06.04.2013 Views

Separation of Variables -- Legendre Equations - Louisiana Tech ...

Separation of Variables -- Legendre Equations - Louisiana Tech ...

Separation of Variables -- Legendre Equations - Louisiana Tech ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong><br />

<strong>Equations</strong><br />

Bernd Schröder<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

2. If the unknown function u depends on variables ρ,θ,φ, we<br />

assume there is a solution <strong>of</strong> the form u = R(ρ)T(θ)P(φ).<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

2. If the unknown function u depends on variables ρ,θ,φ, we<br />

assume there is a solution <strong>of</strong> the form u = R(ρ)T(θ)P(φ).<br />

3. The special form <strong>of</strong> this solution function allows us to<br />

replace the original partial differential equation with<br />

several ordinary differential equations.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

2. If the unknown function u depends on variables ρ,θ,φ, we<br />

assume there is a solution <strong>of</strong> the form u = R(ρ)T(θ)P(φ).<br />

3. The special form <strong>of</strong> this solution function allows us to<br />

replace the original partial differential equation with<br />

several ordinary differential equations.<br />

4. Key step: If f (ρ) = g(θ,φ), then f and g must be constant.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

2. If the unknown function u depends on variables ρ,θ,φ, we<br />

assume there is a solution <strong>of</strong> the form u = R(ρ)T(θ)P(φ).<br />

3. The special form <strong>of</strong> this solution function allows us to<br />

replace the original partial differential equation with<br />

several ordinary differential equations.<br />

4. Key step: If f (ρ) = g(θ,φ), then f and g must be constant.<br />

5. Solutions <strong>of</strong> the ordinary differential equations we obtain<br />

must typically be processed some more to give useful<br />

results for the partial differential equations.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong><br />

1. Solution technique for partial differential equations.<br />

2. If the unknown function u depends on variables ρ,θ,φ, we<br />

assume there is a solution <strong>of</strong> the form u = R(ρ)T(θ)P(φ).<br />

3. The special form <strong>of</strong> this solution function allows us to<br />

replace the original partial differential equation with<br />

several ordinary differential equations.<br />

4. Key step: If f (ρ) = g(θ,φ), then f and g must be constant.<br />

5. Solutions <strong>of</strong> the ordinary differential equations we obtain<br />

must typically be processed some more to give useful<br />

results for the partial differential equations.<br />

6. Some very powerful and deep theorems can be used to<br />

formally justify the approach for many equations involving<br />

the Laplace operator.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

How Deep?<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

How Deep?<br />

plus about 200 pages <strong>of</strong> really<br />

awesome functional analysis.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

The Equation ∆u = f (ρ)u<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

The Equation ∆u = f (ρ)u<br />

1. For constant f , this is an eigenvalue equation for the<br />

Laplace operator, which arises, for example, in separation<br />

<strong>of</strong> variables for the heat equation or the wave equation.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

The Equation ∆u = f (ρ)u<br />

1. For constant f , this is an eigenvalue equation for the<br />

Laplace operator, which arises, for example, in separation<br />

<strong>of</strong> variables for the heat equation or the wave equation.<br />

2. The time independent Schrödinger equation<br />

− ¯h<br />

∆φ + Vφ = Eφ describes certain quantum<br />

2m<br />

mechanical systems, for example, the electron in a<br />

hydrogen atom. m is the mass <strong>of</strong> the electron, ¯h = h<br />

2π ,<br />

where h is Planck’s constant, V(ρ) is the electric potential<br />

and E is the energy eigenvalue.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

The Equation ∆u = f (ρ)u<br />

1. For constant f , this is an eigenvalue equation for the<br />

Laplace operator, which arises, for example, in separation<br />

<strong>of</strong> variables for the heat equation or the wave equation.<br />

2. The time independent Schrödinger equation<br />

− ¯h<br />

∆φ + Vφ = Eφ describes certain quantum<br />

2m<br />

mechanical systems, for example, the electron in a<br />

hydrogen atom. m is the mass <strong>of</strong> the electron, ¯h = h<br />

2π ,<br />

where h is Planck’s constant, V(ρ) is the electric potential<br />

and E is the energy eigenvalue.<br />

3. The equation ∆u = f (ρ)u had already been investigated in<br />

electrodynamics when its importance for the states <strong>of</strong> an<br />

electron in a hydrogen atom became clear.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u = f (ρ)u<br />

