10.04.2013 Views

Reinforced Concrete Design

Reinforced Concrete Design

Reinforced Concrete Design

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4<br />

Strength of Rectangular Section in Bending<br />

S U R A N A R E E<br />

<strong>Reinforced</strong> <strong>Concrete</strong> <strong>Design</strong><br />

Location of Reinforcement<br />

Behavior of Beam under Load<br />

Beam <strong>Design</strong> Requirements<br />

Working Stress <strong>Design</strong> (WSD)<br />

Practical <strong>Design</strong> of RC Beam<br />

UNIVERSITY OF TECHNOLOGY<br />

Asst.Prof.Dr.Mongkol JIRAVACHARADET<br />

INSTITUTE OF ENGINEERING<br />

SCHOOL OF CIVIL ENGINEERING


Location of Reinforcement<br />

<strong>Concrete</strong> cracks due to tension, and as a result, reinforcement is is<br />

required<br />

where flexure, axial loads, or shrinkage effects cause tensile stresses. stresses.<br />

• Simply supported beam<br />

Positive<br />

Moment<br />

tensile stresses and cracks are<br />

developed along bottom of the beam<br />

BMD<br />

longitudinal reinforcement is placed<br />

closed to the bottom side of the beam


• Cantilever beam<br />

- Top bars<br />

- Ties and anchorage<br />

to support<br />

Location of Reinforcement


• Continuous beam<br />

Location of Reinforcement


Location of Reinforcement<br />

• Continuous beam with 2 spans


Figure B-13 : Reinforcement Arrangement for Suspended Beams


Figure B-14 : Reinforcement Arrangement for<br />

Suspended Cantilever Beams


Behavior of Beam under Load<br />

w<br />

Working Stress Condition<br />

L<br />

Elastic Bending (Plain <strong>Concrete</strong>)<br />

ε s<br />

ε f < f = 2.0 f ′<br />

c<br />

εc<br />

εc<br />

f < f ′ c<br />

r c<br />

f < f ′ c<br />

C<br />

T = A s f s


Brittle failure mode<br />

Crushing<br />

Ductile failure mode<br />

εs < εy<br />

εs ≥εy<br />

ε cu = 0.003<br />

fs < fy<br />

ε c < 0.003<br />

fs = fy<br />

C<br />

T = A s f s<br />

C<br />

T = A s f s


Beam <strong>Design</strong> Requirements<br />

1) Minimum Depth (for deflection control)<br />

oneway<br />

slab<br />

L/20<br />

L/24 L/28 L/10<br />

BEAM L/16 L/18.5 L/21 L/8<br />

2) Temperature Steel (for slab)<br />

SR24: A s = 0.0025 bt<br />

SD30: A s = 0.0020 bt<br />

SD40: A s = 0.0018 bt<br />

f y > 4,000 ksc: A s = 0.0018 4,000 bt<br />

f y<br />

t<br />

b<br />

A s


3) Minimum Steel (for beam)<br />

A s min = 14 / f y<br />

To ensure that steel not fail before first crack<br />

4) <strong>Concrete</strong> Covering<br />

5) Bar Spacing<br />

A s<br />

stirrup<br />

กก<br />

ก<br />

Durability and Fire protection<br />

> 4/3 max. aggregate size


WSD of Beam for Moment<br />

Assumptions:<br />

1) Section remains plane<br />

2) Stress proportioned to Strain<br />

3) <strong>Concrete</strong> not take tension<br />

4) No concrete-steel slip<br />

Modular ratio (n):<br />

6<br />

Es<br />

2.04× 10 134<br />

n = = ≈<br />

E 15,100 f ′ f ′<br />

c c c


Effective Depth (d) : Distance from compression face to centroid of steel<br />

Cracked transformed section<br />

compression face<br />

d<br />

b<br />

d<br />

strain condition force equilibrium<br />

εc<br />

fc = Ecε c<br />

kd<br />

C<br />

N.A.<br />

T = A f<br />

ε s s<br />

s<br />

f = E ε<br />

s s s<br />

