03.04.2013 Views

Reinforced Concrete Design Analysis and Design for Torsion 1

Reinforced Concrete Design Analysis and Design for Torsion 1

Reinforced Concrete Design Analysis and Design for Torsion 1

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

13<br />

<strong>Rein<strong>for</strong>ced</strong> <strong>Concrete</strong> <strong>Design</strong><br />

<strong>Analysis</strong> <strong>and</strong> <strong>Design</strong> <strong>for</strong> <strong>Torsion</strong> 1<br />

<strong>Torsion</strong>al effects in rein<strong>for</strong>ced concrete<br />

<strong>Torsion</strong> in plain concrete members<br />

<strong>Torsion</strong> in rein<strong>for</strong>ced concrete members<br />

Combined shear <strong>and</strong> torsion<br />

ACI code provisions <strong>for</strong> torsion design<br />

Mongkol JIRAVACHARADET<br />

S U R A N A R E E INSTITUTE OF ENGINEERING<br />

UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING


<strong>Torsion</strong>al effects in rein<strong>for</strong>ced concrete<br />

T<br />

m t<br />

T<br />

<strong>Torsion</strong> at a cantilever slab


T<br />

A<br />

m t<br />

T<br />

A B<br />

Stiff edge beam<br />

B<br />

<strong>Torsion</strong> at an edge beam<br />

A B<br />

Flexible edge beam


<strong>Torsion</strong> in plain concrete members<br />

T<br />

Rectangular section: max 2<br />

y/x<br />

α<br />

τ<br />

=<br />

T<br />

αx<br />

y<br />

1.0 1.5 2.0 3.0 5.0 ∞<br />

0.208 0.219 0.246 0.267 0.290 1/3<br />

y<br />

x<br />

T<br />

τ max


Cracking Strength<br />

Plain concrete rectangular sections in torsion<br />

<strong>Torsion</strong> cracks<br />

T<br />

T<br />

T t<br />

T b 45 o<br />

45 o<br />

T<br />

τ<br />

T<br />

τ<br />

f t max at 45 o<br />

Bending: T b = T cos45 o<br />

<strong>Torsion</strong>: T t = T cos45 o<br />

τ<br />

τ


a<br />

T t<br />

T<br />

T b<br />

45 o<br />

a<br />

Sectional Modulus:<br />

<strong>Concrete</strong> crack occurs when<br />

f t max at 45 o<br />

ft,max = 0.80fr = 0.80 × 2.0 f ′ c = 1.6 f ′ c<br />

f r = Modulus of rupture<br />

2<br />

1 ⎛ y ⎞ 3 ⎛ 2 ⎞ x y<br />

a−a = a−a = =<br />

o o<br />

S I /( x / 2)<br />

12<br />

⎜ x<br />

cos45<br />

⎟ ⎜<br />

x<br />

⎟<br />

⎝ ⎠ ⎝ ⎠ 6cos45<br />

T 6cos45 3T<br />

f T f ′<br />

o<br />

t,max =<br />

b, cr<br />

=<br />

Sa−a o<br />

cr cos45 2<br />

x y<br />

cr = = 1.6<br />

2<br />

x y<br />

c<br />

2<br />

x y<br />

cr =<br />

c<br />

( 1.6 )<br />

T f ′<br />

3<br />

τ<br />

τ


Strength of <strong>Rein<strong>for</strong>ced</strong> <strong>Concrete</strong><br />

