04.04.2013 Views

Introduction to the Octopus code - TDDFT.org

Introduction to the Octopus code - TDDFT.org

Introduction to the Octopus code - TDDFT.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong> <strong>to</strong> <strong>the</strong> Oc<strong>to</strong>pus <strong>code</strong><br />

Xavier Andrade<br />

and <strong>the</strong> Oc<strong>to</strong>pus development team<br />

European Theoretical Spectroscopy Facility<br />

and<br />

Departamen<strong>to</strong> de Física de Materiales<br />

Universidad del País Vasco, Spain<br />

Benasque, September 2008<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 1 / 20


The Oc<strong>to</strong>pus<br />

Oc<strong>to</strong>puses are cephalopods from <strong>the</strong> oc<strong>to</strong>poda order.<br />

They live in <strong>the</strong> sea (also in trees).<br />

From few cm <strong>to</strong> 20 m.<br />

Very smart animals.<br />

Well equipped:<br />

Poison<br />

Ink<br />

Camouflage.<br />

Release <strong>the</strong>ir tentacles.<br />

Very effective hunters:<br />

<strong>the</strong>y eat crabs, fishes, mussels, siestas, etc.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 2 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Oc<strong>to</strong>pus 1<br />

Fortran 95 and C.<br />

Focused on finite systems (periodic systems not mature yet).<br />

Norm-conserving pseudo-potentials.<br />

Real space grid representation.<br />

Features:<br />

Ground state DFT.<br />

<strong>TDDFT</strong><br />

Time propagation:<br />

Linear response and strong fields.<br />

Ehrenfest molecular dynamics.<br />

Casida LR-<strong>TDDFT</strong>.<br />

Sternheimer linear response.<br />

Optimal control <strong>the</strong>ory.<br />

Real-time quantum transport.<br />

1 http://www.tddft.<strong>org</strong>/programs/oc<strong>to</strong>pus<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 3 / 20


Pseudo-potentials<br />

The a<strong>to</strong>mic potential is very strong.<br />

Lots of core electrons.<br />

Core electrons are independent<br />

of <strong>the</strong> environment.<br />

Replace <strong>the</strong> potential and core electrons<br />

by a pseudo-potential.<br />

Norm-conserving pseudo-potentials<br />

V = Vloc + <br />

|lm〉 (Vl − Vloc) 〈lm|<br />

lm<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 4 / 20


Pseudo-potentials<br />

The a<strong>to</strong>mic potential is very strong.<br />

Lots of core electrons.<br />

Core electrons are independent<br />

of <strong>the</strong> environment.<br />

Replace <strong>the</strong> potential and core electrons<br />

by a pseudo-potential.<br />

Norm-conserving pseudo-potentials<br />

V = Vloc + <br />

|lm〉 (Vl − Vloc) 〈lm|<br />

lm<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 4 / 20


Pseudo-potentials<br />

The a<strong>to</strong>mic potential is very strong.<br />

Lots of core electrons.<br />

Core electrons are independent<br />

of <strong>the</strong> environment.<br />

Replace <strong>the</strong> potential and core electrons<br />

by a pseudo-potential.<br />

Norm-conserving pseudo-potentials<br />

V = Vloc + <br />

|lm〉 (Vl − Vloc) 〈lm|<br />

lm<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 4 / 20


Pseudo-potentials<br />

The a<strong>to</strong>mic potential is very strong.<br />

Lots of core electrons.<br />

Core electrons are independent<br />

of <strong>the</strong> environment.<br />

Replace <strong>the</strong> potential and core electrons<br />

by a pseudo-potential.<br />

Norm-conserving pseudo-potentials<br />

V = Vloc + <br />

|lm〉 (Vl − Vloc) 〈lm|<br />

lm<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 4 / 20


Pseudo-potentials<br />

The a<strong>to</strong>mic potential is very strong.<br />

Lots of core electrons.<br />

Core electrons are independent<br />

of <strong>the</strong> environment.<br />

Replace <strong>the</strong> potential and core electrons<br />

by a pseudo-potential.<br />

Norm-conserving pseudo-potentials<br />

V = Vloc + <br />

|lm〉 (Vl − Vloc) 〈lm|<br />

lm<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 4 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid<br />

Partial Differential Equation: infinite degrees of freedom.<br />

Reduce it <strong>to</strong> a finite number.<br />

Functions are represented by its value over a set of points.<br />

Point distribution:<br />

Uniform space grid.<br />

Distance between points is constant: Spacing.<br />

Non-uniform grids.<br />

Finite region of <strong>the</strong> space: Box<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 5 / 20