∂θ 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

R ′′ TP<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u = f (ρ)u<br />

∂θ 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u = f (ρ)u<br />

∂θ 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ<br />

2 RTP′′<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u = f (ρ)u<br />

∂θ 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u = f (ρ)u<br />

∂θ 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2<br />

1<br />

ρ<br />

= f (ρ)u<br />

2 sin 2 (φ) RT′′ P<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′<br />

ρ<br />

R<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′<br />

ρ + 2ρ<br />

R R<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong><br />

P ′<br />

P


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong><br />

T ′′<br />

T


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

T ′′<br />

T = ρ2 f (ρ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

T ′′<br />

T = ρ2 f (ρ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

P ′′<br />

P<br />

T ′′<br />

T = ρ2 f (ρ)<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin 2 T<br />

(φ)<br />

′′<br />

T = ρ2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ<br />

R R ,<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

P ′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P<br />

sin 2 (φ)<br />

Both sides must be constant.<br />

T ′′<br />

T = ρ2 f (ρ)<br />

T ′′<br />

T = ρ2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ<br />

R R ,<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

P ′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P<br />

sin 2 (φ)<br />

Both sides must be constant.<br />

ρ 2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ = −λ, or<br />

R R<br />

T ′′<br />

T = ρ2 f (ρ)<br />

T ′′<br />

T = ρ2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ<br />

R R ,<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

T ′′<br />

T = ρ2 f (ρ)<br />

P ′′ cos(φ) P<br />

+<br />

P sin(φ)<br />

′ 1<br />

+<br />

P sin 2 T<br />

(φ)<br />

′′<br />

T = ρ2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ<br />

R R ,<br />

Both sides must be constant.<br />

ρ 2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ = −λ, or<br />

R R<br />

ρ 2 R ′′ + 2ρR ′ − λR + ρ 2 f (ρ) R = 0.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Radial Part)<br />

∂ 2u 2 ∂u 1<br />

+ +<br />

∂ρ 2 ρ ∂ρ ρ2 ∂ 2u cos(φ)<br />

+<br />

∂φ 2 ρ2 sin(φ)<br />

R ′′ TP + 2<br />

ρ R′ TP + 1<br />

ρ 2 RTP′′ + cos(φ)<br />

ρ 2 sin(φ) RTP′ +<br />

2 R′′ R′ P′′<br />

ρ + 2ρ +<br />

R R P<br />

∂u<br />

∂φ +<br />

1<br />

ρ2 sin 2 ∂<br />

(φ)<br />

2u ∂θ 2 = f (ρ)u<br />

1<br />

ρ2 sin 2 (φ) RT′′ P = f (ρ)RTP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′ 1<br />

+<br />

P sin2 (φ)<br />

Bring all terms that depend on ρ to the right side:<br />

T ′′<br />

T = ρ2 f (ρ)<br />

P ′′ cos(φ) P<br />

+<br />

P sin(φ)<br />

′ 1<br />

+<br />

P sin 2 T<br />

(φ)<br />

′′<br />

T = ρ2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ<br />

R R ,<br />

Both sides must be constant.<br />

ρ 2 2 R′′ R′<br />

f (ρ) − ρ − 2ρ = −λ, or<br />

R R<br />

ρ 2 R ′′ + 2ρR ′ − λR + ρ 2 f (ρ) R = 0. (QM: Laguerre polys.)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

sin 2 (φ) P′′<br />

P<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

+ sin(φ)cos(φ)P′<br />

P + λ sin2 (φ) = − T′′<br />

T<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

sin 2 (φ) P′′<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

+ sin(φ)cos(φ)P′<br />

P<br />

Both sides must be constant.<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

