumetric <strong>shrinkage</strong> <strong>and</strong> high<br />

tensile modulus. Braem et al. [15] showed a strong<br />

correlation between filler load <strong>of</strong> commercial <strong>resin</strong><br />

composites <strong>and</strong> their tensile modulus. Thus,<br />

increasing the filler load (e.g. flowable <strong>resin</strong><br />

composites/non-flowable <strong>resin</strong> composites)<br />

results in an increase <strong>of</strong> the tensile modulus. On<br />

the other h<strong>and</strong>, a higher filler load decreases the<br />

amount <strong>of</strong> <strong>resin</strong> in the <strong>resin</strong> composite <strong>and</strong>,<br />

therefore, a decrease in <strong>shrinkage</strong> is observed,<br />

explaining the inverse relation between tensile<br />

modulus <strong>and</strong> <strong>shrinkage</strong>. Furthermore, Condon<br />

et al. [18] showed a strong correlation between<br />

filler volume <strong>of</strong> commercial <strong>resin</strong> composites <strong>and</strong><br />

<strong>contraction</strong> <strong>stress</strong>. Increasing filler load resulted in<br />

higher <strong>stress</strong>es. Combining this result with the<br />

increasing filler load (e.g. flowable <strong>resin</strong> composites/non-flowable<br />

<strong>resin</strong> composites) resulted in<br />

an increase <strong>of</strong> the tensile modulus, explaining the<br />

positive correlation between tensile modulus <strong>and</strong><br />

<strong>contraction</strong> <strong>stress</strong> (Figure 3 (bottom)). In short,<br />

increasing the filler load results in less <strong>shrinkage</strong>,<br />

more <strong>stress</strong> <strong>and</strong> a higher tensile modulus.<br />

The relation between the <strong>contraction</strong> <strong>stress</strong> <strong>and</strong><br />

<strong>shrinkage</strong> is shown in Figure 4, which clearly shows<br />

that low <strong>shrinkage</strong> is accompanied with high<br />

<strong>contraction</strong> <strong>stress</strong>, <strong>and</strong> that high <strong>shrinkage</strong> shows<br />

lower <strong>contraction</strong> <strong>stress</strong> values. This implies that<br />

using low shrinking <strong>resin</strong> composite in the clinical<br />

situation is not always favorable! Low shrinking<br />

<strong>resin</strong> composites will give high <strong>stress</strong> if the tooth<br />

structure is not able to comply, eventually resulting<br />

in poor marginal adaptation, postoperative pain or<br />

fracture. So, in rigid surroundings, e.g. Class V<br />

restorations, a low <strong>contraction</strong> <strong>stress</strong> <strong>resin</strong> composite<br />

is advised. Furthermore, Figure 4 shows that<br />

Heliomolar, Filtek Z100, Aelite Flo <strong>and</strong> Flow-it<br />

differ from the other <strong>resin</strong> composites. Materials<br />

below the regression line, e.g. Heliomolar, show


1156<br />

Table 3 The results <strong>of</strong> the regression analysis <strong>of</strong> <strong>shrinkage</strong> (vol.%), <strong>contraction</strong> <strong>stress</strong> (MPa), tensile modulus (GPa)<br />

<strong>and</strong> filler load (vol.%).<br />

Variables Equation r 2<br />

Contraction <strong>stress</strong> vs tensile modulus s (MPa)ZK0.10C4.49E (GPa) 0.84<br />

Contraction <strong>stress</strong> vs <strong>shrinkage</strong> s (MPa)Z25.00K3.743 (vol.%) 0.88<br />

Shrinkage vs tensile modulus 3 (vol.%)Z6.62K1.17E (GPa) 0.90<br />

Shrinkage vs filler load 3(vol.%)Z8.65K0.097 filler% (vol.%) 0.89<br />

superior <strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties,<br />

compared to the materials on the regression line.<br />

Thus, the materials above the regression line, e.g.<br />

Filtek Z100, Aelite Flo <strong>and</strong> Flow-it show inferior<br />

<strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties, compared<br />

to the materials on the regression line. It should be<br />

noted that these <strong>resin</strong> composites did also not<br />

follow the regression line for tensile modules/<br />

<strong>contraction</strong> <strong>stress</strong> <strong>and</strong> tensile modules/<strong>shrinkage</strong><br />