jd


Compression in concrete:<br />

Equilibrium ΣF x= 0 :<br />

Compression = Tension<br />

1<br />

2<br />

fc b kd = As fs<br />

1<br />

2 c C = f b kd<br />

Tension in steel: T = As fs<br />

Reinforcement ratio: ρ = /<br />

fc<br />

2ρ<br />

f k<br />

s<br />

A bd<br />

s<br />

= 1<br />

kd<br />

fc = Ecε c<br />

C<br />

N.A.<br />

T = A f<br />

s s<br />

f = E ε<br />

s s s<br />

jd


Strain compatibility:<br />

d<br />

kd<br />

ε s<br />

εc<br />

εc<br />

ε<br />

s<br />

kd k<br />

= =<br />

d − kd 1−<br />

k<br />

fc / Ec k<br />

=<br />

f / E 1−<br />

k<br />

s s<br />

fc k<br />

n =<br />

f 1−<br />

k<br />

Analysis: know ρ find k 1 2 ( ) 2<br />

<strong>Design</strong>: know f c , f s find k 2<br />

s<br />

k = 2nρ<br />

+ nρ − nρ<br />

k<br />

2<br />

n fc<br />

1<br />

= =<br />

n f f<br />

c + fs<br />

s 1+<br />

n f<br />

c


Allowable Stresses<br />

Plain concrete:<br />

f = 0.33 f ′ ≤ 60 kg/cm<br />

c c<br />

<strong>Reinforced</strong> concrete:<br />

f = 0.375 f ′ ≤ 65 kg/cm<br />

c c<br />

Example 3.1: f ′ = 150 ksc , fs = 1,500 ksc<br />

c<br />

134<br />

n = = 10.94 ⇒10<br />

(nearest integer)<br />

150<br />

f<br />

c<br />

2<br />

2<br />

= 0.375(150) = 56 ksc<br />

1<br />

k = = 0.2515<br />

1,500<br />

1+ 9(56)<br />

Steel:<br />

SR24: f s = 0.5(2,400) = 1,200 ksc<br />

SD30: f s = 0.5(3,000) = 1,500 ksc<br />

SD40, SD50: f s<br />

= 1,700 ksc


Resisting Moment<br />

M<br />

jd<br />

kd/3<br />

1<br />

2 c C = f k b d<br />

T = A s f s<br />

Steel: M = T × jd = As fs jd<br />

<strong>Concrete</strong>:<br />

Moment arm distance : j d<br />

jd = d −<br />

k<br />

j = 1− 3<br />

1<br />

2 c<br />

M = C × jd = f k j b d = R b d<br />

1<br />

2 c R =<br />

f k j<br />

kd<br />

3<br />

2 2


<strong>Design</strong> Step: known M, f c, f s, n<br />

1) Compute parameters<br />

k<br />

= +<br />

f c<br />

(kg/cm 2 )<br />

45<br />

50<br />

55<br />

60<br />

65<br />

1<br />

f n f<br />

1 s c<br />

n<br />

12<br />

12<br />

11<br />

11<br />

10<br />

j = 1 − k / 3<br />

f s =1,200<br />

(kg/cm 2 )<br />

6.260<br />

7.407<br />

8.188<br />

9.386<br />

10.082<br />

R (kg/cm 2 )<br />

f s =1,500<br />

(kg/cm 2 )<br />

5.430<br />

6.463<br />

7.147<br />

8.233<br />

8.835<br />

1<br />

2 c R = f k j<br />

f s =1,700<br />

(kg/cm 2 )<br />

4.988<br />

5.955<br />

6.587<br />

7.608<br />

8.161


<strong>Design</strong> Parameter k and j<br />

f c<br />

(kg/cm 2 )<br />

45<br />

50<br />

55<br />

60<br />

65<br />

n<br />

12<br />

12<br />

11<br />

11<br />

10<br />

f s =1,200<br />

(kg/cm 2 )<br />

k j<br />

0.310<br />

0.333<br />

0.335<br />

0.355<br />

0.351<br />

0.897<br />

0.889<br />

0.888<br />

0.882<br />

0.883<br />

f s =1,500<br />

(kg/cm 2 )<br />

k j<br />

0.265<br />

0.286<br />

0.287<br />

0.306<br />

0.302<br />

0.912<br />

0.905<br />

0.904<br />

0.898<br />

0.899<br />

f s =1,700<br />

(kg/cm 2 )<br />

k j<br />

0.241<br />

0.261<br />

0.262<br />

0.280<br />

0.277<br />

0.920<br />

0.913<br />

0.913<br />

0.907<br />

0.908<br />

1) For greater f s , k becomes smaller → smaller compression area<br />

2) j ≈ 0.9 → moment arm j d ≈ 0.9d can be used in approximation<br />

design.