Rectangular sections in torsion<br />

ACI 1995: Solid section is analysed as a hollow-box section.<br />

T n<br />

T cr solid section<br />

T cr hollow section<br />

0<br />

0 1 2 3<br />

Percent of torsional rein<strong>for</strong>cement<br />

Solid Hollow


Shear Stress in Thin-walled Tube<br />

A 0<br />

Cracking Torque ( T cr ):<br />

t<br />

Shear flow:<br />

Shear stress:<br />

T<br />

τ = = 1.1 f ′<br />

cr<br />

cr<br />

2A0t<br />

c<br />

( )<br />

T = 1.1 f ′ 2A<br />

t<br />

cr c<br />

0<br />

q<br />

=<br />

τ =<br />

=<br />

T<br />

2A<br />

0<br />

0<br />

kg/cm<br />

q<br />

kg/cm<br />

t<br />

T<br />

2A<br />

t<br />

2


2A 3A<br />

ACI318-95: A0 = , t =<br />

3 4 p<br />

cp cp<br />

p cp : outside perimeter of concrete cross-section<br />

A cp : area enclosed by p cp<br />

T<br />

cr<br />

1.1<br />

=<br />

2<br />

c cp<br />

Neglect torsion when: T ≤ φT<br />

/ 4<br />

p<br />

f ′ A<br />

cp<br />

u cr<br />

cp<br />

kg-cm<br />

0.85 <strong>for</strong> torsion


7.1 กก<br />

3 กก<br />

15 .<br />

กกก ก f c = 240 กก./. 2<br />

60 cm<br />

15 cm<br />

30 cm<br />

3 ton<br />

<br />

p cp = 2(60+30) = 180 .<br />

<br />

Acp = (60)(30) = 1,800 . 2<br />

ก T cr = 1.1 (1,800) 2 /(180 1,000)<br />

240<br />

= 307 -. = 3.07 -.<br />

ก φT cr /4 = 0.85(3.07)/4 = 0.65 -<br />

ก<br />

Tu = (3)(0.15) = 0.45 - < 0.65 - OK


<strong>Torsion</strong> in <strong>Rein<strong>for</strong>ced</strong> <strong>Concrete</strong> Members<br />

x 0<br />

b<br />

y 0<br />

h<br />

Gross area A oh = x 0 y 0<br />

Shear perimeter p h = 2(x 0 + y 0)<br />

x 0 , y 0 = Distance from center to<br />

center of stirrup


Space Truss Analogy<br />

<strong>Torsion</strong>al resistance =<br />

sum of contribution from<br />

shear in each four walls<br />

V 2<br />

V 1<br />

V 3<br />

V 4<br />

Crack<br />

Stirrup<br />

θ<br />

<strong>Torsion</strong>al crack<br />

T<br />

x o<br />

45 o<br />

y o<br />

Longitudinal bar<br />

<strong>Concrete</strong> compression struts<br />

T


V4x T 4 =<br />

2<br />

o<br />

x o<br />

V4 = n At fyv<br />

V 4<br />

o<br />

n = y cot 45 / s = y / s<br />

V<br />

4<br />

=<br />

o o<br />

At fyv yo<br />

s<br />

A f x y<br />

T = = T = T =<br />

T<br />

2s<br />

t yv o o<br />

4 1 2 3<br />

y o<br />

V 4<br />

s<br />

A t f yv<br />

A t f yv<br />

y o cot θ<br />

A t f yv<br />

A t = Area of one leg stirrup<br />

f yv = Yield strength of transverse<br />

rein<strong>for</strong>cement<br />

n = Number of cracks intercept<br />

stirrup


T = T + T + T + T<br />

n<br />

y o<br />

V 4<br />

1 2 3 4<br />

ACI318-95:<br />

Diagonal compression struts<br />

θ<br />

Axial <strong>for</strong>ce due to torsion:<br />

=<br />

∆N 4 = V 4 cot θ<br />

2 At fyv xo yo<br />

s<br />

∆N 4 /2<br />

∆N 4 /2<br />

=<br />

=<br />

At fyv yo<br />

s<br />

2 At fyv Aoh<br />

2A<br />

f A<br />

T = where A = 0.85A<br />

s<br />

t yv 0<br />

n 0<br />

oh<br />

θ<br />

s<br />

V 4 /sinθ<br />

V 4 cot θ<br />

x oy o<br />

V 4


Summing over all four sides,<br />

Longitudinal<br />

rein<strong>for</strong>cement<br />

∆ N = ∆ N1 + ∆ N2 + ∆ N3 + ∆N4<br />

A l f yl<br />

At fyv<br />

= 2( xo + yo<br />

)<br />

s<br />

=<br />

At fyv ph<br />

s<br />

A f t Al = ph<br />

s f<br />

yv<br />

yl<br />

perimeter of stirrup<br />

A l = Total area of longitudinal rein<strong>for</strong>cement to resist torsion<br />