(Figure 3).<br />

In agreement with our findings, low <strong>shrinkage</strong><br />

<strong>and</strong> low <strong>contraction</strong> <strong>stress</strong> has been reported for<br />

Heliomolar [9,17]. Heliomolar is micr<strong>of</strong>illed <strong>resin</strong><br />

composite, which contain lower filler levels (ca<br />

40 vol.%) compared to hybrid <strong>resin</strong> composites<br />

(ca 60 vol.%). Therefore, the <strong>contraction</strong> <strong>stress</strong><br />

<strong>and</strong> tensile modules should be low, but the<br />

<strong>shrinkage</strong> should be high. However, much <strong>of</strong> the<br />

filler is added to the <strong>resin</strong> matrix in pre-polymerized<br />

clusters, <strong>and</strong> therefore, the <strong>shrinkage</strong> levels <strong>of</strong><br />

Heliomolar is similar to the more heavily filled<br />

hybrid <strong>resin</strong> composites [17,23]. In order to<br />

determine the level <strong>of</strong> pre-polymerized clusters<br />

the inorganic filler load against the <strong>shrinkage</strong> has<br />

been plotted <strong>and</strong> assumed that the <strong>shrinkage</strong> <strong>of</strong> the<br />

monomer system is similar. An increase in inorganic<br />

filler load gives a decrease in <strong>resin</strong> <strong>and</strong><br />

Shrinkage (vol%)<br />

6<br />

4<br />

2<br />

0<br />

Heliomolar Flow<br />

Filtek A110<br />

Heliomolar<br />

30 40 50 60 70<br />

Filler Load (vol%)<br />

C.J. Kleverlaan, A.J. Feilzer<br />

consequently a reduction in <strong>shrinkage</strong>. If any prepolymerized<br />

clusters were added the <strong>shrinkage</strong> it<br />

should decrease. Figure 5 shows that Heliomolar,<br />

Filtek A110, <strong>and</strong> Heliomolar Flow shrink less due to<br />

pre-polymerized clusters. From this plot it can be<br />

estimated that these <strong>resin</strong> composites contain ca<br />

23, 25, 17 vol.% pre-polymerized <strong>resin</strong>, respectively.<br />

Interestingly, Heliomolar showed improved<br />

<strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties, while Filtek<br />

A110, <strong>and</strong> Heliomolar Flow showed relative high<br />

<strong>shrinkage</strong> values for the amount <strong>of</strong> pre-polymerized<br />

<strong>resin</strong> added. Apparently the flow characteristics <strong>of</strong><br />

Filtek A110, <strong>and</strong> Heliomolar Flow were also<br />

important (see below). Using pre-polymerized<br />

clusters in <strong>resin</strong> composites can decrease the<br />

<strong>shrinkage</strong>, <strong>and</strong> <strong>contraction</strong> <strong>stress</strong>, but has one<br />

major drawback; the wear <strong>of</strong> these <strong>resin</strong> composites<br />

is much higher compared to more heavily filled<br />

hybrid <strong>resin</strong> composites [23].<br />

The materials above the regression line <strong>of</strong><br />

Figure 4, e.g. Filtek Z100, Aelite Flo <strong>and</strong> Flow-it<br />

show inferior <strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties,<br />

compared to the materials on the regression<br />

line. Filtek Z100 is a heavily filled hybrid <strong>resin</strong><br />

composite, which is rather transparent. Due to the<br />

transparent character <strong>and</strong> the choice <strong>of</strong> photoinitiator<br />

system the kinetics <strong>of</strong> the polymerizing<br />

reaction are affected in such a way that Filtek Z100<br />

is among one <strong>of</strong> the fastest curing <strong>resin</strong> composites<br />

[9]. Faster polymerization rates imply that the <strong>resin</strong><br />

composite reaches more quickly the gel point <strong>and</strong><br />

Figure 5 Linear regression analysis <strong>of</strong> <strong>shrinkage</strong> vs filler<br />

load <strong>of</strong> 16 different <strong>resin</strong> composites (filler load was<br />

according to manufacturer’s data). Figure 6 Flow factor <strong>of</strong> 17 different <strong>resin</strong> composites.