2) Determine size of section bd 2<br />

Such that resisting moment of concrete M c = R b d 2 ≥ Required M<br />

Usually b ≈ d / 2 : b = 10 cm, 20 cm, 30 cm, 40 cm, . . .<br />

3) Determine steel area<br />

From<br />

d = 20 cm, 30 cm, 40 cm, 50 cm, . . .<br />

M = A f jd → A =<br />

s s s<br />

4) Select steel bars and Detailing<br />

M<br />

f j d<br />

s


ก.1 ก,<br />

. 2<br />

Bar Dia.<br />

RB6<br />

RB9<br />

DB10<br />

DB12<br />

DB16<br />

DB20<br />

DB25<br />

Number of Bars<br />

1 2 3 4 5 6<br />

0.283<br />

0.636<br />

0.785<br />

1.13<br />

2.01<br />

3.14<br />

4.91<br />

0.565<br />

1.27<br />

1.57<br />

2.26<br />

4.02<br />

6.28<br />

9.82<br />

0.848<br />

1.91<br />

2.36<br />

3.53<br />

6.03<br />

9.42<br />

14.73<br />

1.13<br />

2.54<br />

3.14<br />

4.52<br />

8.04<br />

12.57<br />

19.63<br />

1.41<br />

3.18<br />

3.93<br />

5.65<br />

10.05<br />

15.71<br />

24.54<br />

1.70<br />

3.82<br />

4.71<br />

6.79<br />

12.06<br />

18.85<br />

29.45


ก.3 ก<br />

ACI<br />

Member<br />

One-way slab<br />

Beam<br />

L = span length<br />

Simple<br />

supported<br />

L/20<br />

L/16<br />

One-end<br />

continuous<br />

L/24<br />

L/18.5<br />

Both-ends<br />

continuous Cantilever<br />

L/28<br />

L/21<br />

L/10<br />

For steel with f y not equal 4,000 kg/cm 2 multiply with 0.4 + f y /7,000<br />

L/8


Example 3.2: Working Stress <strong>Design</strong> of Beam<br />

5.0 m<br />

w = 4 t/m<br />

<strong>Concrete</strong>: f c = 65 kg/cm 2<br />

Steel: f s = 1,700 kg/cm 2<br />

From table: n = 10, R = 8.161 kg/cm 2<br />

Required moment strength M = (4) (5) 2 / 8 = 12.5 t-m<br />

Recommended depth for simple supported beam:<br />

d = L/16 = 500/16 = 31.25 cm<br />

USE section 30 x 50 cm with steel bar DB20<br />

d = 50 - 4(covering) - 2.0/2(bar) = 45 cm


Moment strength of concrete:<br />

M c = R b d 2 = 8.161 (30) (45) 2<br />

= 495,781 kg-cm<br />

TRY section 40 x 80 cm d = 75 cm<br />

Steel area:<br />

A<br />

s<br />

=<br />

= 4.96 t-m < 12.5 t-m NG<br />

M c = R b d 2 = 8.161 (40) (75) 2<br />

M<br />

f jd<br />

s<br />

= 1,836,225 kg-cm<br />

= 18.36 t-m > 12.5 t-m OK<br />

=<br />

1,<br />

700<br />

12.<br />

5<br />

×<br />

× 10<br />

0.<br />

908<br />

5<br />

× 75<br />

Select steel bar 4DB20 (A s = 12.57 cm 2 )<br />

=<br />

10.<br />

8<br />

cm<br />

2


Alternative Solution:<br />

From M c = R b d 2 = required moment M<br />

2 M<br />

b d = ⇒ d =<br />

R<br />

M<br />

R b<br />

For example M = 12.5 t-m, R = 8.161 ksc, b = 40 cm<br />

d<br />

5<br />

12.<br />

5 × 10<br />

8.<br />

161 × 40<br />

USE section 40 x 80 cm d = 75 cm<br />

=<br />

=<br />

61.<br />

88<br />

cm


Revised <strong>Design</strong> due to Self Weight<br />

From selected section 40 x 80 cm<br />

Beam weight w bm = 0.4 × 0.8 × 2.4(t/m 3 ) = 0.768 t/m<br />

Required moment M = (4 + 0.768) (5) 2 / 8 = 14.90 < 18.36 t-m OK<br />

Revised <strong>Design</strong> due to Support width<br />

30 cm<br />

Column width 30 cm<br />

4.7 m clear span<br />