Real space grid: 2D Example<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 6 / 20


Boundary conditions<br />

For finite systems functions go <strong>to</strong> zero.<br />

Impose functions <strong>to</strong> be zero over <strong>the</strong> border of <strong>the</strong> box.<br />

The box has <strong>to</strong> be large enough <strong>to</strong> contain <strong>the</strong> functions.<br />

O<strong>the</strong>r BCs are possible: periodic, zero derivative, open.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 7 / 20


Boundary conditions<br />

For finite systems functions go <strong>to</strong> zero.<br />

Impose functions <strong>to</strong> be zero over <strong>the</strong> border of <strong>the</strong> box.<br />

The box has <strong>to</strong> be large enough <strong>to</strong> contain <strong>the</strong> functions.<br />

O<strong>the</strong>r BCs are possible: periodic, zero derivative, open.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 7 / 20


Boundary conditions<br />

For finite systems functions go <strong>to</strong> zero.<br />

Impose functions <strong>to</strong> be zero over <strong>the</strong> border of <strong>the</strong> box.<br />

The box has <strong>to</strong> be large enough <strong>to</strong> contain <strong>the</strong> functions.<br />

O<strong>the</strong>r BCs are possible: periodic, zero derivative, open.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 7 / 20


Boundary conditions<br />

For finite systems functions go <strong>to</strong> zero.<br />

Impose functions <strong>to</strong> be zero over <strong>the</strong> border of <strong>the</strong> box.<br />

The box has <strong>to</strong> be large enough <strong>to</strong> contain <strong>the</strong> functions.<br />

O<strong>the</strong>r BCs are possible: periodic, zero derivative, open.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 7 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Boundary conditions<br />

Optimize <strong>the</strong> shape of <strong>the</strong> box <strong>to</strong> minimize <strong>the</strong> number of points.<br />

General box shape:<br />

Minimum box: a sphere around each a<strong>to</strong>m.<br />

Sphere.<br />

Cylinder.<br />

Parallelepiped.<br />

Arbitrary.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 8 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Real space grid characteristics<br />

Natural boundary conditions for different problems.<br />

Systematically improve discretisation quality:<br />

Decrease <strong>the</strong> spacing.<br />

Increase <strong>the</strong> box size.<br />

Orthogonal “basis set”.<br />

Independent of a<strong>to</strong>mic positions (no Pulay forces).<br />

Problems:<br />

Breaking of translational invariance: egg-box effect.<br />

Breaking of rotational invariance.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 9 / 20


Differential operations<br />

Finite difference approach<br />

∇ 2 n<br />

f(nxh, nyh) =<br />

i<br />

n<br />

Derivative in a point:<br />

sum over neighbour points.<br />

cij depend on <strong>the</strong> points used:<br />

<strong>the</strong> stencil.<br />

More points → more precision.<br />

Semi-local operation.<br />

j<br />

cij<br />

h f(nxh + ih, nyh + jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 10 / 20


Differential operations<br />

Finite difference approach<br />

∇ 2 n<br />

f(nxh, nyh) =<br />

i<br />

n<br />

Derivative in a point:<br />

sum over neighbour points.<br />

cij depend on <strong>the</strong> points used:<br />

<strong>the</strong> stencil.<br />

More points → more precision.<br />

Semi-local operation.<br />

j<br />

cij<br />

h f(nxh + ih, nyh + jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 10 / 20


Differential operations<br />

Finite difference approach<br />

∇ 2 n<br />

f(nxh, nyh) =<br />

i<br />

n<br />

Derivative in a point:<br />

sum over neighbour points.<br />

cij depend on <strong>the</strong> points used:<br />

<strong>the</strong> stencil.<br />

More points → more precision.<br />

Semi-local operation.<br />

j<br />

cij<br />

h f(nxh + ih, nyh + jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 10 / 20


Differential operations<br />

Finite difference approach<br />

∇ 2 n<br />

f(nxh, nyh) =<br />

i<br />

n<br />

Derivative in a point:<br />

sum over neighbour points.<br />

cij depend on <strong>the</strong> points used:<br />

<strong>the</strong> stencil.<br />

More points → more precision.<br />

Semi-local operation.<br />

j<br />

cij<br />

h f(nxh + ih, nyh + jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 10 / 20