<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> <strong>contraction</strong> <strong>stress</strong> 1157<br />

rapidly giving rise to stiffness instead <strong>of</strong> giving it<br />

time to let the <strong>resin</strong> composite flow. The fast<br />

reaction rate is, therefore, associated with fast<br />

growth <strong>of</strong> the elastic modulus <strong>and</strong> as a result also<br />

higher <strong>contraction</strong> <strong>stress</strong> is obtained.<br />

High <strong>shrinkage</strong> <strong>and</strong> high <strong>stress</strong> has been reported<br />

for Aelite Flo [9,17], which is in agreement with the<br />

inferior <strong>shrinkage</strong>/<strong>contraction</strong> <strong>stress</strong> properties <strong>of</strong><br />

this material. To our knowledge no <strong>shrinkage</strong> or<br />

<strong>contraction</strong> <strong>stress</strong> data for Flow-it are reported.<br />

The origin for the high <strong>contraction</strong> <strong>stress</strong> for Flow-it<br />

<strong>and</strong> Aelite Flo is not straightforward. One possible<br />

explanation is that TEGDMA is added to improve the<br />

viscosity <strong>of</strong> the <strong>resin</strong> composite. It has been shown<br />

that increase in the concentration <strong>of</strong> TEGDMA leads<br />

to higher <strong>shrinkage</strong> <strong>and</strong> higher <strong>contraction</strong> <strong>stress</strong>,<br />

due to the fact that the double bond conversion<br />

increases [24].<br />

The flow factor as shown in Figure 6 can only be<br />

used as relative number for a predefined set <strong>of</strong><br />

conditions. Since, the conditions were identical <strong>of</strong><br />

all <strong>resin</strong> composites it is possible to compare the<br />

obtained values. Figure 6 shows that the nonflowable<br />

<strong>resin</strong> composites have a flow factor <strong>of</strong> ca<br />

50%, except for Filtek A110 (27%) <strong>and</strong> Filtek Z100<br />

(21%). The low flow factor for Filtek Z100 is most<br />

probably due to the fast setting kinetics <strong>of</strong> this <strong>resin</strong><br />

composite. The pre-polymerized clusters in Filtek<br />

A110 may contribute to the low flow factor,<br />

although this effect was not observed for<br />

Heliomolar. The flow factor <strong>of</strong> the flowable <strong>resin</strong><br />

composites is higher than the flow factor <strong>of</strong> the nonflowable<br />

<strong>resin</strong> composites. Apparently, the<br />

viscosity <strong>and</strong>/or the filler load are important<br />

factors. To get a better inside in the mechanisms<br />

involved in the flow more st<strong>and</strong>ardized <strong>resin</strong><br />

composites are necessary, which was beyond the<br />

scope <strong>of</strong> this paper. It should be noted that the flow<br />

is an important factor <strong>and</strong> has a strong influence on<br />

the <strong>contraction</strong> <strong>stress</strong>.<br />

Acknowledgements<br />

Mrs J. Rezende is gratefully acknowledged for<br />

performing the experiments.<br />

References<br />

[1] Peutzfeldt A. Resin composites in dentistry: the monomer<br />

systems. Eur J Oral Sci 1997;105:97–116.<br />

[2] Ferracane JL, Mitchem JC. Relationship between composite<br />

<strong>contraction</strong> <strong>stress</strong> <strong>and</strong> leakage in Class V cavities. Am J Dent<br />

2003;16:239–43.<br />

[3] Suliman AH, Boyer DB, Lakes RS. <strong>Polymerization</strong> <strong>shrinkage</strong><br />

<strong>of</strong> composite <strong>resin</strong>s: comparison with tooth deformation.<br />

J Prosthet Dent 1994;71:7–12.<br />

[4] Braga RR, Ferracane JL. Alternatives in polymerization<br />

<strong>contraction</strong> <strong>stress</strong> management. Crit Rev Oral Biol Med<br />

2004;15:176–84.<br />

[5] Guggenberger R, Weinmann W. Exploring beyond methacrylates.<br />

Am J Dent 2000;13:82D–84.<br />

[6] B<strong>and</strong>yopadhyay S. A study <strong>of</strong> the volumetric setting<br />

<strong>shrinkage</strong> <strong>of</strong> some <strong>dental</strong> materials. J Biomed Mater Res<br />

1982;16:135–44.<br />

[7] Fano V, Ma WY, Ortalli I, Pozela K. Study <strong>of</strong> <strong>dental</strong> materials<br />

by laser beam scanning. Biomaterials 1998;19:1541–5.<br />

[8] Feilzer AJ, De Gee AJ, Davidson CL. Setting <strong>stress</strong> in<br />

composite <strong>resin</strong> in relation to configuration <strong>of</strong> the<br />

resoration. J Dent Res 1987;66:1636–9.<br />

[9] Labella R, Lambrechts P, Van Meerbeek B, Vanherle G.<br />

<strong>Polymerization</strong> <strong>shrinkage</strong> <strong>and</strong> elasticity <strong>of</strong> flowable composites<br />