5.0 m span<br />

30 cm<br />

Required moment:<br />

M = (4.768) (4.7) 2 / 8<br />

= 13.17 t-m


Practical <strong>Design</strong> of RC Beam<br />

B1 30x60 Mc = 8.02 t-m, Vc = 6.29 t.<br />

w = 2.30 t/m<br />

5.00<br />

Load<br />

dl 0.43<br />

wall 0.63<br />

slab 1.24<br />

w 2.30<br />

M ± = (1/9)(2.3)(5.0) 2 = 6.39 t-m<br />

As ± = 8.62 cm 2 (2DB25)<br />

V = 5.75 t (RB9@0.20 St.)<br />

fc = 65 ksc, fs = 1,500 ksc, n = 10<br />

k = 0.302, j = 0.899, R = 8.835 ksc<br />

b = 30 cm, d = 60 - 5 = 55 cm<br />

Mc = 8.835(30)(55) 2 /10 5 = 8.02 t-m<br />

Vc = 0.29(173) 1/2 (30)(55)/10 3<br />

= 6.29 t<br />

As ± = 6.39×10 5 /(1,500×0.899×55)<br />

= 8.62 cm 2


B2 40x80 Mc = 19.88 t-m, Vc = 11.44 t.<br />

SFD<br />

BMD<br />

As<br />

w = 2.64 t/m<br />

w = 2.64 t/m<br />

8.00 5.00<br />

8.54 9.83<br />

12.58 3.37<br />

+13.81<br />

13.65<br />

3DB25<br />

-16.17<br />

15.99<br />

4DB25<br />

+2.15<br />

2.13<br />

2DB25


GRASP Version 1.02<br />

B11-B12<br />

Membe<br />

r<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

Mz.i [T-m]<br />

0<br />

-53.42<br />

-37.97<br />

-46.35<br />

-28.26<br />

-92.25<br />

Mz.pos [T-m]<br />

39.03<br />

17.36<br />

20.75<br />

25.88<br />

6.59<br />

81.47<br />

Mz.j [T-m]<br />

-53.42<br />

-37.97<br />

-46.35<br />

-28.26<br />

-92.25<br />

0.00<br />

Fy.i [Ton]<br />

33.04<br />

44.52<br />

40.54<br />

44.96<br />

31.27<br />

69.70<br />

Fy.j [Ton]<br />

-50.84<br />

-39.36<br />

-43.34<br />

-38.92<br />

-52.61<br />

-47.73


Analysis of RC Beam<br />

Given: Section A s , b, d Materials f c , f s<br />

Find: M allow = Moment capacity of section<br />

STEP 1 : Locate Neutral Axis (kd)<br />

2 ( ρn<br />

) n<br />

k = 2ρn<br />

+ − ρ<br />

j = 1 − k<br />

A s<br />

/<br />

3<br />

where ρ =<br />

bd<br />

= Reinforcem ent ratio<br />

Es<br />

n =<br />

E<br />

6<br />

2.04× 10 134<br />

= ≈<br />

15,100 f ′ f ′<br />

c c c


STEP 2 : Resisting Moment<br />

<strong>Concrete</strong>:<br />

1<br />

f<br />

2<br />

Mc = c<br />

Steel: A f j d<br />

Ms s s =<br />

If M c > M s , Over reinforcement M allow = M s<br />

If M c < M s , Under reinforcement M allow = M c<br />

k<br />

Under reinforcement is preferable because steel is weaker<br />

than concrete. The RC beam would fail in ductile mode.<br />

j<br />

b<br />

d<br />

2


Example 3.3 Determine the moment strength of beam<br />

80 cm<br />

40 cm f c = 65 ksc, f s = 1,700 ksc,<br />

4 DB 20<br />

A s = 12.57 cm 2<br />

n = 10, d = 75 cm<br />

12.<br />

57<br />

ρ = = = 0.<br />

00419 , n<br />

bd 40 × 75<br />

k<br />

=<br />

=<br />

A s ρ<br />

2<br />

×<br />

0.<br />

251<br />

0.<br />

0419<br />

→<br />

j<br />

=<br />

+<br />

1<br />

( 0.<br />

0419<br />

−<br />

0.<br />

251<br />

)<br />

/<br />

2<br />

3<br />

−<br />

=<br />

0.<br />

0419<br />

=<br />

0.<br />

916<br />

M c = 0.5(65)(0.251)(0.916)(40)(75) 2 /10 5 = 16.81 t-m<br />

0.<br />

0419<br />

M s = (12.57)(1,700)(0.916)(75)/10 5 = 14.68 t-m (control)