Integration<br />

Trapezoidal rule <br />

Sum over grid points.<br />

<br />

2<br />

f(x, y) dx dy = h<br />

ij<br />

f(ih, jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 11 / 20


Integration<br />

Trapezoidal rule <br />

Sum over grid points.<br />

<br />

2<br />

f(x, y) dx dy = h<br />

ij<br />

f(ih, jh)<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 11 / 20


Ground state calculations<br />

What we want <strong>to</strong> solve:<br />

Kohn-Sham equations<br />

−∇ 2 φk + Veff [ρ] (r)φk = ɛkφk<br />

We use a self-consistency scheme <strong>to</strong> treat non-linearity.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 12 / 20


Ground state calculations<br />

What we want <strong>to</strong> solve:<br />

Kohn-Sham equations<br />

−∇ 2 φk + Veff [ρ] (r)φk = ɛkφk<br />

We use a self-consistency scheme <strong>to</strong> treat non-linearity.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 12 / 20


Ground state calculations<br />

What we want <strong>to</strong> solve:<br />

Kohn-Sham equations<br />

−∇ 2 φk + Veff [ρ] (r)φk = ɛkφk<br />

We use a self-consistency scheme <strong>to</strong> treat non-linearity.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 12 / 20


Discretisation of <strong>the</strong> Hamil<strong>to</strong>nian<br />

For <strong>the</strong> laplacian we use finite differences<br />

High order schemes are needed.<br />

The local part of <strong>the</strong> potential is direct.<br />

The non-local potential is applied in small spherical grid around<br />

<strong>the</strong> a<strong>to</strong>ms.<br />

The Hamil<strong>to</strong>nian becomes a finite size matrix.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 13 / 20


Discretisation of <strong>the</strong> Hamil<strong>to</strong>nian<br />

For <strong>the</strong> laplacian we use finite differences<br />

High order schemes are needed.<br />

The local part of <strong>the</strong> potential is direct.<br />

The non-local potential is applied in small spherical grid around<br />

<strong>the</strong> a<strong>to</strong>ms.<br />

The Hamil<strong>to</strong>nian becomes a finite size matrix.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 13 / 20


Discretisation of <strong>the</strong> Hamil<strong>to</strong>nian<br />

For <strong>the</strong> laplacian we use finite differences<br />

High order schemes are needed.<br />

The local part of <strong>the</strong> potential is direct.<br />

The non-local potential is applied in small spherical grid around<br />

<strong>the</strong> a<strong>to</strong>ms.<br />

The Hamil<strong>to</strong>nian becomes a finite size matrix.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 13 / 20


Discretisation of <strong>the</strong> Hamil<strong>to</strong>nian<br />

For <strong>the</strong> laplacian we use finite differences<br />

High order schemes are needed.<br />

The local part of <strong>the</strong> potential is direct.<br />

The non-local potential is applied in small spherical grid around<br />

<strong>the</strong> a<strong>to</strong>ms.<br />

The Hamil<strong>to</strong>nian becomes a finite size matrix.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 13 / 20


Discretisation of <strong>the</strong> Hamil<strong>to</strong>nian<br />

For <strong>the</strong> laplacian we use finite differences<br />

High order schemes are needed.<br />

The local part of <strong>the</strong> potential is direct.<br />

The non-local potential is applied in small spherical grid around<br />

<strong>the</strong> a<strong>to</strong>ms.<br />

The Hamil<strong>to</strong>nian becomes a finite size matrix.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 13 / 20


The eigenproblem<br />

Find <strong>the</strong> eigenvec<strong>to</strong>rs and eigenvalues of a matrix.<br />

Very large matrix with lots of zero components (Sparse).<br />

Iterative solvers where only <strong>the</strong> action of <strong>the</strong> matrix is required.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 14 / 20


The eigenproblem<br />

Find <strong>the</strong> eigenvec<strong>to</strong>rs and eigenvalues of a matrix.<br />

Very large matrix with lots of zero components (Sparse).<br />

Iterative solvers where only <strong>the</strong> action of <strong>the</strong> matrix is required.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 14 / 20


The eigenproblem<br />

Find <strong>the</strong> eigenvec<strong>to</strong>rs and eigenvalues of a matrix.<br />

Very large matrix with lots of zero components (Sparse).<br />

Iterative solvers where only <strong>the</strong> action of <strong>the</strong> matrix is required.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 14 / 20