P + λ sin2 (φ) = − T′′<br />

T<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = − T′′<br />

Both sides must be constant.<br />

−<br />

T<br />

T′′<br />

T = c leads to T′′ + cT = 0.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = − T′′<br />

Both sides must be constant.<br />

−<br />

T<br />

T′′<br />

T = c leads to T′′ + cT = 0.<br />

But T must be 2π-periodic.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = − T′′<br />

T<br />

Both sides must be constant.<br />

− T′′<br />

T = c leads to T′′ + cT = 0.<br />

But T must be 2π-periodic. Thus c = m2 , where m is a<br />

nonnegative integer.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Azimuthal Part)<br />

P ′′<br />

P<br />

sin 2 (φ) P′′<br />

P<br />

cos(φ) P<br />

+<br />

sin(φ)<br />

′ 1<br />

+<br />

P sin2 T<br />

(φ)<br />

′′<br />

T<br />

= −λ<br />

T′′<br />

+ sin(φ)cos(φ)P′ +<br />

P T = −λ sin2 (φ)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = − T′′<br />

T<br />

Both sides must be constant.<br />

− T′′<br />

T = c leads to T′′ + cT = 0.<br />

But T must be 2π-periodic. Thus c = m2 , where m is a<br />

nonnegative integer.<br />

So the function T must be <strong>of</strong> the form<br />

T(θ) = c1 cos(mθ) + c2 sin(mθ).<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

sin 2 (φ) P′′<br />

P<br />

+ sin(φ)cos(φ)P′<br />

P + λ sin2 (φ) = m 2<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

sin 2 (φ) P′′<br />

P<br />

sin 2 (φ)P ′′ + sin(φ)cos(φ)P ′ +<br />

+ sin(φ)cos(φ)P′<br />

P + λ sin2 (φ) = m 2<br />

<br />

λ sin 2 (φ) − m 2<br />

P = 0<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = m 2<br />

<br />

λ sin 2 (φ) − m 2<br />

P = 0<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

sin2 <br />

P<br />

(φ)<br />

= 0<br />

sin 2 (φ)P ′′ + sin(φ)cos(φ)P ′ +<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = m 2<br />

sin 2 (φ)P ′′ + sin(φ)cos(φ)P ′ <br />

+ λ sin 2 (φ) − m 2<br />

P = 0<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

sin2 <br />

P<br />

(φ)<br />

= 0<br />

This equation is complicated, because it involves trigonometric<br />

functions.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Separating the Equation ∆u = f (ρ)u (Polar Part)<br />