Double Reinforcement<br />

M<br />

When M req’d > M allow<br />

A’ s<br />

A s<br />

d’<br />

ε s<br />

ε c<br />

- Increase steel area<br />

- Enlarge section<br />

- Double RC<br />

only when no choice<br />

ε’ s<br />

T’ = A’ s f’ s<br />

1<br />

C = fc k b d<br />

2<br />

T = A s f s<br />

A s1 f s<br />

A s2 f s


กก<br />

T’ = A’ s f’ s<br />

1<br />

C = fckbd 2<br />

T = A s f s<br />

Moment strength<br />

M = M 1 + M 2<br />

jd<br />

Steel area As = s1<br />

1<br />

C = f<br />

2 ckbd<br />

T 1 = A s1 f s<br />

1<br />

M1 = M c = fckjbd 2<br />

= A f jd<br />

A<br />

s1 s<br />

M<br />

c = + As<br />

2<br />

fs jd<br />

2<br />

2<br />

d-d’<br />

M = M − M<br />

T’ = A’ s f’ s<br />

T 2 = A s2 f s<br />

= As 2 fs ( d − d′<br />

)<br />

= A′ f ′ ( d − d′<br />

)<br />

=<br />

s s<br />

c<br />

M − M c<br />

f ( d − d′<br />

)<br />

s


Compatibility Condition<br />

d<br />

d’<br />

ε c<br />

kd ε’ s<br />

ε s<br />

ε s d − kd<br />

=<br />

ε′<br />

kd − d′<br />

s<br />

From Hook’s law: ε s = E s f s, ε’ s = E s f’ s<br />

Es fs fs d − kd<br />

= =<br />

E f ′ f ′ kd − d′<br />

s s s<br />

f ′ = f<br />

s s<br />

... ก ′ = 2<br />

f f<br />

s s<br />

k − d′ d<br />

1−<br />

k<br />

k − d′ d<br />

1−<br />

k


ก ( A’ s )<br />

d-d’<br />

T’ = A’ s f’ s<br />

T 2 = A s2 f s<br />

′ =<br />

Force equilibrium [ ΣF x=0 ]<br />

T’ = T 2<br />

A’ s f’ s = A s2 f s<br />

f ′ = f<br />

Substitute 2<br />

1 1−<br />

k<br />

As As 2<br />

2 k −<br />

d′ d<br />

s s<br />

k − d′ d<br />

1−<br />

k


ก ( k )<br />

d<br />

d’<br />

ε c<br />

kd ε’ s<br />

ε s<br />

1<br />

2<br />

Compression = Tension<br />

C + C′ = T<br />

c s<br />

f bkd + A′ f ′ = A f<br />

c s s s s<br />

k − d′ d A′<br />

s<br />

Substitute f ′ s = 2 fs<br />

, ρ′<br />

=<br />

1−<br />

k b d<br />

1−<br />

k As<br />

fs = n fc<br />

, ρ =<br />

k b d<br />

⎛ d′<br />

⎞ 2<br />

k = 2n⎜ ρ + 2ρ′ ⎟ + n ρ + 2ρ′ − n ρ + 2ρ′<br />

⎝ d ⎠<br />

2<br />

( ) ( )


Example 3.4 <strong>Design</strong> 40x80 cm beam using double RC<br />

5.0 m<br />

w = 6 t/m<br />

f c = 65 ksc, f s = 1,700 ksc,<br />

n = 10, d = 75 cm<br />

Required M = (6.768) (5) 2 / 8 = 21.15 t-m<br />

k = 0.277, j = 0.908, R = 8.161 ksc<br />

Beam weight w bm = 0.4 × 0.8 × 2.4(t/m 3 ) = 0.768 t/m<br />

M c = Rbd 2 = 8.161(40)(75) 2 /10 5 = 18.36 t-m < req’d M Double RC<br />

A<br />

A<br />

s1<br />

s2<br />

5<br />

M c 18.36× 10<br />

= = = 15.86 cm<br />

f jd 1,700 × 0.908× 75<br />

s<br />

5<br />

M − M c (21.15 − 18.36) × 10<br />

= = = 2.34 cm<br />

f ( d − d′<br />

) 1,700 × (75 −<br />

5)<br />

s<br />

2<br />

2


Tension steel A s = A s1 + A s2 = 15.86 + 2.34 = 18.20 cm 2<br />

USE 6DB20 (A s = 18.85 cm 2 )<br />

Compression steel<br />

1 1− k 1 1− 0.277<br />

′ = = × 2.34× = 4.02 cm<br />

2 − 2 0.277 − 5/ 75<br />

As As 2<br />

k d′ d<br />

USE 2DB20 (A s = 6.28 cm 2 )<br />

0.80 m<br />

0.40 m<br />

2DB20<br />

6DB20<br />

2


175 <br />

3 3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!