The eigensolver<br />

We minimize (using conjugated gradient or o<strong>the</strong>r method):<br />

Rayleigh-Ritz quotient<br />

Works for <strong>the</strong> first state.<br />

ɛ(ψ) = 〈ψ|H|ψ〉<br />

〈ψ|ψ〉<br />

For higher energy states it is necessary <strong>to</strong> orthogonalize against<br />

<strong>the</strong> lower ones.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 15 / 20


The eigensolver<br />

We minimize (using conjugated gradient or o<strong>the</strong>r method):<br />

Rayleigh-Ritz quotient<br />

Works for <strong>the</strong> first state.<br />

ɛ(ψ) = 〈ψ|H|ψ〉<br />

〈ψ|ψ〉<br />

For higher energy states it is necessary <strong>to</strong> orthogonalize against<br />

<strong>the</strong> lower ones.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 15 / 20


The eigensolver<br />

We minimize (using conjugated gradient or o<strong>the</strong>r method):<br />

Rayleigh-Ritz quotient<br />

Works for <strong>the</strong> first state.<br />

ɛ(ψ) = 〈ψ|H|ψ〉<br />

〈ψ|ψ〉<br />

For higher energy states it is necessary <strong>to</strong> orthogonalize against<br />

<strong>the</strong> lower ones.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 15 / 20


The eigensolver<br />

We minimize (using conjugated gradient or o<strong>the</strong>r method):<br />

Rayleigh-Ritz quotient<br />

Works for <strong>the</strong> first state.<br />

ɛ(ψ) = 〈ψ|H|ψ〉<br />

〈ψ|ψ〉<br />

For higher energy states it is necessary <strong>to</strong> orthogonalize against<br />

<strong>the</strong> lower ones.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 15 / 20


Time propagation<br />

Main feature of Oc<strong>to</strong>pus.<br />

Given an initial condition, solve <strong>the</strong>:<br />

Time-dependent Kohn-Sham equation<br />

i ∂φk<br />

∂t = −∇2 φk + Veff [ρ] (r, t)φk<br />

Many properties can be obtained.<br />

Response <strong>to</strong> time dependent fields: lasers.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 16 / 20


Time propagation<br />

Main feature of Oc<strong>to</strong>pus.<br />

Given an initial condition, solve <strong>the</strong>:<br />

Time-dependent Kohn-Sham equation<br />

i ∂φk<br />

∂t = −∇2 φk + Veff [ρ] (r, t)φk<br />

Many properties can be obtained.<br />

Response <strong>to</strong> time dependent fields: lasers.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 16 / 20


Time propagation<br />

Main feature of Oc<strong>to</strong>pus.<br />

Given an initial condition, solve <strong>the</strong>:<br />

Time-dependent Kohn-Sham equation<br />

i ∂φk<br />

∂t = −∇2 φk + Veff [ρ] (r, t)φk<br />

Many properties can be obtained.<br />

Response <strong>to</strong> time dependent fields: lasers.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 16 / 20


Time propagation<br />

Main feature of Oc<strong>to</strong>pus.<br />

Given an initial condition, solve <strong>the</strong>:<br />

Time-dependent Kohn-Sham equation<br />

i ∂φk<br />

∂t = −∇2 φk + Veff [ρ] (r, t)φk<br />

Many properties can be obtained.<br />

Response <strong>to</strong> time dependent fields: lasers.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 16 / 20


Time propagation<br />

Main feature of Oc<strong>to</strong>pus.<br />

Given an initial condition, solve <strong>the</strong>:<br />

Time-dependent Kohn-Sham equation<br />

i ∂φk<br />

∂t = −∇2 φk + Veff [ρ] (r, t)φk<br />

Many properties can be obtained.<br />

Response <strong>to</strong> time dependent fields: lasers.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 16 / 20


Absorption spectra from time propagation<br />

Start from <strong>the</strong> ground state.<br />

Time dependent potential<br />

V (r, t) = κδ(t)<br />

Time-propagate and get <strong>the</strong> dipole d(t) as a function of time.<br />

Polarizability<br />

Absorption cross section<br />

α(ω) = − 1<br />

<br />

κ<br />

dt e iωt d(t)<br />

σ(ω) = 4πω<br />

ℑ [α(ω)]<br />

c<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 17 / 20


Absorption spectra from time propagation<br />

Start from <strong>the</strong> ground state.<br />

Time dependent potential<br />

V (r, t) = κδ(t)<br />

Time-propagate and get <strong>the</strong> dipole d(t) as a function of time.<br />