sin 2 (φ) P′′<br />

+ sin(φ)cos(φ)P′<br />

P P + λ sin2 (φ) = m 2<br />

sin 2 (φ)P ′′ + sin(φ)cos(φ)P ′ <br />

+ λ sin 2 (φ) − m 2<br />

P = 0<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

This equation is complicated, because it involves trigonometric<br />

functions.<br />

It turns out that the substitution z = cos(φ) will simplify the<br />

equation.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

d<br />

dφ P<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

d<br />

P =<br />

dφ<br />

<br />

d<br />

dz P<br />

<br />

d<br />

dφ z<br />

<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

d<br />

P =<br />

dφ<br />

<br />

d<br />

dz P<br />

<br />

d<br />

dφ z<br />

<br />

=<br />

<br />

d<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

d<br />

P =<br />

dφ<br />

=<br />

<br />

d<br />

dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

d<br />

P =<br />

dφ<br />

d2 P<br />

dφ 2<br />

=<br />

<br />

d<br />

dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

<br />

d d<br />

P =<br />

dφ dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

=<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

d2 <br />

d d<br />

P =<br />

dφ 2 dφ dz P<br />

<br />

<br />

− sin(φ) <br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

<br />

d d<br />

P =<br />

dφ dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

=<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

d2 <br />

d d<br />

P =<br />

dφ 2 dφ dz P<br />

<br />

<br />

− sin(φ) <br />

= d<br />

<br />

d<br />

dφ dz P<br />

<br />

d<br />

− sin(φ) +<br />

dz P<br />

<br />

<br />

− cos(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

<br />

d d<br />

P =<br />

dφ dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

=<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

d2 <br />

d d<br />

P =<br />

dφ 2 dφ dz P<br />

<br />

<br />

− sin(φ) <br />

= d<br />

<br />

d<br />

dφ dz P<br />

<br />

d<br />

− sin(φ) +<br />

dz P<br />

<br />

<br />

− cos(φ)<br />

<br />

d d<br />

=<br />

dz dz P<br />

<br />

<br />

− sin(φ) <br />

d<br />

− sin(φ) +<br />

dz P<br />

<br />

<br />

− cos(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Derivatives for the Substitution<br />

<br />

d d<br />

P =<br />

dφ dz P<br />

<br />

d<br />

dφ z<br />

<br />

d<br />

=<br />

dz P<br />

<br />

d<br />

dφ cos(φ)<br />

<br />

<br />

d<br />

=<br />

dz P<br />

<br />

<br />

− sin(φ)<br />

d2 <br />

d d<br />

P =<br />

dφ 2 dφ dz P<br />

<br />

<br />

− sin(φ) <br />

= d<br />

<br />

d<br />

dφ dz P<br />

<br />

d<br />

− sin(φ) +<br />

dz P<br />

<br />

<br />

− cos(φ)<br />

<br />

d d<br />

=<br />

dz dz P<br />

<br />

<br />

− sin(φ) <br />

− sin(φ) +<br />

= sin 2 (φ) d2<br />

P − cos(φ)<br />

dz2 <br />

d<br />

dz P<br />

<br />

<br />

d<br />

dz P<br />

<br />

<br />

− cos(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2P −cos(φ)dP<br />

dz2 dz<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

dz<br />

2 −cos(φ)dP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

dP<br />

<br />

− sin(φ)<br />

dz<br />

sin 2 (φ)<br />

<br />

P = 0<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

dz<br />

2 −cos(φ)dP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

dP<br />

<br />

− sin(φ) +<br />

dz<br />

sin 2 (φ)<br />

<br />

P = 0<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong><br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

dz<br />

2 −cos(φ)dP<br />

+ cos(φ)<br />

sin(φ)<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

dP<br />

<br />

− sin(φ) +<br />

dz<br />

sin 2 (φ) d2P − 2cos(φ)dP<br />

dz2 dz +<br />

<br />

P = 0<br />

sin2 (φ)<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

2 −cos(φ)dP<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

<br />

P = 0<br />

sin2 (φ)<br />

<br />

cos(φ) dP<br />

<br />

+ − sin(φ) + λ −<br />

dz sin(φ) dz<br />

m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

sin 2 (φ) d2P − 2cos(φ)dP<br />

dz2 dz +<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

<br />

1 − z 2 d2P dz2 logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

2 −cos(φ)dP<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

<br />

P = 0<br />

sin2 (φ)<br />

<br />

cos(φ) dP<br />

<br />

+ − sin(φ) + λ −<br />

dz sin(φ) dz<br />

m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

sin 2 (φ) d2P − 2cos(φ)dP<br />

dz2 dz +<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

<br />

1 − z 2 d2P − 2zdP<br />

dz2 dz<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

2 −cos(φ)dP<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

<br />

P = 0<br />

sin2 (φ)<br />

<br />

cos(φ) dP<br />

<br />

+ − sin(φ) + λ −<br />

dz sin(φ) dz<br />

m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

sin 2 (φ) d2P − 2cos(φ)dP<br />

dz2 dz +<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

<br />

1 − z 2 d2P − 2zdP<br />

dz2 dz +<br />

<br />

λ − m2<br />

1 − z2 <br />

P<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

Generalized <strong>Legendre</strong> Equation<br />

sin 2 (φ) d2 P<br />

dz<br />

2 −cos(φ)dP<br />

P ′′ + cos(φ)<br />

sin(φ) P′ <br />

+ λ − m2<br />

<br />

P = 0<br />

sin2 (φ)<br />

<br />

cos(φ) dP<br />

<br />

+ − sin(φ) + λ −<br />

dz sin(φ) dz<br />

m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

sin 2 (φ) d2P − 2cos(φ)dP<br />

dz2 dz +<br />

<br />

λ − m2<br />

sin2 <br />

P = 0<br />

(φ)<br />

<br />

1 − z 2 d2P − 2zdP<br />

dz2 dz +<br />

<br />

λ − m2<br />

1 − z2 <br />

P = 0<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

Let λ be a real number and let m be a nonnegative integer. The<br />

differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ <br />

+ λ − m2<br />

1 − x2 <br />

y = 0<br />

is called the generalized <strong>Legendre</strong> equation.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