f yl = Yield strength of longitudinal rein<strong>for</strong>cement


Combined Shear <strong>and</strong> <strong>Torsion</strong><br />

Shear stress: τ v = V / b w d<br />

<strong>Torsion</strong>al stress: τ t = T / (2A 0 t)<br />

<strong>for</strong> cracked section: A 0 = 0.85A oh , t = A oh / p h<br />

Hollow section<br />

<strong>Torsion</strong>al<br />

stresses<br />

Shear<br />

stresses<br />

V T p<br />

τ = τ v + τ t = +<br />

b d A<br />

w 1.7<br />

h<br />

2<br />

oh<br />

<strong>Torsion</strong>al<br />

stresses<br />

Solid section<br />

Shear<br />

stresses<br />

2 2<br />

⎛ V ⎞ ⎛ T p ⎞ h<br />

τ = ⎜ ⎟ + ⎜ 2 ⎟<br />

⎝ bwd ⎠ ⎝1.7 Aoh<br />


ACI Provisions <strong>for</strong> <strong>Torsion</strong> <strong>Design</strong><br />

Strength requirement:<br />

T ≤ φT<br />

u n<br />

where T u = required torsional strength at factored load<br />

T n = nominal torsional strength of member<br />

φ = 0.85 strength reduction factor <strong>for</strong> torsion<br />

ACI318-95:<br />

A oh = shaded area<br />

2A<br />

f A<br />

T = where A = 0.85A<br />

s<br />

t yv 0<br />

n 0<br />

oh


Minimal <strong>Torsion</strong><br />

Neglect torsion when<br />

where<br />

T<br />

cr<br />

=<br />

1.1<br />

p<br />

f ′ A<br />

2<br />

c cp<br />

cp<br />

T ≤ φT<br />

u cr<br />

kg-cm<br />

⎛ V ⎞<br />

c<br />

Limitation on shear stress τ max ≤ φ ⎜ + 2.1 f ′ c ⎟<br />

⎝ bwd ⎠<br />

Hollow section:<br />

Solid section:<br />

/ 4<br />

V ⎛ ⎞<br />

u Tu ph Vc<br />

+ ≤ φ + 2.1 ′<br />

2 ⎜ fc<br />

⎟<br />

bwd 1.7Aoh<br />

⎝ bwd ⎠<br />

2 2<br />

⎛ V ⎞ ⎛ ⎞ ⎛ ⎞<br />

u Tu ph Vc<br />

⎜ ⎟ + ⎜ ≤ φ + 2.1 ′<br />

2 ⎟ ⎜ fc<br />

⎟<br />

⎝ bwd ⎠ ⎝1.7 Aoh ⎠ ⎝ bwd ⎠


Rein<strong>for</strong>cement <strong>for</strong> torsion<br />

2Ao<br />

At f yv<br />

Tu / φ = ,<br />

s<br />

Ao = 0.85Aoh<br />

Tu s<br />

At =<br />

2φ<br />

A f<br />

, f yv ≤ 4,000 kg/cm<br />

o yv<br />

Combined shear <strong>and</strong> torsion stirrup<br />

(<strong>for</strong> closed loop stirrup)<br />

Av + t Av 2At<br />

= +<br />

s s s<br />

v+ t v t<br />

A v<br />

A t<br />

2


Max. spacing to control spiral cracking smax ≤ p / 8 ≤ 30 cm<br />

Min. area of close stirrup ( 2 ) 3.5 w b s<br />

Av + At<br />

≥<br />

f<br />

f ′ A t<br />

Min. area of longitudinal steel<br />

⎛ A ⎞ f<br />

Al ,min = − ⎜ ⎟ ph<br />

f ⎝ s ⎠ f<br />

where<br />

A 1.8b<br />

≥<br />

s f<br />

t w<br />

- Spacing of A l ≤ 30 cm<br />

- Distributed around perimeter<br />

yv<br />

- Bar size ≥ 10 mm ≥ 1/24 stirrup spacing<br />

- At least one bar on each corner<br />

h<br />

yv<br />

1.3 c cp yv<br />

yv yl

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!