<strong>and</strong> filled adhesives. Dent Mater 1999;15:128–37.<br />

[10] Chantler PM, Hu X, Boyd NM. An extension <strong>of</strong> a phenomenological<br />

model for <strong>dental</strong> composites. Dent Mater 1999;15:<br />

144–9.<br />

[11] Choi KK, Condon JR, Ferracane JL. The effects <strong>of</strong> adhesive<br />

thickness on polymerization <strong>contraction</strong> <strong>stress</strong> <strong>of</strong> composite.<br />

J Dent Res 2000;79:812–7.<br />

[12] Kemp-Scholte CM, Davidson CL. Marginal integrity related<br />

to bond strength <strong>and</strong> strain capacity <strong>of</strong> composite <strong>resin</strong><br />

restorative systems. J Prosthet Dent 1990;64:658–64.<br />

[13] Feilzer AJ, Dooren LH, de Gee AJ, Davidson CL. Influence <strong>of</strong><br />

light intensity on polymerization <strong>shrinkage</strong> <strong>and</strong> integrity <strong>of</strong><br />

restoration-cavity interface. Eur J Oral Sci 1995;103:322–6.<br />

[14] Kinomoto Y, Torii M, Takeshige F, Ebisu S. Comparison <strong>of</strong><br />

polymerization <strong>contraction</strong> <strong>stress</strong>es between self- <strong>and</strong><br />

light-curing composites. J Dent 1999;27:383–9.<br />

[15] Braem M, Lambrechts P, Van Doren V, Vanherle G. The<br />

impact <strong>of</strong> composite structure on its elastic response.<br />

J Dent Res 1986;65:648–53.<br />

[16] Asmussen E, Peutzfeldt A. Direction <strong>of</strong> <strong>shrinkage</strong> <strong>of</strong> lightcuring<br />

<strong>resin</strong> composites. Acta Odontol Sc<strong>and</strong> 1999;57:<br />

310–5.<br />

[17] Braga RR, Hilton TJ, Ferracane JL. Contraction <strong>stress</strong> <strong>of</strong><br />

flowable composite materials <strong>and</strong> their efficacy as <strong>stress</strong>relieving<br />

layers. J Am Dent Assoc 2003;134:721–8.<br />

[18] Condon JR, Ferracane JL. Assessing the effect <strong>of</strong> composite<br />

formulation on polymerization <strong>stress</strong>. J Am Dent Assoc<br />

2000;131:497–503.<br />

[19] Chen HY, Manhart J, Kunzelmann KH, Hickel R. <strong>Polymerization</strong><br />

<strong>contraction</strong> <strong>stress</strong> in light-cured compomer restorative<br />

materials. Dent Mater 2003;19:597–602.<br />

[20] Chen HY, Manhart J, Hickel R, Kunzelmann KH. <strong>Polymerization</strong><br />

<strong>contraction</strong> <strong>stress</strong> in light-cured packable composite<br />

<strong>resin</strong>s. Dent Mater 2001;17:253–9.<br />

[21] de Gee AJ, Davidson CL, Smith A. A modified dilatometer for<br />

continuous recording <strong>of</strong> volumetric polymerization <strong>shrinkage</strong><br />

<strong>of</strong> composite restorative materials. J Dent 1981;9:<br />

36–42.<br />

[22] Davidson CL, de Gee AJ. Relaxation <strong>of</strong> polymerization<br />

<strong>contraction</strong> <strong>stress</strong>es by flow in <strong>dental</strong> composites. J Dent<br />

Res 1984;63:146–8.<br />

[23] Clell<strong>and</strong> NL, Villarroel SC, Knobloch LA, Seghi RR. Simulated<br />

oral wear <strong>of</strong> packable composites. Oper Dent 2003;28:<br />

830–7.<br />

[24] Feilzer AJ, Dauvillier BS. Effect <strong>of</strong> TEGDMA/BisGMA ratio on<br />

<strong>stress</strong> development <strong>and</strong> viscoelastic properties <strong>of</strong> experimental<br />

two-paste composites. J Dent Res 2003;82:824–8.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!