Let λ be a real number and let m be a nonnegative integer. The<br />

differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ <br />

+ λ − m2<br />

1 − x2 <br />

y = 0<br />

is called the generalized <strong>Legendre</strong> equation.<br />

For nonnegative integers l, the differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0<br />

is called the <strong>Legendre</strong> equation.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

Let λ be a real number and let m be a nonnegative integer. The<br />

differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ <br />

+ λ − m2<br />

1 − x2 <br />

y = 0<br />

is called the generalized <strong>Legendre</strong> equation.<br />

For nonnegative integers l, the differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0<br />

is called the <strong>Legendre</strong> equation.<br />

Formally, both are actually families <strong>of</strong> differential equations,<br />

because m,λ and l are parameters.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

Let λ be a real number and let m be a nonnegative integer. The<br />

differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ <br />

+ λ − m2<br />

1 − x2 <br />

y = 0<br />

is called the generalized <strong>Legendre</strong> equation.<br />

For nonnegative integers l, the differential equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0<br />

is called the <strong>Legendre</strong> equation.<br />

Formally, both are actually families <strong>of</strong> differential equations,<br />

because m,λ and l are parameters.<br />

m is a nonnegative integer, because this is required through the<br />

equation for T(θ) in the separation <strong>of</strong> variables.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

In the <strong>Legendre</strong> equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0,<br />

the parameter λ should be <strong>of</strong> the form l(l + 1) with l a<br />

nonnegative integer, because <strong>of</strong> the following:<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

In the <strong>Legendre</strong> equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0,<br />

the parameter λ should be <strong>of</strong> the form l(l + 1) with l a<br />

nonnegative integer, because <strong>of</strong> the following:<br />

1. For λ not <strong>of</strong> this form the solutions go to infinity as z<br />

approaches ±1.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

In the <strong>Legendre</strong> equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0,<br />

the parameter λ should be <strong>of</strong> the form l(l + 1) with l a<br />

nonnegative integer, because <strong>of</strong> the following:<br />

1. For λ not <strong>of</strong> this form the solutions go to infinity as z<br />

approaches ±1.<br />

2. z approaching ±1 corresponds to cos(φ) approaching ±1,<br />

which corresponds to φ approaching 0 and π.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>


Introduction ∆ in a Spherically Symmetric Geometry Separating Spherical Coordinates Obtaining the <strong>Legendre</strong> Equation<br />

<strong>Legendre</strong> <strong>Equations</strong><br />

In the <strong>Legendre</strong> equation<br />

<br />

1 − x 2<br />

y ′′ − 2xy ′ + l(l + 1)y = 0,<br />

the parameter λ should be <strong>of</strong> the form l(l + 1) with l a<br />

nonnegative integer, because <strong>of</strong> the following:<br />

1. For λ not <strong>of</strong> this form the solutions go to infinity as z<br />

approaches ±1.<br />

2. z approaching ±1 corresponds to cos(φ) approaching ±1,<br />

which corresponds to φ approaching 0 and π.<br />

3. So, physically this would mean that for λ = l(l + 1), the<br />

function u would be infinite on the z-axis, which is not<br />

sensible.<br />

logo1<br />

Bernd Schröder <strong>Louisiana</strong> <strong>Tech</strong> University, College <strong>of</strong> Engineering and Science<br />

<strong>Separation</strong> <strong>of</strong> <strong>Variables</strong> – <strong>Legendre</strong> <strong>Equations</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!