Polarizability<br />

Absorption cross section<br />

α(ω) = − 1<br />

<br />

κ<br />

dt e iωt d(t)<br />

σ(ω) = 4πω<br />

ℑ [α(ω)]<br />

c<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 17 / 20


Absorption spectra from time propagation<br />

Start from <strong>the</strong> ground state.<br />

Time dependent potential<br />

V (r, t) = κδ(t)<br />

Time-propagate and get <strong>the</strong> dipole d(t) as a function of time.<br />

Polarizability<br />

Absorption cross section<br />

α(ω) = − 1<br />

<br />

κ<br />

dt e iωt d(t)<br />

σ(ω) = 4πω<br />

ℑ [α(ω)]<br />

c<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 17 / 20


Absorption spectra from time propagation<br />

Start from <strong>the</strong> ground state.<br />

Time dependent potential<br />

V (r, t) = κδ(t)<br />

Time-propagate and get <strong>the</strong> dipole d(t) as a function of time.<br />

Polarizability<br />

Absorption cross section<br />

α(ω) = − 1<br />

<br />

κ<br />

dt e iωt d(t)<br />

σ(ω) = 4πω<br />

ℑ [α(ω)]<br />

c<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 17 / 20


Absorption spectra from time propagation<br />

Start from <strong>the</strong> ground state.<br />

Time dependent potential<br />

V (r, t) = κδ(t)<br />

Time-propagate and get <strong>the</strong> dipole d(t) as a function of time.<br />

Polarizability<br />

Absorption cross section<br />

α(ω) = − 1<br />

<br />

κ<br />

dt e iωt d(t)<br />

σ(ω) = 4πω<br />

ℑ [α(ω)]<br />

c<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 17 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


Parallelization<br />

Parallelization in domains:<br />

Each processor handles points in a region of space.<br />

Points in <strong>the</strong> boundaries of each region must be copied <strong>to</strong> o<strong>the</strong>r<br />

nodes.<br />

Integrals are performed locally and summed over all domains.<br />

Efficient and scalable scheme.<br />

Parallelization in states:<br />

Each processor handles a group of states.<br />

Efficient scheme for time propagation.<br />

Work in progress for <strong>the</strong> ground state.<br />

Combined parallelization.<br />

Scales <strong>to</strong> hundreds of processors (development version).<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 18 / 20


License<br />

Oc<strong>to</strong>pus is free software (GPL license).<br />

Free <strong>to</strong> use it.<br />

Study <strong>the</strong> <strong>code</strong> and modify it.<br />

Contribute back your changes.<br />

New developers are welcome.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 19 / 20


License<br />

Oc<strong>to</strong>pus is free software (GPL license).<br />

Free <strong>to</strong> use it.<br />

Study <strong>the</strong> <strong>code</strong> and modify it.<br />

Contribute back your changes.<br />

New developers are welcome.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 19 / 20


License<br />

Oc<strong>to</strong>pus is free software (GPL license).<br />

Free <strong>to</strong> use it.<br />

Study <strong>the</strong> <strong>code</strong> and modify it.<br />

Contribute back your changes.<br />

New developers are welcome.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 19 / 20


License<br />

Oc<strong>to</strong>pus is free software (GPL license).<br />

Free <strong>to</strong> use it.<br />

Study <strong>the</strong> <strong>code</strong> and modify it.<br />

Contribute back your changes.<br />

New developers are welcome.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 19 / 20


License<br />

Oc<strong>to</strong>pus is free software (GPL license).<br />

Free <strong>to</strong> use it.<br />

Study <strong>the</strong> <strong>code</strong> and modify it.<br />

Contribute back your changes.<br />

New developers are welcome.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 19 / 20


Oc<strong>to</strong>pus developers<br />

Miguel Marques, Université Lyon I.<br />

Micael Oliveira and Fernando Nogueira, Universidade de<br />

Coimbra.<br />

Florian Lorenzen, Danilo Nitsche, Heiko Appel and Alber<strong>to</strong> Castro,<br />

Freie Universität Berlin.<br />

David Strubbe, UC Berkeley.<br />

Carlo Andrea Rozzi, Università di Modena e Reggio Emilia.<br />

Xavier Andrade and Angel Rubio, Universidad del Pais Vasco,<br />

San Sebastian.<br />

X. Andrade (EHU/UPV) <strong>Introduction</strong> <strong>to</strong> Oc<strong>to</strong>pus Benasque, September 2008 20 / 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!